JP2011522375A - 固体酸化物燃料電池システム - Google Patents

固体酸化物燃料電池システム Download PDF

Info

Publication number
JP2011522375A
JP2011522375A JP2011511612A JP2011511612A JP2011522375A JP 2011522375 A JP2011522375 A JP 2011522375A JP 2011511612 A JP2011511612 A JP 2011511612A JP 2011511612 A JP2011511612 A JP 2011511612A JP 2011522375 A JP2011522375 A JP 2011522375A
Authority
JP
Japan
Prior art keywords
fuel cell
fuel
oxidant
packet
heat exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011511612A
Other languages
English (en)
Inventor
イー バディング,マイケル
ジェイ ボウトン,ウィリアム
チェン,ポン
ジェイ グレゴースキ,スティーヴン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corning Inc
Original Assignee
Corning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corning Inc filed Critical Corning Inc
Publication of JP2011522375A publication Critical patent/JP2011522375A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • H01M8/2475Enclosures, casings or containers of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0273Sealing or supporting means around electrodes, matrices or membranes with sealing or supporting means in the form of a frame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • H01M8/04074Heat exchange unit structures specially adapted for fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04104Regulation of differential pressures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04268Heating of fuel cells during the start-up of the fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/2432Grouping of unit cells of planar configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0037Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the conduits for the other heat-exchange medium also being formed by paired plates touching each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2265/00Safety or protection arrangements; Arrangements for preventing malfunction
    • F28F2265/26Safety or protection arrangements; Arrangements for preventing malfunction for allowing differential expansion between elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/12Elements constructed in the shape of a hollow panel, e.g. with channels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

発明の一実施形態にしたがえば、燃料電池システムは、(i)それぞれが、少なくとも1つの燃料流入口、少なくとも1つの燃料流出口、フレーム及び2つの複セル燃料電池デバイスを有し、一方の燃料電池デバイスの燃料極側が他方の燃料電池デバイスの燃料極側に面するように燃料電池デバイスが配置され、2つの燃料電池デバイスが、組み合わされて、燃料流入口及び燃料流出口に連結された燃料チャンバの少なくとも一部を形成する、複数の燃料電池パケット、(ii)それぞれが、少なくとも1つの酸化剤流入口、少なくとも1つの酸化剤流出口、並びに少なくとも1つの酸化剤流入口及び少なくとも1つの酸化剤流出口と連結された内部酸化剤チャンバを有し、燃料電池パケットに面し、燃料電池パケットとの間に複数の空気極反応チャンバを、少なくともその一部を、形成するように、燃料電池パケットに平行であり、燃料電池パケット間に挿入される、複数の熱交換パケット、(iii)燃料電池パケット及び熱交換パケットを支持及び封入するハウジング、(iv)熱交換パケットの酸化剤流入口に動作可能な態様で連結された流入酸化剤気室、(v)空気極反応チャンバに動作可能な態様で連結された排出酸化剤気室、(vi)燃料電池パケットの燃料流入口に連結された流入燃料マニフォールド、及び(vii)燃料電池パケットの燃料流出口に連結された排出燃料マニフォールドを備える。

