JP2012132326A - 火花点火内燃機関 - Google Patents

火花点火内燃機関 Download PDF

Info

Publication number
JP2012132326A
JP2012132326A JP2010283041A JP2010283041A JP2012132326A JP 2012132326 A JP2012132326 A JP 2012132326A JP 2010283041 A JP2010283041 A JP 2010283041A JP 2010283041 A JP2010283041 A JP 2010283041A JP 2012132326 A JP2012132326 A JP 2012132326A
Authority
JP
Japan
Prior art keywords
compression ratio
timing
valve
variable
closing timing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010283041A
Other languages
English (en)
Other versions
JP5472076B2 (ja
Inventor
Hiroyuki Tanaka
宏幸 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2010283041A priority Critical patent/JP5472076B2/ja
Publication of JP2012132326A publication Critical patent/JP2012132326A/ja
Application granted granted Critical
Publication of JP5472076B2 publication Critical patent/JP5472076B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

【課題】可変圧縮比機構と、吸気弁の閉弁時期を可変とする可変バルブタイミング機構とを具備する火花内燃機関において、ノッキング又はプレイグニッション等の異常燃焼の発生を抑制して従来に比較して良好な機関排気系の暖機を可能とする。
【解決手段】機関排気系の暖機のために排気ガス温度を高める際には、実圧縮比Rを目標実圧縮比Rtへ高めることにより拡大させた遅角限界まで点火時期を遅角させる火花点火内燃機関において、実圧縮比を目標実圧縮比へ高めるために、可変バルブタイミング機構によって吸気弁の閉弁時期IVCが設定クランク角度IVCtまで進角され、吸気弁の閉弁時期が設定クランク角度まで進角されたときに実圧縮比が目標実圧縮比とならなければ可変圧縮比機構によって機械圧縮比Eが高められ、設定クランク角度は、推定された燃料供給系内の現在の燃料のオクタン価が低いほど遅角側とされる。
【選択図】図12

