JP2009074514A - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
JP2009074514A
JP2009074514A JP2007246710A JP2007246710A JP2009074514A JP 2009074514 A JP2009074514 A JP 2009074514A JP 2007246710 A JP2007246710 A JP 2007246710A JP 2007246710 A JP2007246710 A JP 2007246710A JP 2009074514 A JP2009074514 A JP 2009074514A
Authority
JP
Japan
Prior art keywords
fuel
compression ratio
learning
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007246710A
Other languages
English (en)
Other versions
JP5034823B2 (ja
Inventor
Satoshi Kaneko
聡志 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007246710A priority Critical patent/JP5034823B2/ja
Publication of JP2009074514A publication Critical patent/JP2009074514A/ja
Application granted granted Critical
Publication of JP5034823B2 publication Critical patent/JP5034823B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】 可変圧縮比内燃機関の制御装置において、機関運転中に燃料性状が変化した場合でも、燃焼状態の制御、特にノッキングの抑制が、適切に行われ得るものを提供する。
【解決手段】 本発明の制御装置は、圧縮比学習部と、燃料性状取得部と、学習状態初期化部と、を備えている。前記圧縮比学習部は、圧縮比を学習制御する。前記燃料性状取得部は、燃料の性状に関する情報を取得する。前記学習状態初期化部は、前記燃料性状取得部による前記情報の取得結果に基づいて、前記圧縮比学習部による学習状態を初期化する。
【選択図】 図4