Description

関連出願の説明
本出願は、2008年5月30日に出願された、米国特許出願第61/130475号の優先権の恩典を主張する。この特許出願の明細書の内容はその全体が本明細書に参照として含まれる。
本発明は、アメリカ連邦標準・技術局(NIST)により結ばれた協力協定第70NANB4H3036号の下に米国政府の支援によってなされた。米国政府は本発明に一定の権利を有する。
本発明は固体酸化物燃料電池に関し、さらに詳しくは、反応チャンバ内の電気化学反応によって生じる熱エネルギーを管理するためのシステム及び方法に関する。
近年、環境に優しい態様で高効率エネルギー変換ができるクリーンエネルギー源として燃料電池が大きく注目されている。固体酸化物燃料電池(SOFC)は、一般に700℃と1000℃の間の、非常な高温で動作する燃料電池の一タイプである。固体酸化物燃料電池がとり得る形状は多いが、一般にはプレーナ型構成をとる。従来のプレーナ型構成においては、単燃料極と単空気極の間に電解質が挟み込まれる。挟み込まれた電解質は水素のような燃料ガスと空気または酸素ガスの間の隔壁として用いられ、燃料ガスは隔壁の燃料極側に供給され、空気または酸素ガスは隔壁の空気極側に供給される。
一般的な固体酸化物燃料電池システムでは、燃料及び酸素のような、反応体の運動エネルギーのほぼ1/2が電気に変換されて、残る1/2が熱エネルギーに変換され、この熱エネルギーがSOFCシステム内の温度をかなり上昇させる。高速電気化学反応を起発させるため、反応体を高温に加熱しなければならないことが多い。例えば、薄いイットリア部分安定化ジルコニア(3YSZ)電解質を用いるシステムにおいて、有効な反応をおこさせるには反応体をほぼ725℃に加熱しなければならない。そのような初期反応体温度により、化学量論的水素−空気系に対する燃料電池内のピーク温度は1000℃以上に上昇し得る。
燃料電池の電気的性能及び機械的性能はシステムの動作温度に強く依存する。(約1000℃以上のような)高温においては、深刻な問題が固体酸化物燃料電池システムコンポーネント内のシール材料の熱−機械的応力及び溶融の態様で生じ得る。さらに、反応体をそれぞれの最適反応温度に加熱するには外部加熱が必要になることが多く、この結果総合システム効率が低くなる。
様々な熱管理方式が開発されている。例えば、特許文献1は熱管理のために燃料電池に連結された形状記憶合金構造体を開示している、特許文献2は個々のセルの燃料極側から熱を取り出して別のセルの空気極流を加熱するために用いられる内部双極型熱交換機を開示している。特許文献3には、燃料電池ユニットと、電解質表面に垂直な方向に流れる、熱交換機流体流の間で熱を転送するための流体熱交換機が開示されている。さらに、特許文献4にはシステムレベルにおける熱管理を補助するために燃料電池に連結された改質反応炉が開示されている。特許文献5には燃料電池の熱管理に用いるための内部改質装置が開示されている。
米国特許出願公開第2004/0170879A1号明細書 米国特許出願公開第2005/0014046A1号明細書 米国特許出願公開第2004/0028972A1号明細書 米国特許出願公開第2003/0017695A1号明細書 国際公開第2003/065488A1号パンフレット
したがって、反応で発生する熱エネルギーによって生じる熱−機械応力を低減することができ、反応チャンバに入る反応体を予備加熱して固体酸化物燃料電池の総合システム効率を高めることもできる、熱管理システム及び方法が技術上必要とされている。
本発明の一実施形態にしたがえば、燃料電池システムは、
a.それぞれが、少なくとも1つの燃料流入口、少なくとも1つの燃料流出口、フレーム及び2つの複セル燃料電池デバイスを有し、一方の燃料電池デバイスの燃料極側が他方の燃料電池デバイスの燃料極側に面するように燃料電池デバイスが配置され、2つの燃料電池デバイスが、組み合わされて、燃料流入口及び燃料流出口に連結された燃料チャンバの少なくとも一部を形成する、複数の燃料電池パケット、
b.それぞれが、少なくとも1つの酸化剤流入口、少なくとも1つの酸化剤流出口、並びに少なくとも1つの酸化剤流入口及び少なくとも1つの酸化剤流出口と連結された内部酸化剤チャンバを有し、燃料電池パケットに面し、燃料電池パケットとの間に複数の空気極反応チャンバを、少なくともその一部を、形成するように、燃料電池パケットに平行であり、燃料電池パケット間に挿入される、複数の熱交換パケット、
c.燃料電池パケット及び熱交換パケットを支持及び封入するハウジング、
d.熱交換パケットの酸化剤流入口に動作可能な態様で連結された流入酸化剤気室、
e.空気極反応チャンバに動作可能な態様で連結された排出酸化剤気室、
f.燃料電池パケットの燃料流入口に連結された流入燃料マニフォールド、及び
g.燃料電池パケットの燃料流出口に連結された排出燃料マニフォールド、
を備える。
いくつかの実施形態例にしたがえば、燃料電池システムはさらに酸化剤巡回気室を備え、酸化剤巡回気室は、熱交換パケットの酸化剤流出口及び空気極反応チャンバの酸化剤流入口側に動作可能な態様で連結されている。
いくつかの実施形態例にしたがえば、燃料電池システムはさらに、(i)副酸化剤気室に連結され、(ii)副酸化剤気室内の背圧を制御できるバルブを有する、副酸化剤排出口を備える。
本発明のさらなる実施形態は、ある程度は、以下の詳細な説明及び添付されるいずれかの特許請求項に述べられ、ある程度は詳細な説明から導かれ、あるいは本発明の実施により習得することができる。上記の全般的記述及び以下の詳細な記述が例示及び説明でしかなく、開示及び/または特許請求されるような本発明の限定ではないことは当然である。
本明細書に組み込まれて本明細書の一部をなす、添付図面は本発明のいくつかの態様を示し、記述とともに、本発明の原理を、限定ではなく、説明するに役立つ。
図1は、本発明の一実施形態にしたがう、動作環境内のモジュール型固体酸化物燃料電池システムの破断図である。 図2Aは、本発明の別の実施形態にしたがう、モジュール型燃料電池パケットの燃料電池フレームを示す。 図2Bは図2Aの燃料電池パケットフレームの区画A-Aの断面図である。 図3は、本発明の一実施形態にしたがう、モジュール型燃料電池パケットを示す。 図4Aは、本発明の別の実施形態にしたがう、モジュール型酸化剤熱交換パケットの側壁を示す。 図4Bは、本発明の別の実施形態にしたがう、モジュール型酸化剤熱交換パケットの側壁を示す。 図5は、本発明の一実施形態例にしたがう、モジュール型酸化剤熱交換パケットが内部に配置されているモジュール型固体酸化物燃料電池システムの断面斜視図である。 図6は、本発明の別の実施形態例にしたがう、モジュール型燃料電池パケット及びモジュール型熱交換パケットが内部に配置されているモジュール型固体酸化物燃料電池システムの断面斜視図である。 図7は、本発明のまた別の実施形態例にしたがう、モジュール型固体酸化物燃料電池システム内の酸化剤及び燃料の流れを示す。 図8Aは酸化剤熱交換キャビティを組み込んだ燃料電池パケットの実施形態例を示す。 図8Bは酸化剤熱交換キャビティを組み込んだ燃料電池パケットの実施形態例を示す。 図9Aは、ハウジング、主空気流出口、副空気流出口及び空気ディフューザーを備える、モジュール型燃料電池システムの一部の簡略な断面図である。 図9Bは、ある程度集成された、図9Aのモジュール型燃料電池システムを示す。 図9Cは、ある程度集成された、図9Aのモジュール型燃料電池システムを示す。 図10Aは、図9Aに対応するモジュール型燃料電池システムの一部の簡略な断面図であり、副空気排出口及び空気巡回ディフューザーを示す。 図10Bは、図9A〜9C及び10Aのモジュール型固体酸化物燃料電池システム内の酸化剤の流れを示す。 図11は燃料電池システム例の一実施形態を示す。
本発明の以下の説明は、最善の、現在知られている実施形態において本発明の教示を可能にするように提供される。この目的に対し、当業者であれば、本明細書に説明される本発明の様々な実施形態に多くの変更がなされ得るがそれでも本発明の有益な結果を得られることを認め、理解するであろう。本発明の望ましい恩恵の内のいくつかが本発明の特徴の内のいくつかを選択することにより、他の特徴は用いずに、得られることも明らかであろう。したがって、当業者であれば、本発明には多くの改変及び翻案が可能であり、いくつかの状況においては望ましくさえあり得るし、本発明の一部であることを認めるであろう。したがって、以下の説明は、本発明の限定ではなく、本発明の原理の説明として提供される。
本明細書で用いられるように、単数形の冠詞‘a’,‘an'及び‘the’は、そうではないことを文脈が明白に規定していない限り、複数の指示対象を含む。すなわち、例えば「酸化剤予備加熱チャンバ」への言及は、そうではないことを文脈が明白に規定していない限り、2つないしさらに多くのそのような「酸化剤予備加熱チャンバ」を有する実施形態を含む。
本明細書において範囲は[「約」1つの特定値]から、及び/または[「約」別の特定値]までとして表され得る。範囲がそのように表される場合、別の実施形態はその1つの特定値から及び/またはその別の特定値までを含む。同様に、先行詞「約」の使用により値が近似値として表されていれば、その特定の値が別の実施形態をなすことは理解されるであろう。さらに、範囲のそれぞれの端点が、他方の端点との関係でも、他方の端点とは独立にも、有意であることが理解されるであろう。
上で簡潔に要約したように、本発明は、モジュール型固体酸化物燃料電池デバイス内の温度分布を管理し、総合システム効率を高めるためのシステム及び方法を提供する。そのようなシステム及び方法は、様々な実施形態において、燃料電池デバイス内の反応で生じる熱エネルギーを利用して燃料電池デバイスに入る空気及び/または燃料ガスを予備加熱し、よって外部予備加熱システムの必要を減じ、及び/または排除することによって、固体酸化物燃料電池システムの効率を高める。