Description

本発明は、火花点火内燃機関に関する。
可変圧縮比機構を備える火花内燃機関が公知である。このような内燃機関において、排気系の触媒装置を暖機するために排気ガス温度を高める際に、可変圧縮比機構によって機械圧縮比を高めて実圧縮比を高めることにより、混合気を着火燃焼させることができる点火時期の遅角限界を拡大し、点火時期を大幅に遅角して排気ガス温度を十分に高めることが提案されている(特許文献1参照)。
特開2009−215995 特開2009−115063
吸気弁の閉弁時期を変化させて吸気量を制御する可変バルブタイミング機構が設けられていれば、圧縮行程の吸気弁の閉弁時期を進角することにより吸気量を増加させて実圧縮比を高めることができる。こうして、排気系の触媒装置を暖機するために排気ガス温度を高める際に、可変バルブタイミング機構によって実圧縮比を高めて点火時期の遅角限界を拡大させれば、高温の排気ガスが比較的多量に排出されることとなるために、触媒装置の暖機に有利である。しかしながら、このように吸気量を増加させて実圧縮比を高めると、燃料のオクタン価が低いときにはノッキング又はプレイグニッション等の異常燃焼が発生してしまう。
従って、本発明の目的は、可変圧縮比機構と、吸気弁の閉弁時期を可変とする可変バルブタイミング機構とを具備する火花内燃機関において、異常燃焼の発生を抑制して従来に比較して良好な機関排気系の暖機を可能とすることである。
本発明による請求項1に記載の火花点火内燃機関は、可変圧縮比機構と、吸気弁の閉弁時期を可変とする可変バルブタイミング機構とを具備し、機関排気系の暖機のために排気ガス温度を高める際には、実圧縮比を目標実圧縮比へ高めることにより拡大させた遅角限界まで点火時期を遅角させる火花点火内燃機関において、前記実圧縮比を前記目標実圧縮比へ高めるために、前記可変バルブタイミング機構によって吸気弁の閉弁時期が設定クランク角度まで進角され、前記吸気弁の閉弁時期が前記設定クランク角度まで進角されたときに前記実圧縮比が前記目標実圧縮比とならなければ前記可変圧縮比機構によって機械圧縮比が高められ、前記設定クランク角度は、推定された燃料供給系内の現在の燃料のオクタン価が低いほど遅角側とされることを特徴とする。
本発明による請求項2に記載の火花点火内燃機関は、請求項1に記載の火花点火内燃機関において、前記可変圧縮比機構によって前記機械圧縮比が高められているときに、前記機関排気系の暖機のために高めた前記排気ガス温度を低下させる際には、前記可変バルブタイミング機構によって前記吸気弁の閉弁時期を前記設定クランク角度から遅角させた後に前記可変圧縮比機構によって前記機械圧縮比を低くすることを特徴とする。
本発明による請求項1に記載の火花点火内燃機関は、可変圧縮比機構と、吸気弁の閉弁時期を可変とする可変バルブタイミング機構とを具備し、機関排気系の暖機のために排気ガス温度を高める際には、実圧縮比を目標実圧縮比へ高めることにより拡大させた遅角限界まで点火時期を遅角させる火花点火内燃機関において、実圧縮比を目標実圧縮比へ高めるために、可変バルブタイミング機構によって吸気弁の閉弁時期が設定クランク角度まで進角され、吸気弁の閉弁時期が設定クランク角度まで進角されたときに実圧縮比が目標実圧縮比とならなければ可変圧縮比機構によって機械圧縮比が高められるようになっている。それにより、機関排気系の暖機のために排気ガス温度を高める際において、実圧縮比を目標実圧縮比へ高めて拡大させた遅角限界まで点火時期を遅角させるために、最初は、可変バルブタイミング機構によって吸気弁の閉弁時期を設定クランク角度まで進角して吸気を増量して実圧縮比を高めるために、点火時期を遅角させた高温の排気ガス量が増大し、機関排気系の暖機に有利となる。設定クランク角度は、推定された燃料供給系内の現在の燃料のオクタン価が低いほど遅角側とされて、吸気の増量が抑制されるために、オクタン価が低いほどノッキング又はプレイグニッション等の異常燃焼が発生し易くなるが、吸気弁の閉弁時期を設定クランク角度まで進角させても、このような異常燃焼の発生を抑制することができる。吸気弁の閉弁時期が設定クランク角度まで進角されたときに実圧縮比が目標実圧縮比とならなければ、可変圧縮比機構によって機械圧縮比が高められて吸気を増量することなく実圧縮比が高められるために、このときにも異常燃焼の発生を抑制することができる。こうして、最終的には、実圧縮比を目標実圧縮比まで高めて拡大させた遅角限界まで点火時期が遅角されて排気ガス温度を十分に高めることができ、異常燃焼の発生を抑制しつつ増大させた排気ガス量によって、従来に比較して良好な機関排気系の暖機が可能となる。
本発明による請求項2に記載の火花点火内燃機関によれば、請求項1に記載の火花点火内燃機関において、可変圧縮比機構によって機械圧縮比が高められているときに、機関排気系の暖機のために高めた排気ガス温度を低下させる際には、点火時期の遅角によって筒内温度も高まっており、ノッキング又はプレイグニッション等の異常燃焼が発生し易くなっているために、先ずは、可変バルブタイミング機構によって吸気弁の閉弁時期を設定クランク角度から遅角させて吸気を減量し、このような異常燃焼を発生し難くして、その後に可変圧縮比機構によって機械圧縮比を低くするようになっている。
内燃機関の全体図である。 可変圧縮比機構の分解斜視図である。 図解的に表した内燃機関の側面断面図である。 可変バルブタイミング機構を示す図である。 吸気弁および排気弁のリフト量を示す図である。 機械圧縮比、実圧縮比および膨張比を説明するための図である。 理論熱効率と膨張比との関係を示す図である。 通常のサイクルおよび超高膨張比サイクルを説明するための図である。 機関負荷に応じた機械圧縮比等の変化を示す図である。 暖機実施制御を示す第一フローチャートである。 暖機完了制御を示す第二フローチャートである。 図10及び11の制御による吸気弁の閉弁時期、機械圧縮比、及び実圧縮比の変化を示すタイムチャートである。
図1は本発明による可変圧縮比機構を備える内燃機関の側面断面図を示す。図1を参照すると、1はクランクケース、2はシリンダブロック、3はシリンダヘッド、4はピストン、5は燃焼室、6は燃焼室5の頂面中央部に配置された点火栓、7は吸気弁、8は吸気ポート、9は排気弁、10は排気ポートを夫々示す。吸気ポート8は吸気枝管11を介してサージタンク12に連結され、各吸気枝管11には夫々対応する吸気ポート8内に向けて燃料を噴射するための燃料噴射弁13が配置される。なお、燃料噴射弁13は各吸気枝管11に取付ける代りに各燃焼室5内に配置してもよい。
サージタンク12は吸気ダクト14を介してエアクリーナ15に連結され、吸気ダクト14内にはアクチュエータ16によって駆動されるスロットル弁17と例えば熱線を用いた吸入空気量検出器18とが配置される。一方、排気ポート10は排気マニホルド19を介して例えば三元触媒を内蔵した触媒装置20に連結され、排気マニホルド19内には空燃比センサ21が配置される。
一方、図1に示される実施例ではクランクケース1とシリンダブロック2との連結部にクランクケース1とシリンダブロック2のシリンダ軸線方向の相対位置を変化させることによりピストン4が圧縮上死点に位置するときの燃焼室5の容積を変更可能な可変圧縮比機構Aが設けられており、更に実際の圧縮作用の開始時期を変更可能な実圧縮作用開始時期変更機構Bが設けられている。なお、図1に示される実施例ではこの実圧縮作用開始時期変更機構Bは吸気弁7の閉弁時期を制御可能な可変バルブタイミング機構からなる。
図1に示されるようにクランクケース1とシリンダブロック2にはクランクケース1とシリンダブロック2間の相対位置関係を検出するための相対位置センサ22が取付けられており、この相対位置センサ22からはクランクケース1とシリンダブロック2との間隔の変化を示す出力信号が出力される。また、可変バルブタイミング機構Bには吸気弁7の閉弁時期を示す出力信号を発生するバルブタイミングセンサ23が取付けられており、スロットル弁駆動用のアクチュエータ16にはスロットル弁開度を示す出力信号を発生するスロットル開度センサ24が取付けられている。
電子制御ユニット30はデジタルコンピュータからなり、双方向性バス31によって互いに接続されたROM(リードオンリメモリ)32、RAM(ランダムアクセスメモリ)33、CPU(マイクロプロセッサ)34、入力ポート35および出力ポート36を具備する。吸入空気量検出器18、空燃比センサ21、相対位置センサ22、バルブタイミングセンサ23およびスロットル開度センサ24の出力信号は夫々対応するAD変換器37を介して入力ポート35に入力される。また、アクセルペダル40にはアクセルペダル40の踏込み量Lに比例した出力電圧を発生する負荷センサ41が接続され、負荷センサ41の出力電圧は対応するAD変換器37を介して入力ポート35に入力される。更に入力ポート35にはクランクシャフトが例えば30°回転する毎に出力パルスを発生するクランク角センサ42が接続される。一方、出力ポート36は対応する駆動回路38を介して点火栓6、燃料噴射弁13、スロットル弁駆動用アクチュエータ16、可変圧縮比機構Aおよび可変バルブタイミング機構Bに接続される。