Description

本発明は、圧縮比を変更可能に構成された内燃機関に適用される、内燃機関の制御装置に関する。
この種の内燃機関として、特開2003−206771号公報、特開2004−169960号公報、特開2005−127212号公報、等に開示されたものが知られている。
例えば、特開2003−206771号公報に開示された内燃機関は、クランクケース(ロアケースとも称される)とシリンダブロックとを相対移動させるスライド機構を備えている。この内燃機関は、前記シリンダブロックと前記クランクケースとを、シリンダの中心軸に沿って相対的にスライドさせることで、機械的圧縮比を変更し得るように構成されている。
特開2004−169960号公報には、上述のような、前記シリンダブロックと前記クランクケースとが相対移動可能な内燃機関とともに、ピストンとクランクシャフトとを連結するコンロッドが屈曲可能な内燃機関が開示されている。後者の内燃機関は、前記コンロッドの屈曲状態の変更によって機械的圧縮比を変更し得るように構成されている。
特開2005−127212号公報に開示された内燃機関は、上述のような機械的圧縮比の変更のための可変圧縮比機構の他に、可変動弁機構を備えている。この内燃機関は、前記可変圧縮比機構によって機械的圧縮比を変更し得るとともに、前記可変動弁機構で吸気バルブの位相やリフト特性を変化させることで実圧縮比を変更し得るように構成されている。
ここで、「機械的圧縮比」は、隙間容積(ピストン上死点における燃焼室容積)とピストン行程容積との和を隙間容積で割った値であって、公称圧縮比あるいは幾何学的圧縮比とも称される。一方、「実圧縮比」は、吸入空気に対する実効的な圧縮比であって、典型的には、吸入空気の圧縮開始時の燃焼室容積を圧縮終了時の燃焼室容積で割った値となる。
これらの内燃機関においては、運転状態に応じて、圧縮比が変更される。例えば、ノッキングの抑制のために圧縮比が低く設定されたり、燃費向上のために圧縮比が高く設定されたりする。
特開2003−328794号公報 特開2004−169960号公報 特開2005−127212号公報
この種の内燃機関に対しても、通常のものと同様に、複数の種別の燃料が適用され得る。機関運転中に燃料性状(燃料種別)が変化すると、燃焼特性、特に、ノッキングの発生条件が変化する。この点、特開2005−127212号公報に記載の構成においては、燃料性状に応じたマップを用いて目標圧縮比が算出される。
一方、上述のような内燃機関における機械的圧縮比あるいは実圧縮比の制御には、様々な誤差要因(例えば、前記可変圧縮比機構の機械的誤差、燃焼室壁面(ピストン表面を含む)へのカーボン等の付着及び堆積による経時変化、等)がある。
本発明の目的は、可変圧縮比内燃機関の制御装置において、機関運転中に燃料性状が変化した場合でも、燃焼状態の制御、特にノッキングの抑制が、適切に行われ得るものを提供することにある。
かかる目的を達成するため、本発明の内燃機関の制御装置(以下、単に「制御装置」と称する。)は、圧縮比学習部(圧縮比学習手段)と、燃料性状取得部(燃料性状取得手段)と、学習状態初期化部(学習状態初期化手段)と、を備えている。
前記圧縮比学習部は、圧縮比を学習制御するように構成されている。前記燃料性状取得部は、燃料の性状に関する情報を取得するように構成されている。前記学習状態初期化部は、前記燃料性状取得部による前記情報の取得結果に基づいて、前記圧縮比学習部による学習状態を初期化するように構成されている。具体的には、前記学習状態初期化部は、前記性状が変化した場合に、前記学習状態を初期化するように構成されている。
ここで、「燃料の性状に関する情報」とは、前記燃料の性状(種別及び/又は特性)から導き出される情報(種別情報及び/又は特性情報:特性情報には電気抵抗等の物性の他にオクタン価等も含まれる)をいうものとする。かかる情報又はその変化は、例えば、スイッチ類を介して人為的に入力され得る。あるいは、かかる情報又はその変化は、センサ類からの出力信号に基づいて取得され得る。
かかる構成においては、前記圧縮比学習部により、圧縮比の学習制御が行われる。これにより、上述のような圧縮比制御の誤差(特に目標圧縮比に対する定常的な誤差として発現するもの)が良好に補正される。
ところで、前回の給油時の燃料とは異なる種別の前記燃料を用いた給油により、前記燃料の前記性状が、前記内燃機関の運転中に変化することがある。このとき、前記性状の変化後でも変化前の学習結果が用いられると、燃焼状態の制御が適切に行われない(例えばノッキングが発生する)おそれがある。
そこで、前記燃料性状取得部による、前記性状に関する前記情報の取得結果に基づいて(具体的には前記性状が変化した場合に)、前記学習状態初期化部は、前記学習状態を初期化する。これにより、燃焼状態の制御、特にノッキングの抑制が、適切に行われ得る。
前記学習状態初期化部は、前記性状が変化してから前記学習状態の初期化を行うまでの間に、当該初期化を一時保留するように構成されていてもよい。
かかる構成においては、前記性状の変化が取得された時点で残留している前記燃料(以下、「旧燃料」という。)が使用されている間は、それまでの圧縮比の学習結果が用いられる。そして、前記旧燃料が消費された後、前記学習状態が初期化される。これにより、燃焼状態の制御がより精度よく行われ得る。
以下、本発明の実施形態(本願の出願時点において出願人が最良と考えている実施形態)について、図面を参照しつつ説明する。
なお、以下の実施形態に関する記載は、法令で要求されている明細書の記載要件(記述要件・実施可能要件)を満たすために、本発明の具体化の単なる一例を、可能な範囲で具体的に記述しているものにすぎない。よって、後述するように、本発明が、以下に説明する実施形態の具体的構成に何ら限定されるものではないことは、全く当然である。実施形態に対する変形例(modification)は、当該実施形態の説明中に挿入されると、首尾一貫した実施形態の説明の理解が妨げられるので、末尾にまとめて記載されている。
<システムの構成>
図1は、本発明の適用対象である直列複数気筒のエンジン1、及び本発明の一実施形態である制御装置2、を含む、システムの全体構成を示す概略構成図である。なお、図1には、気筒配列方向と直交する面によるエンジン1の側断面図が示されているものとする。
本実施形態においては、エンジン1は、後述するように、機械的圧縮比と吸排気バルブタイミングとを変更可能に構成されている。そして、本実施形態の制御装置2は、かかるエンジン1の動作(特に圧縮比の設定状態)を制御するように構成されている。
<<エンジンの構成>>
エンジン1は、シリンダブロック11と、シリンダヘッド12と、クランクケース13と、可変圧縮比機構14と、を備えている。シリンダブロック11、シリンダヘッド12、及びクランクケース13は、シリンダ中心軸CCAに沿って、この順に配列されている。
シリンダブロック11には、略円柱形状の貫通孔であるシリンダボア111が形成されている。シリンダボア111の内側には、ピストン112が、シリンダ中心軸CCAに沿って往復移動可能に収容されている。
シリンダブロック11の上端部(ピストン112の上死点側の、シリンダブロック11の端部)には、シリンダヘッド12が接合されている。シリンダヘッド12は、シリンダブロック11に対して相対移動しないように、シリンダブロック11の前記上端部に対して、図示しないボルト等によって固定されている。