本発明の様々な実施形態にしたがえば、図1に示されるように、例えば、モジュール型固体酸化物燃料電池システム10は、ハウジング100,少なくとも1つのモジュール型燃料電池パケット200及び少なくとも1つのモジュール型酸化剤熱交換パケット300を備える。図1に示されるように、複数のモジュール型燃料電池パケット200及び複数のモジュール型酸化剤熱交換パケット300は、燃料電池パケットと酸化剤熱交換パケットが交互するアレイの形態でハウジング100内に配置することができる。すなわち、一特定実施形態において、燃料電池パケット及び酸化剤熱交換パケットは、それぞれの燃料電池パケットが2つの熱交換パケットの間に配置されるように、配列することができる。したがって、この構成において、パケットの最小数は燃料電池パケットが1つ及び熱交換パケットが2つである。パケットの最大数は固体酸化物燃料電池システムからの必要な出力電力量によって決定される。
それぞれの燃料電池パケット200には、2つの(本明細書では電極アセンブリとも称される)燃料電池デバイス210の間に形成された、燃料電池パケット内部に位置する気密に隔離された燃料チャンバが組み込まれる。さらに詳しくは、様々な実施形態にしたがえば、燃料電池パケット200は燃料電池パケットフレーム202及び少なくとも1つの電極アセンブリ(すなわち燃料電池デバイス)210を有することができる。図1に示される実施形態において、それぞれの燃料電池デバイス210は複セルデバイスである。すなわち、それぞれの燃料電池デバイス210はアレイに配列された複数の燃料電池を有する。この特定の実施形態において、それぞれの燃料電池デバイスはプレーナ型電解質支持燃料電池アレイである。
燃料電池パケットフレーム202の例が図2A及び2Bに示される。燃料電池フレームは、様々な材料の実質的に長方形の打抜き成形シートで作成することができる。燃料電池フレームは、例えば、E-ブライトまたは446ステンレス鋼のような、ステンレス鋼シート203で作成することができる。あるいは、燃料電池フレームは、ガラス、ガラス-セラミック、完全安定化ジルコニアまたは部分安定化ジルコニアで作成することができる。フレーム材料の熱膨張係数(CTE)は電解質材料のCTEに近いことが好ましい(例えば、フレーム材料と電解質材料の間のCTE差は1×10−6cm/cm/℃、好ましくは0.6×10−6cm/cm/℃、さらに好ましくは0.4×10−6cm/cm/℃の範囲内である)。例えば、それぞれのフレームはシートとして作成することができ、シートの内部領域に定められた実質的に長方形の開口202Aを有することができ、したがって、それぞれのシートは内周縁及び外周縁を定めることができる。シートは、例えば、内周縁と外周縁の間にあるシート領域にウエルを形成するように、打抜き成形することができる。図2Bに示されるように、ウエルは、シート203が面と面で突き合わせられたときに、シートが外周縁領域に沿って実質的に全面的に接触するが、内周縁領域に沿っては相互にある距離隔てられているような、形状につくることができる。図2Aに示されるように、燃料流入口204が燃料電池フレームの下部領域に形成されたウエルと流体を通じることができる。同様に、燃料流出口206が燃料電池フレームの上部領域に形成されたウエルと流体を通じることができる。
燃料電池パケット200は、別の実施形態にしたがえば、少なくとも1つの(本明細書では電極アセンブリとも称される)燃料電池デバイス210を有することができる。図3を参照すれば、電極アセンブリは、第1の表面及び、第1の表面と表裏をなす、第2の表面をもつ実質的にプレーナ型のシートとすることができる、電解質シート212を有することができる。複数の燃料極214が第1の表面上に配置され、複数の空気極216が、第1の表面と表裏をなす、第2の表面上に配置されて、複セル燃料電池デバイスを形成する。第2の電極アセンブリを同様に形成することができる。一実施形態において、第1及び第2の電極アセンブリ(すなわち燃料電池デバイス)210がある離隔距離で相互に隔てられるように、第1及び第2の電極アセンブリ210を燃料電池フレーム202が支持することができる。別の実施形態において、第1及び第2の電極アセンブリ210は、第1及び第2の電極アセンブリ210のそれぞれの第1の表面が互いに面して燃料極チャンバ(すなわち燃料チャンバ)220を定めるように、フレーム202によって支持される。上述したように、燃料電池フレーム202は、燃料電池フレームのシートの部分領域が内周縁に沿って相互にdの離隔距離にあるような態様で、打抜き成形材料で形成することができる(あるいは、ガラスまたはガラス-セラミックで作成することができる)。この距離dは、例えば0.5mmに、あるいはさらに大きく、することができる。一般的な距離は、例えば1mm〜7mmとすることができる。このようにすれば、燃料流入口204から、燃料電池フレームの下部に形成されたウエルを通り、(本明細書では燃料チャンバとも称される)燃料極チャンバ内に、流体が通じることができる。同様に、燃料極チャンバから、燃料電池フレームの上部に形成されたウエルを通り、燃料電池パケット200の燃料流出口206に、流体が通じることができる。
本発明の一実施形態にしたがえば、燃料電池パケット200内で燃料が流れる方向は、実質的に重力の方向である。燃料電池パケットのフレーム202は、例えば壁厚が1mmをこえない、例えば0.25mm〜1mmの、成形ステンレス鋼合金で作成することができる。
一実施形態において、複数の空気極216は、酸素含有空気のような、酸化剤と反応して酸素イオンをつくる。複数の燃料極214は、空気極216でつくられた酸素イオンを用いる(水素ガスのような、ただしこれには限定されない)燃料との反応によって、水及び電気をつくる。電解質シート212は、空気極側の酸化剤を燃料極側の燃料から隔てる、メンブレンまたはバリアとしてはたらく。この構成において、電解質シート212は、燃料極側での酸化反応から生じる電子の空気極側への到達を防止する、電気絶縁体としてもはたらくことができる。別の実施形態において、電解質シート212は、空気極216でつくられた、酸素イオンを燃料極214に伝導するように構成することができる。
いくつかの実施形態にしたがう、モジュール型固体酸化物燃料電池システムはさらに、複数のモジュール型酸化剤熱交換パケット300を備える。モジュール型酸化剤熱交換パケットは、本明細書では熱交換キャビティとも称される、内部空間(すなわち空気チャンバ)301を定めるようにそれぞれが配置された、対向して隔てられた一対の側壁302を有する構体を有することができる。図4A及び4Bはモジュール型酸化剤熱交換パケット300の一例の側壁302を示す。モジュール型熱交換パケットの側壁302は、例えば、E-ブライトまたは446ステンレス鋼のようなステンレス鋼、またはニッケル合金で作成することができ、あるいはガラス、ガラス-セラミック、完全安定化ジルコニアまたは部分安定化ジルコニアで作成することができる。側壁302は厚さが1mmをこえない成形ステンレス鋼合金で作成することができる。側壁302は、例えば、厚さが1mmをこえない、例えば0.1mm〜1mmの、成形ステンレス鋼合金で作成することができる。熱交換パケット300の側壁302は、相互に突き合わされているが、それぞれが熱勾配条件下で互いに対して滑ることができるように、拘束はされていない、2枚の成形合金構造体(壁体)を有することができる。
図からわかるように、酸化剤予備加熱チャンバまたは熱交換チャンバとしてはたらく、内部空間(内部空気チャンバ)301と通じる酸化剤流入口306を定めるように、側壁の一部を形成することができる。側壁302はさらに内部空間301と通じる流出口308を少なくとも1つ定めることができる。特定の実施形態(図4Aを見よ)において、流出口は側壁302の下部に定められた実質的に水平のスリットである。別の実施形態(図4Bを見よ)において、酸化剤流出口308の形状は酸化剤流入口306と同様である。熱交換パケット300は気密シールされる必要はなく、CTEが燃料電池デバイスと整合する必要もない。
熱交換パケット300はフレーム及び2枚のプレーナ型電解質シートを有することができ、電解質シートは、電解質シート間のキャビティが内部空間(熱交換チャンバ)301を定めるように、相互に実質的に平行に配置されている。
図5に示されるように、複数のモジュール型酸化剤熱交換パケット300をハウジング100によって支持することができる。一実施形態において、少なくとも2つの熱交換パケット300を、相互の間に酸化剤チャンバ310が形成されるように、間隔をおき、互いに対向させて、ハウジング内に配置することができる。特定の実施形態において、モジュール型酸化剤熱交換パケット300は、図5に示されるように、ハウジング内に実質的に垂直に配置される。