図2は図1に示す可変圧縮比機構Aの分解斜視図を示しており、図3は図解的に表した内燃機関の側面断面図を示している。図2を参照すると、シリンダブロック2の両側壁の下方には互いに間隔を隔てた複数個の突出部50、すなわち、シリンダブロック側サポートが形成されており、各突出部50内には夫々断面円形のカム挿入孔51が形成されている。一方、クランクケース1の上壁面上には互いに間隔を隔てて夫々対応する突出部50の間に嵌合せしめられる複数個の突出部52、すなわち、クランクケース側サポートが形成されており、これらの各突出部52内にも夫々断面円形のカム挿入孔53が形成されている。
図2に示されるように一対のカムシャフト54,55が設けられており、各カムシャフト54,55上には一つおきに各カム挿入孔53内に回転可能に挿入される同心部分58が位置している。各同心部分58は各カムシャフト54,55の回転軸線と共軸をなす。一方、各同心部分58の両側には図3に示すように各カムシャフト54,55の回転軸線に対して偏心配置された偏心部57が位置しており、この偏心部57上に別の円形カム56が偏心して回転可能に取付けられている。図2に示されるようにこれら円形カム56は各同心部分58の両側に配置されており、これら円形カム56は対応する各カム挿入孔51内に回転可能に挿入されている。また、図2に示されるようにカムシャフト55にはカムシャフト55の回転角度を表す出力信号を発生するカム回転角度センサ25が取付けられている。
図3(A)に示すような状態から各カムシャフト54,55の同心部分58を図3(A)において矢印で示される如く互いに反対方向に回転させると偏心部57が互いに離れる方向に移動するために円形カム56がカム挿入孔51内において同心部分58とは反対方向に回転し、図3(B)に示されるように偏心部57の位置が高い位置から中間高さ位置となる。次いで更に同心部分58を矢印で示される方向に回転させると図3(C)に示されるように偏心部57は最も低い位置となる。
なお、図3(A)、図3(B)、図3(C)には夫々の状態における同心部分58の中心aと偏心部57の中心bと円形カム56の中心cとの位置関係が示されている。
図3(A)から図3(C)とを比較するとわかるようにクランクケース1とシリンダブロック2の相対位置は同心部分58の中心aと円形カム56の中心cとの距離によって定まり、同心部分58の中心aと円形カム56の中心cとの距離が大きくなるほどシリンダブロック2はクランクケース1から離れる。即ち、可変圧縮比機構Aは回転するカムを用いたクランク機構によりクランクケース1とシリンダブロック2間の相対位置を変化させていることになる。シリンダブロック2がクランクケース1から離れるとピストン4が圧縮上死点に位置するときの燃焼室5の容積は増大し、従って各カムシャフト54,55を回転させることによってピストン4が圧縮上死点に位置するときの燃焼室5の容積を変更することができる。
図2に示されるように各カムシャフト54,55を夫々反対方向に回転させるために駆動モータ59の回転軸には夫々螺旋方向が逆向きの一対のウォーム61,62が取付けられており、これらウォーム61,62と噛合するウォームホイール63,64が夫々各カムシャフト54,55の端部に固定されている。この実施例では駆動モータ59を駆動することによってピストン4が圧縮上死点に位置するときの燃焼室5の容積を広い範囲に亘って変更することができる。
一方、図4は図1において吸気弁7を駆動するためのカムシャフト70の端部に取付けられた可変バルブタイミング機構Bを示している。図4を参照すると、この可変バルブタイミング機構Bは機関のクランク軸によりタイミングベルトを介して矢印方向に回転せしめられるタイミングプーリ71と、タイミングプーリ71と一緒に回転する円筒状ハウジング72と、吸気弁駆動用カムシャフト70と一緒に回転しかつ円筒状ハウジング72に対して相対回転可能な回転軸73と、円筒状ハウジング72の内周面から回転軸73の外周面まで延びる複数個の仕切壁74と、各仕切壁74の間で回転軸73の外周面から円筒状ハウジング72の内周面まで延びるベーン75とを具備しており、各ベーン75の両側には夫々進角用油圧室76と遅角用油圧室77とが形成されている。
各油圧室76,77への作動油の供給制御は作動油供給制御弁78によって行われる。この作動油供給制御弁78は各油圧室76,77に夫々連結された油圧ポート79,80と、油圧ポンプ81から吐出された作動油の供給ポート82と、一対のドレインポート83,84と、各ポート79,80,82,83,84間の連通遮断制御を行うスプール弁85とを具備している。
吸気弁駆動用カムシャフト70のカムの位相を進角すべきときは図4においてスプール弁85が右方に移動せしめられ、供給ポート82から供給された作動油が油圧ポート79を介して進角用油圧室76に供給されると共に遅角用油圧室77内の作動油がドレインポート84から排出される。このとき回転軸73は円筒状ハウジング72に対して矢印方向に相対回転せしめられる。
これに対し、吸気弁駆動用カムシャフト70のカムの位相を遅角すべきときは図4においてスプール弁85が左方に移動せしめられ、供給ポート82から供給された作動油が油圧ポート80を介して遅角用油圧室77に供給されると共に進角用油圧室76内の作動油がドレインポート83から排出される。このとき回転軸73は円筒状ハウジング72に対して矢印と反対方向に相対回転せしめられる。
回転軸73が円筒状ハウジング72に対して相対回転せしめられているときにスプール弁85が図4に示される中立位置に戻されると回転軸73の相対回転動作は停止せしめられ、回転軸73はそのときの相対回転位置に保持される。従って可変バルブタイミング機構Bによって吸気弁駆動用カムシャフト70のカムの位相を所望の量だけ進角させることができ、遅角させることができることになる。
図5において実線は可変バルブタイミング機構Bによって吸気弁駆動用カムシャフト70のカムの位相が最も進角されているときを示しており、破線は吸気弁駆動用カムシャフト70のカムの位相が最も遅角されているときを示している。従って吸気弁7の開弁期間は図5において実線で示す範囲と破線で示す範囲との間で任意に設定することができ、従って吸気弁7の閉弁時期も図5において矢印Cで示す範囲内の任意のクランク角に設定することができる。
図1および図4に示される可変バルブタイミング機構Bは一例を示すものであって、例えば吸気弁の開弁時期を一定に維持したまま吸気弁の閉弁時期のみを変えることのできる可変バルブタイミング機構等、種々の形式の可変バルブタイミング機構を用いることができる。
次に図6を参照しつつ本願において使用されている用語の意味について説明する。なお、図6の(A),(B),(C)には説明のために燃焼室容積が50mlでピストンの行程容積が500mlであるエンジンが示されており、これら図6の(A),(B),(C)において燃焼室容積とはピストンが圧縮上死点に位置するときの燃焼室の容積を表している。
図6(A)は機械圧縮比について説明している。機械圧縮比は圧縮行程時のピストンの行程容積と燃焼室容積のみから機械的に定まる値であってこの機械圧縮比は(燃焼室容積+行程容積)/燃焼室容積で表される。図6(A)に示される例ではこの機械圧縮比は(50ml+500ml)/50ml=11となる。
図6(B)は実圧縮比について説明している。この実圧縮比は実際に圧縮作用が開始されたときからピストンが上死点に達するまでの実際のピストン行程容積と燃焼室容積から定まる値であってこの実圧縮比は(燃焼室容積+実際の行程容積)/燃焼室容積で表される。即ち、図6(B)に示されるように圧縮行程においてピストンが上昇を開始しても吸気弁が開弁している間は圧縮作用は行われず、吸気弁が閉弁したときから実際の圧縮作用が開始される。従って実圧縮比は実際の行程容積を用いて上記の如く表される。図6(B)に示される例では実圧縮比は(50ml+450ml)/50ml=10となる。
図6(C)は膨張比について説明している。膨張比は膨張行程時のピストンの行程容積と燃焼室容積から定まる値であってこの膨張比は(燃焼室容積+行程容積)/燃焼室容積で表される。図6(C)に示される例ではこの膨張比は(50ml+500ml)/50ml=11となる。
