JP2012110154A - 無線電力伝送装置 - Google Patents

無線電力伝送装置 Download PDF

Info

Publication number
JP2012110154A
JP2012110154A JP2010258026A JP2010258026A JP2012110154A JP 2012110154 A JP2012110154 A JP 2012110154A JP 2010258026 A JP2010258026 A JP 2010258026A JP 2010258026 A JP2010258026 A JP 2010258026A JP 2012110154 A JP2012110154 A JP 2012110154A
Authority
JP
Japan
Prior art keywords
power transmission
impedance
coil
variable unit
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010258026A
Other languages
English (en)
Other versions
JP5319652B2 (ja
Inventor
Hiroki Kudo
浩喜 工藤
Kisho Odate
紀章 大舘
Kenichiro Ogawa
健一郎 小川
Tooru Tsukasagi
徹 司城
Noritaka Deguchi
典孝 出口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2010258026A priority Critical patent/JP5319652B2/ja
Publication of JP2012110154A publication Critical patent/JP2012110154A/ja
Application granted granted Critical
Publication of JP5319652B2 publication Critical patent/JP5319652B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

【課題】高い電力伝送効率を達成できる。
【解決手段】本開示の一実施形態に係る無線電力伝送装置は、電源に接続される共振可能なコイル、第1可変部、第2可変部、及び制御部を含む。第1可変部は、前記コイルと前記電源との間にπ型回路またはT型回路として配置され、前記コイル側から見た電源負荷のインピーダンスを変換可能な可変回路素子を含む。第2可変部は、前記コイルに電磁結合するループを含み、該コイルと該ループとの間の相互インダクタンスを変化させることにより前記コイル側から見た前記電源負荷及び前記第1可変部のインピーダンスを変換可能である。制御部は、前記第1可変部及び前記第2可変部の少なくともどちらか1つを用いてインピーダンス変換を行い、インピーダンス整合を行う。
【選択図】図1