シリンダヘッド12の下端部には、複数の凹部が、各シリンダボア111の上端部と対向する位置に設けられている。そして、シリンダヘッド12がシリンダブロック11に接合及び固定された状態における、ピストン112の頂面よりも上側(シリンダヘッド12側)のシリンダボア111の内側の空間と、上述の凹部と、によって、燃焼室CCが形成されている。
シリンダヘッド12には、燃焼室CCに連通するガス通路である吸気ポート121及び排気ポート122が形成されている。これらの吸気ポート121及び排気ポート122を燃焼室CCに対して開閉するための、吸気バルブ123及び排気バルブ124が、シリンダヘッド12に備えられている。また、シリンダヘッド12には、可変吸気バルブタイミング装置125及び可変排気バルブタイミング装置126が設けられている。
可変吸気バルブタイミング装置125は、吸気バルブ123の開閉タイミングを変更し得るように構成されている。可変排気バルブタイミング装置126は、排気バルブ124の開閉タイミングを変更し得るように構成されている。可変吸気バルブタイミング装置125及び可変排気バルブタイミング装置126の具体的な構成については周知なので、その説明を省略する。
さらに、シリンダヘッド12には、インジェクタ127が備えられている。インジェクタ127は、燃焼室CC内に供給するための燃料Fを吸気ポート121内に噴射し得るように構成されている。
クランクケース13内には、クランクシャフト131が回転可能に支持されている。クランクシャフト131は、気筒配列方向と平行に配置されている。このクランクシャフト131は、ピストン112のシリンダ中心軸CCAに沿った往復移動に基づいて回転駆動されるように、コンロッド132を介して、ピストン112と連結されている。
本実施形態の可変圧縮比機構14は、本出願人による先願である特開2003−206771号公報や特開2007−056837号公報等に記載されているものと同様の構成を備えている。したがって、本明細書においては、この機構の細部の説明を省略し、概要についてのみ説明する。
本実施形態においては、可変圧縮比機構14は、隙間容積を変更することで、機械的圧縮比を変更し得るように構成されている。この可変圧縮比機構14は、連結機構141と、駆動機構142と、を備えている。
連結機構141は、シリンダブロック11とクランクケース13とを、シリンダ中心軸CCAに沿って互いに相対移動可能に連結するように構成されている。駆動機構142は、モータやギヤ機構等を備えている。この駆動機構142は、クランクケース13と、シリンダブロック11に固定されたシリンダヘッド12と、を相対移動させることで、隙間容積を変更し得るように構成されている。
<<燃料供給部>>
本システムには、エンジン1に燃料Fを供給するための燃料供給部150が備えられている。この燃料供給部150は、燃料タンク151と、燃料供給経路152と、を備えている。
燃料タンク151は、燃料供給経路152を介して、インジェクタ127と接続されている。燃料供給経路152は、燃料Fをインジェクタ127に向けて送出するためのポンプや、当該ポンプと燃料タンク151やインジェクタ127とを接続する燃料供給管等を備えている。
<<制御装置>>
本発明の一実施形態としての制御装置2は、CPU201と、ROM202と、RAM203と、バックアップRAM204と、インターフェース205と、バス206と、を備えている。CPU201、ROM202、RAM203、バックアップRAM204、及びインターフェース205は、バス206によって互いに接続されている。
本発明の圧縮比学習部及び学習状態初期化部に相当するとともに、本発明の燃料性状取得部の一部を構成するCPU201は、ROM202から各種のルーチン(プログラム)を読み出して実行するように構成されている。
ROM202には、上述のルーチンの他に、当該ルーチンの実行の際に用いられるマップ、テーブル(ルックアップテーブル)、パラメータ、等が予め格納されている。
RAM203及びバックアップRAM204は、CPU201がルーチンを実行する際に、必要に応じてデータを一時的に格納し得るように構成されている。バックアップRAM204は、電源が投入された状態でデータが格納されるとともに、この格納されたデータが電源遮断後も保持され得るように構成されている。すなわち、このバックアップRAM204は、エンジン1の停止中においても保持されることが必要な各種のデータ(フラグ等)が格納されるように構成されている。
インターフェース205は、後述する冷却水温センサ211、クランクポジションセンサ212、吸気カムポジションセンサ213、排気カムポジションセンサ214、等の各種のセンサと電気回路的に接続されていて、これらのセンサからの信号をCPU201に伝達し得るように構成されている。
また、インターフェース205は、可変吸気バルブタイミング装置125、可変排気バルブタイミング装置126、インジェクタ127、及び駆動機構142等の動作部と電気回路的に接続されていて、これらの動作部を動作させるための動作信号をCPU201からこれらの動作部に伝達し得るように構成されている。
<<<各種センサ>>>
制御装置2は、また、冷却水温センサ211、クランクポジションセンサ212、吸気カムポジションセンサ213、排気カムポジションセンサ214、ノックセンサ215、燃料液面センサ216、燃料種別センサ217、アクセル開度センサ218、等の各種のセンサ類を備えている。
冷却水温センサ211は、シリンダブロック11に装着されていて、冷却水温Twに対応する信号を出力するように構成されている。クランクポジションセンサ212は、クランクケース13に装着されていて、クランクシャフト131の回転角度に応じたパルスを有する波形の信号(エンジン回転数Neの取得の基礎となる信号)を出力するように構成されている。
吸気カムポジションセンサ213は、シリンダヘッド12に装着されている。この吸気カムポジションセンサ213は、吸気バルブ123を往復移動させるための図示しない吸気カムシャフト(可変吸気バルブタイミング装置125に含まれている)の回転角度に応じたパルスを有する波形の信号を出力するように構成されている。排気カムポジションセンサ214も、同様に、シリンダヘッド12に装着されていて、図示しない排気カムシャフトの回転角度に応じたパルスを有する波形の信号を出力するように構成されている。
ノックセンサ215は、シリンダブロック11に装着されている。このノックセンサ215は、振動検出素子からなり、シリンダブロック11に発生する振動の大きさに対応する波形の信号を出力するように構成されている。
燃料液面センサ216は、燃料タンク151に装着されている。本実施形態における燃料液面センサ216は、いわゆるフロート式の液面センサであって、燃料タンク151内の燃料Fの液面の高さに応じた信号を出力するように構成されている。
本発明の燃料性状取得部の一部を構成する燃料種別センサ217は、燃料タンク151に装着されている。この燃料種別センサ217は、燃料タンク151内の燃料Fの特性(電気抵抗等)に基づく信号を出力するように構成されている。