ハウジング100は、図6及び7に示されるように、少なくとも1つのモジュール型燃料電池パケットを同様に支持することができる。特定の実施形態において、少なくとも1つのモジュール型燃料電池パケット200は、一対のモジュール型酸化剤熱交換パケット300の間にモジュール型酸化剤熱交換パケット300と間隔をおいて(例えば、酸化剤チャンバ310内に)配置され、よって燃料電池パケット200の側壁と熱交換パケット300の側壁の間に空気極反応チャンバ310Aが形成される。すなわち、熱交換パケット300はモジュール型燃料電池パケット200の燃料電池デバイス210の空気極側に面する。隣り合うパケットの(側壁間)間隔は、例えば、約0.5mm〜7mm、さらに好ましくは1mm〜5mmとすることができる。様々な実施形態にしたがえば、モジュール型固体酸化物燃料電池デバイスは‘n’個のモジュール型燃料電池パケット及び‘n+1’個のモジュール型酸化剤熱交換パケットを有することができる。例えば、モジュール型固体酸化物燃料電池デバイスは、1個のモジュール型燃料電池パケット及び2個のモジュール型酸化剤熱交換パケットを有することができる。別の実施形態において、‘n’は少なくとも2とすることができ、よって、モジュール型固体酸化物燃料電池デバイスがすくなくとも2個のモジュール型燃料電池パケット及びすくなくとも3個のモジュール型酸化剤熱交換パケットを有することができる。様々な実施形態にしたがえば、モジュール型固体酸化物燃料電池は、いかなる数のモジュール型燃料電池パケット及びいかなる数のモジュール型酸化剤熱交換パケットも有することができ、本明細書に挙げられる特定の数に限定されることはない。
図7は図4Aに示される熱交換パケットと同様の熱交換パケットを利用するモジュール型固体酸化物燃料電池システム内の、空気のような酸化剤及び燃料の流れの例を簡略に示す。図示されるように、空気はモジュール型酸化剤熱交換パケット300の内の少なくとも1つの酸化剤流入口306を通ってデバイスに入る。この実施形態において、空気は熱交換パケットを通って(すなわち熱交換パケット内に形成された内部空間301を通って)下方に(すなわち重力の方向に)流れ、流出口308を通って酸化剤チャンバを出る。空気は次いで、熱交換パケットの隣に配置されたモジュール型燃料電池パケットの空気極側または表面に沿って酸化剤チャンバ310を(したがって空気極反応チャンバ310Aを)通過する。上述したように、空気または酸化剤は空気極216と反応して酸素イオンをつくり、酸素イオンは電解質シート212を通して燃料極側または表面まで伝導される。水素ガスのような、ただしこれには限定されない、燃料は燃料流入口204を通ってモジュール型燃料電池パケット200,詳しくは燃料極チャンバ220に入る。燃料は燃料極において酸素イオンと反応して水及び電気をつくる。この反応の生成物(例えば排ガス)は流出口206を通って燃料極チャンバを出る。
図7に示されるように、2つのモジュール型燃料電池パケット200の間に配置されたモジュール型熱交換パケット300に関して、熱交換パケットの内部空間304を通過する空気はそれぞれの熱交換パケットのそれぞれの側壁302に定められた流出口308を通って出ることができる。このようにすれば、空気は、それぞれの熱交換パケット300に面する燃料電池パケット200のそれぞれの空気極側に沿って酸化剤チャンバ310を通過することができる。したがって、燃料電池パケット200の壁面及び隣り合うそれぞれの熱交換パケット(酸化剤熱交換パケット)300の壁面は、燃料電池パケット200の壁面と隣り合うそれぞれの熱交換パケット300の壁面の間を空気が流れる、空気極反応チャンバ310Aの、一部を、提供する。熱交換パケット300は、燃料電池パケット200によって発生する熱エネルギーを、例えば放射サセプタ及びスプレッダを用いて、熱交換パケット(酸化剤熱交換パケット)内の低温の空気に伝達することによって、燃料電池パケット200及び燃料電池スタック内の熱勾配の制御及び/または最小化に役立つ。すなわち、熱交換パケットの壁面は放射熱吸収により放射サセプタとして作用し、次いで熱を拡散させて、熱交換パケット300の内部空間301内の酸化剤に熱を供給する。例えば、熱は、
(i) 初めに、(熱は燃料の酸素イオンとの反応によりモジュール型燃料電池パケットの電解質シートに沿って発生して)燃料電池パケットから燃料電池パケット200と熱交換パケット300の間にある空気−すなわち、それぞれの熱交換パケットに面する燃料電池パケットのそれぞれの空気極側に沿う酸化剤チャンバ内の空気−に放射で伝達され,
(ii) 熱交換パケット300の壁面全体にわたって伝導で拡散し、次いで
(iii)最終的に対流及び/または気相伝導によって入り空気に伝達される。
図7に示される実施形態例において、空気(または本明細書に説明されない別の実施形態においては燃料)が初めに電極アセンブリ201からの熱放出によって予備加熱される。熱は初めに、燃料電池デバイス210または燃料電池パケット200の側壁から熱交換パケット300の合金壁面に放射で伝達され、次いで熱交換パケット300の壁面全体にわたって伝導で拡散し、最後に対流により、また量は少ないが気相伝導により、入り空気に伝達される。温度勾配は、50℃以内に維持できることが好ましく、35℃以内に維持できることがさらに好ましく、25℃以内に維持できることが最も好ましい。
別の実施形態においては、図8A及び8Bに示されるように、燃料パケット200及び内部熱交換パケット300を一体化することができる。図8Aは、燃料電池デバイス210がその上に搭載されていない、燃料電池パケットのフレームを示す。図8Bは、デバイス210がその上に搭載されている、図8Aに対応する燃料電池パケットの断面図を簡略に示す。図8A及び8Bの実施形態において、熱交換キャビティは、燃料電池パケット200の燃料極反応チャンバ220内にある内部空間または空気チャンバ301である。すなわち、この実施形態にしたがえば、一体型燃料電池パケットは、
a.一方の燃料電池デバイス210の燃料極側が他方の燃料電池デバイスの燃料極側に面するように配置される、2枚のプレーナ型複セル燃料電池デバイス210(すなわち、2枚のプレーナ型電解質支持燃料電池アレイ)、
b.燃料流入ポート204及び燃料排出ポート206,空気流入ポート306及び空気排出ポート308,及び1つないしさらに多くの燃料極チャンバ(すなわち燃料チャンバ)220を有する、燃料電池デバイス210を支持し、及び/または燃料電池デバイス210の間に配置される、フレーム202,及び
c.燃料電池デバイス210内に配置された内部酸化剤(例えば空気)チャンバ301,
を備え、
内部空気チャンバの側壁302は、燃料電池デバイス210から内部空気チャンバ301(すなわち酸化剤予備加熱チャンバ)を通過している酸化剤ガスへの熱エネルギーの伝達及び拡散の目的のため、燃料電池デバイス210に対して実質的にプレーナである。すなわち、図8Bに示される燃料電池パケットの側壁302は燃料電池デバイス210から内部空気チャンバ301を通過している酸化剤ガスに熱エネルギーを伝達及び拡散することができる。
この実施形態を利用することで、燃料電池パケットの間の空間が縮小されるから、燃料電池スタックの総体積を縮小することができ、これにより、例えば、重量、コスト及び始動時間/損失の低減のような、利点が得られる。
様々な実施形態にしたがえば、空気極との反応のため、すなわち、空気極とのより高速及び/またはより効率的な電気化学反応を可能にするために、酸化剤はあらかじめ定められた温度になければならない。別の実施形態にしたがえば、酸素イオンと反応して電気をつくるために、燃料もあらかじめ定められた温度にある必要があり得る。一実施形態において、供給される燃料または空気のあるいは両者の、あらかじめ定められた温度は、ほぼ600℃〜1000℃のような、約600℃より高いいずれかの温度とすることができる。必要に応じて、燃料または空気のあるいは両者の、あらかじめ定められた温度は、約650℃〜約900℃の範囲、好ましくは700℃〜約900℃または650℃〜800℃の範囲にあることができる。
特定の実施形態において、モジュール型燃料電池システムに初めに供給される空気または酸化剤は、特定のあらかじめ定められた温度に予備加熱することができる。必要に応じて、燃料の酸素イオンとの反応によってモジュール型燃料電池パケット200の電解質シート212に沿って熱が発生される。発生された熱エネルギーは熱交換パケット300のそれぞれの側壁を通して伝導し、熱交換パケットを通過している空気を予備加熱することができる。すなわち、一実施形態において、モジュール型熱交換パケット300はあらかじめ定められた熱伝導度を有する材料で構成することができる。したがって、一実施形態において、燃料電池パケットの反応によって発生された熱エネルギーは酸化剤を予備加熱するために用いることができ、これは反応をおこさせるために必要である。上述したように、プロセスを最初に開始するために、酸化剤を外部予備加熱手段によって予備加熱することができる。しかし、燃料電池パケット200における初期反応に際し、モジュール型固体酸化物燃料電池システムは実質的に、酸化剤または燃料あるいは両者のための、外部加熱手段を必要としない、自走型とすることができると考えられる。すなわち、モジュール型固体酸化物燃料電池システム内で初期反応がおこってしまえば、比較的低温の空気を熱交換パケット300の流入口を通して燃料電池システムに取り込むことができ、この空気を、熱交換パケット300を通過している間に漸次加熱することができ、空気極を通り過ぎるときまでに、空気極216と反応するに必要なあらかじめ定められた温度に到達させることができる。
当業者には当然であろうように、モジュール型固体酸化物燃料電池システム10内で反応がおこると、システム内のコンポーネントは熱膨張及び/または収縮に耐えることになる。一実施形態において、モジュール型熱交換パケット300のそれぞれ及びモジュール型燃料電池パケット200のそれぞれの間の空間離隔により、パケットのそれぞれは他のパケットと干渉せずに様々な率で膨張することができる。一実施形態において、例えば、モジュール型熱交換パケットは、例えば、モジュール型燃料電池パケットのフレームより高い熱膨張係数(CTE)を有する材料で構成できる側壁を有する。すなわち、モジュール型熱交換パケットは燃料電池パケットが受ける熱勾配より大きな熱勾配を受けることができ、したがって燃料電池パケットとは独立に動くことができて、燃料電池パケットとの干渉が回避される。