次に図7および図8を参照しつつ本発明において用いられている超膨張比サイクルについて説明する。なお、図7は理論熱効率と膨張比との関係を示しており、図8は本発明において負荷に応じ使い分けられている通常のサイクルと超高膨張比サイクルとの比較を示している。
図8(A)は吸気弁が下死点近傍で閉弁し、ほぼ吸気下死点付近からピストンによる圧縮作用が開始される場合の通常のサイクルを示している。この図8(A)に示す例でも図6の(A),(B),(C)に示す例と同様に燃焼室容積が50mlとされ、ピストンの行程容積が500mlとされている。図8(A)からわかるように通常のサイクルでは機械圧縮比は(50ml+500ml)/50ml=11であり、実圧縮比もほぼ11であり、膨張比も(50ml+500ml)/50ml=11となる。即ち、通常の内燃機関では機械圧縮比と実圧縮比と膨張比とがほぼ等しくなる。
図7における実線は実圧縮比と膨張比とがほぼ等しい場合の、即ち通常のサイクルにおける理論熱効率の変化を示している。この場合には膨張比が大きくなるほど、即ち実圧縮比が高くなるほど理論熱効率が高くなることがわかる。従って通常のサイクルにおいて理論熱効率を高めるには実圧縮比を高くすればよいことになる。しかしながら機関高負荷運転時におけるノッキングの発生の制約により実圧縮比は最大でも12程度までしか高くすることができず、斯くして通常のサイクルにおいては理論熱効率を十分に高くすることはできない。
一方、このような状況下で機械圧縮比と実圧縮比とを厳密に区分しつつ理論熱効率を高めることが検討され、その結果理論熱効率は膨張比が支配し、理論熱効率に対して実圧縮比はほとんど影響を与えないことが見い出されたのである。即ち、実圧縮比を高くすると爆発力は高まるが圧縮するために大きなエネルギーが必要となり、斯くして実圧縮比を高めても理論熱効率はほとんど高くならない。
これに対し、膨張比を大きくすると膨張行程時にピストンに対し押下げ力が作用する期間が長くなり、斯くしてピストンがクランクシャフトに回転力を与えている期間が長くなる。従って膨張比は大きくすれば大きくするほど理論熱効率が高くなる。図7の破線ε=10は実圧縮比を10に固定した状態で膨張比を高くしていった場合の理論熱効率を示している。このように実圧縮比εを低い値に維持した状態で膨張比を高くしたときの理論熱効率の上昇量と、図7の実線で示す如く実圧縮比も膨張比と共に増大せしめられる場合の理論熱効率の上昇量とは大きな差がないことがわかる。
このように実圧縮比が低い値に維持されているとノッキングが発生することがなく、従って実圧縮比を低い値に維持した状態で膨張比を高くするとノッキングの発生を阻止しつつ理論熱効率を大巾に高めることができる。図8(B)は可変圧縮比機構Aおよび可変バルブタイミング機構Bを用いて、実圧縮比を低い値に維持しつつ膨張比を高めるようにした場合の一例を示している。
図8(B)を参照すると、この例では可変圧縮比機構Aにより燃焼室容積が50mlから20mlまで減少せしめられる。一方、可変バルブタイミング機構Bによって実際のピストン行程容積が500mlから200mlになるまで吸気弁の閉弁時期が遅らされる。その結果、この例では実圧縮比は(20ml+200ml)/20ml=11となり、膨張比は(20ml+500ml)/20ml=26となる。図8(A)に示される通常のサイクルでは前述したように実圧縮比がほぼ11で膨張比が11であり、この場合に比べると図8(B)に示される場合には膨張比のみが26まで高められていることがわかる。これが超高膨張比サイクルと称される所以である。
一般的に言って内燃機関では機関負荷が低いほど熱効率が悪くなり、従って機関運転時における熱効率を向上させるためには、即ち燃費を向上させるには機関負荷が低いときの熱効率を向上させることが必要となる。一方、図8(B)に示される超高膨張比サイクルでは圧縮行程時の実際のピストン行程容積が小さくされるために燃焼室5内に吸入しうる吸入空気量は少なくなり、従ってこの超高膨張比サイクルは機関負荷が比較的低いときにしか採用できないことになる。従って本発明では機関負荷が比較的低いときには図8(B)に示す超高膨張比サイクルとし、機関高負荷運転時には図8(A)に示す通常のサイクルとするようにしている。
次に図9を参照しつつ運転制御全般について概略的に説明する。図9には或る機関回転数における機関負荷に応じた吸入空気量、吸気弁閉弁時期、機械圧縮比、膨張比、実圧縮比およびスロットル弁17の開度の各変化が示されている。なお、図9は、触媒装置20内の三元触媒によって排気ガス中の未燃HC,COおよびNOXを同時に低減しうるように燃焼室5内における平均空燃比が空燃比センサ21の出力信号に基いて理論空燃比にフィードバック制御されている場合を示している。
さて、前述したように機関高負荷運転時には図8(A)に示される通常のサイクルが実行される。従って図9に示されるようにこのときには機械圧縮比は低くされるために膨張比は低く、図9において実線で示されるように吸気弁7の閉弁時期は図5において実線で示される如く早められている。また、このときには吸入空気量は多く、このときスロットル弁17の開度は全開に保持されているのでポンピング損失は零となっている。
一方、図9において実線で示されるように機関負荷が低くなるとそれに伴って吸入空気量を減少すべく吸気弁7の閉弁時期が遅くされる。またこのときには実圧縮比がほぼ一定に保持されるように図9に示される如く機関負荷が低くなるにつれて機械圧縮比が増大され、従って機関負荷が低くなるにつれて膨張比も増大される。なお、このときにもスロットル弁17は全開状態に保持されており、従って燃焼室5内に供給される吸入空気量はスロットル弁17によらずに吸気弁7の閉弁時期を変えることによって制御されている。
このように機関高負荷運転状態から機関負荷が低くなるときには実圧縮比がほぼ一定のもとで吸入空気量が減少するにつれて機械圧縮比が増大せしめられる。即ち、吸入空気量の減少に比例してピストン4が圧縮上死点に達したときの燃焼室5の容積が減少せしめられる。従ってピストン4が圧縮上死点に達したときの燃焼室5の容積は吸入空気量に比例して変化していることになる。なお、このとき図9に示される例では燃焼室5内の空燃比は理論空燃比となっているのでピストン4が圧縮上死点に達したときの燃焼室5の容積は燃料量に比例して変化していることになる。
機関負荷が更に低くなると機械圧縮比は更に増大せしめられ、機関負荷がやや低負荷寄りの中負荷L1まで低下すると機械圧縮比は燃焼室5の構造上限界となる限界機械圧縮比(上限機械圧縮比)に達する。機械圧縮比が限界機械圧縮比に達すると、機械圧縮比が限界機械圧縮比に達したときの機関負荷L1よりも負荷の低い領域では機械圧縮比が限界機械圧縮比に保持される。従って低負荷側の機関中負荷運転時および機関低負荷運転時には即ち、機関低負荷運転側では機械圧縮比は最大となり、膨張比も最大となる。別の言い方をすると機関低負荷運転側では最大の膨張比が得られるように機械圧縮比が最大にされる。
一方、図9に示される実施例では機関負荷がL1まで低下すると吸気弁7の閉弁時期が燃焼室5内に供給される吸入空気量を制御しうる限界閉弁時期となる。吸気弁7の閉弁時期が限界閉弁時期に達すると吸気弁7の閉弁時期が限界閉弁時期に達したときの機関負荷L1よりも負荷の低い領域では吸気弁7の閉弁時期が限界閉弁時期に保持される。
吸気弁7の閉弁時期が限界閉弁時期に保持されるともはや吸気弁7の閉弁時期の変化によっては吸入空気量を制御することができない。図9に示される実施例ではこのとき、即ち吸気弁7の閉弁時期が限界閉弁時期に達したときの機関負荷L1よりも負荷の低い領域ではスロットル弁17によって燃焼室5内に供給される吸入空気量が制御され、機関負荷が低くなるほどスロットル弁17の開度は小さくされる。
一方、図9において破線で示すように機関負荷が低くなるにつれて吸気弁7の閉弁時期を早めることによってもスロットル弁17によらずに吸入空気量を制御することができる。従って、図9において実線で示される場合と破線で示される場合とをいずれも包含しうるように表現すると、本発明による実施例では吸気弁7の閉弁時期は、機関負荷が低くなるにつれて、燃焼室内に供給される吸入空気量を制御しうる限界閉弁時期L1まで吸気下死点BDCから離れる方向に移動せしめられることになる。このように吸入空気量は吸気弁7の閉弁時期を図9において実線で示すように変化させても制御することができるし、破線に示すように変化させても制御することができる。
前述したように図8(B)に示す超高膨張比サイクルでは膨張比が26とされる。この膨張比は高いほど好ましいが図7からわかるように実用上使用可能な下限実圧縮比ε=5に対しても20以上であればかなり高い理論熱効率を得ることができる。従って本実施例では膨張比が20以上となるように可変圧縮比機構Aが形成されている。
ところで、触媒装置20は触媒活性化温度とならないと十分に排気ガスを浄化することができない。それにより、機関始動直後においては、触媒装置20を暖機することが必要とされる。このように触媒装置20などを暖機するための機関排気系の暖機においては、点火時期を遅角して排気ガス温度を高めることが一般的に行われる。
点火時期を遅角するほど排気ガス温度を高めることができる。一方、実圧縮比を高めると混合気の着火燃焼性が向上して点火時期の遅角限界を遅角側へ拡大させることができる。それにより、機関排気系の暖機に際しては、実圧縮比を高めて点火時期の遅角限界を拡大させることにより点火時期を大幅に遅角させ、排気ガス温度を十分に高めることが好ましい。
本実施例の火花点火内燃機関は、電子制御ユニット30によって図10に示す第一フローチャートに従って可変圧縮比機構A、可変バルブタイミング機構B、及び点火栓6を制御することにより機関排気系の暖機を実施するようになっている。第一フローチャートが実施されるのは、機関始動直後のアイドル運転時であり、このときには、吸気弁の閉弁時期は最大に遅角(IVC0)されていると共に、スロットル弁は最小開度とされている(図9参照)。また、アイドル運転時の実圧縮比R0は、振動を抑制するために、機械圧縮比を上限値より小さなアイドル機械圧縮比E0とすることにより、図9に示す一定値より低くされている。
先ず、ステップ101において、機関排気系の暖機が必要であるか否かが判断される。例えば、触媒装置20の温度を測定又は推定して、触媒活性化温度未満であるときには機関排気系の暖機が必要であると判断することができる。触媒装置20の温度は、例えば、触媒装置20へ流入する排気ガス温度に基づき推定することができ、また、触媒装置20から流出する排気ガス温度を触媒装置20の温度として使用することができる。
ステップ101の判断が否定されるときにはそのまま終了するが、機関排気系の暖機が要求されるときには、ステップ101の判断が肯定され、ステップ102において、今回の機関排気系の暖機において、点火時期を所望時期へ遅角するのに必要な目標実圧縮比Rtを吸気弁の閉弁時期IVCの進角によってだけ実現するための吸気弁の進角目標である第一設定クランク角度IVC1を決定する。すなわち、吸気弁の閉弁時期を進角することにより実圧縮比を高めることができ、現在のアイドル運転時の吸気弁の閉弁時期IVC0を第一設定クランク角度IVC1まで進角すれば、目標実圧縮比Rtが実現されて点火時期を所望時期へ遅角することが可能となる。このときに、スロットル弁の開度は最小開度に維持される。ここで、触媒装置20の現在の温度が高いほど、点火時期の遅角限界を進角側とすることも可能である。点火時期の遅角限界を進角側とするほど、目標実圧縮比Rtを低くして、第一設定クランク角度IVC1を遅角側とすることができる。
次いで、ステップ103において、燃料噴射弁13から噴射される燃料供給系内の燃料のオクタン価Cが推定される。例えば、ノッキングコントロールシステム(KCS)制御が実施され、ノッキングの発生を抑制して最大トルクを発生するように点火時期が制御されていれば、機関運転状態毎に予め設定されている最適点火時期(MBT)に対する点火時期遅角量が大きいほど、現在の燃料のオクタン価が低いこととなる。それにより、特定機関運転状態(例えばアイドル運転時)のときの現在の点火時期遅角量に予め定めた係数を乗算することにより現在の燃料のオクタン価Cを推定することができる。また、例えば、機関停止直前のアイドル運転において、意図的に点火時期を変化させてノッキングセンサによりノッキング限界の点火時期を特定し、特定された点火時期が遅角側であるほど現在の燃料のオクタン価Cが低いと推定することができる。
吸気弁の閉弁時期を進角して実圧縮比を高めると、吸気量が増加するために、ノッキング又はプレイグニッション等の異常燃焼が発生し易くなる。それにより、推定された現在のオクタン価Cに基づき、現在のアイドル運転状態において、このような異常燃焼を発生させない吸気弁の最大進角量を第二設定クランク角度IVC2として決定する。もちろん、推定された現在のオクタン価Cが低いほど第二設定クランク角度IVC2は遅角側となる。
次いで、ステップ105において、ステップ102において決定された第一設定クランク角度IVC1がステップ104において決定された第二設定クランク角度IVC2以上であるか否かが判断される。第一設定クランク角度IVC1の方が第二設定クランク角度より遅角側であるとき、又は、第一設定クランク角度IVC1と第二設定クランク角度とが等しいときには、ステップ105の判断は肯定される。このときに、ステップ106において、吸気弁の目標閉弁時期IVCtは第一設定クランク角度IVC1とされる。
次いで、ステップ107において、可変バルブタイミング機構Bによって吸気弁の閉弁時期IVCを徐々に進角し、それにより、スロットル弁の開度変化とは異なって吸気弁の閉弁時期IVCの進角に伴って応答性良く吸気量が増加すると共に実圧縮比が高められる。ステップ108では、こうして高められる実圧縮比により徐々に遅角側へ拡大される遅角限界に合わせて、点火時期ITを遅角させる。このように、徐々に拡大する遅角限界に合わせて点火時期を徐々に遅角することにより、トルクショックを発生させることなく排気ガス温度を高めることができる。
ステップ109では、吸気弁の閉弁時期IVCが目標閉弁時期IVCtとした第一設定クランク角度IVC1まで進角されたか否かが判断され、この判断が否定されるときには、ステップ107及び108の制御が継続される。吸気弁の閉弁時期IVCが第一設定クランク角度IVC1まで進角されれば、ステップ109の判断が肯定され、この状態において機関排気系の暖機が継続される。
ステップ102において説明したように、吸気弁の閉弁時期を第一設定クランク角度IVC1まで進角すれば、実圧縮比Rは目標実圧縮Rtとなり、点火時期を所望時期まで遅角させて排気ガス温度を十分に高めることができる。また、こうして、実圧縮比を高めるのに吸気量を増加させれば、排気ガス量も増加するために、多量の高温の排気ガスによって機関排気系の暖機を早期に完了することができる。このように、機関排気系の暖機のための目標実圧縮比Rtがそれほど高くない場合、又は、燃料のオクタン価Cが比較的高く、実圧縮比を高めるのに吸気量を比較的大きく増加させてもノッキング又はプレイグニッション等の異常燃焼が発生しない場合には、吸気弁の閉弁時期の進角だけによって目標実圧縮比Rtを実現して良好な機関排気系の暖機を実施することができる。
一方、機関排気系の暖機のための目標実圧縮比Rtが比較的高い場合、又は、燃料のオクタン価Cが比較的低く、実圧縮比を高めるのに吸気量を比較的大きく増加させるとノッキング又はプレイグニッション等の異常燃焼が発生する場合には、ステップ102において決定された第一設定クランク角度IVC1の方がステップ104において決定された第二設定クランク角度IVC2より進角側となり、ステップ105の判断が否定される。このときには、ステップ110において、吸気弁の目標閉弁時期IVCtは第二設定クランク角度IVC2とされる。
次いで、ステップ111において、可変バルブタイミング機構Bによって吸気弁の閉弁時期IVCを徐々に進角し、吸気弁の閉弁時期IVC進角に伴って応答性良く吸気量が増加すると共に実圧縮比が高められる。ステップ112では、こうして高められる実圧縮比により徐々に拡大される遅角限界に合わせて、点火時期ITを遅角させる。ステップ113では、吸気弁の閉弁時期IVCが目標閉弁時期IVCtとした第二設定クランク角度IVC2まで進角されたか否かが判断され、この判断が否定されるときには、ステップ111及び112の制御が継続される。吸気弁の閉弁時期IVCが第二設定クランク角度IVC2まで進角されれば、ステップ113の判断が肯定され、ステップ119へ進む。
吸気弁の閉弁時期を第一設定クランク角度IVC1まで進角すれば、実圧縮比Rは目標実圧縮Rtとなり、点火時期ITを所望時期まで遅角させて排気ガス温度を十分に高めることができるが、現在の燃料のオクタン価Cでは、第一設定クランク角度ICV1より遅角側の第二設定クランク角度IVC2までしか吸気弁の閉弁時期を進角させることができず(ノッキング又はプレイグニッション等の異常燃焼抑制のために)、吸気弁の閉弁時期IVCを第二設定クランク角度IVC2まで進角させた現在においては、目標実圧縮比Rtが実現されていない。