Description

本開示は、無線電力伝送に関する。
送電コイルと受電コイルとを使用して非接触で電力を伝送する無線電力伝送技術は、様々な機器に採用されている。このような無線電力伝送技術において、送受電間でインピーダンス整合を行うことは、伝送効率の改善等の観点から必要不可欠である。特に、高いQ値の共振回路を用いた電力伝送においては、数十cmから数mと比較的長距離の伝送が可能となるため、広い距離範囲で送受電間のインピーダンス整合を行う必要がある。インピーダンス整合の方法としては、送受電コイルと電磁的に結合し、インピーダンス変換器として動作するピックアップ用コイルを多数用意する方法や、可変キャパシタを直並列に挿入する方法が知られている。
特開2010−158151号公報 特開2009−60736号公報
しかしながら、上記の従来技術においては、容易にインピーダンス整合を行うことが可能なものの、送電コイルと受電コイルとの間の結合が強い場合には、一定の周波数においてインピーダンス整合が行えず伝送効率が劣化してしまうという問題がある。
本発明の一観点は、送電コイルと受電コイルとの間の結合が広く変動する場合にインピーダンス整合を行うことが可能となる無線電力伝送装置を提供することを目的とする。
上述の課題を解決するため、本発明の一実施形態に係る無線電力伝送装置は、電源に接続される共振可能なコイル、第1可変部、第2可変部、及び制御部を含む。第1可変部は、前記コイルと前記電源との間にπ型回路またはT型回路として配置され、前記コイル側から見た電源負荷のインピーダンスを変換可能な可変回路素子を含む。第2可変部は、前記コイルに電磁結合するループを含み、該コイルと該ループとの間の相互インダクタンスを変化させることによりコイル側から見た前記電源負荷及び前記第1可変部のインピーダンスを変換可能である。制御部は、前記第1可変部及び前記第2可変部の少なくともどちらか1つを用いてインピーダンス変換を行い、インピーダンス整合を行う。
第1の実施形態に係る無線電力伝送装置の概念図。 第1の実施形態に係る無線電力伝送装置の概念図の別例を示す図。 第1の実施形態に係る無線電力伝送装置を示すブロック図。 第1の実施形態に係る第1インピーダンス可変部の一例を示す図。 第2インピーダンス可変部の一例を示す図。 第1の実施形態に係る無線電力伝送装置の等価回路の一例を示す図。 第1の実施形態に係る無線電力伝送装置に可変回路素子を用いた場合の等価回路の別例を示す図。 電力伝送効率のシミュレーション結果を示す図。 電力伝送効率のシミュレーション結果の別例を示す図。 無線電力伝送装置のインピーダンスの整合手順を示すフローチャート。 無線電力伝送装置のインピーダンスの整合手順の別例を示すフローチャート。 第2の実施形態に係る無線電力伝送装置の等価回路の一例を示す図。 ノートン変換におけるトランス−π型素子変換の一例を示す図。 第2の実施形態に係る無線電力伝送装置に可変回路素子を用いた場合の等価回路の別例を示す図。 第3の実施形態の係る無線電力伝送装置を示すブロック図。 第3の実施形態に係る無線電力伝送装置1500の等価回路の一例を示す図。 共振期間結合フィルタの等価回路の一例を示す図。 第4の実施形態に係る無線電力伝送装置を示すブロック図。 電力伝送と無線通信とを切り替える場合の無線電力伝送装置を示すブロック図。 電力伝送用コイルと無線通信用コイルとの配置例を示す図。 第4の実施形態に係る無線電力伝送装置の概念図の別例を示す図。
以下、図面を参照しながら本開示の一実施形態に係る無線電力伝送装置について詳細に説明する。なお、以下の実施形態では、同一の番号を付した部分については同様の動作を行うものとして、重ねての説明を省略する。
(第1の実施形態)
第1の実施形態に係る無線電力伝送装置の概念図について図1を参照して説明する。
第1の実施形態に係る無線電力伝送装置100は、送電コイル101、送電部102を含む。さらに、送電部102は、第1インピーダンス可変部151(第1可変部ともいう)、第2インピーダンス可変部152(第2可変部ともいう)、及び制御部153を含む。
送電コイル101は、自己共振コイル、またはキャパシタを付加して共振するコイルで構成される。なお、送電コイル101を複数用いる場合は、形状に関しては任意であるが、送電コイルの共振周波数を同一にすることが望ましい。
第1インピーダンス可変部151は、例えばトランスを含み、入力インピーダンスを定数倍に変換することができる。
第2インピーダンス可変部152は、例えばピックアップ用コイル(以下、ループという)を含み、ループと送電コイル101との間の結合(以下、ループ結合という)の相互インダクタンスを変えることで、インピーダンス変換を行うことができる。
制御部153は、第1インピーダンス可変部151と第2インピーダンス可変部152との少なくともどちらか1つを用いてインピーダンス変換を行い、インピーダンス整合を行う。
次に、無線電力伝送装置の別例について図2を参照して説明する。
例えば、図2(a)に示すように、複数の送電コイル101を用いて伝送する場合は、送電部102には、複数の送電コイル101ごとに第1インピーダンス可変部151と第2インピーダンス可変部152とを含んでもよい。また、図2(b)に示すように、送電部102には、送電コイル101ごとに第2インピーダンス可変部152を備え、第1インピーダンス可変部151は1つだけ含んでもよい。その反対に、図2(c)に示すように、送電部102には、送電コイル101ごとに第1インピーダンス可変部151を備え、第2インピーダンス可変部152は1つだけ含んでもよい。さらに、図2(d)に示すように、複数の送電コイル101と、複数の送電部102とを用いて伝送してもよい。
次に、無線電力伝送装置について図3を参照して説明する。
無線電力伝送装置300は、送電コイル101、第1インピーダンス可変部151、第2インピーダンス可変部152、電圧源301、及び電圧源負荷302を含む。
電圧源301は、一般的な電圧源を用いればよいため、ここでの説明は省略する。
電圧源負荷302は、電圧源301が持ちうる負荷である。なお、無線電力伝送装置300は、送電装置として用いる場合を示すが、受電装置として用いる場合は、電圧源及び電圧源負荷を、受電側負荷に置き換えて適用することができる。
次に、第1インピーダンス可変部151の一例について図4を参照して説明する。
第1インピーダンス可変部151は、送電コイル101側から見たインピーダンス(ここでは、電圧源負荷のインピーダンス)を定数倍に変換する。具体的には、例えば、図4に示すようなトランスを想定する。トランスの1次側と2次側との巻き線比が1:Nである場合、1次側インピーダンスと2次側インピーダンスとは、式1の関係となる。
Figure 2012110154
よって、トランスの巻線比を調整することで、任意の定数倍のインピーダンスに変換することができる。なお、第1インピーダンス可変部151は、トランスのようにインピーダンスを定数倍に変換できる構成であれば何でもよい。
次に、第2インピーダンス可変部152について図5を参照して説明する。
第2インピーダンス可変部152は、ループ結合を変えることで送電コイル101側から見た電源負荷及び第1インピーダンス可変部151のインピーダンスを変換する。ループ結合を変える方法としては、ループを移動させて、ループと送電コイル101との間の距離を変えたり、ループと送電コイル101との間に挿入した磁性体等により変えたりする方法などがある。なお、上述の方法に限らず、ループと送電コイル101との間の結合を任意に変えることができるならいかなる方法でもよい。
図5(a)に示すような、ループ501と送電コイル502とのループ結合の相互インダクタンスをMとして、ループ結合を等価回路で表現する場合、図5(b)のような対称T型回路となる。この対称T型回路はKインバータと呼ばれ、式2のような四端子行列となるインピーダンスインバータとして動作することが知られている。
Figure 2012110154
つまり、ループと送電コイルとの間の相互インダクタンスに対応してインピーダンスが変換される。なお、以下では、送電コイルと受信装置の受電コイルとの間の結合をコイル結合と呼ぶ。
次に、第1の実施形態に係る無線電力伝送装置300の等価回路について図6を参照して説明する。
第1インピーダンス可変部151はトランス(変圧器)、第2インピーダンス可変部152はループを用いる場合を想定する。なお、第1インピーダンス可変部151と第2インピーダンス可変部152とは独立しているが、第1インピーダンス可変部151と第2インピーダンス可変部152とを統合させた構造を用いてもよい。例えば、ループの途中にトランスを挿入したものや、複数巻きのループを単巻トランス(可変トランス)としたものを用いればよい。
よって、第1インピーダンス可変部151及び第2インピーダンス可変部152が独立または交互にインピーダンス変換を行うことで、送電コイルと受電コイルとのコイル結合が変わった場合でも、柔軟にインピーダンス整合を行うことが可能となる。
次に、第1の実施形態に係る無線電力伝送装置300の等価回路の別例について図7を参照して説明する。
第1インピーダンス可変部151は、可変トランスにより構成されるが、単巻トランスなどの可変トランスや、複数のトランスをスイッチングにより切り替える方法でもよい。コイル結合の強さに応じて、制御部153が、電力伝送効率が最大となるように送電コイル側101から見た電圧源負荷インピーダンスの最適値及びループ結合の最適値を決定する。
また、無線電力伝送装置300の送電開始時、コイル結合が変動した時、または電力伝送効率の劣化が生じた時は、インピーダンス整合を行う必要がある。この場合、第1インピーダンス可変部151は、図7の示すような可変トランスを用いて電力伝送効率が最大となる巻き線比となるように調節する。そして、第2インピーダンス可変部152は、ループ結合を変えることで所望の周波数において電力伝送効率が最大化されるようにインピーダンス整合を行う。
なお、コイル結合を検出する方法としては、例えば受電側負荷インピーダンスを短絡し、送電側の反射率が極小となる2つの周波数の差により検出する方法があり、これを用いればよい。また、電力伝送効率の劣化を検出する方法としては、例えば受電側負荷に供給される受電電力をモニタすることで検出することができるため、これを用いればよい。