モジュール型固体酸化物燃料電池システム10の一実施形態例が図9A〜9Cに示される。さらに詳しくは、図9A及び9Bはモジュール型固体酸化物燃料電池システム10の上部を示し、図9Cはハウジングの酸化剤給送コンポーネントを示す。この実施形態において、低温の酸化剤(空気)は空気流入口405を通って主流入酸化剤気室400に入り、次いで流入空気ディフューザープレート410を通過し、副流入気室420に入り、ここで熱交換パケット300の流入口306にかけて空気が分布される。ディフューザープレートは熱交換パケット300に酸化剤を分散する。酸化剤、すなわち空気は、上述したように熱交換パケット300を通って熱を取り込んだ後、熱交換パケット300を出て、少なくとも1つのディフューザープレート430A及び/または430Bを有することができる酸化剤巡回気室430に入り、分布されてから、図10A及び10Bに示されるように空気極反応チャンバ310Aに入る。空気は次いで空気極反応チャンバ310Aを出て、主排出酸化剤(空気)気室455に入ってから主空気排出ポート460を通って排出され(例えば図11を見よ)、主空気排出ポート460から主排出空気室462に入ることができる。燃料電池パケット200及び熱交換パケット300は、例えば図9A〜9C及び10A〜10Bに示されるように、ハウジング100によってハウジング内に支持される。流入燃料マニフォールド250が燃料電池パケット200の燃料流入口204に連結されて、燃料極チャンバ220に新鮮な燃料を供給することに注意されたい。燃料流出口206は、「費消燃料」が燃料極チャンバ220から流出して排出燃料マニフォールド260に流入できるように、燃料電池パケットの排出燃料マニフォールド260に連結される。
モジュール型固体酸化物燃料電池システム10は、図10A及び10Bに示されるように、副(または二次)空気排出経路を有することができる。この副(または二次)空気排出経路は熱始動プロセスのための空気流入口405における大空気流量を可能にし、同時に空気極反応チャンバ310Aに入る酸化剤流量の制御を可能にするために用いることができるから有益である。これは副酸化剤排出配管472(例えば図11を見よ)の副酸化剤排出口470に配置される(図11に示される)ゲートバルブ465によって達成される。
(閉位置にある)ゲートバルブ465は副排出酸化剤(例えば空気)気室475(図10A及び10B)における背圧を誘起及び/または制御して、空気に空気極反応チャンバ310Aを優先的に通過させるであろう。あるいは、開かれたゲートバルブ465は、この場合は副酸化剤排出口470を通る排出空気流路が優先されるであろうように、背圧を(主排気経路の背圧より低く)下げるであろう。図10A及び10Bに(断面で)空気流路が示される。さらに詳しくは、ゲートバルブ465が閉じられている場合には、空気は空気巡回気室480から、空気に空気極反応チャンバ310Aを通過させる、空気巡回ディフューザー485内に流れるであろう。ゲートバルブ465が開かれている場合には、いくらかの空気が空気巡回気室480から副空気排出口470内に流れて、空気極反応チャンバ310A内の背圧を下げるであろう。したがって、燃料電池スタックアセンブリ10は、副排気口470内の副酸化剤排出流の酸化剤圧力(例えば背圧)を調整することによって、高温の入り酸化剤をスタックの空気極反応チャンバ全体にわたって分布させることで、動作温度に至らせることができる。
(a)主排出空気室455を(その一部を)形成するため及び(b)動作している燃料電池デバイス210によって発生される熱を、入り空気を予備加熱するため及び等温環境を提供するために用いることができるように、スタックコアを断熱するため、の2つの理由によって、断熱材500(例えば、図10A,10B及び11を見よ)がスタックコア(すなわち、交互する燃料パケットと熱交換パケットのスタック、または燃料パケットのスタック(空気チャンバを内部に収めている燃料電池パケットを示す、図8A,8Bを見よ))の周囲に配置される。入り空気は、熱交換パケット300の内部、または(例えば、図8A,8Bに示されるような)燃料パケットの内部空気チャンバ301の内側(すなわち酸化剤予備加熱チャンバの内側)で予備加熱することができる。
燃料電池スタックコアを囲む断熱材500は、(i)絶縁体とスタックコアの間にあるキャビティ、すなわち主排出空気室462,及び(ii)空気キャビティ(すなわち主排出空気室462)と周囲空気の間の開口を有するか、及び/または形成することができる。いくつかの実施形態例において、排出酸化剤ガスは、空気キャビティと周囲空気の間の開口を通って進む前に、燃料電池スタックコア(例えば燃料電池パケットの間)及び断熱材500を通って進む。
(a)熱始動の補助、(b)スタックコアに対する等温動作環境の補助及び(c)無動作スタンドバイ状態のための熱供給の目的のために、放射加熱パネル520がスタックコアを囲む。放射加熱パネル520はスタックコアのそれぞれの面に平行におくことができる。放射加熱パネル520は燃焼熱交換機または復熱装置で置き換えることもできるであろう。
燃料電池システムは、燃料電池パケットと接続するため及び燃料電池パケット内に収められている燃料電池デバイスのそれぞれのセットへ/からの高温導電路を形成するために形成された複数の導電構造体600(図10Bを見よ)も有することができる。
すなわち、図9A〜9C,10A,10B及び11を参照し、いくつかの実施形態例にしたがえば、燃料電池システム10は、
a.それぞれがフレーム及び2つの燃料電池デバイス210(例えば、2枚のプレーナ型電解質支持燃料電池アレイ)を有し、一方の燃料電池デバイス210の燃料極側が他方の燃料電池デバイス210の燃料極側に面するように燃料電池デバイス210が配置され、フレームがデバイス210と組み合わされて燃料極(燃料)チャンバ220を形成している、複数の燃料電池パケット200,
b.内部空間(空気チャンバ)301を有する複数の熱交換パケット300,ここでそれぞれの熱交換パケット300は隣り合う熱交換パケット300と組み合わされて、熱交換パケット300に実質的に平行で、熱交換パケット300の間に挿入された、酸化剤チャネル(チャンバ310)を形成する、
c.ハウジング100であって、燃料電池パケット200及び熱交換パケット300を、熱交換パケット300が、燃料電池パケット200に面し、燃料電池パケット200及びハウジング100と組み合わされて、空気極反応チャンバ310Aを、少なくともその一部を、形成するように、支持及び封入する、ハウジング100,
d.酸化剤を熱交換パケット300に分散させるための1つないしさらに多くのディフューザープレート410の一方の側に連結された流入酸化剤気室400,
e.空気極反応チャンバ310Aからの「排出」酸化剤を集めるために空気極反応チャンバ310Aに動作可能な態様で連結された主排出酸化剤気室455,
f.燃料電池パケット200の燃料流入口204に連結され、燃料極チャンバ220内に新鮮な燃料を供給する、流入燃料マニフォールド250,及び
g.「費消燃料」が燃料極チャンバ220から流れ込むことができるように、燃料電池パケット200の燃料流出口206に連結された、排出燃料マニフォールド260,
を備える。
上述したように、(a)熱交換パケット300の酸化剤流出口308及び(b)酸化剤(空気極)反応チャンバ310Aの流入側に巡回気室430を連結することができる。巡回気室430は、例えば、(a)熱交換パケット300の排出側及び/または(b)酸化剤(空気極)反応チャンバ310Aの酸化剤流入側に動作可能な態様で連結される1つないしさらに多くのディフューザープレート430A,430Bを有することができる。燃料電池システム10は、副排出熱交換気室475に連結された副酸化剤排出マニフォールド470,及び排出熱交換気室475内の背圧を制御するためのバルブ465も備えることができる。
一実施形態にしたがえば、燃料電池パケット200,熱交換パケット300,ハウジング100,流入酸化剤気室400及びディフューザープレート410,排出酸化剤気室455,排出酸化剤マニフォールド、流入燃料マニフォールド450及び/または排出燃料マニフォールド460は、ガラス、ガラス-セラミックまたはセラミックのコーティング、例えばアルミナコーティングを有する。このコーティングは、酸化物の蒸散を防止し、燃料電池を燃料電池パケット300のフレームから電気的に絶縁することができる。
本発明のいくつかの、説明のための、特定の実施形態に関して本発明を詳細に説明したが、添付される特許請求の範囲に定められるような本発明の広汎な精神及び範囲を逸脱しない数多くの改変が可能であるから、本発明がそのような実施形態に限定されると見なされるべきではないことは当然である。
10 モジュール型固体酸化物燃料電池システム
100 ハウジング
200 モジュール型燃料電池パケット
202 燃料電池パケットフレーム
203 ステンレス鋼シート
204 燃料流入口
206 燃料流出口
210 燃料電池デバイス(電極アセンブリ)
212 電解質シート
214 燃料極
216 空気極
220 燃料極チャンバ(燃料チャンバ)
300 モジュール型酸化剤熱交換パケット
301 モジュール型酸化剤熱交換パケット内部空間(熱交換キャビティ)
302 モジュール型酸化剤熱交換パケット側壁
306 酸化剤流入口
308 酸化剤流出口
310 酸化剤チャンバ
310A 空気極反応チャンバ
400 流入酸化竿気室
410 ディフィーザープレート
455 主排出酸化剤気室
500 断熱材
520 放射加熱パネル

Claims (15)

  1. 燃料電池システムにおいて、
    a.複数の燃料電池パケットであって、それぞれのパケットが、少なくとも1つの燃料流入口、少なくとも1つの燃料流出口、フレーム及び2つの複セル燃料電池デバイスを有し、一方の燃料電池デバイスの燃料極側が他方の燃料電池デバイスの燃料極側に面するように前記燃料電池デバイスが配置され、前記2つの燃料電池デバイスが、組み合わされて、前記燃料流入口及び前記燃料流出口に連結された燃料チャンバの少なくとも一部を形成する、複数の燃料電池パケット、
    b.複数の熱交換パケットであって、それぞれのパケットが、少なくとも1つの酸化剤流入口、少なくとも1つの酸化剤流出口、並びに前記少なくとも1つの酸化剤流入口及び前記少なくとも1つの酸化剤流出口と連結された内部酸化剤チャンバを有し、前記熱交換パケットが、前記燃料電池パケットに面し、前記熱交換パケットと前記燃料電池パケットの間に複数の空気極反応チャンバを、少なくともその一部を、形成するように、前記熱交換パケットが、前記燃料電池パケットに平行であり、前記燃料電池パケット間に挿入されている、複数の熱交換パケット、
    c.前記燃料電池パケット及び前記熱交換パケットを支持及び封入するハウジング、
    d.前記熱交換パケットの前記酸化剤流入口に動作可能な態様で連結された流入酸化剤気室、
    e.前記空気極反応チャンバに動作可能な態様で連結された排出酸化剤気室、
    f.前記燃料電池パケットの前記燃料流入口に連結された流入燃料マニフォールド、及び
    g.前記燃料電池パケットの前記燃料流出口に連結された排出燃料マニフォールド、
    を備えることを特徴とする燃料電池システム。
  2. 少なくとも1つのディフューザープレートを有する酸化剤巡回気室を備え、前記酸化剤巡回気室が前記熱交換パケットの前記酸化剤流出口及び前記空気極反応チャンバの前記酸化剤流入口側に動作可能な態様で連結されていることを特徴とする請求項1に記載の燃料電池システム。
  3. 請求項2に記載の燃料電池システムにおいて、(i)副酸化剤気室に連結され、(ii)前記副酸化剤気室内の背圧を制御できるバルブを有する、副酸化剤排出口をさらに備えることを特徴とする燃料電池システム。
  4. 請求項1に記載の燃料電池システムにおいて、(i)副酸化剤気室に連結され、(ii)前記副酸化剤気室内の背圧を制御できるバルブを有する、副酸化剤排出口をさらに備えることを特徴とする燃料電池システム。
  5. 前記燃料電池パケットが、厚さが1mmより薄い、ステンレス鋼合金で作成されていることを特徴とする請求項1に記載の燃料電池システム。
  6. 前記熱交換パケットが、厚さが1mmより薄い、ステンレス鋼合金で作成されていることを特徴とする請求項1に記載の燃料電池システム。
  7. 前記熱交換パケットがフレーム及び2枚のプレーナ型電解質シートを有し、前記電解質シートの間に形成される内部チャンバが酸化剤予備加熱チャンバを形成するように、前記シートが互いに平行に配置されていることを特徴とする請求項1に記載の燃料電池システム。
  8. 前記燃料電池パケット内で燃料が流れる方向が実質的に重力の方向であることを特徴とする請求項1に記載の燃料電池システム。
  9. (a)前記燃料電池パケット、(b)前記熱交換パケット、(c)前記ハウジング、(d)前記流入酸化剤気室、(e)前記排出酸化剤気室、(f)前記流入燃料マニフォールド及び/または(g)前記排出燃料マニフォールドが、酸化物の蒸散を防止できるコーティングを有することを特徴とする請求項1に記載の燃料電池システム。
  10. 前記燃料電池システムが燃料電池スタックコアを備え、前記燃料電池スタックコアが前記複数の燃料電池パケットを備え、前記燃料電池システムがさらに前記燃料電池スタックコアを囲む断熱材を備え、前記断熱材が、
    a.前記断熱材と前記燃料電池コアの間に配置された空気キャビティ、及び
    b.前記空気キャビティと周囲空気の間の開口、
    を有することを特徴とする請求項1に記載の燃料電池システム。
  11. 排出酸化剤ガスが、前記開口を通過する前に、前記燃料電池スタックコア及び前記断熱材を通過することを特徴とする請求項10に記載の燃料電池システム。
  12. 前記断熱材が、前記燃料電池コアのそれぞれの面に平行な埋込電気加熱パネルをさらに有することを特徴とする請求項11に記載の燃料電池システム。
  13. 燃料電池パケットにおいて、
    a.一方の燃料電池アレイの燃料極側が他方の燃料電池アレイの燃料極側に面するように配置された、2枚のプレーナ型電解質支持燃料電池アレイ、
    b.燃料流入ポート及び燃料排出ポート、空気流入ポート及び空気排出ポート、及び1つないしさらに多くの燃料極チャンバを有する、前記燃料電池アレイの間に配置された、フレーム、及び
    c.前記燃料電池アレイの間に配置された内部酸化剤チャンバであって、前記内部酸化剤チャンバが前記燃料電池アレイから前記内部酸化剤チャンバを通過している酸化剤に熱エネルギーを伝達及び拡散することができる壁体を有する、内部酸化剤チャンバ、
    を備えることを特徴とする燃料電池パケット。
  14. 熱交換パケットにおいて、相互に突き合わされてはいるが、熱勾配がかけられたときにそれぞれが互いに対して滑ることができるように、拘束はされていない、2枚の成形合金壁体を有することを特徴とする熱交換パケット。
  15. 燃料電池スタックを動作温度に至らせる方法において、前記方法が、副排出流の背圧を調整することによって空気極反応チャンバ全体に高温の入り酸化剤を分布させる工程を含むことを特徴とする方法。
JP2011511612A 2008-05-30 2009-05-20 固体酸化物燃料電池システム Pending JP2011522375A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13047508P 2008-05-30 2008-05-30
US61/130,475 2008-05-30
PCT/US2009/003110 WO2009148505A2 (en) 2008-05-30 2009-05-20 Solid oxide fuel cell systems

Publications (1)

Publication Number Publication Date
JP2011522375A true JP2011522375A (ja) 2011-07-28

Family

ID=41057476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011511612A Pending JP2011522375A (ja) 2008-05-30 2009-05-20 固体酸化物燃料電池システム

Country Status (5)

Country Link
US (1) US20110117466A1 (ja)
EP (1) EP2291878A2 (ja)
JP (1) JP2011522375A (ja)
CN (1) CN102047481B (ja)
WO (1) WO2009148505A2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101398584B1 (ko) * 2012-06-01 2014-05-22 충북대학교 산학협력단 열교환 성능을 갖는 연료전지 스택의 핫박스 장치
WO2014156314A1 (ja) * 2013-03-29 2014-10-02 日本特殊陶業株式会社 燃料電池
US10862141B2 (en) 2016-08-11 2020-12-08 Cummins Enterprise Llc Multi-stack fuel cell systems and heat exchanger assemblies
US11398638B2 (en) 2017-08-10 2022-07-26 Nissan Motor Co., Ltd. Cell structure for fuel cell and fuel cell system

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2796208A1 (en) * 2010-04-15 2011-10-20 Ceramic Fuel Cells Limited Thermal management in a fuel cell stack
DE102010027690A1 (de) * 2010-07-20 2012-01-26 Siemens Aktiengesellschaft Energiespeichervorrichtung und Verfahren zum reversiblen Speichern von Energie
US8662153B2 (en) * 2010-10-04 2014-03-04 Lg Chem, Ltd. Battery cell assembly, heat exchanger, and method for manufacturing the heat exchanger
US11271240B2 (en) * 2019-05-28 2022-03-08 Bloom Energy Corporation Fuel cell column containing electrically insulated fuel manifold and manifold jumper
CN110350229B (zh) * 2019-07-22 2020-09-25 武汉华科福赛新能源有限责任公司 一种模块化固体氧化物燃料电池电堆
AU2020399915B2 (en) * 2019-12-10 2023-12-21 Sunfire Gmbh Solid oxide cell assembly

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03238762A (ja) * 1990-02-15 1991-10-24 Ngk Insulators Ltd 固体電解質型燃料電池
JPH0668900A (ja) * 1992-08-13 1994-03-11 Yoshida Kogyo Kk <Ykk> 固体電解質型燃料電池発電装置
JPH07272743A (ja) * 1994-02-19 1995-10-20 Rolls Royce Plc 固体酸化物燃料電池スタック
JP2000182652A (ja) * 1998-12-15 2000-06-30 Kansai Electric Power Co Inc:The 固体電解質型燃料電池アセンブリ及び固体電解質型燃料電池モジュール
WO2003081693A2 (en) * 2001-11-21 2003-10-02 Corning Incorporated Solid oxide fuel cell stack and packet designs
JP2006139985A (ja) * 2004-11-11 2006-06-01 Mitsubishi Heavy Ind Ltd 燃料電池装置及びこれを備えた燃料電池モジュール
WO2006060143A2 (en) * 2004-11-30 2006-06-08 Corning Incorporated Method of making a fuel cell device assembly and frame
WO2006060155A2 (en) * 2004-11-30 2006-06-08 Corning Incorporated Fuel cell device assembly and frame
WO2006060247A2 (en) * 2004-11-30 2006-06-08 Corning Incorporated Fuell cell stack assembly
WO2007111836A1 (en) * 2006-03-28 2007-10-04 Corning Incorporated Solid oxide fuell cell assembly with replaceable stack and packet modules
JP2007328989A (ja) * 2006-06-07 2007-12-20 Hitachi Ltd 固体酸化物形燃料電池システムおよびその起動方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2215035A (en) * 1988-02-04 1989-09-13 Powerwash Systems Limited Improvements relating to stoves
JPH0739030B2 (ja) * 1990-01-22 1995-05-01 東洋ラジエーター株式会社 熱交換器ろう付け用ハンガ
JPH04340088A (ja) * 1991-02-04 1992-11-26 Kazumi Seisakusho:Kk プレートフィン式熱交換器
FR2690986B1 (fr) * 1992-05-05 1998-06-12 Fernandez Jean Noel Echangeurs a plaques soudees a circuit autoresistant a la pression et nouvelles plaques permettant la realisation de tels echangeurs.
JPH07159063A (ja) * 1993-12-06 1995-06-20 Tokyo Gas Co Ltd 二重管式オープンラック型気化装置
JPH08189791A (ja) * 1995-01-09 1996-07-23 Takara Standard Co Ltd 熱交換器における伝熱管の支持構造
US20010025705A1 (en) * 1996-02-01 2001-10-04 Nash James S. Offset counterflow matrix fin for a counterflow plate-fin heat exchanger with crossflow headers
TW417249B (en) 1997-05-14 2001-01-01 Applied Materials Inc Reliability barrier integration for cu application
JP3882965B2 (ja) * 1997-11-26 2007-02-21 石川島播磨重工業株式会社 燃料電池発電設備
WO2001089017A1 (en) * 2000-05-18 2001-11-22 Corning Incorporated High performance solid electrolyte fuel cells
JP4843147B2 (ja) * 2000-05-30 2011-12-21 本田技研工業株式会社 燃料電池暖機システム
EP1371104B1 (de) * 2001-03-17 2005-11-02 Bayerische Motoren Werke Aktiengesellschaft Brennstoffzelle mit integriertem wärmetauscher
US6635375B1 (en) * 2001-05-29 2003-10-21 The United States Of America As Represented By The United States Department Of Energy Planar solid oxide fuel cell with staged indirect-internal air and fuel preheating and reformation
FR2827427B1 (fr) 2001-07-12 2003-11-28 Commissariat Energie Atomique Pile a combustile a gestion thermique optimisee
AUPS024302A0 (en) 2002-01-31 2002-02-21 Ceramic Fuel Cells Limited Thermal management of fuel cells
US6967064B2 (en) * 2002-06-24 2005-11-22 Delphi Technologies, Inc. Co-flow anode/cathode supply heat exchanger for a solid-oxide fuel cell assembly
US7279246B2 (en) * 2002-06-24 2007-10-09 Delphi Technologies, Inc. Solid-oxide fuel cell system having an integrated air/fuel manifold
US20040028972A1 (en) 2002-08-12 2004-02-12 General Electric Company Method and apparatus for fuel cell thermal management
US6844100B2 (en) * 2002-08-27 2005-01-18 General Electric Company Fuel cell stack and fuel cell module
KR100628799B1 (ko) * 2002-11-12 2006-09-26 닛산 지도우샤 가부시키가이샤 연료 전지 시스템
CA2415536A1 (en) * 2002-12-31 2004-06-30 Long Manufacturing Ltd. Reformer for converting fuel to hydrogen
US7169495B2 (en) * 2003-05-06 2007-01-30 Versa Power Systems, Ltd. Thermally integrated SOFC system
DE10323883A1 (de) * 2003-05-26 2004-12-30 Siemens Ag Elektrochemische Batterie
US7320836B2 (en) * 2003-12-05 2008-01-22 Siemens Power Generation, Inc. Integral air preheater and start-up heating means for solid oxide fuel cell power generators
US20060204796A1 (en) * 2005-03-08 2006-09-14 General Electric Company Systems and Methods for Minimizing Temperature Differences and Gradients in Solid Oxide Fuel Cells
US7771884B2 (en) * 2006-04-19 2010-08-10 Delphi Technololgies, Inc. Solid oxide fuel cell stack having an integral gas distribution manifold

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03238762A (ja) * 1990-02-15 1991-10-24 Ngk Insulators Ltd 固体電解質型燃料電池
JPH0668900A (ja) * 1992-08-13 1994-03-11 Yoshida Kogyo Kk <Ykk> 固体電解質型燃料電池発電装置
JPH07272743A (ja) * 1994-02-19 1995-10-20 Rolls Royce Plc 固体酸化物燃料電池スタック
JP2000182652A (ja) * 1998-12-15 2000-06-30 Kansai Electric Power Co Inc:The 固体電解質型燃料電池アセンブリ及び固体電解質型燃料電池モジュール
WO2003081693A2 (en) * 2001-11-21 2003-10-02 Corning Incorporated Solid oxide fuel cell stack and packet designs
JP2005520306A (ja) * 2001-11-21 2005-07-07 コーニング インコーポレイテッド 固体酸化物燃料電池スタック及びパケットの構造
JP2006139985A (ja) * 2004-11-11 2006-06-01 Mitsubishi Heavy Ind Ltd 燃料電池装置及びこれを備えた燃料電池モジュール
WO2006060155A2 (en) * 2004-11-30 2006-06-08 Corning Incorporated Fuel cell device assembly and frame
WO2006060143A2 (en) * 2004-11-30 2006-06-08 Corning Incorporated Method of making a fuel cell device assembly and frame
WO2006060247A2 (en) * 2004-11-30 2006-06-08 Corning Incorporated Fuell cell stack assembly
JP2008522382A (ja) * 2004-11-30 2008-06-26 コーニング インコーポレイテッド 燃料電池装置アセンブリおよびフレームの作成方法
JP2008522383A (ja) * 2004-11-30 2008-06-26 コーニング インコーポレイテッド 燃料電池スタックアセンブリ
JP2008523548A (ja) * 2004-11-30 2008-07-03 コーニング インコーポレイテッド 燃料電池装置アセンブリおよびフレーム
WO2007111836A1 (en) * 2006-03-28 2007-10-04 Corning Incorporated Solid oxide fuell cell assembly with replaceable stack and packet modules
JP2009531830A (ja) * 2006-03-28 2009-09-03 コーニング インコーポレイテッド 交換可能なスタック及びパケットモジュールを有する集成固体酸化物燃料電池装置
JP2007328989A (ja) * 2006-06-07 2007-12-20 Hitachi Ltd 固体酸化物形燃料電池システムおよびその起動方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101398584B1 (ko) * 2012-06-01 2014-05-22 충북대학교 산학협력단 열교환 성능을 갖는 연료전지 스택의 핫박스 장치
WO2014156314A1 (ja) * 2013-03-29 2014-10-02 日本特殊陶業株式会社 燃料電池
CN105103358A (zh) * 2013-03-29 2015-11-25 日本特殊陶业株式会社 燃料电池
US10396389B2 (en) 2013-03-29 2019-08-27 Ngk Spark Plug Co., Ltd. Fuel cell stack
US10862141B2 (en) 2016-08-11 2020-12-08 Cummins Enterprise Llc Multi-stack fuel cell systems and heat exchanger assemblies
US11398638B2 (en) 2017-08-10 2022-07-26 Nissan Motor Co., Ltd. Cell structure for fuel cell and fuel cell system

Also Published As

Publication number Publication date
CN102047481B (zh) 2013-09-25
EP2291878A2 (en) 2011-03-09
CN102047481A (zh) 2011-05-04
WO2009148505A3 (en) 2010-02-18
US20110117466A1 (en) 2011-05-19
WO2009148505A2 (en) 2009-12-10

Similar Documents

Publication Publication Date Title
JP2011522375A (ja) 固体酸化物燃料電池システム
US8021794B2 (en) Fuel cell with cross-shaped reformer
JP5109253B2 (ja) 燃料電池
US20060147771A1 (en) Fuel cell system with independent reformer temperature control
US20070281194A1 (en) Portable fuel cell assembly
US10141586B2 (en) Fuel cell module, combined power generation system including the same, and temperature control method of fuel cell power generation section
US7524572B2 (en) Fuel cell system with thermally integrated combustor and corrugated foil reformer
US6756144B2 (en) Integrated recuperation loop in fuel cell stack
JP5070885B2 (ja) 燃料電池
JP2009193808A (ja) 固体酸化物形燃料電池
JP5400141B2 (ja) 熱交換機を備える固体酸化物燃料電池システム
JP2007026928A (ja) 燃料電池
JP4544055B2 (ja) 燃料電池
JPH1167258A (ja) 燃料電池
US20110111311A1 (en) Solid oxide fuel cell
JP5239174B2 (ja) 燃料電池
JP2007018966A (ja) 燃料電池
JP5216197B2 (ja) 燃料電池発電システム
JP2024012000A (ja) 燃料電池モジュールおよび燃料電池モジュールのガス供給方法
JPH07176314A (ja) 平板型固体電解質燃料電池のプレリフォーマ
JP2016072199A (ja) 燃料電池セルスタック

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130730

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131224