それにより、ステップ119において、第二設定クランク角度IVC2とされた吸気弁の閉弁時期に対して目標実圧縮比Rtを実現するための目標機械圧縮比Etが決定される。次いで、ステップ115において、可変圧縮比機構Aによって機械圧縮比Eを徐々に高めて実圧縮比が高められる。ステップ116では、こうして高められる実圧縮比により徐々に拡大される遅角限界に合わせて、点火時期ITを遅角させる。ステップ117では、機械圧縮比Eが目標機械圧縮比Etまで高められたか否かが判断され、この判断が否定されるときには、ステップ115及び116の制御が継続される。機械圧縮比Eが目標機械圧縮比Etまで高められれば、ステップ117の判断が肯定され、この状態において機関排気系の暖機が継続される。
この場合においては、現在の燃料のオクタン価Cに基づきノッキング又はプレイグニッション等の異常燃焼を発生させないように吸気弁の閉弁時期を最大に進角して吸気量を増加させることにより排気ガス量を増加させ、その後は、吸気量を増加させることなく機械圧縮比を高めて実圧縮比Rを目標実圧縮比Rtまで高めて、点火時期を所望時期まで遅角させることを可能としている。それにより、機関排気系の暖機のために機械圧縮比Eだけを高めて目標実圧縮比Rtを実現して点火時期ITを所望時期まで遅角する場合に比較して、吸気弁の閉弁時期の進角分だけは排気ガス量が多くなるために機関排気系の暖機を早期に完了させることができる。
また、アイドル運転時は低負荷側であるために、機械圧縮比Eは上限値より小さくても比較的高くされていることが多く、機械圧縮比Eを上限値まで高めても、実圧縮比Rは目標実圧縮比Rtまで高められず、点火時期を十分に遅角させることができないことがある。このような場合において、本実施例では、吸気弁の閉弁時期IVCも進角しているために、機械圧縮比Eをそれほど高めなくても目標実圧縮比Rtが実現され、点火時期を十分に遅角させることができる。
しかしながら、本実施例においても、現在の燃料のオクタン価Cが非常に低く、ノッキング又はプレイグニッション等の異常燃焼抑制のためには、吸気弁の閉弁時期を全く進角させることができないときには、ステップ102において決定されるIVC2が、アイドル運転時の吸気弁の閉弁時期IVC0となり、機械圧縮比Eだけを高めて目標実圧縮比Rtを実現することとなる。
このような機関排気系の暖機が実施されることにより、触媒装置20の温度は触媒活性化温度となって機関排気系の暖機が完了する。図11の第二フローチャートは、このような機関排気系の暖機完了時の制御を示している。先ずは、ステップ201において、機関排気系の暖機が完了したか否かが判断される。この判断が否定されるときにはそのまま終了するが、機関排気系の暖機が完了したときには、燃料消費を悪化させる点火時期の遅角制御を終了するために、ステップ202へ進む。
ステップ202においては、吸気弁の目標閉弁時期IVCtはアイドル運転時の閉弁時期IVC0とされる。次いで、ステップ203において、可変バルブタイミング機構Bによって吸気弁の閉弁時期IVCを徐々に遅角し、それにより、吸気弁の閉弁時期IVCの遅角に伴って応答性良く吸気量が減少すると共に実圧縮比が低くされる。ステップ204では、こうして低くされる実圧縮比により徐々に進角される遅角限界に合わせて、点火時期ITを進角させる。このように、徐々に進角する遅角限界に合わせて点火時期を徐々に進角することにより、点火時期変化に際してトルクショックが発生することはない。
ステップ205では、吸気弁の閉弁時期IVCが目標閉弁時期IVCtであるアイドル運転時の閉弁時期IVC0まで遅角されたか否かが判断され、この判断が否定されるときには、ステップ107及び108の制御が継続される。吸気弁の閉弁時期IVCがアイドル運転時の閉弁時期IVC0まで遅角されれば、ステップ205の判断が肯定されてステップ206へ進む。
ステップ206においては、現在の目標機械圧縮比Etが上限値より低いアイドル機械圧縮比E0であるか否かが判断される。すなわち、図10の第一フローチャートのステップ114において、アイドル機械圧縮比E0より高い目標機械圧縮比Etが決定されて、ステップ115において機械圧縮比が制御された場合においては、ステップ206の判断が否定されることとなる。ステップ206の判断が肯定されるときには、機関排気系の暖機のために機械圧縮比は制御されておらず、吸気弁の閉弁時期だけが進角されているだけであり、ステップ204の制御において点火時期はアイドル時の点火時期まで戻されており、そのまま終了する。
一方、ステップ206の判断が否定されるときには、ステップ207において、目標機械圧縮比Etはアイドル機械圧縮比E0とされる。次いで、ステップ208において、可変圧縮比機構Aによって機械圧縮比Eを徐々に低くして実圧縮比が低くされる。ステップ209では、こうして低くされる実圧縮比により徐々に進角される遅角限界に合わせて、点火時期ITを進角させる。ステップ210では、機械圧縮比Eが目標機械圧縮比Et(アイドル機械圧縮比E0)まで低くされたか否かが判断され、この判断が否定されるときには、ステップ208及び209の制御が継続される。機械圧縮比Eがアイドル機械圧縮比E0まで低くされれば、ステップ210の判断が肯定され、このときには、ステップ209の制御において点火時期はアイドル時の点火時期まで戻されており、そのまま終了する。
機関排気系の暖機完了によって排気ガス温度を低下させる際には、筒内温度も高まってノッキング又はプレイグニッション等の異常燃焼が発生し易くなっているために、機関排気系の暖機のために可変圧縮比機構によって機械圧縮比が高められていると共に吸気弁の閉弁時期が進角されているときには、図11に示す第二フローチャートのように、先ずは、可変バルブタイミング機構によって吸気弁の閉弁時期を遅角させて吸気を減量し、このような異常燃焼を発生し難くして、その後に可変圧縮比機構によって機械圧縮比を低くすることが好ましい。
図12は、図10の第一フローチャート及び図11の第二フローチャートにより制御される吸気弁の閉弁時期IVC、機械圧縮比E、及び実圧縮比Rの変化を示すタイムチャートである。図12は、目標実圧縮比Rtを実現するために吸気弁の閉弁時期IVCが進角されると共に機械圧縮比Eが高められる場合を示している。時刻t0において、機関排気系の暖機制御が開始される。このときの吸気弁の閉弁時期はアイドル運転時の閉弁時期IVC0であり、このときの機械圧縮比はアイドル機械圧縮比E0であり、このときの実圧縮比Rはアイドル運転時の実圧縮比R0である。
実線で示すように、吸気弁の閉弁時期IVCが徐々に進角されて実圧縮比Rが徐々に高められる。時刻t2において、吸気弁の閉弁時期IVCが目標閉弁時期IVCtとなると、機械圧縮比Eが徐々に高められて実圧縮比Rが徐々に高められる。時刻t3において、機械圧縮比Eが目標機械圧縮比Etとなると、目標実圧縮比Rtが実現される。
時刻t5において、機関排気系の暖機が完了すれば、吸気弁の閉弁時期IVCが徐々に遅角されて実圧縮比Rが徐々に低くされる。時刻t7において、吸気弁の閉弁時期IVCがアイドル運転時の閉弁時期IVC0に戻されると、機械圧縮比Eが徐々に低くされて実圧縮比Rが徐々に低くされる。時刻t8において、機械圧縮比Eがアイドル機械圧縮比E0となると、実圧縮比Rはアイドル運転時の実圧縮比R0に戻される。
また、燃料のオクタン価Cが低い場合には、点線で示すように、吸気弁の目標閉弁時期IVCt’が実線の場合の目標閉弁時期IVCtより遅角側となり、時刻t2より早い時刻t1において、吸気弁の閉弁時期IVCが目標閉弁時期IVCt’となる。この時刻t1から機械圧縮比Eが徐々に高められる。この場合の目標機械圧縮比Et’は実線の場合の目標機械圧縮比Etより高くなり、時刻t3より遅い時刻t4において、機械圧縮比Eが目標機械圧縮比Et’となる(一般的に、吸気弁の閉弁時期の進角速度の方が機械圧縮比の増加速度より速い)。この時には目標実圧縮比Rtが実現される。
時刻t5において、機関排気系の暖機が完了すれば、吸気弁の閉弁時期IVCが徐々に遅角され、時刻t7より早い時刻t6において、吸気弁の閉弁時期IVCがアイドル運転時の閉弁時期IVC0に戻される。この時刻t6から機械圧縮比Eが徐々に低くされ、時刻t8より遅い時刻t9において、機械圧縮比Eがアイドル機械圧縮比E0となると、実圧縮比Rはアイドル運転時の実圧縮比R0に戻される。
本実施例は、アイドル運転時の機関排気系の暖機について説明したが、機械圧縮比Eが上限値とされていない機関運転状態においては、前述同様な機関排気系の暖機制御及び暖機完了制御を実施することができる。
1 クランクケース
2 シリンダブロック
A 可変圧縮比機構
B 可変バルブタイミング機構

Claims (2)

  1. 可変圧縮比機構と、吸気弁の閉弁時期を可変とする可変バルブタイミング機構とを具備し、機関排気系の暖機のために排気ガス温度を高める際には、実圧縮比を目標実圧縮比へ高めることにより拡大させた遅角限界まで点火時期を遅角させる火花点火内燃機関において、前記実圧縮比を前記目標実圧縮比へ高めるために、前記可変バルブタイミング機構によって吸気弁の閉弁時期が設定クランク角度まで進角され、前記吸気弁の閉弁時期が前記設定クランク角度まで進角されたときに前記実圧縮比が前記目標実圧縮比とならなければ前記可変圧縮比機構によって機械圧縮比が高められ、前記設定クランク角度は、推定された燃料供給系内の現在の燃料のオクタン価が低いほど遅角側とされることを特徴とする火花点火内燃機関。
  2. 前記可変圧縮比機構によって前記機械圧縮比が高められているときに、前記機関排気系の暖機のために高めた前記排気ガス温度を低下させる際には、前記可変バルブタイミング機構によって前記吸気弁の閉弁時期を前記設定クランク角度から遅角させた後に前記可変圧縮比機構によって前記機械圧縮比を低くすることを特徴とする請求項1に記載の火花点火内燃機関。
JP2010283041A 2010-12-20 2010-12-20 火花点火内燃機関 Expired - Fee Related JP5472076B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010283041A JP5472076B2 (ja) 2010-12-20 2010-12-20 火花点火内燃機関

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010283041A JP5472076B2 (ja) 2010-12-20 2010-12-20 火花点火内燃機関

Publications (2)

Publication Number Publication Date
JP2012132326A true JP2012132326A (ja) 2012-07-12
JP5472076B2 JP5472076B2 (ja) 2014-04-16

Family

ID=46648204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010283041A Expired - Fee Related JP5472076B2 (ja) 2010-12-20 2010-12-20 火花点火内燃機関

Country Status (1)

Country Link
JP (1) JP5472076B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016035173A1 (ja) * 2014-09-03 2016-03-10 日産自動車株式会社 圧縮比可変型内燃機関の燃料対応制御装置及び燃料対応制御方法
WO2017033646A1 (ja) * 2015-08-25 2017-03-02 日立オートモティブシステムズ株式会社 エンジン制御装置
CN111561401A (zh) * 2019-09-27 2020-08-21 长城汽车股份有限公司 可变压缩比发动机的控制方法及装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6626738B2 (ja) * 2016-02-26 2019-12-25 日立オートモティブシステムズ株式会社 内燃機関制御装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002285898A (ja) * 2001-03-27 2002-10-03 Nissan Motor Co Ltd 内燃機関の制御装置
JP2007303428A (ja) * 2006-05-15 2007-11-22 Nissan Motor Co Ltd 筒内直接噴射式火花点火内燃機関の制御装置
JP2009074514A (ja) * 2007-09-25 2009-04-09 Toyota Motor Corp 内燃機関の制御装置
JP2009115035A (ja) * 2007-11-08 2009-05-28 Toyota Motor Corp 火花点火式内燃機関
JP2009115063A (ja) * 2007-11-09 2009-05-28 Toyota Motor Corp 火花点火式内燃機関
JP2009114973A (ja) * 2007-11-06 2009-05-28 Denso Corp 内燃機関の始動制御装置
JP2009138661A (ja) * 2007-12-07 2009-06-25 Nissan Motor Co Ltd エンジンの水噴射制御装置及び水噴射制御方法
JP2009215995A (ja) * 2008-03-11 2009-09-24 Nissan Motor Co Ltd 可変圧縮比エンジンの制御装置及び制御方法
JP2009221855A (ja) * 2008-03-13 2009-10-01 Toyota Motor Corp 可変圧縮比内燃機関の空燃比制御装置
WO2010061484A1 (ja) * 2008-11-25 2010-06-03 トヨタ自動車株式会社 内燃機関の制御装置
WO2010092698A1 (ja) * 2009-02-12 2010-08-19 トヨタ自動車株式会社 火花点火式内燃機関

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002285898A (ja) * 2001-03-27 2002-10-03 Nissan Motor Co Ltd 内燃機関の制御装置
JP2007303428A (ja) * 2006-05-15 2007-11-22 Nissan Motor Co Ltd 筒内直接噴射式火花点火内燃機関の制御装置
JP2009074514A (ja) * 2007-09-25 2009-04-09 Toyota Motor Corp 内燃機関の制御装置
JP2009114973A (ja) * 2007-11-06 2009-05-28 Denso Corp 内燃機関の始動制御装置
JP2009115035A (ja) * 2007-11-08 2009-05-28 Toyota Motor Corp 火花点火式内燃機関
JP2009115063A (ja) * 2007-11-09 2009-05-28 Toyota Motor Corp 火花点火式内燃機関
JP2009138661A (ja) * 2007-12-07 2009-06-25 Nissan Motor Co Ltd エンジンの水噴射制御装置及び水噴射制御方法
JP2009215995A (ja) * 2008-03-11 2009-09-24 Nissan Motor Co Ltd 可変圧縮比エンジンの制御装置及び制御方法
JP2009221855A (ja) * 2008-03-13 2009-10-01 Toyota Motor Corp 可変圧縮比内燃機関の空燃比制御装置
WO2010061484A1 (ja) * 2008-11-25 2010-06-03 トヨタ自動車株式会社 内燃機関の制御装置
WO2010092698A1 (ja) * 2009-02-12 2010-08-19 トヨタ自動車株式会社 火花点火式内燃機関

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016035173A1 (ja) * 2014-09-03 2016-03-10 日産自動車株式会社 圧縮比可変型内燃機関の燃料対応制御装置及び燃料対応制御方法
WO2017033646A1 (ja) * 2015-08-25 2017-03-02 日立オートモティブシステムズ株式会社 エンジン制御装置
JPWO2017033646A1 (ja) * 2015-08-25 2018-02-22 日立オートモティブシステムズ株式会社 エンジン制御装置
CN107923358A (zh) * 2015-08-25 2018-04-17 日立汽车系统株式会社 发动机控制装置
US20180363579A1 (en) * 2015-08-25 2018-12-20 Hitachi Automotive Systems, Ltd. Engine Control Device
US10544744B2 (en) 2015-08-25 2020-01-28 Hitachi Automotive Systems, Ltd. Engine control device
CN111561401A (zh) * 2019-09-27 2020-08-21 长城汽车股份有限公司 可变压缩比发动机的控制方法及装置
WO2021057304A1 (zh) * 2019-09-27 2021-04-01 长城汽车股份有限公司 可变压缩比发动机的控制方法及装置

Also Published As

Publication number Publication date
JP5472076B2 (ja) 2014-04-16

Similar Documents

Publication Publication Date Title
JP4858618B2 (ja) 火花点火式内燃機関
JP5177303B2 (ja) 火花点火式内燃機関
JP2009019586A (ja) 火花点火式内燃機関
JP2009019589A (ja) 火花点火式内燃機関
JP5472076B2 (ja) 火花点火内燃機関
JP5561430B2 (ja) 火花点火内燃機関
JP4450026B2 (ja) 火花点火式内燃機関
JP2009114965A (ja) 火花点火式内燃機関
JP2009114962A (ja) 火花点火式内燃機関
JP4725561B2 (ja) 火花点火式内燃機関
JP5082938B2 (ja) 火花点火式内燃機関
JP2012225331A (ja) 可変圧縮比機構を備える内燃機関
JP5088448B1 (ja) 火花点火内燃機関
JP2012197770A (ja) 可変圧縮比機構を備える内燃機関
JP5196033B2 (ja) 火花点火式内燃機関
JP4367547B2 (ja) 火花点火式内燃機関
JP5569348B2 (ja) 可変圧縮比機構を備える内燃機関
JP5428928B2 (ja) 火花点火式内燃機関
JP5640753B2 (ja) 火花点火内燃機関
JP5321422B2 (ja) 火花点火式内燃機関
JP5640512B2 (ja) 火花点火式内燃機関
JP5585528B2 (ja) 可変圧縮比機構を備える筒内噴射式火花点火内燃機関
JP2008309161A (ja) 火花点火式内燃機関
JP5472136B2 (ja) 火花点火内燃機関
JP5429136B2 (ja) 火花点火内燃機関

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130416

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131227

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140120

LAPS Cancellation because of no payment of annual fees