さらに、受電装置において受電側負荷が変動する可能性がある。その場合、送電コイル101側からみた電圧源負荷インピーダンスを、受電側負荷に対して電力伝送効率が最大となるように第1インピーダンス可変部151及び第2インピーダンス可変部152を用いてインピーダンス変換すればよい。こうすることで、受電側負荷の変動に対してもインピーダンス整合がとれた状態を追従することができる。
ここで、インピーダンス整合時における電力効率特性のシミュレーション結果を図8及び図9を参照して説明する。
図8及び図9は、第1の実施形態における電力伝送装置の等価回路を等価回路シミュレータによって計算した例である。なお、シミュレーションでは、電圧源負荷及び受電側負荷を50Ωにした場合のS21を計算し、電力伝送効率とする。また、一定の周波数により正規化した正規化周波数Δfを横軸とする。Δf=0のときは周波数のずれがないことを意味する。
図8は、ループ結合の結合係数kを0.1に固定し、コイル結合を可変させた場合の電力効率特性を示す。図8に示すように、コイル結合の結合係数kcを0.001〜0.009に可変させた場合、kc=0.005及び正規化周波数Δf=0のときに電力伝送効率が最大となることが分かる。つまり、周波数の変動に追従できず、Δfの変動を許容できない構成では、コイル間の距離が近く、かつコイル結合が強い場合に、電力伝送効率の劣化が生じる。なお、ループ結合kを1に近づけることで、コイル結合kcが高い場合でもインピーダンス整合を行うことができるが、ループ結合kが高い場合は共振周波数が増加するので、正規化周波数Δf=0の場合の電力伝送効率が著しく劣化してしまい現実的ではない。
また、図9では、電圧源負荷及び受電側負荷を1Ω、30Ω、80Ω、100Ωと大きくした場合のコイル結合と電力伝送効率との関係を示す。電圧源負荷及び受電側負荷が大きくなるにしたがって、電力伝送効率が最大となるコイル結合係数kcの値が異なることが明白である。つまり、コイル結合の強さに応じて電圧源負荷及び受電側負荷を変えることで、高い電力伝送効率を維持することができる。
ここで、制御部153におけるインピーダンスの整合手順について図10及び図11のフローチャートを参照して説明する。
インピーダンス整合は、利用状況や装置構成に応じて最適な手順が存在し、大きく2種類に分けられる。まず、コイル結合が高い場合のインピーダンス整合手順を図10に示す。
コイル結合が高い場合、コイル結合に合わせるように第2インピーダンス可変部152のループ結合を高くする必要があり、この場合は電力伝送効率が最大となる周波数が高くなるため、所望周波数で高い電力伝送効率を達成することが困難となる。よって、第1インピーダンス可変部151でインピーダンス変換を行った後に、第2インピーダンス可変部152において伝送に用いる周波数で、高い電力伝送効率を達成することが可能な範囲内でインピーダンス変換を行えばよい。
ステップS1001では、電力比較値Pnow、第1インピーダンス値Imp1now、第2インピーダンス値Imp2nowの初期値を「0」に設定し、インピーダンスの増減用フラグUp_flagの初期値を「1」に設定する。電力比較値Pnowは、第1インピーダンス可変部151及び第2インピーダンス可変部152によってインピーダンス変換を行う前の受電力値を格納するためのパラメータである。
ステップS1002では、インピーダンスの増減用フラグUp_flagが1であるかどうかを判定する。Up_flagが1であれば、ステップS1003に進み、Up_flagが1でなければステップS1004に進む。
ステップS1003では、第1インピーダンス可変部151によって、電圧源負荷のインピーダンスをΔa1増加させるように変換する。Δa1は、第1インピーダンス可変部151においてインピーダンスを増減させる単位値である。
ステップS1004では、第1インピーダンス可変部151によって、電圧源負荷インピーダンスをΔa1減少させるように変換する。
ステップS1005では、充電試行を行って、受電力を測定する。
ステップS1006では、インピーダンス変換を行う前の受電力Pnowとインピーダンス変換を行った後の受電力P’とを比較して、Pnowの方がP’よりも大きいかどうかを判定する。Pnowの方がP’よりも大きい場合は、ステップS1008に進み、PnowがP’以下である場合は、ステップS1007に進む。
ステップS1007では、Pnowの値をP’の値に更新して、ステップS1002へ戻り、同様の処理を繰り返す。
ステップS1008では、Up_flagが0であるかどうかを判定する。Up_flagが0である場合は、ステップS1011ヘ進み、Up_flagが0でない場合は、ステップS1009へ進む。
ステップS1009では、インピーダンスを減少させるため、Up_flagを0に設定する。
ステップS1010では、ステップS1004と同様に、送電コイル101側から見た電圧源負荷インピーダンスをΔa1減少させるように変換する。その後、ステップS1002へ戻り、同様の処理を繰り返す。
ステップS1011では、送電コイル101側から見た電圧源負荷インピーダンスをΔa1増加させるようにインピーダンス変換を行う。このように、ステップS1002からステップS1011までの処理によって、第1インピーダンス可変部により受電力が最大となるインピーダンスを探索する。
ステップS1012では、Up_flagを1に設定する。
ステップS1013では、インピーダンスの増減用フラグUp_flagが1であるかどうかを判定する。Up_flagが1であれば、ステップS1014に進み、Up_flagが1でなければステップS1015に進む。
ステップS1014では、第2インピーダンス可変部152によって、送電コイル101側から見た電圧源負荷のインピーダンスをΔa2増加させるように変換する。Δa2は、第2インピーダンス可変部152においてインピーダンスを増減させる単位値である。
ステップS1015では、第2インピーダンス可変部152によって、送電コイル101側から見た電圧源負荷インピーダンスをΔa2減少させるように変換する。
以下、ステップS1016からステップS1022までの処理は、ステップS1005からステップS1011までの処理と同様であるため、説明を省略する。このように、ステップS1013からステップS1022までの処理によって、第2インピーダンス可変部152により受電力が最大となるインピーダンスを探索する。以上の手順により、インピーダンス整合が行われる。
インピーダンス整合手順終了後、数回の充電試行の後に高い電力伝送効率を達成した場合に送電を開始する。この送電の開始判定は、閾値により判定される。コイル結合が自明である場合は、例えば算出される理論値の2分の1倍の電力伝送効率を閾値として用いて、電力伝送効率が閾値以上であれば送電を開始し、閾値未満であれば送電を行わないとすればよい。
次に、コイル結合が低い場合のインピーダンス整合手順を図11に示す。
コイル結合が低い場合は、例えば、第2インピーダンス可変部152においてインピーダンス整合を行う際は、一般的にループ結合を低くすることでインピーダンス整合を行うことができる。ループ結合を変えた場合に電力伝送効率が最大となる周波数も変動するが、ループ結合が低いときはループ結合を変えても電力伝送効率が最大となる周波数の変動も小さくなる。以上のことから、コイル結合が低い場合は、第2インピーダンス可変部152によるインピーダンス調整によって、電力伝送効率が最大となる周波数を微調整することができるため、所望の周波数において電力伝送効率を最大化することが容易となる。よって、コイル結合が低い場合には、第2インピーダンス可変部152でインピーダンス変換することでインピーダンス整合を行えばよい。
但し、第2インピーダンス可変部152においてループを移動させることによりインピーダンス変換を行う場合は、装置の構造上ループの移動できる範囲に制限がある可能性がある。このように、第2インピーダンス可変部152で対応できなくなった場合、第1インピーダンス可変部151でインピーダンス変換を行った後に、第2インピーダンス可変部152でインピーダンス整合を行えばよい。これにより、高い電力伝送効率を達成することができる。
ステップS1101では、第2インピーダンス可変部152がインピーダンス変換を行う。具体的には、図10に示すステップS1012からステップS1022までの処理を行う。
ステップS1102では、第1インピーダンス可変部151がインピーダンス変換を行う。具体的には、図10に示すステップS1001からステップS1011までの処理を行う。
インピーダンス整合手順終了後の送電開始の判定は、コイル結合が強い場合と同様である。なお、コイル結合の強さによって、インピーダンス変換を行うインピーダンス可変部の順序を変えているが、順序変更の判定は、例えば、制御部153が閾値判定によって行ってもよい。例えば、第2インピーダンス可変部152によりインピーダンス整合を行ったときの電力伝送効率が最大となる周波数と所望の周波数との誤差が1%となるときのコイル結合の結合係数を閾値とすればよい。ループ結合を可変させると、電力伝送効率が最大となる周波数も増減すると前述したが、コイル結合が強いときはループ結合も強くする必要があるため、電力伝送効率が最大となる周波数が増加し、結果として所望の周波数で電力伝送効率が劣化する。そのため、コイル結合が強い場合は電力伝送効率が最大となる周波数と所望の周波数との誤差が大きくなるため、その誤差が例えば1%以上となったときに、コイル結合が強いと判断して第1インピーダンス可変部151によってインピーダンス変換をした後に、第2インピーダンス可変部152によってインピーダンス変換を行う順序とすればよい。
以上に示した第1の実施形態によれば、ループ結合及びコイル結合が変動した場合でも、送電コイル側から見た電圧源負荷インピーダンスをコイル結合の強さに応じて、第1インピーダンス可変部及び第2インピーダンス可変部によってインピーダンス整合を行うことで、所望周波数において高い電力伝送効率を維持することができる。
(第2の実施形態)
第1の実施形態では、第1インピーダンス可変部にトランスを含んでいたが、第2の実施形態では、第1インピーダンス可変部としてT型回路素子またはπ型回路素子を含む点が異なる。T型回路素子またはπ型回路素子を用いることで、トランスを用いるよりも回路規模を小さくすることができる。
第2の実施形態に係る無線電力伝送装置について図12を参照して説明する。
第2の実施形態に係る無線電力伝送装置1200は、電圧源301、電圧源負荷302、第1インピーダンス可変部1201(1201−1または1201−2)、第2インピーダンス可変部152、送電コイル101を含む。なお、電圧源301、電圧源負荷302、第2インピーダンス可変部152、及び送電コイル101は、第1の実施形態と同一の構成を示すためここでの説明を省略する。
図12(a)に示す第1インピーダンス可変部1201−1は、T型の回路素子で構成され、第1の実施形態におけるトランスと同様の動作を行う。同様に、図12(b)に示す第1インピーダンス可変部1201−2は、π型の回路素子で構成され、第1の実施形態におけるトランスと同様の動作を行う。また、T型及びπ型の回路素子定数は、トランスのように電圧源負荷インピーダンスを送電コイル101側から見て定数倍に可変させるように決定し、例えばノートン変換により設計することができる。
ここで、ノートン変換によってトランスをπ型素子に変換した場合の回路素子定数を図13に示す。
ノートン変換では、直列に挿入された回路素子を用いて変換を行う。その際、変換後のπ型回路素子(抵抗、キャパシタ、インダクタ)のうち、並列を挿入された回路素子のいずれか1つ以上は、負の値を持つ素子定数に変換される。すなわち、実用上でノートン変換を行うためには、直列に挿入された回路素子に加えて負の値を持つ回路素子定数を打ち消すための回路も必要となる。例えば、無線電力伝送において、送電共振回路(送電コイル)と受電共振回路(受電コイル)とが共振周波数がずれている場合、所望の周波数での電力伝送効率を向上させるため、電圧源及び受電負荷に対して直列及び並列に回路素子を挿入するが、この直列及び並列に挿入された回路素子を用いてノートン変換を行ってもよい。また、第2インピーダンス可変部152にループを用いる場合は、ループのインダクタ値を用いてノートン変換を行って第2インピーダンス可変部152を設計してもよい。
上述したように、ノートン変換は、接続される共振回路の共振周波数を変化させずに、トランスと同じようにインピーダンスを定数倍に変換させることができるπ型回路を設計できる。なお、π型に変換された回路をπ−T回路変換を行うことで、T型回路に変換することもできる。
次に、第2の実施形態に係る無線電力伝送装置1200に可変回路素子を用いた一例を図14(a)及び図14(b)に示す。
図14(a)は、可変回路素子を用いたT型回路の第1インピーダンス可変部1401−1を示し、図14(b)は、可変回路素子を用いたπ型回路の第1インピーダンス可変部1401−2を示す。第1インピーダンス可変部1401は、例えば図11のようなノートン変換により所望のインピーダンス変換比から決定された回路素子定数に合わせて、可変回路素子の値をそれぞれ変化させる。合わせて、第2インピーダンス可変部152がループ結合を変化させることによりインピーダンス変換を行い、所望の周波数において電力伝送効率が最大化されるようにインピーダンス整合を行う。
なお、無線電力伝送では、T型及びπ型回路によるインピーダンス可変部1401の回路素子として抵抗を用いると、電力損失が生じ電力伝送効率が劣化する。そのため、回路素子としてインダクタ及びキャパシタを用いることが望ましい。但し、第2の実施形態に係る無線電力伝送装置1200を用いて通信を行う場合は、抵抗を用いた整合回路を適用してもよい。また、インピーダンスの整合手順は、第1の実施形態と同様に図10及び図11に示した手順を用いればよい。
以上に示した第2の実施形態によれば、回路規模を小さくしつつ、第1の実施形態と同様に、所望周波数において高い電力伝送効率を維持するインピーダンス整合を行うことができる。
(第3の実施形態)
第3の実施形態では、送信側の無線電力伝送装置が第1及び第2インピーダンス可変部を有するのに加え、受信側の無線電力伝送装置にも第1及び第2インピーダンス可変部を有する点が異なる。送電側及び受電側の両方でインピーダンス整合を行うことにより、より早く整合を取ることが可能となり、所望周波数での高い電力伝送効率を達成することができる。
第3の実施形態に係る無線電力伝送装置について図15を参照して説明する。
第3の実施形態に係る無線電力伝送装置1500は、送電装置1501及び受電装置1551を含む。さらに、送電装置1501は、電圧源301、電圧源負荷302、第1インピーダンス可変部151、第2インピーダンス可変部152、制御部153、及び送電コイル101を含む。また、受電装置1551は、受電側負荷1552、第1インピーダンス可変部1553、第2インピーダンス可変部1554、制御部1556、及び受電コイル1555を含む。なお、送電装置1501に含まれる構成の動作は、上述した構成の動作と同様であるためここでの説明は省略する。
受電側負荷1552は、送電装置から受け取った電力を取り出すための抵抗などの負荷である。
第1インピーダンス可変部1553は、第1の実施形態及び第2の実施形態に係る第1インピーダンス可変部151と同様に、トランスまたはπ型及びT型回路によって受電側負荷インピーダンスを受電コイル1555側から見て定数倍に変換することができればよい。
第2インピーダンス可変部1554は、第1の実施形態及び第2の実施形態に係る第2インピーダンス可変部152と同様に、ループと受電コイルとの結合(相互インダクタンス)を変えることで、相互インダクタンスに対応したインピーダンス変換を行う。
受電コイル1555は、送電コイル101と同様に、自己共振コイル、またはキャパシタを負荷して共振するコイルで構成される。
制御部1556は、制御部153と同様に、第1インピーダンス可変部1553と第2インピーダンス可変部1554とを制御して、インピーダンス整合を行う。
次に、第3の実施形態に係る無線電力伝送装置1500の等価回路の一例を図16に示す。
図16に示すように、送電装置及び受電装置の第1インピーダンス可変部はトランス、第2インピーダンス可変部は、ループによりそれぞれ構成すればよい。また、送電装置及び受電装置それぞれにおいて、第1インピーダンス可変部と第2インピーダンス可変部とを統合してもよい。統合する方法としては上述したように、ループの途中にトランスを挿入したものや、多数に巻いたループを単巻トランス(可変トランス)のように使用すればよい。特に受電装置1551において受電側負荷の直前にトランスを挿入すると、トランスによる電力損失が生じるため、ループと統合してトランスを形成することが望ましい。また、受電装置1551の第1インピーダンス可変部1553と第2インピーダンス可変部1554とを入れ替えてもよい。
ここで、第3の実施形態に係る無線電力伝送装置1500の動作について説明する。
図9に示したように、コイル結合の強さに応じて電力伝送効率が最大となる、電圧源の負荷、受電側負荷インピーダンスの最適値、及び、送電装置及び受電装置のループ結合の最適値が決定される。コイル結合を検出する方法としては、上述のように、受電電力をモニタすることで検出すればよい。また、送電開始時、コイル結合の変動、または電力伝送効率の劣化などがあった場合にインピーダンス整合が必要となるので、送電装置1501及び受電装置1551において独立または相互的に第1及び第2インピーダンス可変部がインピーダンス整合を行う。
インピーダンスの整合手順としては、第1の実施形態と同様に、図10及び図11に示す整合手順で、送電装置1501及び受電装置1551の両方の第1及び第2インピーダンス可変部においてインピーダンス変換を行えばよい。この際、受電装置1551のインピーダンスが変換される期間の少なくとも一部の期間で、送電装置1501においてインピーダンス整合を行う。なお、送電装置1501と受電装置1551とのインピーダンス整合期間は同一であることが望ましい。
例えば、受電装置1551において受電側負荷が変動する場合を想定する。この場合は、電力伝送効率が最大となるように、送電側の第1インピーダンス可変部151及び第2インピーダンス可変部152において送電コイル101側から見た電圧源負荷インピーダンスを変換し、インピーダンス整合を行う。さらに、受電装置1551において、送電側のインピーダンスの変更に同期して、受電コイル1555側から見た受電側負荷インピーダンスを電力伝送効率が最大となるように第1インピーダンス可変部1553及び第2インピーダンス可変部1554においてインピーダンス変換を行い、インピーダンス整合を行う。こうすることで、受電側負荷の変動に対して追従することができる。
一方、送電装置1501において負荷インピーダンスが変動する場合は、逆処理を行えばよく、受電側の第1インピーダンス可変部1553及び第2インピーダンス可変部1554において電力伝送効率が最大となるように受電コイル1555側から見た受電側負荷インピーダンスを変換する。そして、変換された受電コイル1555側から見た受電側負荷インピーダンスに同期して、送電装置1501の第1インピーダンス可変部151及び第2インピーダンス可変部152において、電力伝送効率が最大となるように送電コイル101側から見た電圧源負荷インピーダンスを変換し、インピーダンス整合を行えばよい。
なお、受電装置1551において第1インピーダンス可変部1553がインピーダンス変換を行う場合は、電力損失が増大する可能性があるため、受電装置1551におけるインピーダンスの変換は電力損失が最小となるように行うのが望ましい。さらに、受電側負荷インピーダンスが変動する場合は、受電コイル1555や受電装置1551の第2インピーダンス可変部1554から見たインピーダンスが一定となるように、受電装置1551の第1インピーダンス可変部1553がインピーダンス変換を行ってもよい。これにより、送電装置1501が受電装置1551の受電側負荷インピーダンスの変動に追従する必要がなくなり、より簡易な制御で高い電力伝送効率を達成することができる。
次に、第3の実施形態に係る無線電力伝送装置1500のインピーダンス整合条件について説明する。
図16に示す送電装置1501及び受電装置1551の第1インピーダンス可変部を除くと、共振器間結合フィルタの構成に類似している。よって、共振器間結合フィルタのインピーダンス整合条件を無線電力伝送装置1500に適用することができる。
共振器間結合フィルタの等価回路の一例を図17に示す。L及びCは、送電コイルのインダクタ値及びコンダクタ値であり、L及びCは、送電コイルのインダクタ値及びコンダクタ値である。R及びRは、電圧源負荷及び受電側負荷に対応する。K0,1等と記述されているのは前述したKインバータであり、図5(b)に描かれる対称T型回路と等価である。つまり、図17のK0,1及びK1,2はそれぞれ送電装置1501のループ結合及びコイル結合、K2,3は受電装置1551のループ結合を表わしている。
送電装置1501のループ結合の相互インダクタンスをM、受電装置1551のループ結合の相互インダクタンスをM、コイル結合の結合係数をkとすると、図17に示した共振器間結合フィルタのインピーダンス整合は、以下のように算出される外部kと呼ばれるパラメータにより条件化される。
Figure 2012110154
式3において、ωはコイルの共振周波数である。上述した送電装置外部ke1及び受電装置外部ke2、コイル結合の結合係数kを用いて、例えばバターワース特性を持つフィルタを設計する場合は、以下の式4の条件式を満たせばよい。
Figure 2012110154
バターワース特性は通過帯域が最も平坦となる特性を持つ。これは、無線電力伝送においてある一定の周波数において高い電力伝送効率を達成するのに用いやすい特性であり、本実施形態に係る無線電力伝送装置においても適した特性である。送電装置外部ke1及び受電装置外部ke2は、それぞれ相互インダクタンスM、M及び負荷R、Rにより可変させることができる。
第3の実施形態では、相互インダクタンスM及びMは、送電装置1501の第2インピーダンス可変部152と受電装置1551の第2インピーダンス可変部1554とのループ結合に対応し、負荷R及びRは、送電装置1501の第1インピーダンス可変部151と受電装置1551の第1インピーダンス可変部1553とのトランスに対応している。つまり、送電装置1501及び受電装置1551の第1及び第2インピーダンス可変部が、送電装置外部ke1と受電装置外部ke2とがコイル結合kと一定になるように送電コイル101側から見た電圧源負荷インピーダンス及び受電コイル1555側から見た受電側負荷インピーダンスを変換することで、インピーダンス整合を行うことができる。
なお、送電装置外部ke1及び受電装置外部ke2は、それぞれSパラメータにおける反射の周波数特性において、反射の最小値とその最小値における周波数を用いて算出することが可能である。この手法により、事前に送電装置1501及び受電装置1551の外部kを計算しておくことで、インピーダンス整合をより容易に行うことができる。
以上に示した第3の実施形態によれば、送電側及び受電側の両方でインピーダンス整合を行うことにより、より早く整合を取ることが可能となり、所望周波数での高い電力伝送効率を達成することができる。
(第4の実施形態)
第4の実施形態では、送電装置及び受電装置に変調/復調部と情報処理部とを含み、電力伝送に加え無線通信を行う点が異なる。電力伝送の場合と同じように、第1及び第2インピーダンス可変部においてインピーダンス整合を行うことで、広範囲の伝送距離において通過帯域の伝送特性を平坦にすることができる。これによって、周波数選択性のない周波数特性が得られ、無線通信を行う場合に高い伝送レートを達成することができる。
第4の実施形態に係る無線電力伝送装置について図18を参照して説明する。
第4の実施形態に係る無線電力伝送装置1800は、送電装置1801と受電装置1851とを含む。さらに、送電装置1801は、情報処理部1802、変調/復調部1803、第1インピーダンス可変部151、第2インピーダンス可変部152、及び送電コイル101を含む。受電装置1851は、情報処理部1852、変調/復調部1853、第1インピーダンス可変部1553、第2インピーダンス可変部1554、受電コイル1555を含む。
送電装置1801に含まれる第1インピーダンス可変部151、第2インピーダンス可変部152、送電コイル101、及び、受電装置1851に含まれる第1インピーダンス可変部1553、第2インピーダンス可変部1554、受電コイル1555は、第1の実施形態と同様であるためここでの説明は省略する。
情報処理部1802は、送信すべきデータを生成する。
変調/復調部1803は、情報処理部1802からデータを受け取り、データを変調して変調信号を生成する。また、変調信号を受け取った場合は、変調信号を復調してデータを生成する。変調方式は、ASK、PSK、FSK等どのような変調方式を用いてもよい。受電装置1851から送電装置1801へ通信する場合の変調方式は、受電装置1851において無電源で変調可能な負荷変調やバックスキャッタなどでもよい。
変調/復調部1853は、変調/復調部1803と同様に、第1インピーダンス可変部から変調信号を受け取り、変調信号を復調する。また、情報処理部1852からデータを受け取る場合は、データを変調する。
情報処理部1852は、変調/復調部1853から復調されたデータを受け取り、上位層において処理を行う。
次に、電力伝送と無線通信とを切り替える場合の無線電力伝送装置について図19に示す。
図19に示すように、送電装置1801及び受電装置1851の第1インピーダンス可変部にそれぞれスイッチを設け、それぞれ電圧源301及び電圧源負荷302や受電側負荷1552を接続できるような構成にすることで、無線電力伝送装置としても動作することが可能となる。
ここで、電力伝送と無線通信とを併用する場合について図20を参照して説明する。電力伝送と無線通信とを併用するには、大きく分けて2つの手法がある。
(1)電力伝送用コイル2001と無線通信用コイル2002とは別のコイルを使用
(2)電力伝送用コイル2001と無線通信用コイル2002とは同じコイルを併用
手法(1)の場合は、少なくとも2つのコイルが必要となるが、電力伝送用コイルと無線通信用コイルの共振周波数を変えると、電力伝送と無線通信とを同時に行うことができる。図20(a)は、2つのコイルの直径を変えて、2つのコイルの中心軸を同一とした場合であり、図20(b)は、2つのコイルの中心軸を別々にした場合である。
図20(a)の場合、第2インピーダンス可変部で用いられるループは、共用して使用することもでき、第1インピーダンス可変部はコイルごとに備えてもよい。また、電力伝送時の雑音が無線通信時に生じるため、雑音対策を行うことが望ましい。なお、電力伝送用コイル2001は外側、無線通信用コイル2002は内側に配置されているが、逆の位置関係でもよい。図20(b)の場合、電力伝送用コイル2001と無線通信用コイル2002とが並列であるが、これに限らず、用途に合わせて適切な位置関係に設定してもよい。
なお、手法(1)の場合で、電力伝送用コイル2001と無線通信用コイル2002との共振周波数が同一の場合は、電力伝送用コイル2001から無線通信用コイル2002への雑音や大電力の誤給電に注意して配置することが望ましい。
手法(2)の場合は、電力伝送用コイル2001と無線通信用コイル2002とを供用することになるため(以下、併用コイルという)、電力伝送中に無線通信を行えず、無線通信中には電力伝送が行えない。つまり、時分割して電力伝送及び無線通信を行う必要がある。但し、例えば、併用コイルの共振周波数で電力伝送を行い、併用コイルの2倍共振周波数や3倍共振周波数を使用して無線通信を行うことで、同一のコイルを共用しつつ周波数分割で電力伝送及び無線通信を同時に行うことができる。手法(2)では、図19に示す構成でもよいし、電力伝送用と無線通信用とに分けて、それぞれ第1インピーダンス可変部を設けてもよい。
第4の実施形態に係る無線電力伝送装置1800の別例を図21に示す。
図21(a)は、手法(1)において電力伝送用コイル同士、及び無線通信用コイル同士で同一周波数を用いた場合を示し、図21(b)は、手法(2)において併用コイル2101で同一周波数を用いた場合を示す。図21(c)は、手法(1)においてそれぞれ異なる周波数を用いた場合を示し、図21(d)は、手法(2)においてそれぞれ異なる周波数を用いた場合を示す。
例えば、図21(b)及び図21(d)の場合は、複数の併用コイル2101の共振周波数を一致させると、各併用コイル2101に給電する電流の位相差を変えることで空間の磁界方向を制御するアレー化の効果が得られ、受電側のコイルの向きに起因する特性劣化を改善することができる。但し、アレー化の場合は、電力伝送と無線通信とを時分割で行う必要があるが、上述したように、コイルの2倍共振周波数または3倍共振周波数を用いて無線通信を行えば電力伝送と無線通信とを同時に行うことができる。
さらに、図21(d)のように、手法(2)を複数用いる場合で併用コイルの共振周波数が異なるように配置した場合は、周波数分割で並列伝送を行うことができ、電力伝送と無線通信とを周波数分割により同時に行うことが可能となる。
これらの手法(1)及び手法(2)のコイルを複数用いる場合は、電力伝送用の電圧源または第1及び第2インピーダンス可変部、無線通信用の情報処理部、変調/復調部、第1及び第2インピーダンス可変部を複数のコイルで供用してもよいし、コイルごとに別途用意してもよい。但し、アレー化や並列伝送を高効率で行う場合は、無線電力伝送用の電圧源と無線通信用の情報処理部及び変調/復調部とは供用したほうが望ましい。
なお、電力伝送と無線通信とを周波数分割で行う場合には、バンドパスフィルタなどを用いて電力伝送に用いている帯域の信号を無線通信装置に通さないように設計することが必要である。また、電力伝送と無線通信とを時分割で行う場合には、電力伝送から無線通信に切り替える際に残留電力を考慮して十分な時間待機して無線通信を行うことに留意すべきである。
以上に示した第4の実施形態によれば、電力伝送用コイルと無線通信用コイルとを設けることで、電力伝送と無線通信とを同時に行うことができる。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
100,300,1200,1500,1800・・・無線電力伝送装置、101、502・・・送電コイル、102・・・送電部、151,1201,1401,1553・・・第1インピーダンス可変部、152,1554・・・第2インピーダンス可変部、153・・・制御部、301・・・電圧源、302・・・電圧源負荷、501・・・ループ、1501,1801・・・送電装置、1556・・・制御部、1551,1851・・・受電装置、1552・・・受電側負荷、1555・・・受電コイル、1802,1852・・・情報処理部、1803,1853・・・復調部、2001・・・電力伝送用コイル、2002・・・無線通信用コイル、2101・・・併用コイル。

Claims (7)

  1. 電源に接続される共振可能なコイルと、
    前記コイルと前記電源との間にπ型回路またはT型回路として配置され、前記コイル側から見た電源負荷のインピーダンスを変換可能な可変回路素子を含む第1可変部と、
    前記コイルに電磁結合するループを含み、該コイルと該ループとの間の相互インダクタンスを変化させることにより前記コイル側から見た前記電源負荷及び前記第1可変部のインピーダンスを変換可能な第2可変部と、
    前記第1可変部及び前記第2可変部の少なくともどちらか1つを用いてインピーダンス変換を行い、インピーダンス整合を行う制御部と、を具備することを特徴とする無線電力伝送装置。
  2. 電源に接続される共振可能なコイルと、
    前記コイルと前記電源との間に挿入され、前記コイル側から見た電源負荷のインピーダンスを変換可能なトランスを含む第1可変部と、
    前記コイルに電磁結合するループを含み、該コイルと該ループとの間の相互インダクタンスを変化させることにより前記コイル側から見た前記電源負荷及び前記第1可変部のインピーダンスを変換可能な第2可変部と、
    前記第1可変部及び前記第2可変部の少なくともどちらか1つを用いてインピーダンス変換を行い、インピーダンス整合を行う制御部と、を具備することを特徴とする無線電力伝送装置。
  3. 前記制御部は、前記第1可変部によりインピーダンス変換を行った後に、前記第2可変部によりインピーダンス変換を行うことでインピーダンス整合を行うことを特徴とする請求項1または請求項2に記載の無線電力伝送装置。
  4. 前記制御部は、前記第2可変部によりインピーダンス変換を行った後に、前記第1可変部によりインピーダンス変換を行ってインピーダンス整合を行うことを特徴とする請求項1または請求項2に記載の無線電力伝送装置。
  5. 前記制御部は、受電側のインピーダンス変換が行われる期間中の少なくとも一部の期間に、前記第1可変部によりインピーダンス変換を行うことでインピーダンス整合を行うことを特徴とする請求項1から請求4のいずれか1項に記載の無線電力伝送装置。
  6. 前記制御部は、受電側のインピーダンス変換が行われる期間中の少なくとも一部の期間に、前記第2可変部によりインピーダンス変換を行うことでインピーダンス整合を行うことを特徴とする請求項1から請求項5のいずれか1項に記載の無線電力伝送装置。
  7. 前記制御部は、前記電源負荷のインピーダンスの変動に合わせて受電側のインピーダンス変換を行った後に、該受電側のインピーダンス変換に同期して、前記第1可変部及び前記第2可変部の少なくともどちらか1つによりインピーダンス変換を行うことで、インピーダンス整合を行うことを特徴とする請求項1から請求項6のいずれか1項に記載の無線電力伝送装置。
JP2010258026A 2010-11-18 2010-11-18 無線電力伝送装置 Expired - Fee Related JP5319652B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010258026A JP5319652B2 (ja) 2010-11-18 2010-11-18 無線電力伝送装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010258026A JP5319652B2 (ja) 2010-11-18 2010-11-18 無線電力伝送装置

Publications (2)

Publication Number Publication Date
JP2012110154A true JP2012110154A (ja) 2012-06-07
JP5319652B2 JP5319652B2 (ja) 2013-10-16

Family

ID=46495132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010258026A Expired - Fee Related JP5319652B2 (ja) 2010-11-18 2010-11-18 無線電力伝送装置

Country Status (1)

Country Link
JP (1) JP5319652B2 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014054397A1 (ja) * 2012-10-03 2014-04-10 株式会社 豊田自動織機 受電機器、及び非接触電力伝送装置
WO2014054396A1 (ja) * 2012-10-03 2014-04-10 株式会社 豊田自動織機 受電機器、送電機器及び非接触電力伝送装置
JP2014096612A (ja) * 2012-11-07 2014-05-22 Sony Corp アンテナモジュール、情報通信装置及び情報通信システム
CN103825467A (zh) * 2013-11-28 2014-05-28 华南理工大学 具有阻抗匹配网络的充电系统的高频变换电路
JP2014166063A (ja) * 2013-02-26 2014-09-08 Toyota Motor Corp 受電装置およびそれを備える車両、送電装置、ならびに電力伝送システム
JP2014183693A (ja) * 2013-03-21 2014-09-29 Toyota Industries Corp 受電機器及び非接触電力伝送装置
JP2015122920A (ja) * 2013-12-25 2015-07-02 株式会社ダイヘン 無線電力伝送装置
US9973029B2 (en) 2013-06-26 2018-05-15 Canon Kabushiki Kaisha Wireless power transmission/reception apparatus
KR20190069366A (ko) * 2019-06-10 2019-06-19 엘지이노텍 주식회사 무선전력 송신장치 및 그의 전력 제어 방법
JP2020537483A (ja) * 2017-11-03 2020-12-17 ヒルティ アクチエンゲゼルシャフト 電気エネルギーを伝送するための共振回路
JP2020537482A (ja) * 2017-11-03 2020-12-17 ヒルティ アクチエンゲゼルシャフト 電力増幅器なしで電気エネルギーを伝送するための共振回路
WO2021140692A1 (ja) * 2020-01-09 2021-07-15 株式会社村田製作所 近距離無線通信機能付きワイヤレス受電装置
CN116090385A (zh) * 2023-03-31 2023-05-09 南京米乐为微电子科技有限公司 一种匹配网络设计方法及其装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10145987A (ja) * 1996-09-13 1998-05-29 Hitachi Ltd 電力伝送システムおよびicカード並びにicカードを用いた情報通信システム
JPH11188113A (ja) * 1997-12-26 1999-07-13 Nec Corp 電力伝送システムおよび電力伝送方法ならびにその電力伝送システムを備えた電気刺激装置
JP2000078776A (ja) * 1998-09-01 2000-03-14 Hitachi Kiden Kogyo Ltd 可飽和キャパシタンス特性を有するコンデンサ及びそれを用いた非接触給電装置
WO2010067763A1 (ja) * 2008-12-09 2010-06-17 株式会社 豊田自動織機 非接触電力伝送装置及び非接触電力伝送装置における電力伝送方法
JP2010158151A (ja) * 2008-12-01 2010-07-15 Toyota Industries Corp 非接触電力伝送装置
JP2010252497A (ja) * 2009-04-14 2010-11-04 Fujitsu Ten Ltd 無線電力伝送装置および無線電力伝送方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10145987A (ja) * 1996-09-13 1998-05-29 Hitachi Ltd 電力伝送システムおよびicカード並びにicカードを用いた情報通信システム
JPH11188113A (ja) * 1997-12-26 1999-07-13 Nec Corp 電力伝送システムおよび電力伝送方法ならびにその電力伝送システムを備えた電気刺激装置
JP2000078776A (ja) * 1998-09-01 2000-03-14 Hitachi Kiden Kogyo Ltd 可飽和キャパシタンス特性を有するコンデンサ及びそれを用いた非接触給電装置
JP2010158151A (ja) * 2008-12-01 2010-07-15 Toyota Industries Corp 非接触電力伝送装置
WO2010067763A1 (ja) * 2008-12-09 2010-06-17 株式会社 豊田自動織機 非接触電力伝送装置及び非接触電力伝送装置における電力伝送方法
JP2010252497A (ja) * 2009-04-14 2010-11-04 Fujitsu Ten Ltd 無線電力伝送装置および無線電力伝送方法