本実施形態においては、燃料タンク151内に或る種別の燃料Fが残留している状態において、異なる種別の新規な燃料Fが追加されたときに、当該新規な燃料Fの種別が良好に判定され得るように、複数の燃料種別センサ217が、燃料タンク151の高さ方向に沿って複数配置されている(図示の簡略化のため、図1においては1個のみ示されているものとする。)。
アクセル開度センサ218は、運転者によって操作されるアクセルペダルAPの操作量Accpに対応する信号(エンジン負荷KLの取得の基礎となる信号)を出力するように構成されている。
このように、制御装置2は、インターフェース205を介して上述の各種のセンサからの信号を受け取るとともに、当該信号に応じたCPU201の演算結果に基づいて、各動作部に向けて上述の動作信号を送出するように構成されている。
<動作の概要>
本実施形態においては、燃料種別及び運転状態に応じて、駆動機構142、可変吸気バルブタイミング装置125、及び可変排気バルブタイミング装置126の動作が制御装置2によって制御されることで、圧縮比が設定される。
具体的には、例えば、燃料種別に応じたマップを用いて、機械的圧縮比の目標値が設定される。よって、燃料種別が変化すると、機械的圧縮比の目標値も変更され得る。
また、エンジン1の冷機始動直後にて、機械的圧縮比の目標値が高く設定される。この結果、冷機時における燃焼の安定化が図られる。
また、制御装置2によって可変吸気バルブタイミング装置125の動作が制御されることで、触媒暖機中における吸気バルブ123の閉弁タイミングが、暖機後よりも進角して吸気下死点に近づくように設定される。この結果、燃焼時の実圧縮比がより高められ、触媒暖機中におけるさらなる燃焼性の向上が図られる。
一方、本実施形態においては、制御装置2によって可変排気バルブタイミング装置126の動作が制御されることで、触媒暖機中における排気バルブ124の開弁タイミングが、暖機後よりも進角して排気下死点から遠ざかるように設定される。この結果、膨張比が低下して熱エネルギーの機械的仕事への変換効率が若干低下し、排気温度が上昇する。よって、燃焼性の悪化が抑制されつつ、触媒の早期暖機が図られる。
ところで、連結機構141や駆動機構142の機械的誤差や、燃焼室CCの壁面へのカーボン等の付着により、機械的圧縮比の目標値と実際値との間に定常的な誤差が生じ得る。そこで、かかる誤差を補正するため、駆動機構142による機械的圧縮比の設定の際に、学習制御が行われる。
また、燃料タンク151に対して常に同種の燃料Fが投入され続ける保証はない。すなわち、燃料タンク151や燃料供給経路152内に或る種別の燃料Fが残留した状態で、他の種別の燃料Fが燃料タンク151内に追加される可能性がある。すると、エンジン1の運転中に、燃焼室CC内に供給される燃料Fの種別が変化する場合が生じ得る。このような場合にも、機械的圧縮比の学習結果が継続的に使用され続けると、燃焼状態の制御が良好に行われないおそれがある。
具体的には、例えば、通常はハイオクガソリンが用いられているエンジン1において、燃料タンク151内の燃料量がエンプティになりそうな不測の事態が生じ、やむを得ず燃料タンク151内にレギュラーガソリンが追加される場合があり得る。この場合、燃焼室CCに供給される燃料種別がレギュラーガソリンに切り替わった後でも、ハイオクガソリンに基づく機械的圧縮比の学習結果が用いられてしまうと、ノッキングが発生するおそれがある。
そこで、本実施形態においては、以下のような制御が行われる。まず、燃料種別センサ217の出力に基づいて、CPU201によって燃料種別の変化が検知される。かかる燃料種別の変化が検知された場合に、燃料供給経路152内に残留した旧燃料の消費を待って、機械的圧縮比の学習結果が初期化される。
<動作の詳細>
次に、図1に示されている本実施形態の制御装置2の動作の具体例について、図2ないし図4のフローチャートを用いて説明する。
なお、以下の説明において、「ステップ」は“S”と略称されている(図2ないし図4のフローチャートでも「ステップ」は“S”と略記されている)。また、以下の説明において、図1に示されている各部材の符号が適宜引用されている。
<<圧縮比学習制御>>
CPU201は、図2に示されている圧縮比学習制御ルーチン200を、所定タイミング毎(例えば各気筒におけるクランク角が排気下死点に到達する毎:直列4気筒のエンジン1の場合はクランクシャフト131が180°回転する毎)に実行する。
まず、S210にて、燃料種別ftype、エンジン回転数Ne、エンジン負荷KL、及び冷却水温Twが取得される。エンジン回転数Neは、クランクポジションセンサ212の出力に基づいて取得される。エンジン負荷KLは、アクセルペダルAPの操作量Accpに基づいて取得される。冷却水温Twは、冷却水温センサ211の出力に基づいて取得される。
燃料種別ftypeについては、後述する図3及び図4のフローチャートの実行を介して設定されたものが、バックアップRAM204より読み出される。この燃料種別ftypeは、本実施形態においては、ガソリンについてはオクタン価90〜100までの1刻み、エタノール混合燃料についてはエタノール含有率3〜85%までの1%刻みの設定を有しているものとする。
次に、S220にて、機械的圧縮比の目標値ε1が取得される。この目標値ε1の取得は、燃料種別ftypeによって異なるマップと、エンジンパラメータ(エンジン回転数Ne、エンジン負荷KL、及び冷却水温Tw)と、を用いて行われる。なお、本実施形態においては、目標値ε1は、0.1刻みの離散値とする。
続いて、S230にて、ノッキングレベルNLが所定値NL0より小さいか否かが判定される。このノッキングレベルNLは、ノックセンサ215の出力に基づいて得られた、シリンダブロック11の振動の程度である。このノッキングレベルNLが所定値NL0以上になると、ノッキングの発生が検知される。
ノッキングが発生していない場合(S230=Yes)、処理がS240に進行し、学習完了フラグFtがセットされているか否かが判定される。この学習完了フラグFtは、目標値ε1毎に設けられている。
学習完了前は学習完了フラグFtがセットされていないので(S240=No)、処理がS250に進行し、今回の目標値ε1における学習値ΔεtにΔεが加算される。すなわち、機械的圧縮比がΔε高くなるように、学習値Δεtが変更される。
その後、処理がS260に進行し、圧縮比補正量Δεが学習値Δεtに設定される。続いて、S270にて、目標値ε1が補正量Δεで補正されることで機械的圧縮比の制御量εが得られた後、本ルーチンが一旦終了する(S295)。
ノッキングが発生するまでは、上述のように、学習値ΔεtにΔεが加算され続ける。すなわち、圧縮比が徐々に高くされつつ、圧縮比学習制御が進行する。
ノッキングが発生した場合(S230=No)、処理がS280に進行し、学習値ΔεtからΔεが減算される。すなわち、機械的圧縮比がΔε低くなるように学習値Δεtが変更され、ここで学習値Δεtが確定する。Δεは、今回の目標値ε1にてノッキングが発生しない範囲で実際の機械的圧縮比が可及的に高くなるように、ノッキングレベルNLに応じてマップにより取得される。
続いて、処理がS290に進行して学習完了フラグFtがセットされた後、S260及びS270の実行によって、学習値Δεtに基づいて目標値ε1の補正が行われることで、機械的圧縮比の制御量εが得られる。その後、本ルーチンが一旦終了する(S295)。
学習完了後は(S240=Yes)、S250、S280、及びS290の処理はスキップされ、確定した学習値Δεtに基づいて目標値ε1の補正が行われることで機械的圧縮比の制御量εが得られ(S260及びS270)、本ルーチンが一旦終了する(S295)。
このように、本実施形態においては、CPU201がルーチン200を実行することにより、「圧縮比学習手段」が実現されている。
<<給油時処理>>
CPU201は、図3に示されている給油時処理ルーチン300を、給油口の開放が検知されたときに実行する。
まず、S310にて、給油開始直前の燃料液面センサ216の出力に基づいて、タンク残量(給油開始直前における燃料タンク151内の燃料Fの残量)Q0が取得される。次に、S320にて、給油終了直後の燃料液面センサ216の出力に基づいて、燃料追加量Q1が取得される。続いて、S325にて、燃料追加量Q1がゼロを超えるか否か、すなわち、実際に給油が行われたか否かが判定される。
燃料追加量Q1がゼロである場合(S325=No)、すなわち、給油口が単に開放されただけでその後給油されずに給油口が閉塞された場合は、本ルーチンにおける以降のすべての処理はスキップされて、本ルーチンが終了する(S395)。実際に給油が行われた場合(S325=Yes)、処理がS330以降に進行する。
S330においては、燃料種別センサ217の出力に基づいて、今回給油された燃料種別ftype1が取得される。次に、S340にて、バックアップRAM204より、給油前の燃料種別ftype0が読み出される。
続いて、S350にて、今回給油された燃料種別ftype1が、給油前の燃料種別ftype0と同じであるか否かが判定される。燃料種別が同じである場合(S350=Yes)、以降の特段の処理は必要ないので、S360ないしS390の処理がスキップされ、本ルーチンが終了する(S395)。燃料種別が異なる場合(S350=No)、S360ないしS390の処理が実行され、本ルーチンが終了する(S395)。
S360においては、燃料種別変更フラグFfcがセットされる。すなわち、今回の給油によって、給油後のエンジン1の運転中に燃料種別が変化することが認識される。この燃料種別変更フラグFfcは、後述する図4のフローチャートに示されている学習初期化処理ルーチン400に用いられる。
燃料タンク151内に複数の種別の燃料Fが投入された場合、これらは燃料タンク151内にて良好に混合される。そこで、S370にて、Q0、Q1、ftype0、及びftype1に基づいて、燃料タンク151内の燃料種別ftype_tが設定される。具体的には、例えば、燃料タンク151内に、その容量の半分の、オクタン価100のプレミアムガソリンが残留していて、給油時にオクタン価90のレギュラーガソリンが同量給油された場合、ftype_tはオクタン価95のガソリンとなる。
続いて、S380にて、次回の給油時に備えて、バックアップRAM204におけるftype0が、ftype_tに書き換えられる。
一方、上述のような燃料タンク151内とは異なり、燃料タンク151から燃料供給経路152側にすでに流出した燃料F(旧燃料)は、給油によって燃料タンク151内に新規に投入された新規な燃料Fとはほとんど混合しない。そこで、この燃料供給経路152内の旧燃料が使い尽くされるまで学習状態の初期化を保留するため、S390にて、燃料ライン残量Qrが、燃料供給経路152の既知の容量Qr1に設定される。
このように、本実施形態においては、CPU201がルーチン300の処理を実行することにより、「燃料性状取得手段」が実現されている。
<<学習初期化処理>>
CPU201は、図4に示されている学習初期化処理ルーチン400を、所定タイミング毎(例えば吸気行程におけるインジェクタ127による燃料噴射直後)に起動する。
まず、S410にて、燃料種別変更フラグFfcがセットされているか否かが判定される。燃料種別変更フラグFfcがセットされていない場合(S410=No)、学習状態の初期化の必要がないため、以降の処理はスキップされ、本ルーチンが一旦終了する(S495)。燃料種別変更フラグFfcがセットされている場合(S410=Yes)、エンジン1の運転中に燃料種別が変化する可能性があるので、処理がS420以降に進行する。
S420においては、今回噴射された燃料噴射量Qiが取得される。次に、S430にて、燃料ライン残量Qrが、燃料噴射量Qiによってデクリメントされる。続いて、S440にて、燃料ライン残量Qrが0以上であるか否かが判定される。すなわち、燃料供給経路152内に旧燃料が残留しているか否かが判定される。
燃料供給経路152内に旧燃料が残留している場合(S440=Yes)、S450ないしS470の処理はスキップされ、本ルーチンが一旦終了する(S495)。燃料供給経路152内に旧燃料が残留していない場合(S440=No)、S450ないしS470の処理が実行された後、本ルーチンが一旦終了する(S495)。
S450においては、学習完了フラグFtがオールリセットされる。すなわち、すべての目標値ε1における学習完了フラグFtがリセットされる。これにより、圧縮比学習結果がリセットされる。
次に、S460にて、燃料種別変更フラグFfcがリセットされる。続いて、S470にて、燃料種別ftypeが、燃料タンク151内の燃料種別ftype_tに設定される。この設定状態は、バックアップRAM204に格納される。
このように、本実施形態においては、CPU201がルーチン400の処理を実行することにより、「学習状態初期化手段」が実現されている。
<実施形態の構成による作用・効果>
本実施形態においては、燃料タンク151内に貯留されている燃料Fとは異なる種別の燃料が、給油によって燃料タンク151内に追加されたことが検知された場合、旧燃料及び今回追加された燃料の、種別及び量から、給油後の燃料タンク151内の燃料種別が取得される。
また、本実施形態においては、この場合、燃料供給経路152内に旧燃料が残存する間は、機械的圧縮比の目標値取得のためのマップの変更、及び機械的圧縮比の学習結果のリセットが保留される。そして、給油後の燃料タンク151内の燃料Fが燃料供給経路152内の全体に行き渡って、燃焼室CCに供給される燃料Fの性状が変化してから、燃料種別に応じた機械的圧縮比の目標値取得のためのマップの変更、及び機械的圧縮比の学習結果のリセットが実行される。
したがって、本実施形態の構成によれば、燃焼状態の制御が適切且つ精度よく行われる。特に、ノッキングの抑制が良好に行われる。
<変形例の例示列挙>
なお、上述の実施形態は、上述した通り、出願人が本願の出願時点において最良であると考えた本発明の具体的構成例を単に例示したものにすぎないのであって、本発明はもとより上述の実施形態によって何ら限定されるべきものではない。よって、上述の実施形態に示された具体的構成に対して、本発明の本質的部分を変更しない範囲内において、種々の変形が施され得ることは、当然である。
以下、変形例について幾つか例示する。ここで、以下の変形例の説明において、上述の実施形態における各構成要素と同様の構成・機能を有する構成要素については、当該変形例においても同一の名称及び同一の符号が付されているものとする。そして、当該構成要素の説明については、上述の実施形態における説明が、矛盾しない範囲で適宜援用され得るものとする。
もっとも、変形例とて、下記のものに限定されるものではないことは、いうまでもない。本発明を、上述の実施形態や下記変形例の記載に基づいて限定解釈することは、(特に先願主義の下で出願を急ぐ)出願人の利益を不当に害する反面、模倣者を不当に利するものであって、許されない。
また、上述の実施形態の構成、及び下記の各変形例に記載された構成は、技術的に矛盾しない範囲において、適宜複合して適用され得ることも、いうまでもない。
(1)上述の実施形態のエンジン1は、可変圧縮比機構14によって、シリンダブロック11及びシリンダヘッド12を、クランクケース13に対してシリンダ中心軸CCAに沿って相対的に移動(スライド)させることで、機械的圧縮比を変更可能に構成されている。また、上述の実施形態のエンジン1は、可変吸気バルブタイミング装置125や可変排気バルブタイミング装置126によって、実圧縮比を変更可能に構成されている。
しかしながら、エンジン1の構成は、かかる構成のものに限定されない。
例えば、コンロッド132が屈曲可能なマルチリンク構造を有していて、このコンロッド132の屈曲状態が変更されることで機械的圧縮比が変更されるように、エンジン1が構成されていても、本発明は良好に適用される。
また、可変吸気バルブタイミング装置125及び/又は可変排気バルブタイミング装置126は、省略され得る。あるいは、可変吸気バルブタイミング装置125及び/又は可変排気バルブタイミング装置126に代えて、可変圧縮比機構14が省略され得る。すなわち、本発明は、バルブタイミング変更による実圧縮比制御における、学習制御にも、適用され得る。
(2)燃料噴射方式や燃料供給方式に関しても、特段の限定はない。例えば、本発明は、筒内直接噴射方式にも良好に適用され得る。また、本発明は、キャブレター方式やコモンレール方式にも良好に適用され得る。
(3)燃料液面センサ216や燃料種別センサ217の構成や配置についても、特段の限定はない。
例えば、燃料液面センサ216として、静電容量式液面センサも用いられ得る。
複数の燃料液面センサ216が、燃料タンク151の平面視における異なる位置に配置され得る。これにより、エンジン1を搭載する機器(車両等)の傾きや振動が良好に補正され得る。
燃料種別センサ217も、電気抵抗以外の特性(粘性、蒸気圧、光学特性、振動特性、等)に基づいて燃料種別を取得するように構成されたものが用いられ得る。
(4)図2ないし図4に示されているフローチャートにおける各処理は、適宜変形され得る。
例えば、マップに代えて、関数等が用いられ得る。
圧縮比学習制御は、図2のフローチャートに示されている具体例に限定されない。
例えば、図2のフローチャートにおいて、エンジン負荷KLは、アクセルペダル操作量Accpに代えて、スロットルポジションセンサの出力あるいは吸入空気流量Gaに基づいても取得され得る。
目標値ε1の取得の際に用いられるパラメータ(S210参照)も、上述のものに限定されない。例えば、燃料種別ftypeに代えて、オクタン価等の特性値(物性値)又はこれを代表する数値が用いられ得る。また、冷却水温Twは省略され得る。
目標値ε1の取得の際に用いられるマップ(S220参照)に対応する燃料種別ftypeは、上述の実施形態における具体例のようにオクタン価1刻みあるいはエタノール含有量1%刻みである必要はない。例えば、オクタン価90、オクタン価100、E3、E10、E85等の代表的な燃料種別についてのみマップが作成され得る。このとき、実際の燃料種別ftypeがそれらの中間的なもの(それらの混合物を含む)である場合には、目標値ε1は内挿等により取得され得る。
図3のルーチン300は、給油口の開放が検知された時点以外にも起動され得る。例えば、ルーチン300は、車両のフューエルリッドの開放、あるいはフューエルリッドオープンスイッチの操作が検知されたときに起動され得る。
図3のフローチャートにおいて、タンク残量Q0は、燃料噴射量の積算値に基づいて計算によって取得され得る。
給油時の燃料種別ftype1及び/又は燃料追加量Q1は、給油装置から通信回線を介して取得され得る。この通信回線は、無線、あるいは有線回線であり得る。有線回線の場合、制御装置2は、給油ホース及び給油ノズルを介して、給油装置と接続され得る。あるいは、給油時の燃料種別ftype1は、車両のダッシュボード等に設けられた操作スイッチ類を介してのユーザーの手入力によっても取得され得る。
燃料種別ftype0、ftype1、及びftype_tに代えて、オクタン価等の特性値(物性値)又はこれを代表する数値が用いられ得る。
図4のフローチャートに対応する学習初期化処理についても、様々な変形が施され得る。
例えば、学習状態の初期化は、上述の実施形態に示された具体例のようなフラグ上の処理に代えて、メモリ上の処理が行われ得る。
給油口やフューエルリッドの開放、あるいはフューエルリッドオープンスイッチの操作が検知された後、燃料タンク151内の燃料Fの液面変化が検知された時点で、圧縮比学習結果が強制的にリセットされ得る。
この場合、燃料タンク151の容量と比較すると微量である燃料供給経路152内の旧燃料を燃料タンク151内に戻す手段が設けられていてもよい(この程度の異種燃料の混合は燃焼状態にほとんど影響を与えないため無視され得る)。
あるいは、給油時にユーザーあるいは給油操作者が操作可能なリセット操作手段(リセットスイッチ等)が設けられていてもよい。このリセット操作手段は、このために車両のダッシュボード等に設けられた特別な操作スイッチ(例えばフューエルリッドが開放された場合に露出するように給油口の近辺に設けられたリセットスイッチ)に限定されず、既存のスイッチやペダルその他の操作手段が流用され得る。
具体例としては、エンジン1の停止中かつ給油中に車両運転者がアクセルペダルAPを所定時間(例えば2秒間)フル操作することで、圧縮比学習結果が強制的にリセットされ得る。あるいは、給油口やフューエルリッドの開放、あるいはフューエルリッドオープンスイッチの操作が検知された場合に、圧縮比学習結果が強制的にリセットされ得る。
(5)その他、特段に言及されていない変形例についても、本発明の本質的部分を変更しない範囲内において、本発明の技術的範囲に含まれることは当然である。
また、本発明の課題を解決するための手段を構成する各要素における、作用・機能的に表現されている要素は、上述の実施形態や変形例にて開示されている具体的構造の他、当該作用・機能を実現可能ないかなる構造をも含む。
本発明の適用対象である直列複数気筒のエンジン、及び本発明の一実施形態である制御装置、を含む、システムの全体構成を示す概略構成図である。 図1に示されている本実施形態の制御装置の動作の具体例を示すフローチャートである。 図1に示されている本実施形態の制御装置の動作の具体例を示すフローチャートである。 図1に示されている本実施形態の制御装置の動作の具体例を示すフローチャートである。
符号の説明
1…エンジン 11…シリンダブロック 112…ピストン
12…シリンダヘッド 127…インジェクタ
13…クランクケース 131…クランクシャフト 132…コンロッド
14…可変圧縮比機構 141…連結機構 142…駆動機構
150…燃料供給部 151…燃料タンク 152…燃料供給経路
2…制御装置 201…CPU 215…ノックセンサ
216…燃料液面センサ 217…燃料種別センサ AP…アクセルペダル
CC…燃焼室 CCA…シリンダ中心軸 F…燃料

Claims (3)

  1. 圧縮比を変更可能に構成された内燃機関に適用される、内燃機関の制御装置であって、
    圧縮比を学習制御する、圧縮比学習部と、
    燃料の性状に関する情報を取得する、燃料性状取得部と、
    前記燃料性状取得部による前記情報の取得結果に基づいて、前記圧縮比学習部による学習状態を初期化する、学習状態初期化部と、
    を備えたことを特徴とする、内燃機関の制御装置。
  2. 請求項1に記載の、内燃機関の制御装置であって、
    前記学習状態初期化部は、前記性状が変化した場合に、前記学習状態を初期化することを特徴とする、内燃機関の制御装置。
  3. 請求項2に記載の、内燃機関の制御装置であって、
    前記学習状態初期化部は、前記性状が変化してから前記学習状態の初期化を行うまでの間に、当該初期化を一時保留することを特徴とする、内燃機関の制御装置。
JP2007246710A 2007-09-25 2007-09-25 内燃機関の制御装置 Expired - Fee Related JP5034823B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007246710A JP5034823B2 (ja) 2007-09-25 2007-09-25 内燃機関の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007246710A JP5034823B2 (ja) 2007-09-25 2007-09-25 内燃機関の制御装置

Publications (2)

Publication Number Publication Date
JP2009074514A true JP2009074514A (ja) 2009-04-09
JP5034823B2 JP5034823B2 (ja) 2012-09-26

Family

ID=40609716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007246710A Expired - Fee Related JP5034823B2 (ja) 2007-09-25 2007-09-25 内燃機関の制御装置

Country Status (1)

Country Link
JP (1) JP5034823B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011223762A (ja) * 2010-04-12 2011-11-04 Shindengen Electric Mfg Co Ltd 電力変換装置
JP2012132326A (ja) * 2010-12-20 2012-07-12 Toyota Motor Corp 火花点火内燃機関

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61258953A (ja) * 1985-05-10 1986-11-17 Toyota Motor Corp 圧縮比可変機構を備えた内燃機関の制御方法
JPS63289234A (ja) * 1987-05-20 1988-11-25 Mitsubishi Motors Corp 可変圧縮比内燃機関
JPS6469730A (en) * 1987-09-10 1989-03-15 Toyota Motor Corp Controller for variable compression ratio type internal combustion engine
JPH03164538A (ja) * 1989-11-21 1991-07-16 Nissan Motor Co Ltd 内燃機関の圧縮比制御装置
JPH09324693A (ja) * 1996-06-03 1997-12-16 Fuji Heavy Ind Ltd 燃料性状検出装置
JP2003184615A (ja) * 2001-12-17 2003-07-03 Mitsubishi Motors Corp 内燃機関の学習制御装置
JP2003328794A (ja) * 2002-05-16 2003-11-19 Nissan Motor Co Ltd 内燃機関の制御装置
JP2004028061A (ja) * 2002-06-28 2004-01-29 Mitsubishi Motors Corp 内燃機関のノック学習制御装置
JP2004278449A (ja) * 2003-03-18 2004-10-07 Nissan Motor Co Ltd 内燃機関の燃料性状推定装置
JP2004308431A (ja) * 2003-04-02 2004-11-04 Toyota Motor Corp 圧縮比の変更方法と可変圧縮比エンジン
JP2005127212A (ja) * 2003-10-23 2005-05-19 Toyota Motor Corp 内燃機関の制御装置
JP2006233818A (ja) * 2005-02-23 2006-09-07 Toyota Motor Corp 圧縮着火内燃機関の燃焼制御システム
JP2007231824A (ja) * 2006-03-01 2007-09-13 Nissan Motor Co Ltd 内燃機関の制御装置及び制御方法
JP2008190482A (ja) * 2007-02-07 2008-08-21 Nissan Motor Co Ltd Ffエンジンの圧縮比可変制御装置

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61258953A (ja) * 1985-05-10 1986-11-17 Toyota Motor Corp 圧縮比可変機構を備えた内燃機関の制御方法
JPS63289234A (ja) * 1987-05-20 1988-11-25 Mitsubishi Motors Corp 可変圧縮比内燃機関
JPS6469730A (en) * 1987-09-10 1989-03-15 Toyota Motor Corp Controller for variable compression ratio type internal combustion engine
JPH03164538A (ja) * 1989-11-21 1991-07-16 Nissan Motor Co Ltd 内燃機関の圧縮比制御装置
JPH09324693A (ja) * 1996-06-03 1997-12-16 Fuji Heavy Ind Ltd 燃料性状検出装置
JP2003184615A (ja) * 2001-12-17 2003-07-03 Mitsubishi Motors Corp 内燃機関の学習制御装置
JP2003328794A (ja) * 2002-05-16 2003-11-19 Nissan Motor Co Ltd 内燃機関の制御装置
JP2004028061A (ja) * 2002-06-28 2004-01-29 Mitsubishi Motors Corp 内燃機関のノック学習制御装置
JP2004278449A (ja) * 2003-03-18 2004-10-07 Nissan Motor Co Ltd 内燃機関の燃料性状推定装置
JP2004308431A (ja) * 2003-04-02 2004-11-04 Toyota Motor Corp 圧縮比の変更方法と可変圧縮比エンジン
JP2005127212A (ja) * 2003-10-23 2005-05-19 Toyota Motor Corp 内燃機関の制御装置
JP2006233818A (ja) * 2005-02-23 2006-09-07 Toyota Motor Corp 圧縮着火内燃機関の燃焼制御システム
JP2007231824A (ja) * 2006-03-01 2007-09-13 Nissan Motor Co Ltd 内燃機関の制御装置及び制御方法
JP2008190482A (ja) * 2007-02-07 2008-08-21 Nissan Motor Co Ltd Ffエンジンの圧縮比可変制御装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011223762A (ja) * 2010-04-12 2011-11-04 Shindengen Electric Mfg Co Ltd 電力変換装置
JP2012132326A (ja) * 2010-12-20 2012-07-12 Toyota Motor Corp 火花点火内燃機関

Also Published As

Publication number Publication date
JP5034823B2 (ja) 2012-09-26

Similar Documents

Publication Publication Date Title
US20090145382A1 (en) Control apparatus for an internal combustion engine and method for controlling the same
JP4238890B2 (ja) 内燃機関の燃料噴射制御装置
US20100312459A1 (en) Internal combustion engine controller
EP2034161B1 (en) Control apparatus for cylinder injection type internal combustion engine
US20100037859A1 (en) Control device for internal combustion engine, control method, program for performing control method
JP5327026B2 (ja) 内燃機関の燃料性状判定装置
JP5987764B2 (ja) 火花点火式エンジンの制御装置
JP5987763B2 (ja) 火花点火式エンジンの制御装置
US20150252772A1 (en) Control device for internal combustion engine
JP5034823B2 (ja) 内燃機関の制御装置
RU2607099C2 (ru) Система двигателя и способ управления работой двигателя (варианты)
JP2009185654A (ja) 内燃機関制御装置
JP5833839B2 (ja) 内燃機関のトルク特性を制御するための方法、コンピュータプログラム、電気記憶媒体、および制御装置
JP5924098B2 (ja) 直噴エンジンの制御装置
JP4968206B2 (ja) 内燃機関及び内燃機関の燃料噴射制御装置
JP5203157B2 (ja) バイフューエル内燃機関の燃料噴射制御方法
JP5987765B2 (ja) 火花点火式エンジンの制御装置
JP6044102B2 (ja) 直噴エンジンの始動制御装置
JP4529935B2 (ja) 筒内直噴エンジンの始動制御装置
JP2013224621A (ja) 直噴エンジンの始動方法及び直噴エンジンの始動制御装置
JP5029833B2 (ja) 内燃機関制御装置
JP2010007538A (ja) エンジン制御装置
JP2011226337A (ja) 高圧燃料ポンプ駆動制御装置
JP5585772B2 (ja) エンジンの燃料噴射時期制御装置
JP5915354B2 (ja) 直噴エンジンの始動制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120618

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5034823

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees