以下に、本発明に係る車両制御装置の実施形態を図面に基づいて詳細に説明する。なお、この実施形態によりこの発明が限定されるものではない。また、下記実施形態における構成要素には、当業者が置換可能かつ容易なもの、或いは実質的に同一のものが含まれる。
〔実施形態〕
図1は、本発明の実施形態に係る車両制御装置が設けられた車両の概略図である。実施形態に係る車両制御装置2を備える車両1は、内燃機関であるエンジン5が動力源として搭載され、エンジン5で発生する動力が自動変速機(図示省略)等の駆動装置を経由して車輪3に伝達されることにより、走行可能になっている。また、この車両1は、車輪3を制動することにより走行中の車両1の制動をする制動手段であるブレーキ装置(図示省略)が設けられており、ブレーキ装置を作動させる際における油圧を制御するブレーキ油圧制御装置8が設けられている。また、駆動装置には、エンジン5の動力を車輪3に伝達する際における回転速度を検出することを介して車速を検出する車速検出手段である車速センサ10が設けられている。
また、車両1には、前方を走行する他の車両や走行方向に位置する障害物等を検出する前方状況検出手段であるレーダー12と、他の車両との間で走行状態の情報等の通信が可能な車車間通信手段である車車間通信装置15とが設けられている。このうち、レーダー12は、検出波としてレーザーを用いるレーザーレーダーや、ミリ波を用いるミリ波レーダーなど、車両1に搭載可能なレーダーであれば、その形態は問わない。また、車車間通信装置15には、電磁波の送受信を行うアンテナや、信号の送信装置、受信装置等、無線通信を行うのに必要な各装置が含まれる。
これらのエンジン5やブレーキ油圧制御装置8、車速センサ10、レーダー12、車車間通信装置15は、車両1に搭載されると共に車両1の各部を制御するECU(Electronic Control Unit)に接続されている。このECUとしては、車両1の走行制御を行う走行制御ECU20と、他の車両と通信を行いながら、先行車に追従する走行を行う走行制御である通信追従走行制御を行う通信追従走行制御ECU40と、他の車両とは通信を行わず、自律して先行車に追従する走行を行う走行制御である自律追従走行制御を行う自律追従走行制御ECU60と、を有している。
図2は、図1に示す車両制御装置の要部構成図である。ECUに接続される各部のうち、エンジン5やブレーキ油圧制御装置8、車速センサ10等の、車両1の走行に用いる装置は走行制御ECU20に接続されており、また、この走行制御ECU20には、車両1の減速時に運転者が操作をするブレーキペダル(図示省略)の操作量を検出するブレーキセンサ9が接続されている。走行制御ECU20は、車速センサ10やブレーキセンサ9等の検出手段による検出結果に基づいてエンジン5やブレーキ油圧制御装置8等を作動させることにより、車両1の走行制御を行う。
また、他の車両との通信に用いる車車間通信装置15は、通信追従走行制御ECU40に接続されており、通信追従走行制御ECU40は、車車間通信装置15によって他の車両と走行状態の情報等の通信を行いつつ、走行制御ECU20に制御信号を送信して車両1の走行制御を行うことにより、通信追従走行制御を行う。また、前方を走行する他の車両等を検出することにより自律追従走行制御において自車と先行車との車間距離を検出する車間距離検出手段として使用されるレーダー12は、自律追従走行制御ECU60に接続されており、自律追従走行制御ECU60は、レーダー12によって自車と先行車との車間距離を検出しつつ、走行制御ECU20に制御信号を送信し、レーダー12で検出した車間距離を目標値に維持する走行制御を行うことにより、自律追従走行制御を行う。
また、走行制御ECU20、通信追従走行制御ECU40、自律追従走行制御ECU60は、それぞれ互いに接続され、情報や信号のやり取りが可能になっている。これらの走行制御ECU20、通信追従走行制御ECU40、自律追従走行制御ECU60のハード構成は、CPU(Central Processing Unit)等を有する処理部や、RAM(Random Access Memory)等の記憶部等を備えた公知の構成であるため、説明は省略する。
これらのECUのうち、走行制御ECU20は、エンジン5の運転制御を行うエンジン制御部21と、ブレーキ油圧制御装置8を制御することにより制動力の制御を行うブレーキ制御部22と、車速センサ10での検出結果より車速を取得する車速取得部25と、ブレーキセンサ9での検出結果よりブレーキペダルの操作の状態を取得するブレーキ操作取得部26と、車両1の走行時における走行モードを、通信追従走行制御と自律追従走行制御、及びこれらの追従走行制御を行わずに運転者の運転操作によって行う走行制御であるマニュアル走行制御との間で切り替える走行モード切替部28と、レーダー12での検出結果に基づいて先行車との車間時間を検出する車間時間検出手段である車間時間検出部30と、先行車の減速度に基づいて自車の減速度を算出する減速度算出部33と、レーダー12での検出結果に基づいて先行車との相対速度を算出する相対速度算出部34と、減速制御を行う際に用いる相対速度を算出する減速時相対速度算出部35と、追従走行制御を行う際における先行車との車間時間を、先行車の走行情報の取得状況に応じて設定する車間時間設定部38と、を有している。
また、通信追従走行制御ECU40は、通信追従走行制御時における車間距離を、通信追従走行制御時用に予め設定される車間時間に基づいて車間距離を設定する車間距離設定部41と、車車間通信装置15で行なう車車間通信により先行車の走行情報を取得する先行車走行情報取得部45と、先行車の減速時における最大減速度を導出する先行車最大減速度導出部46と、車車間通信装置15によって行う先行車との通信が途絶しているか否かを判定する通信途絶判定部51と、を有している。
また、自律追従走行制御ECU60は、レーダー12での検出結果より、車両1の前方の状態を取得する前方状態取得部61と、自律追従走行制御時における車間距離を、自律追従走行制御時用に予め設定される車間時間と車速取得部25で取得した車速とに基づいて車間距離を設定する車間距離設定部62と、先行車の減速時における減速度を導出する先行車減速度導出部63と、を有している。
この実施形態に係る車両制御装置2は、以上のごとき構成からなり、以下、その作用について説明する。車両1の通常の走行時は、運転者がアクセルペダル(図示省略)やブレーキペダルを操作することにより、エンジン5やブレーキ油圧制御装置8等の各アクチュエータが作動し、車両1は運転者の運転操作に応じて走行をする。例えば、エンジン5で発生する動力を調節する場合には、走行制御ECU20が有するエンジン制御部21によってエンジン5を制御し、制動力を発生させる場合には、走行制御ECU20が有するブレーキ制御部22でブレーキ油圧制御装置8を制御することにより、制動力を発生させる。
また、この車両1の走行時には、車両1の各部に設けられるセンサ類によって車両1の走行状態や運転者の運転操作が検出され、車両1の走行制御に用いられる。例えば、車速センサ10で検出した検出結果は、走行制御ECU20が有する車速取得部25で取得し、車速を用いて走行制御を行う際に使用される。同様に、ブレーキセンサ9で検出した検出結果は、運転者が行うブレーキ操作の操作量として走行制御ECU20が有するブレーキ操作取得部26で取得し、取得した操作量に応じてブレーキ制御部22でブレーキ油圧制御装置8を制御し、制動力を発生させる。
また、この車両1は、追従走行の操作スイッチ(図示省略)を操作する等、運転者の意思に基づいて必要に応じて、当該車両1の前方を走行する他の車両を追従する追従走行制御を行うことが可能に設けられている。つまり、運転者による運転操作を支援する走行制御として、追従走行制御を行うことが可能に設けられている。この追従走行制御は、車両1の走行時の状態に応じて、通信追従走行制御と自律追従走行制御とが使い分けられる。
図3は、追従走行についての説明図である。まず、自律追従走行制御について説明すると、自律追従走行制御を行う場合は、レーダー12によって車両1の前方の状態を検出し、レーダー12での検出結果に基づいて、自律追従走行制御ECU60が有する前方状態取得部61によって車両1の前方の状態を取得する。この前方状態取得部61では、車両1の前方を走行する他の車両である先行車100の有無を検出し、先行車100が存在する場合には、先行車100との距離を、レーダー12での検出結果に基づいて取得する。
また、自律追従走行制御時には、車間距離設定部62によって、走行制御ECU20が有する車速取得部25で取得した車速に応じた車間距離を設定する。この車間距離を設定する場合には、車間距離設定部62は、自律追従走行を行う際に適した先行車100との間の時間として予め設定されて記憶部に記憶されている自律追従走行用の車間時間と、走行制御ECU20が有する車速取得部25で取得した車速とに基づいて設定する。
自律追従走行制御ECU60は、前方状態取得部61で取得する先行車100との車間距離が、車間距離設定部62で設定した車間距離と同程度になるように車両1の速度を調節するように、走行制御ECU20に信号を送信する。この信号を受けた走行制御ECU20は、エンジン制御部21やブレーキ制御部22で駆動力や制動力を調節することにより、先行車100との車間距離を車間距離設定部62で設定した車間距離と同程度の距離に維持する。これにより、先行車100に追従する追従走行を行う。
次に、通信追従走行制御について説明すると、通信追従走行制御は、周囲を走行する他の車両が、互いに走行情報の通信を行うことができる車両である通信車の場合に行う。即ち、先行車100が通信車である場合に、通信追従走行制御を行うことができる。通信追従走行制御を行う場合には、車車間通信装置15を介して先行車100との間で車車間通信を行い、先行車100の走行情報を取得する。
先行車100の走行情報の取得は、車車間通信装置15によって先行車100との間で行った車車間通信により、先行車100より送信された走行情報を、通信追従走行制御ECU40が有する先行車走行情報取得部45で取得する。なお、この走行情報には、通信車の運動状態の情報や運転者の運転操作の情報、さらに、通信車の位置情報も含まれている。
先行車100の走行情報を取得したら、車速取得部25で取得した車速、及び先行車100の車速や先行車100の運転者の現在の運転操作に応じて、車間距離設定部41で先行車100との車間距離を設定する。通信追従走行制御時の車間距離を設定する場合は、自律追従走行制御時の車間距離を設定する場合と同様に、車間距離設定部41は、通信追従走行を行う際に適した先行車100との間の時間として予め設定されて記憶部に記憶されている通信追従走行用の車間時間と、車速取得部25で取得した車速、及び先行車走行情報取得部45で取得した先行車100の走行情報とに基づいて設定する。なお、通信追従走行用の車間時間は、自律追従走行用の車間時間よりも短い時間で設定されている。このため、通信追従走行時の車間距離は、自律追従走行時の車間距離よりも短い距離で設定される。
通信追従走行制御ECU40は、先行車走行情報取得部45で取得した先行車100の位置情報に基づいて、先行車100との車間距離が、車間距離設定部41で設定した車間距離と同程度になるように車両1の速度を調節するように、走行制御ECU20に信号を送信する。このように、信号が送信された走行制御ECU20で信号に従って駆動力や制動力を調節し、先行車100との車間距離を車間距離設定部41で設定した車間距離と同程度の距離に維持することにより、先行車100に追従する追従走行を行う。
これらの追従走行制御は、通信追従走行制御と自律追従走行制御とのうち、通信追従走行制御を優先して使用し、通信追従走行制御での先行車100との通信状態によって使い分ける。具体的には、追従走行制御を行う場合には、車車間通信装置15によって行う先行車100との通信が、途絶しているか否かを、通信追従走行制御ECU40が有する通信途絶判定部51で判定し、通信追従走行制御ECU40は走行制御ECU20に対して判定結果を送信する。判定結果が伝達された走行制御ECU20は、判定結果に応じて走行モード切替部28で走行モードの切り替えを行う。
この走行モード切替部28は、通信追従走行制御と、自律追従走行制御と、さらに、追従走行制御を行わずに運転者が運転操作を行うことにより全ての運転指示を運転者が行うマニュアルモードと、を走行モードとして切り替えることができるように設けられており、走行モードの切り替えを行う場合には、通信途絶判定部51での判定も用いて切り替える。
走行モード切替部28では、これらのように走行モードを切り替えるが、追従走行を行うことを運転者が指示している状態で、先行車100と通信を行っているとの判定が伝達された場合には、走行モードを通信追従走行制御に切り替える。また、追従走行を行うことを運転者が指示している状態で、先行車100と通信が途絶しているとの判定が伝達された場合には、走行モードを自律追従走行制御に切り替える。つまり、追従走行を行うことを運転者が指示している場合には、先行車100との間で通信が可能な場合には通信追従走行制御を行い、先行車100と通信が途絶したら自律追従走行制御に切り替える。また、追従走行を行うことを運転者が指示していない場合には、先行車100と通信を行っているか否かの判定を行わずに、走行モードをマニュアルモードに切り替える。
追従走行を行う場合には、これらのように先行車100との通信の状況によって通信追従走行制御と自律追従走行制御とを切り替え、先行車100の走行状態に合わせて走行制御を行う。また、通信追従走行制御と自律追従走行制御を行っている場合における先行車100の減速時は、いずれの追従走行制御時においても、先行車100に対する車間時間が経過するまでに、先行車100の減速度と同じ大きさの減速度を、自らの車両1、即ち自車1に発生させる。
追従走行制御時には、このように先行車100の減速度に応じて自車1を減速させるが、ここで、先行車100が減速する場合における自車1と先行車100との双方の車両の加速度の変化について説明する。
図4は、先行車の減速時における先行車と自車との加速度及び相対加速度を示す説明図である。自車1と先行車100とが同じ速度で走行し、双方の車両の相対加速度が0の状態で先行車100の後方を自車1が走行している場合に、先行車100が減速した場合、減速方向の加速度が大きくなるため、先行車100の加速度である先行車加速度110が大きくなる。このように、自車1の速度が変化しない状態で先行車100が減速し、先行車加速度110が大きくなった場合、先行車100と自車1との間に加速度の差が発生する。これにより、自車1と先行車100との相対加速度115は大きくなる。
通常、車両が減速をする場合には、減速度は減速度が0の状態から、そのときの運転状況に応じた最大減速度など所定の減速度まで時間が経過するに従って大きくなり、所定の減速度になったら、車両はその減速度で減速を続ける。このため、先行車100は、先行車加速度110が最大減速度a1_maxで一定の状態になり、この最大減速度a1_maxで減速を続ける。また、このように先行車加速度110が最大減速度a1_maxで一定になった場合には、相対加速度115も一定になる。
その後、自車1が減速を開始すると、自車1の加速度である自車加速度111が大きくなる。このように、先行車加速度110が一定の状態で自車加速度111が大きくなると、自車1と先行車100との加速度の差は小さくなり始めるので、一定の状態になっていた相対加速度115は小さくなり始める。さらに自車加速度111が大きくなり、自車加速度111が先行車加速度110と同じ大きさになったら、相対加速度115は0になる。
先行車100の減速時には、自車1と先行車100との加速度はこのように変化するが、この加速度の変化に基づいて、先行車100の減速時における車間距離について説明すると、先行車100が減速をした場合には、自車1は先行車100の減速に対して、上述したように減速遅れが発生して減速をする。このため、相対加速度115が大きくなるが、相対加速度115が大きくなった場合には、相対速度も変化する。つまり、自車1が減速を開始していない状態の場合には、車速が一定の自車1の速度に対して、先行車100の速度は低下するため、相対速度が大きくなる方向に変化する。これにより、自車1と先行車100との車間距離は、時間が経過するに従って小さくなる。
相対速度が大きくなる方向への変化は、自車1が減速を開始しても、自車1の減速度が先行車100の減速度と同じ大きさになるまで続く。このため、先行車100の減速後、自車1の減速度が先行車100の減速度と同じ大きさになるまでは相対速度が大きくなり続け、自車1の減速度が先行車100の減速度と同じ大きさになったら、相対速度は一定になる。自車1と先行車100との減速度が同じ大きさになった場合、このように相対速度は一定になるが、速度差は存在し続けるので、減速度が同じ大きさになった場合でも双方の車間距離は小さくなり続ける。
次に、先行車100と自車1との減速時における車間距離の変化について説明する。図5は、先行車の減速開始後に遅れて自車が減速をする場合における説明図である。なお、この図5は、減速前の車速V0=100km/h、減速度a1=0.8G、先行車100の減速に対する自車1の応答遅れdt=1sの場合についての説明図になっている。自車1が先行車100の後方を、所定の車間距離をあけてほぼ同じ車速で走行をしている場合に、先行車100が減速を開始して先行車加速度110が減速方向に大きくなると、自車1に対する先行車100の相対加速度115は、自車1に対して減速する方向に大きくなる。また、この例では、減速度が0.8Gの場合について説明するので、先行車加速度110は0.8Gまで大きくなったら、その後は、先行車100は0.8Gの減速度で減速を続ける。このため、相対加速度115は、先行車加速度110が0.8Gに到達した以降は、所定の期間は一定になる。
また、このように先行車100が減速を開始して減速度を発生させている場合には、時間が経過するに従って先行車速度117が低下するが、自車1が減速していない場合には、自車1と先行車100との相対速度120は、先行車100の速度が自車1の速度に対して減速する方向に大きくなる。これらにより、自車1と先行車100との車間距離125は、時間が経過するに従って小さくなる。
このように先行車100が減速することにより、先行車100と自車1との車間距離125は小さくなるが、自車1が応答遅れ時間dtの経過後に減速を開始すると、自車加速度111も先行車加速度110と同様に減速方向に大きくなる。これにより、先行車加速度110と自車加速度111との差が小さくなるので、自車1に対して減速する方向に大きくなっている先行車100の相対加速度115は小さくなる。また、この例では、自車加速度111も先行車加速度110と同様に0.8Gまで大きくなったら、その後は、自車1は0.8Gの減速度で減速を続けるので、自車加速度111が0.8Gに到達したら、自車加速度111は0.8Gで一定になる。この場合、自車加速度111と先行車加速度110とは差が無くなるので、相対加速度115は0になる。
また、自車1が減速を開始すると、自車速度118が低下するため相対速度120の変化が緩やかになり、自車加速度111が一定になった場合には、相対速度120も一定の大きさになる。先行車加速度110と自車加速度111とが共に0.8Gで同じ大きさになり、相対加速度115が0になった場合でも、先行車100の減速に対する自車1の減速の応答遅れにより、先行車速度117と自車速度118とは共に低下しつつ、相対速度120は一定の大きさで維持される。このため、車間距離125は、時間が経過するに従って小さくなる。
この状態で先行車100と自車1とが共に同じ大きさの減速度で減速し続けると、先に減速を開始した先行車100が先に停止をし、その後に自車1が停止をする。このように、減速前の車速V0=100km/hで、減速度a1=0.8G、先行車100の減速に対する自車1の応答遅れdt=1sの場合に、先行車100と自車1とが共に停止をするまで減速し続けた場合、詰まる車間距離125は、約27.7mになる。この距離は、減速前の車速V0=100km/hに、応答遅れdt=1sを乗算した値になっている。
図6は、図5で説明する減速に対して小さい減速度で減速をする場合における説明図である。この図6は、図5を用いて説明した減速時と同様に、減速前の車速V0=100km/hで、先行車100の減速に対する自車1の応答遅れdt=1sだが、減速度a1=0.4Gで減速をする場合についての説明図になっている。このように、減速度が0.4Gで減速をする場合も、先行車100が減速をすると、先行車100は、先行車加速度110が0.4Gになるまで減速度が大きくなり、先行車加速度110が0.4Gになったら、先行車100は0.4Gの減速度で減速を続ける。また、先行車100が減速し、自車1が減速前の状態の場合には、相対加速度115は先行車加速度110が大きくなるに従って大きくなり、先行車加速度110が0.4Gに到達したら、減速度が0.8Gの場合よりも小さい大きさで所定の期間維持される。
また、このように0.4Gの減速度で先行車100が減速する場合には、先行車速度117は、減速度が0.8Gの場合よりも緩やかな傾きで低下する。このため、自車1が減速していない場合には、自車1と先行車100との相対速度120は、減速度が0.8Gの場合よりも緩やかな傾きで大きくなる。これらにより、自車1と先行車100との車間距離125は、時間が経過するに従って、減速度が0.8Gの場合よりも緩やかな傾きで小さくなる。
このように先行車100が減速を開始した後、自車1が応答遅れ時間dtの経過後に減速を開始すると、自車加速度111も先行車加速度110と同様に0.4Gまで大きくなり、自車加速度111が0.4Gに到達したら、自車加速度111は0.4Gで一定になる。これにより、相対加速度115は0になる。
また、自車1が減速を開始し、自車加速度111が一定になった場合には、減速度が0.8Gの場合と同様に相対速度120も一定の大きさになる。また、このように0.4Gの減速度で減速する場合も0.8Gの減速度で減速をする場合と同様に、相対加速度115が0になっても先行車100の減速に対する自車1の減速の応答遅れにより、相対速度120は一定の大きさで維持され、車間距離125は、時間が経過するに従って小さくなる。
この状態で、先行車100と自車1とが共に停止をするまで減速を続けると、詰まる車間距離125は、減速度が0.8Gの場合と同様に約27.7mになる。つまり、先行車100と自車1との初速が同じ車速で、減速時における減速度が同じ大きさの場合には、減速度の大きさに関わらず、詰まる車間距離125は応答遅れに応じた距離になる。
減速時における車間距離125は、先行車100と自車1との初速と減速度とが同じ大きさであれば、このように減速度の大きさに関わらず詰まる距離は同じ距離になるが、先行車100と自車1の初速は、減速時に詰まる車間距離125に影響する。次に、異なる初速の場合について説明する。
図7は、図5で説明する減速に対して初速が遅い場合における説明図である。この図7は、図5を用いて説明した減速時と同様に、減速時における減速度a1=0.8Gで、先行車100の減速に対する自車1の応答遅れdt=1sだが、減速前の車速V0=50km/hである場合についての説明図になっている。
このように、減速前の車速が遅い場合でも、0.8Gの減速度で減速をする場合には、減速前の車速が100km/hの場合と同様の傾きで先行車加速度110や自車加速度111は変化し、相対加速度115も減速前の車速が100km/hの場合と同様な変化をする。これにより、先行車速度117や自車速度118が、減速前の車速が100km/hの場合と同様な変化をするため、相対速度120や車間距離125も、減速前の車速が100km/hの場合と同様な変化をする。
しかし、減速前の速度が50km/hの場合は、減速を開始してから停止をするまでの距離が短くなるため、詰まる車間距離125は短くなる。つまり、先行車100の減速の開始後、応答遅れを有して自車1が減速をする場合、車間距離125の変化の度合いは、減速前の速度が100km/hの場合と変わらないが、減速前の速度が50km/hの場合は初速が遅いため、減速を開始してから車両が停止するまでの時間が短くなっている。このため、減速時に詰まる車間距離125は短くなっており、具体的には、詰まる車間距離125は、減速前の車速V0=50km/hに応答遅れdt=1sを乗算した約13.9mになる。
これらのように、先行車100と同じ減速度で自車1が減速をする場合に詰まる車間距離125は、減速時における減速度に関わらず、応答遅れ時間×初速になる。このため、減速度に関わらず、応答遅れ時間が短くなるに従って詰まる車間距離125は小さくなり、応答遅れ時間が0s、即ち、先行車100と全く同じ減速ができれば、減速後の車間距離125は、減速前の車間時間と同じ車間時間で示される距離になる。
先行車100の後方を自車1が走行している場合に、先行車100が減速することにより自車1も減速をする場合に詰まる車間距離125は、このように応答遅れ時間の影響が大きいが、次に、先行車100と自車1とが減速する際に、追突が発生する可能性を低減できる減速状態について説明する。
図8は、減速時における自車と先行車との加速度、相対加速度、相対速度の関係を示す説明図である。減速時における複雑な事象をシンプルに抽象化して説明すると、先行車100と自車1とが減速する場合には、自車1は、先行車100の減速後に車間時間と同じ反応時間で反応して、先行車100の減速度以上の減速度で減速をすることにより、追突が発生する可能性を低減できる。例えば、車間時間が0.8sの場合は、先行車100の減速開始後、0.8sで反応して減速を開始し、先行車100の減速度以上の減速度で減速をすることにより、自車1は先行車100への追突が発生する可能性を低減できる。
つまり、経過時間に対する減速度の変化の度合いであるジャークが、先行車100と自車1とで同じ場合には、先行車100の制動に対する自車1の応答遅れ時間である反応時間tdelayと、設定車間時間τとの関係が(tdelay≦τ)を満たすことができれば、追突が発生する可能性を低減できる。即ち、応答遅れにより発生する相対速度を、ある値以下にすることにより、追突が発生する可能性を低減できる。
減速時における追突発生の可能性低減を相対速度の観点で考慮する場合について説明すると、まず、自車1と先行車100とで減速度のジャークが同じ場合には、先行車100の減速時における減速度を示す先行車加速度110と、自車1の減速時における減速度を示す自車加速度111とは、経過時間に対して同じ傾きになる。
このため、先行車加速度110と自車加速度111とが同じジャークで、自車加速度111の最大値が先行車加速度110の最大値である先行車最大減速度a1_maxよりも大きい場合に、自車加速度111が先行車加速度110に対して反応時間tdelayの分遅れて発生する場合における、応答遅れ時間に起因する加速度の差の総量は、先行車加速度110と自車加速度111との傾き部分と、先行車最大減速度a1_max及び減速度の最小値(0)で囲まれる平行四辺形の面積Saによって示すことができる。
この加速度(減速度)の差の総量を、相対加速度で示すと、先行車100が減速を開始し、応答遅れによって自車1が減速を開始していない場合には、相対加速度の最大値は先行車最大減速度a1_maxになる。また、先行車100の減速時に自車1の応答遅れ時間が発生する場合には、相対加速度としてこの先行車最大減速度a1_maxが応答遅れ時間の間、即ち、反応時間tdelayの間発生することになる。このため、応答遅れ時間に起因する相対加速度の総量は、先行車最大減速度a1_maxに反応時間tdelayを乗算した値になり、先行車最大減速度a1_maxと反応時間tdelayとで囲まれる部分の面積Srによって示すことができる。
これらのように、応答遅れが発生する場合における加速度や相対加速度の総量は、加速度の平行四辺形の面積Saや相対加速度の面積Srによって示すことができ、これらの面積は、先行車最大減速度a1_maxと反応時間tdelayとを乗算することによって算出することができる。また、先行車100の減速開始後に自車1が減速をする場合に追突が発生する可能性を低減するためには、反応時間tdelayと、設定車間時間τとの関係が(tdelay≦τ)を満たすことができればよいので、これらを整理すると、下記の式(1)で示すことができる。
Sr(相対加速度面積)=Sa(平行四辺形の面積)≦τ(設定車間時間)・a1_max(先行車最大減速度)・・・(1)
また、この相対加速度面積Srは、反応時間tdelayの間の加速度の総量であるため、換言すると、反応時間tdelayの経過後の自車1と先行車100との相対速度Vrを表すことになる。また、先行車100と自車1との減速度のジャークが同じ場合には、追突が発生する可能性を低減するには{tdelay(反応時間)≦τ(設定車間時間)}の関係が満たされていればよいため、先行車100と自車1の減速終了時に、自車1が先行車100に追突する直前の距離になる相対速度の最大値をVr_maxとすると、この相対速度の最大値Vr_maxは、設定車間時間τと先行車最大減速度a1_maxとを乗じた値になる。このため、自車1の応答遅れにより発生する相対速度Vrを、下記の式(2)に示すように相対速度の最大値Vr_max以下にすることにより、追突が発生する可能性を低減できる。
Vr(相対速度)≦Vr_max=τ(設定車間時間)・a1_max(先行車最大減速度)・・・(2)
この式(2)では、制動の立ち上がりのみでなく、制動定常領域も含めた追突発生の可能性低減の条件となっている。このため、先行車100が減速した際に、自車1の制動の立ち上がりが遅れた場合でも、最終的に式(2)を満たす制動を行うことにより、先行車100への追突が発生する可能性を低減することができる。つまり、制動の立ち上がり以降も、レーダー12を用いて先行車100との相対速度を検出するなどの適切なフィードバック制御を行い、最終的に式(2)を満たす制動を行うことにより、追突発生の可能性低減の制御を行うための時間を確保することができる。
図9は、追従走行制御時における減速時の先行車と自車との加速度の説明図である。先行車100の減速開始後に自車1を減速させる場合には、上述したように自車1の応答遅れが大きく関わってくるため、先行車100の後方を走行する際に追突が発生する可能性を低減する場合には、自車1の応答遅れを考慮して走行する必要がある。次に、減速時の応答遅れを考慮して車間時間を設定する場合について説明する。例えば、0.8sの車間時間での追従走行制御時に、先行車100が急制動を行った場合には、通信追従走行制御では応答遅れは通信遅れ(0.1s)程度なので、先行車100の減速とほぼ同じタイミングで減速をすることができる。このため、通信追従走行制御では、0.8sの車間時間で追従走行を行っている場合に十分な早さで制動を開始することができる。
また、通信追従走行時に通信途絶によって自律追従走行制御を行う場合には、設定車間時間である0.8s以内に先行車100の減速度以上の減速度で減速をすれば、先行車100への追突が発生する可能性を低減できる。自律追従走行制御時には、レーダー12での検出結果に基づいて先行車100の減速度を推定し、0.8s以内に推定した減速度を発生させることにより、追突が発生する可能性を低減できる。
また、定常速度での追従走行時には、初期相対速度は0になるが、追いつきや割り込みなどの場合には、初期相対速度が発生する。例えば、先行車100が減速を開始した時点での先行車100の車速が80km/hで、その時点での自車1の車速が100km/hの場合には、初期相対速度は20km/hになる。このように初期相対速度がある場合に、先行車100が急減速した場合でも追突発生の可能性を低減できる制御について説明すると、車両間で発生する応答遅れによる相対速度と初期相対速度との和が、車両間で持っている相対速度マージンと同じになる等価反応時間を定義する。自車1を減速させる際には、この等価反応時間が設定車間時間を越えないように減速度を制御する。
図10は、等価反応時間についての説明図である。この等価反応時間について説明すると、等価反応時間は、初期相対速度Vr0に対応する値を加えた際に相対加速度面積Sr(図8参照)と同じ面積になり、且つ、高さが先行車最大減速度a1_maxになる平行四辺形の底辺の大きさが、等価反応時間xになる。相対加速度面積Srは、先行車最大減速度a1_maxと設定車間時間τとを乗算した値になっているため、これらを式で表すと、下記の式(3)になる。
a1_max・x+Vr0=a1_max・τ・・・(3)
この式(3)を、等価反応時間xを求める式に変形すると、下記の式(4)になる。
x=τ−(Vr0/a1_max)・・・(4)
この式(4)で明らかなように、設定車間時間τから初期相対速度Vr0対応分を引いた時間内に、先行車100と同じ減速度以上の減速度を自車1に発生させることにより、先行車100の減速時に初期相対速度Vr0が発生している場合でも、先行車100への追突が発生する可能性を低減できる。
また、この等価反応時間xは、設定車間時間τと比較することにより自車1と先行車100との追突発生の可能性を低減する制御を行うことができる時間となっているため、初期相対速度Vr0が発生していない場合の反応時間tdelayと同様に扱うことができる。即ち、初期相対速度Vr0が発生している場合でも、等価反応時間xに換算することにより、初期相対速度Vr0が発生していない場合と同様に、等価反応時間x=tdelayとして扱い、{tdelay(等価反応時間)≦τ(設定車間時間)}を満たす等価反応時間を導出することにより、追突発生の可能性を低減できる制動制御を行うことができる。
先行車100の減速に合わせて自車1を減速させる場合には、これらのように先行車100の減速度と車間時間とを用いて、上述した各式を満たすことができる自車1の減速度を導出して自車1を減速させることにより、先行車100への追突が発生する可能性を低減できる。次に、追従走行制御時に、先行車100の減速時に上述した条件を用いて先行車100への追突発生の可能性を低減できる制御について、通信追従走行制御と自律追従走行制御とに分けて具体的に説明する。まず、通信追従走行制御では、車車間通信によって先行車100の走行情報を取得して追従走行制御を行うため、先行車100が減速をする際には、その情報も取得する。例えば、先行車100の運転者がブレーキペダルに対して制動操作を行うことによって減速をする場合には、制動操作の情報を先行車走行情報取得部45で取得する。また、先行車100が、さらにその前方の車両に対して追従走行制御を行っている場合など、運転者の運転支援制御を行っている場合には、運転支援制御によって先行車100を減速させる際の減速制御の情報を先行車走行情報取得部45で取得する。
車車間通信を用いて先行車100の減速時における走行情報を先行車走行情報取得部45で取得した通信追従走行制御ECU40は、先行車走行情報取得部45で取得した減速時の情報に基づいて、先行車最大減速度導出部46で先行車100の最大減速度を導出する。先行車最大減速度導出部46で先行車100の最大減速度を導出する場合には、例えば、先行車100の減速時の情報として制動操作の情報を用いる場合には、運転者がブレーキペダルを操作する際における操作量や操作速度に基づいて、この運転者の制動操作によって発生する減速度を導出し、さらに、この制動操作を行った場合における最大減速度を、先行車最大減速度導出部46で導出する。
また、先行車100の減速時の情報として運転支援制御によって先行車100を減速させる際の減速制御の情報を用いる場合には、運転支援制御によって指示する減速度の指示に基づいて先行車100の減速度を取得し、さらに、この減速指示を行った場合における最大減速度を、先行車最大減速度導出部46で導出する。通信追従走行制御ECU40の先行車最大減速度導出部46で導出した先行車100の最大減速度である先行車最大減速度は、走行制御ECU20に伝達され、この先行車最大減速度に基づいて、走行制御ECU20の減速度算出部33で自車1の減速度を算出する。
減速度算出部33で自車1の減速度を算出する場合には、減速前の自車1の車速に基づいて設定される車間時間に基づいて算出し、この車間時間が経過する時点で、自車1の減速度が先行車100の減速度と同じ大きさになるように、減速度の変位量、即ち、経過時間に対する減速度の変化の度合いを算出する。この減速度の変化の度合いを算出する場合には、減速度の立ち上がり以降の減速度も含めて制御可能な値として算出する。具体的には、通信追従走行用に予め設定されている設定車間時間τと、先行車最大減速度導出部46で導出した先行車100の最大減速度である先行車最大減速度a1_maxとを用いて、上記式(2)である(Vr_max=τ・a1_max)を減速時相対速度算出部35で演算して、相対速度の最大値Vr_maxを算出する。これにより、減速度の立ち上がり以降も含めて自車1の減速度を制御可能な値を算出する。つまり、相対速度の最大値Vr_maxは、自車1を減速させる際における減速度を、現在の車速から車間時間が経過する時点で先行車100の減速度と同じ大きさの減速度にするのに必要な減速度の変化量を実現できる値になっている。
これに対し、自律追従走行制御を行う場合には、自律追従走行制御ECU60は、前方状態取得部61で取得する先行車100との車間距離に基づいて、先行車100の減速度を導出する。つまり、前方状態取得部61で取得する自車1と先行車100との車間距離の変化の度合いに基づいて、先行車100の減速時における減速度を先行車減速度導出部63で導出する。
また、この先行車減速度導出部63では、導出した先行車100の減速度の変化の度合いや車速、そのときの走行環境等に基づいて、先行車100の最大減速度である先行車最大減速度を導出する。自律追従走行制御ECU60の先行車減速度導出部63で導出した先行車最大減速度は、先行車100の走行情報として走行制御ECU20に伝達され、この先行車最大減速度に基づいて、走行制御ECU20の減速度算出部33で自車1の減速度を算出する。
自律追従走行制御時に減速度算出部33で自車1の減速度を算出する場合には、通信追従走行制御時と同様に、減速前の自車1の車速に基づいて設定される車間時間に基づいて算出する。つまり、自律追従走行用に予め設定されている設定車間時間τと、先行車減速度導出部63で導出した先行車100の最大減速度である先行車最大減速度a1_maxとを用いて、上記式(2)である(Vr_max=τ・a1_max)を減速時相対速度算出部35で演算して、相対速度の最大値Vr_maxを算出する。これにより、自車1を減速させる際における減速度を、減速度の立ち上がり以降も含めて制御可能にし、現在の車速から車間時間が経過する時点で先行車100の減速度と同じ大きさの減速度にするのに必要な減速度の変化量を実現できる値である相対速度の最大値Vr_maxを算出する。
なお、通信追従走行制御では、車車間通信によって先行車100の走行情報を取得するため、先行車100の減速度や減速開始のタイミングを、より正確に認識することができるが、自律追従走行制御では、自車1と先行車100との車間距離に基づいて先行車100の減速度を導出する。このため、自律追従走行制御で導出する先行車100の減速度は、通信追従走行制御で導出する先行車100の減速度よりも精度が低くなっている。これにより、自律追従走行制御では、実際の先行車100と自車1との相対的な走行状態に最適な自車1の減速制御を、通信追従走行制御と比較して行い難くなっているが、この自律追従走行制御でも、通信追従走行制御時と同様に、極力車間時間が経過する時点を目標として自車1の減速度を算出するのが好ましい。
通信追従走行制御や自律追従走行制御で、これらのように先行車100の減速度に基づいて自車1の減速度を導出したら、ブレーキ制御部22では、この導出した減速度を自車1に発生させるために、導出した減速度に応じてブレーキ油圧制御装置8を制御する。その際に、通信追従走行制御と自律追従走行制御とのいずれの場合でも、レーダー12での検出結果の変化の度合いより相対速度算出部34で先行車100との相対速度Vrを算出し、この相対速度Vrが、減速時相対速度算出部35で算出した相対速度の最大値Vr_max以下になるように減速度を制御する。このため、実際に制動力を調節して自車1に減速度を発生させる場合には、減速度の立ち上がり以降の制御も含めて減速度の制御を行い、減速度のフィードバック制御を行う。これにより、算出した減速度を適切に自車1に発生させる。
また、通信追従走行制御中は、通信途絶の判定を行いながら制御をするが、通信途絶時の先行車100への追突が発生する可能性をより確実に低減するために、通信途絶が発生し始めたら、通信途絶判定が確定する前に、通信途絶中にブレーキ制御の準備を開始する。図11は、通信途絶の発生時における制御の説明図である。例えば、0.8sの車間時間で通信追従走行制御を行う場合について説明すると、車間時間が0.8sの場合には、先行車100の減速度と同じ大きさの減速度を自車1で発生させることができる場合には、先行車100の減速開始後、0.8s以内に自車1の減速を開始することにより、先行車100への追突発生の可能性を低減する。つまり、先行車加速度110の立ち上がり後、自車加速度111は、0.8s以内に立ち上げるが、通信追従走行制御に用いる車車間通信では、0.1s程度の通信遅れが発生する。このため、通信追従走行制御時に車車間通信によって自車1で検出することができる先行車加速度110である通信検出先行車加速度130は、先行車加速度110の0.1s後に自車1で検出する。
また、先行車100の減速は、レーダー12によっても検出することができ、通信追従走行制御時における通信途絶時には、先行車100の減速はレーダー12で検出するが、先行車100の減速をレーダー12で検出する場合、0.3s程度のレーダー認識遅れが発生する。このため、レーダー12によって自車1で検出することができる先行車加速度110であるレーダー検出先行車加速度131は、先行車加速度110の0.3s後に自車1で検出する。
また、ブレーキ油圧制御装置8に制御信号を送信し、ホイールシリンダ等のアクチュエータで実際に制動力を発生させる場合には、0.3s程度の応答遅れが発生する。このため、先行車100の減速開始後の自車1の反応時間が、自車1と先行車100との間に車間時間を設定される設定車間時間以下になるように減速度の制御を行う場合には、遅くとも設定車間時間よりも0.3s前には、自車1に自車加速度111を発生させる自車要求加速度135で減速指示を行う。このため、通信追従走行制御時に先行車100が減速を開始したことを先行車走行情報取得部45で取得した後に、通信が途絶した場合には、設定車間時間の0.3s前、つまり、先行車100の減速開始後0.5sまでは通信の途絶判定を待つ。
詳しくは、先行車100の減速開始後に通信が途絶した場合には、レーダー12で先行車100の走行状態を検出できる0.3sが経過するまでは、通信が途絶してもレーダー12での検出結果を用いて自車1の減速制御を行うことができるので、0.3sが経過するまでは通信が復帰するのを待つ。先行車100の減速開始後、0.3sが経過したら、レーダー12での検出結果を用いて自車1の減速制御を行うことができなくなるので、ブレーキ油圧制御装置8で発生させる油圧立ち上げを準備した状態で、通信の途絶判定を待つ。
この状態で、先行車100の減速開始後0.5sまでに通信が復帰しなかったら、通信途絶判定部51で通信途絶を判定し、ブレーキ制御部22からブレーキ油圧制御装置8に対して制御信号を送信し、自車要求加速度135で減速指示を行う。これにより、アクチュエータの応答遅れの経過後、即ち0.3s後に、自車加速度111が発生する。即ち、車車間通信を行う際に通信の途絶時間が通信途絶判定時間を越えた場合には、車車間通信を停止して、追従走行制御を通信追従走行制御から自律追従走行制御に切り替える。
一方、ブレーキ油圧制御装置8で発生させる油圧立ち上げを準備した状態で、先行車100の減速開始後0.5sまでに通信が復帰した場合には、油圧を0にして、通常の通信追従走行制御に戻る。つまり、先行車100が減速を開始し、レーダー認識遅れ後にレーダー12で先行車100の検出が可能になる時間であるt1と、自車要求加速度135で減速指示を行う時間であるt2とが(t1≦t2)の関係を満たさない場合において、通信途絶が発生した場合に、通信途絶判定前のブレーキアクチュエータへの要求を開始する。換言すると、通信追従走行制御を行う場合には、先行車100の減速制御の開始時点t0から、先行車100の減速制御の開始を走行情報に基づいて自車1が検出するまでの検出遅れ時間であるレーダー認識遅れτsensorと、自車1が減速制御信号を送信した時点から自車1が実際に減速制御を開始するまでの制御応答遅れ時間であるアクチュエータ応答遅れτactと、先行車100と自車1との車間時間である設定車間時間τsetと、の関係が(τsensor+τact≦τset)を満たすことが要件となる。レーダー認識遅れτsensorと、アクチュエータ応答遅れτactと、設定車間時間τsetとが、この要件を満たさない場合に、上記通信途絶時の制御を行う。
また、通信途絶判定時間要件は、通信途絶判定時間τcomと、アクチュエータ応答遅れτactと、設定車間時間τsetとの関係が(τcom+τact≦τset)になる通信途絶判定時間τcomとなっている。このため、設定車間時間τsetのアクチュエータ応答遅れτact分前には、減速度指令を開始する。つまり、通信途絶の判定を我慢できるのは、設定車間時間τsetのアクチュエータ応答遅れτact分前までになる。
また、設定車間時間τsetは、レーダー認識遅れτsensorとアクチュエータ応答遅れτactとの和以上で設定されるが、レーダー12での検出状態や、ブレーキ装置等のアクチュエータの作動状態は、自車1の走行時における環境によっても変化する場合がある。このため、レーダー認識遅れτsensorやアクチュエータ応答遅れτactは、走行時の環境を含む自車1の走行状況に応じてレーダー認識遅れτsensor、またはアクチュエータ応答遅れτactの少なくともいずれか一方を変更し、設定車間時間τsetは、この変更したレーダー認識遅れτsensorとアクチュエータ応答遅れτactとの和以上で設定するのが好ましい。
例えば、ブレーキ装置を作動させる際にブレーキ油圧制御装置8で油圧を制御する作動油は、温度が低い場合には粘性が高くなっているため、油圧の立ち上がり応答時間が遅くなる傾向になる。このため、自車1の周囲の温度が低く、ブレーキ装置を作動させる作動油の温度が低い場合は、アクチュエータ応答遅れτactを大きくして設定車間時間τsetを設定する。つまり、この場合、設定車間時間τsetも大きくなる。
この状態で自車1が所定の時間走行をしてブレーキ装置で制動を行い、制動時に発生する熱によって作動油の温度が上昇することにより、油圧の立ち上がり応答時間が早くなる程度まで温まってきたら、アクチュエータ応答遅れτactを小さくする。また、これに応じて設定車間時間τsetも、アクチュエータ応答遅れτactが大きい場合よりも小さく設定する。
また、通信追従走行制御時における先行車100の減速時に通信途絶判定がされた場合には、先行車100との通信が途絶されている旨を運転者に伝達する。例えば、通信途絶判定時間τcomが経過した時点で警報音を発することにより、通信が途絶している旨を運転者に伝達する。運転者は、この警報を聞いてから所定時間経過後に、ブレーキ操作を行う。つまり、運転者は警報を聞いてから運転者自身の反応遅れにより、通信の途絶が判定されてから運転者ブレーキ操作遅れτdriverの経過後にブレーキ操作をする。
これらのように、通信追従走行制御中に通信が途絶した場合でも、自車1の減速度が立ち上がるまでの領域Aでは、等価反応時間tdelayと設定車間時間τとが(tdelay≦τ)の関係を満たすように、設定車間時間τsetからアクチュエータ応答遅れτact分早く、先行車100以上の減速度を指令開始する。また、自車1の減速度が立ち上がった後の領域Bでは、相対速度Vrと、設定車間時間τと、先行車最大減速度a1_maxとが(Vr≦Vr_max=τ・a1_max)の関係を満たすように、自車1の減速度の立ち上がり以降もレーダー12での検出結果に基づいて、適切なフィードバック制御を行う。
また、通信追従走行制御中、または自律追従走行制御中に、先行車100と自車1との間に他の車両が割り込んだ場合には、この車両と自車1との車間時間は、通信追従走行制御や自律追従走行制御で設定されている車間時間とは異なる車間時間になる。この場合は、レーダー12で、この車両を検出し、検出結果に基づいて車間時間を設定する。
つまり、通信追従走行制御中と自律追従走行制御中とのいずれの場合においても、追従走行制御中はレーダー12で自車1の前方の状態を検出し、検出結果を自律追従走行制御ECU60が有する前方状態取得部61で取得しながら追従走行制御を行っているが、追従走行制御中に先行車100と自車1との車間距離よりも近い位置に、自車1との相対速度があまり大きくない障害物が現れた場合には、この障害物を他の車両として判断する。この場合、この車両を先行車100として判断し、レーダー12での検出結果に基づいて前方状態取得部61で、この新たな先行車100との車間距離を取得し、前方状態取得部61で取得した車間距離と車速取得部25で取得した現在の車速とに基づいて、車間時間検出部30で車間時間を検出する。
通信追従走行制御中や自律追従走行制御中に、自車1の前方に他の車両が割り込むことにより新たな先行車100が現れた場合には、このように車間時間検出部30で検出した車間時間に基づいて追従走行制御を行う。このため、この新たな先行車100が減速した場合には、車間時間検出部30で検出した車間時間が経過するまでに、先行車100との減速度と同じ大きさの減速度を自車1に発生させる。
以上の車両制御装置2は、先行車100の走行情報に基づいて行う追従走行制御時には、レーダー認識遅れτsensorとアクチュエータ応答遅れτactとの和以上で設定車間時間τsetを設定するので、先行車100が減速した場合でも自車1が先行車100に追突が発生する可能性を低減することができ、追従走行制御を適切に行うことができる。さらに、自車1の走行時の環境や走行状況に応じて、レーダー認識遅れτsensorまたはアクチュエータ応答遅れτactの少なくともいずれか一方を変更するので、追従走行制御時における設定車間時間τsetを、現在の走行状況に応じて適宜変更し、より適切な追従走行制御を行うことができる。この結果、追従走行時における車間制御を、より適切に行うことができる。
また、レーダー認識遅れτsensorやアクチュエータ応答遅れτactを変更する際に用いる自車1の走行時の環境として、自車1の周囲の温度を用いるので、レーダー認識遅れτsensorやアクチュエータ応答遅れτactに基づいて設定する設定車間時間τsetを、走行時の環境に応じて変化する自車1の走行状態に適した車間時間にすることができる。この結果、追従走行時における車間制御を、より適切に行うことができる。
なお、実施形態に係る車両制御装置2では、レーダー認識遅れτsensorやアクチュエータ応答遅れτactは、自車1の周囲の温度に応じて変更しているが、レーダー認識遅れτsensorやアクチュエータ応答遅れτactは、これ以外に基づいて変更してもよい。例えば、自車1の走行状況として、先行車100の走行情報を取得する際に用いられる前方状況検出手段であるレーザー12の形態に応じてレーダー認識遅れτsensor等を変更してもよい。つまり、レーダー12は、検出対象を検出する際に用いる検出波としてレーザーを用いるレーザーレーダーや、ミリ波を用いるミリ波レーダーなど、異なる形態の検出手段を使用することが可能であるが、検出波によって発信時の特性や、反射特性、受信時の特性が異なる場合がある。このため、レーダー12の形態によって、自車1の前方の状態、即ち、先行車100の走行状態を検知する時間が異なる場合があるため、レーダー12の形態に応じて、レーダー認識遅れτsensor等を変更してもよい。
また、車両制御装置2を備える車両1は、動力源としてエンジン5のみでなく、電気によって動力を発生するモータ(図示省略)も備え、エンジン5で発生する動力とモータで発生する動力とを適宜使い分けることにより走行することができる、いわゆるハイブリッド車であってもよい。このようなハイブリッド車の場合、走行状態によって動力源が切り替えられることにより、加速時における駆動力の発生形態が適宜切り替えられ、追従走行制御時にも、自車1の加速時における駆動力の発生形態が切り替えられるが、通信追従走行制御時における通信途絶によって自律追従走行制御に切り替えるか否かの上述した制御は、加速時に適用してもよい。
つまり、検出遅れ時間であるレーダー認識遅れτsensorは、先行車100の加速制御の開始時点から、先行車100の加速制御の開始を走行情報として自車1が検出するまでの時間であってもよく、制御応答遅れ時間であるアクチュエータ応答遅れτactは、自車1が加速制御信号を送信した時点から自車1が加速制御を開始するまでの時間であってもよい。この場合、アクチュエータは、エンジン5やモータが該当する。通信追従走行制御時における加速時には減速時と同様に、これらのレーダー認識遅れτsensorとアクチュエータ応答遅れτactとの和以上で設定車間時間τsetを設定し、さらに、自車1の走行時の環境や走行状況に応じて、レーダー認識遅れτsensorまたはアクチュエータ応答遅れτactの少なくともいずれか一方を変更する。
この場合における自車1の走行状況としては、自車1の加速時における駆動力の発生形態を使用し、駆動力がエンジン5のみ、またはモータのみ、またはエンジン5とモータとを併用することによる、これらの駆動力の発生形態に応じて、レーダー認識遅れτsensor等を変更してもよい。駆動力を発生させる場合には、エンジン5とモータとで、加速の指示に対する応答特性が異なるので、このように、駆動力の発生形態に応じてレーダー認識遅れτsensor等を変更することにより、追従走行時における車間制御を、加速時も含めて適切に制御することができる。
また、車両1が、このようなハイブリッド車の場合、制動力を通常の油圧ブレーキのみでなく、減速時のエネルギを利用して発電を行う、いわゆる回生ブレーキも使用することができる場合があるが、回生ブレーキを使用することができる場合には、レーダー認識遅れτsensorやアクチュエータ応答遅れτactを変更する際に用いる自車1の走行状況として、自車1の減速時における制動力の発生形態を用いてもよい。つまり、自車1の減速時における油圧ブレーキによって発生させる制動力と、回生ブレーキによって発生させる制動力との割合に応じて、レーダー認識遅れτsensor等を変更してもよい。制動力を発生させる場合には、油圧ブレーキと回生ブレーキとで、制動開始の指示に対する応答特性が異なるので、このように、制動力の発生形態を用いてレーダー認識遅れτsensor等を変更し、これらに基づいて設定車間時間τsetを設定することにより、設定車間時間τsetを、走行状況に適した車間時間にすることができる。この結果、追従走行時における車間制御を、より適切に行うことができる。
また、上述した実施形態に係る車両制御装置2における各数値は、車両制御装置2、或いは追従走行制御時の一例を示したものであるため、車両制御装置2や追従走行制御時における各数値は、上述したものに限られない。
また、上述した実施形態に係る車両制御装置2では、先行車100への追従走行制御を行っている場合に、先行車100の減速時における自車1の減速度が、車間時間が経過するまでに先行車100の減速度と同じ大きさの減速度になるように制御を行うが、車両1には、他の装置を備えて減速制御を行なってもよい。車両1には、例えば、実施形態に係る車両制御装置2の他に、通常の走行時に先行車100に追突しそうな場合に、運転者に対して警告したりブレーキをかけたりする装置であるプリクラッシュセーフティ(PCS)装置が備えられていてもよい。この場合、通信追従走行制御ECU40や自律追従走行制御ECU60とは別に、PCS制御を行うPCS制御部としてPCSECU(図示省略)を設け、レーダー12での検出結果よりPCS制御を行うとPCSECUで判断した場合には、ブレーキ油圧制御装置8を制御して減速度を自車1に発生させる。これにより、PCS制御時でも、極力先行車100への追突発生の可能性を低減することができる。
つまり、実施形態に係る車両制御装置2では、先行車100の走行情報を積極的に取得し、先行車100の減速度に応じて自車1の減速度が大きくなり過ぎないように適切な減速を行うが、PCS装置では、先行車100への追突が発生する可能性がある場合に、この可能性を低減するように自車1を減速させる。このように、実施形態に係る車両制御装置2とPCS装置とを備えることにより、走行時の状況に応じて異なる減速制御を行うことができ、より適切に走行状況に応じた減速を行うことができる。また、このようにPCS装置を設けることにより、追従走行時のみでなく、追従走行を行わない通常の走行時でも、PCS装置によって先行車100への追突が発生する可能性を低減することができる。
また、PCS装置によるPCS制御は、追従走行制御と併用して行ってもよく、追従走行制御時における先行車100の通常の減速時には車両制御装置2で減速制御を行い、先行車100が急激な減速を行うことにより先行車100に追突しそうになった場合には、PCS装置で減速制御を行ってもよい。これにより、追従走行制御における先行車100への追突が発生する可能性を、より確実に低減することができる。