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014054396A1 (ja) * 2012-10-03 2014-04-10 株式会社 豊田自動織機 受電機器、送電機器及び非接触電力伝送装置
JP2014075883A (ja) * 2012-10-03 2014-04-24 Toyota Industries Corp 受電機器、及び非接触電力伝送装置
JP2014075884A (ja) * 2012-10-03 2014-04-24 Toyota Industries Corp 受電機器及び非接触電力伝送装置
WO2014054397A1 (ja) * 2012-10-03 2014-04-10 株式会社 豊田自動織機 受電機器、及び非接触電力伝送装置
JP2014096612A (ja) * 2012-11-07 2014-05-22 Sony Corp アンテナモジュール、情報通信装置及び情報通信システム
JP2014166063A (ja) * 2013-02-26 2014-09-08 Toyota Motor Corp 受電装置およびそれを備える車両、送電装置、ならびに電力伝送システム
JP2014183693A (ja) * 2013-03-21 2014-09-29 Toyota Industries Corp 受電機器及び非接触電力伝送装置
US9973029B2 (en) 2013-06-26 2018-05-15 Canon Kabushiki Kaisha Wireless power transmission/reception apparatus
CN103825467A (zh) * 2013-11-28 2014-05-28 华南理工大学 具有阻抗匹配网络的充电系统的高频变换电路
JP2015122920A (ja) * 2013-12-25 2015-07-02 株式会社ダイヘン 無線電力伝送装置
JP2020537483A (ja) * 2017-11-03 2020-12-17 ヒルティ アクチエンゲゼルシャフト 電気エネルギーを伝送するための共振回路
JP2020537482A (ja) * 2017-11-03 2020-12-17 ヒルティ アクチエンゲゼルシャフト 電力増幅器なしで電気エネルギーを伝送するための共振回路
US11539245B2 (en) 2017-11-03 2022-12-27 Hilti Aktiengesellschaft Resonant circuit for transmitting electric energy without a power amplifier
US11735955B2 (en) 2017-11-03 2023-08-22 Hilti Aktiengesellschaft Resonant circuit for transmitting electric energy
KR20190069366A (ko) * 2019-06-10 2019-06-19 엘지이노텍 주식회사 무선전력 송신장치 및 그의 전력 제어 방법
KR102128487B1 (ko) 2019-06-10 2020-06-30 엘지이노텍 주식회사 무선전력 송신장치 및 그의 전력 제어 방법
WO2021140692A1 (ja) * 2020-01-09 2021-07-15 株式会社村田製作所 近距離無線通信機能付きワイヤレス受電装置
JP7380715B2 (ja) 2020-01-09 2023-11-15 株式会社村田製作所 近距離無線通信機能付きワイヤレス受電装置
CN116090385A (zh) * 2023-03-31 2023-05-09 南京米乐为微电子科技有限公司 一种匹配网络设计方法及其装置

Also Published As

Publication number Publication date
JP5319652B2 (ja) 2013-10-16

Similar Documents

Publication Publication Date Title
JP5319652B2 (ja) 無線電力伝送装置
US9525302B2 (en) Noncontact power feeding apparatus and noncontact power feeding method
US8823214B2 (en) Wireless energy transfer
US9543074B2 (en) Apparatus and method for wireless power reception, apparatus and method for wireless power transmission, and wireless power transmission system
US20140077613A1 (en) Apparatus and method for controlling resonator of wireless power transmission system
US9705364B2 (en) Wireless power transmission system including relay resonator and wireless power transmission method
JP2011205757A (ja) 電磁界共鳴電力伝送装置
Narusue et al. Impedance matching method for any-hop straight wireless power transmission using magnetic resonance
KR20150133281A (ko) 무선 전력 전송에 의해 전력 공급되는 피급전 기기의 수전 전압 제어 방법, 당해 수전 전압 제어 방법에 의해 조정된 무선 전력 전송 장치, 및 그 무선 전력 전송 장치의 제조 방법
CN107749772B (zh) 一种无线能量信息同步传输系统
KR101174400B1 (ko) 공명형 무선전력전송을 위한 공간 적응형 자기 공진기
CN105186720A (zh) 一种发射线圈结构及应用其的无线电能发射端
CN104242483A (zh) 具有负载隔离特性的磁耦合谐振式多负载无线电能链状传输网络
Sampath et al. Coil enhancements for high efficiency wireless power transfer applications
CN107482790A (zh) 高效正向并联无线供电系统设计方法
CN107508388B (zh) 磁耦合共振高效电能传输线圈设计方法
JP6274409B2 (ja) 無線電力伝送装置
JP5902644B2 (ja) 非接触電力伝送システム、および、非接触電力伝送システムのアンテナ設計方法
Stevens A magneto-inductive wave wireless power transfer device
CN107112806B (zh) 无线电力传输装置以及无线电力传输系统
JP2014096872A (ja) 結合共振器型の無線電力伝送システム、及び結合共振器型の無線電力伝送システムに用いる受電側共振器
US9729203B2 (en) Resonator having increased isolation
JP2012023929A (ja) 共鳴コイル
CN107508387B (zh) 磁共振电能传输系统正向并联协调控制方法
Ge et al. Frequency-division technique for simultaneous wireless power transfer to two receivers

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130711

R151 Written notification of patent or utility model registration

Ref document number: 5319652

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees