JP2011226524A - 自動変速機の制御装置 - Google Patents

自動変速機の制御装置 Download PDF

Info

Publication number
JP2011226524A
JP2011226524A JP2010095466A JP2010095466A JP2011226524A JP 2011226524 A JP2011226524 A JP 2011226524A JP 2010095466 A JP2010095466 A JP 2010095466A JP 2010095466 A JP2010095466 A JP 2010095466A JP 2011226524 A JP2011226524 A JP 2011226524A
Authority
JP
Japan
Prior art keywords
oil temperature
shift
lockup clutch
control
map
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010095466A
Other languages
English (en)
Other versions
JP5632183B2 (ja
Inventor
Yusuke Yoshimura
祐亮 吉村
Suguru Ishida
傑 石田
Yuya Kitsuta
祐也 橘田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2010095466A priority Critical patent/JP5632183B2/ja
Publication of JP2011226524A publication Critical patent/JP2011226524A/ja
Application granted granted Critical
Publication of JP5632183B2 publication Critical patent/JP5632183B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Fluid Gearings (AREA)
  • Control Of Transmission Device (AREA)

Abstract

【課題】作動油温の上昇に対してロックアップクラッチ装置の保護を図ると共に効率的なロックアップ制御を行う。
【解決手段】ロックアップクラッチ作動制御特性を示すLCマップを、1つの変速段につき3パターン以上用意する。各パターンは、自動変速機の作動油温を引数として選択されるものであり、該作動油温が高くなるにつれて、ロックアップクラッチをONとする車速要素の最低限界値が高速側に移行するように設定されている。現在の作動油温に応じて該3以上のパターン(LCマップ)のいずれかを選択し、選択したパターンに従い、トルクコンバータのロックアップクラッチの作動を制御する。また、選択されたパターンが示すロックアップクラッチ作動制御特性においてロックアップクラッチをOFFとする領域が、変速制御特性(変速シフトマップ)におけるアップシフト又はダウンシフトを指示する領域に含まれないように、該変速制御特性を変更する。
【選択図】 図4

Description

本発明は、自動車等の乗物における自動変速機の制御装置に関し、特に自動変速機の作動油温に応じたトルクコンバータのロックアップクラッチ作動制御特性の変更制御並びに該ロックアップクラッチ作動制御特性の変更制御に連動した変速制御特性の変更制御に関する。
自動変速機の作動油温は、トルクコンバータあるいは変速機構等に発熱が生じるような条件下において上昇する。自動変速機の作動油温が上昇した場合、オイルポンプの吐出量が減少し、油圧に誤差が生じるため、種々の油圧制御ユニットの動作に影響を与える。また、作動油温の上昇は、各部のシール性の低下や作動油自体の劣化を招く等の不都合をもたらす。このような事情に鑑み、自動変速機の作動油温を考慮した制御が従来より行われている。自動変速機の作動油温を考慮したトルクコンバータロックアップクラッチ作動制御特性の変更制御に関しては、下記特許文献1及び2に示すような先行技術がある。また、作動油温を考慮した自動変速機の変速制御特性の変更制御に関しては、下記特許文献3及び4に示すような先行技術がある。
特許文献1には、作動油の上昇の一因がトルクコンバータの滑りに起因することに鑑み、ロックアップクラッチ制御用のマップとして高油温用のマップと低油温用のマップを持ち、自動変速機の作動油温に応じて使用するマップを選択することが示されている。高油温用のマップにおいては、ロックアップクラッチON領域の低速側にスリップ領域(クラッチ半締結領域)を設定し、該スリップ領域よりも低速側をロックアップクラッチOFF領域としている。このように高油温用のマップにおいてスリップ領域を設定することにより、ロックアップクラッチを半締結させることによってトルクコンバータそれ自体に滑りが生じる事態を回避し、これによる作動油温の上昇を防ぎ、油温上昇による不都合を解決しようとしている。なお、この場合、マップを切り換える基準となる油温は、エンジン負荷にかかわらず、一定値を基準としている。
特許文献2には、ロックアップクラッチをスリップさせるスリップ制御を行う際に、発熱量が基準値以上である状態が設定時間以上継続したとき、その間のスロットル開度に基づいてスリップ制御領域を変更しスリップ制御を終了させることが示されている。これにより、発熱が生じないようにスリップ制御領域を設定変更し、作動油温の上昇を防ぎ、油温上昇による不都合を解決しようとしている。
特許文献3には、自動変速機の作動油温が所定温度より高くなった時に、ダウンシフト点を定常の変速パターンから高速側へシフトさせた油温上昇防止モードのパターンに変更することが示されている。これにより、登坂時等、車両の高負荷時に作動油温が上昇した時、定常時よりも高速側でダウンシフトが行われるようにして、負荷の低減と作動油温の低下を図るようにしている。
特許文献4には、自動変速機の作動油温が所定温度より高くなった時に、エンジンスロットル開度(エンジン負荷)が所定値以上の領域において変速パターンを低車速側(若しくは高車速側)にシフトさせる一方で、エンジンスロットル開度(エンジン負荷)が所定値未満の領域においては変速パターンのシフト(変更)を行わないようにしたことが示されている。
特開平2−17262号 特許第3837787号 特公平5−51489号 特許第2817851号
上述したように、自動変速機の作動油温が上昇すると、オイルポンプの吐出量が減少する。このことは、ロックアップクラッチ制御に必要な作動油圧を確保することができなくなる(クラッチ容量が低下する)ことを意味し、ロックアップクラッチをONしても確実な締結がなされず、クラッチの滑りによって装置の劣化及び更なる発熱を招くおそれがある。よって、上記従来技術が開示若しくは示唆するように、作動油温(若しくは発熱量)が一定値以上となったときに、トルクコンバータロックアップクラッチ作動制御特性を高車速側にシフト(変更)することで、より高車速になったときつまりオイルポンプ回転数が上がって必要なクラッチ容量を確保できるようになったときにロックアップクラッチをONするように制御することは、ロックアップクラッチ装置の保護及び油温の更なる上昇を防ぐために有効である。
しかし、上記従来技術においては、作動油温(若しくは発熱量)を一定値以下に制御するという観点でしか制御がなされていなかったため、作動油温とオイルポンプ回転数(すなわちエンジン出力回転数若しくは変速機入力軸回転数)との相関関係によってロックアップクラッチ制御可能領域を可変的に決めることができるという考察が欠如していた。そのため、ロックアップクラッチ制御可能領域を設定するロックアップクラッチ作動制御特性の変更態様は、作動油温(若しくは発熱量)の一定値のみを基準にして一義的に定められており、作動油温が該一定値以下であっても、オイルポンプ回転数(すなわちエンジン出力回転数若しくは変速機入力軸回転数)によっては、ロックアップクラッチ制御可能な(クラッチONとしてもよい)場合があるにも係わらず、ロックアップクラッチ制御不可(クラッチOFF)としていた。そのため、効率的なロックアップ制御が行われず、動力伝達効率及び燃費の面で改善されるべき余地があった。
ところで、作動油温の上昇に応じてロックアップクラッチ作動制御特性が高車速側へ変更された場合、変更前のロックアップクラッチ作動制御特性においてはクラッチONであったものが変更後ではクラッチOFFに切り替わる部分的領域が発生する。そのような部分的領域が変速制御特性(変速パターン)においてアップシフトの対象領域に入っているとすると、作動油温の上昇に応じてロックアップクラッチ作動制御特性が高車速側へ変更されたとき、現車速が当該部分的領域内に属している場合、ロックアップクラッチの状態が直ちにONからOFFに切り替わり、かつ、変速段が次段にアップシフトされ、変速段の切り替わりによって、間もなくロックアップクラッチの状態がONに切り替わる、という事態が生じることがあり得る。すなわち、アップシフト時に、ロックアップクラッチがONからOFFに切り替わり、その後いくらも経たずに、また、ONに切り替わる、という現象が起こる。ダウンシフト時においても同様の現象が起こり得る。このような現象は、ドライバビリティ及び燃費に良い影響を与えないので、改善されるべきである。しかし、従来技術においては、ロックアップクラッチ作動制御特性の変更制御が上記のような現象を引き起こすおそれがあることが考慮されておらず、これを改善することができなかった。
本発明は上述の点に鑑みてなされたもので、作動油温の上昇に対してロックアップクラッチ装置の保護を図ると共に効率的なロックアップ制御も行えるようにした自動変速機の制御装置を提供しようとするものである。また、ロックアップクラッチ作動制御特性の変更制御に協調させた変速制御特性(変速シフトパターン)の変更制御を行うことでドライバビリティ及び燃費の改善を図ることができるようにした自動変速機の制御装置を提供しようとするものである。
本発明に係る自動変速機の制御装置は、車速要素とエンジン負荷要素とを引数としてトルクコンバータのロックアップクラッチ作動制御形態を決定するロックアップクラッチ作動制御特性を1つの変速段につき3パターン以上提供するように構成されたロックアップクラッチ作動制御特性提供手段と、ここで、各パターンは、自動変速機の作動油温を引数として選択されるものであり、該作動油温が高くなるにつれて、ロックアップクラッチをONとする車速要素の最低限界値が高速側に移行するように設定されてなり、自動変速機の現在の作動油温を示す情報を取得する手段と、取得した自動変速機の現在の作動油温を示す情報に応じて前記3以上のパターンのいずれかを選択する手段と、車速要素とエンジン負荷要素とを引数として前記選択されたパターンからロックアップクラッチ作動制御形態を決定し、決定したロックアップクラッチ作動制御形態に従いトルクコンバータのロックアップクラッチの作動を制御する制御手段とを具備する。なお、上記で括弧内に記載した符号は、以下説明する実施例における対応要素を例示的に示すものである。
本発明によれば、1つの変速段につき3パターン以上のロックアップクラッチ作動制御特性が提供されるようになっており、各パターンは、作動油温が高くなるにつれて、ロックアップクラッチをONとする車速要素の最低限界値が高速側に移行するように設定されている。これによって、作動油温の上昇に応じて必要なロックアップクラッチ容量を確保した上でロックアップクラッチをONとする制御を行うようになっており、ロックアップクラッチ装置の保護を図ることができ、かつ、3以上の油温領域のそれぞれに応じて異なるパターンからなるロックアップクラッチ作動制御特性を使用するので、ロックアップクラッチ装置の保護性能を高めかつ効率的なロックアップ制御を行うことができ、燃費及びドライバビリティの面で有利である。
本発明の実施態様によれば、自動変速機の変速段のアップシフト又はダウンシフトを制御するための変速制御特性を提供する手段と、前記選択されたパターンが示すロックアップクラッチ作動制御特性においてロックアップクラッチをOFFとする領域が、前記変速制御特性におけるアップシフト又はダウンシフトを指示する領域に含まれないように、前記変速制御特性を変更する変更手段とを更に具備する。
これによれば、作動油温に応じて変動するロックアップクラッチ作動制御特性においてロックアップクラッチをOFFとする車速領域が、変速制御特性におけるアップシフト又はダウンシフトを指示する領域に含まれないように、該変速制御特性を変更するので、ロックアップクラッチをOFFとする領域ではアップシフト又はダウンシフトを指示することがないようになる。従って、前述したような、作動油温の上昇に応じてロックアップクラッチ作動制御特性が高車速側へ変更されたとき、アップシフトと同時にロックアップクラッチがONからOFFに切り替わり、その後いくらも経たずにONに切り替わる、という現象が起こることがない。つまり、ロックアップクラッチがONの状態でアップシフト又はダウンシフトが指示され、油温及びその他の運転条件が変わらない限り、ロックアップクラッチがONの状態が維持されるようになる。従って、ドライバビリティ及び燃費に悪影響を与えないようにすることができる。
本発明の一実施形態に係る自動変速機の制御装置が適用される車両の駆動系の概略図。
本発明の一実施形態に係る自動変速機の制御装置の機能ブロック図である。
作動油温とオイルポンプ回転数(入力軸回転数)との相関関係によって定まるロックアップ制御可能領域の一例を示すグラフ。
作動油温に応じたロックアップクラッチ作動制御特性の一例を示すグラフ。
作動油温に応じた変速制御特性の一例を示すグラフ。
変速段決定シーケンスの全体フローを示すフローチャート。
図6におけるシフトマップ選択処理の具体例を示すフローチャート。
以下、添付図面を参照して、本発明の実施の形態につき詳細に説明しよう。
[全体構成例]
まず、本発明の一実施形態における自動変速機の制御装置が適用される車両の構成を説明する。図1は、本発明の一実施形態における自動変速機の制御装置が適用される車両の駆動系の概略図である。図1に示すように、本実施形態の車両は、エンジン1と、流体式のトルクコンバータ3を介してエンジン1と連結される自動変速機2と、エンジン1を電子的に制御するFI−ECU(燃料制御用の電子制御装置)4と、トルクコンバータ3を含む自動変速機2を電子的に制御するAT−ECU(変速制御用の電子制御装置)5と、AT−ECU5の制御に従いトルクコンバータ3の回転駆動やロックアップ制御および自動変速機2の複数の摩擦係合要素の締結(係合)・解放を油圧制御する油圧制御装置6とを備えている。
エンジン1の回転出力は、クランクシャフト(エンジン1の出力軸)21に出力され、トルクコンバータ3を介して自動変速機2のメインシャフト22に伝達される。トルクコンバータ3は、図1に示すように、フロントカバー31と、このフロントカバー31と一体に形成されたポンプ翼車(ポンプインペラ)32と、フロントカバー31とポンプ翼車32との間でポンプ翼車32に対向配置されたタービン翼車(タービンランナ)33と、ポンプ翼車32とタービン翼車33との間に介設され、かつ一方向クラッチ36を介してステータ軸(固定軸)38上に回転自在に支持されたステータ翼車34とを有する。クランクシャフト21は、フロントカバー31を介して、トルクコンバータ3のポンプ翼車32に接続され、タービン翼車33はメインシャフト(自動変速機2の入力軸)22に接続される。
また、タービン翼車33とフロントカバー31との間には、ロックアップクラッチ35が設けられている。ロックアップクラッチ35は、AT−ECU5の指令に基づく油圧制御装置6による制御により、フロントカバー31の内面に向かって押圧されることによりフロントカバー31に係合(締結つまりON)し、押圧が解除されることによりフロントカバー31との係合が解除(つまりOFF)されるロックアップ制御を行う。フロントカバー31およびポンプ翼車32により形成される容器内には作動油(ATF:Automatic Transmission Fluid)が封入されている。
ロックアップクラッチ35がOFFの場合には、ポンプ翼車32とタービン翼車33の相対回転が許容される。この状態において、クランクシャフト21の回転トルクがフロントカバー31を介してポンプ翼車32に伝達されると、トルクコンバータ3の容器を満たしている作動油は、ポンプ翼車32の回転により、ポンプ翼車32からタービン翼車33に、次いでステータ翼車34へと循環する。これにより、ポンプ翼車32の回転トルクが、流体力学的にタービン翼車33に伝達され、この間にトルクの増幅作用が行われ、メインシャフト22を駆動する。
ロックアップクラッチ35がONの場合には、フロントカバー31からタービン翼車33へと作動油を介して回転させるのではなく、フロントカバー31とタービン翼車33とが一体的に回転し、クランクシャフト21の回転トルクがメインシャフト22に直接伝達される。すなわち、クランクシャフト21は、ロックアップクラッチ35を介してメインシャフト22に機械的に連結(直結)される。
なお、ポンプ翼車32に連動するようにポンプ駆動歯車37が設けられており、油圧制御装置6の油圧系に圧油を供給するためのオイルポンプ(図示せず)が、このポンプ駆動歯車37によって駆動される。なお、オイルポンプの駆動源は、これに限らず、例えばメインシャフト22から取るようにしてもよい。
メインシャフト22の回転トルクは、図1では図示しないクラッチおよび歯車列、セカンダリシャフトやアイドルシャフトの歯車列等を介してカウンタシャフト23に伝達される。また、カウンタシャフト23の回転トルクは、図1では図示しない歯車列およびディファレンシャル機構を介して駆動輪に伝達される。
油圧制御装置6は、自動変速機2内の摩擦係合要素(クラッチ)にライン圧PL(作動油圧)の作動油を供給することにより、自動変速機2内の図示しない複数の摩擦係合要素(クラッチ)の締結・解放(係合作動)を選択的に行わせて、複数の変速段のいずれかの変速段に設定するものである。
また、油圧制御装置6は、トルクコンバータ3のポンプ翼車32に作動油圧の作動油を供給することにより、クランクシャフト21の回転駆動をメインシャフト22にどの程度伝達させるかを示すトルコンスリップ率を制御するとともに、ロックアップクラッチ35の図示しない油室に作動油圧の作動油を供給することにより、車両の巡航走行時などの所定の条件下、ロックアップクラッチ35を係合(締結つまりON)させるように制御するものである。
クランクシャフト21の近傍には、クランクシャフト21(エンジン1)の回転数Neを検出するクランクシャフト回転数センサ201が設けられる。メインシャフト22の近傍には、メインシャフト22の回転数(自動変速機2の入力軸回転数)Niを検出するメインシャフト回転数センサ202が設けられる。カウンタシャフト23の近傍には、カウンタシャフト23の回転数(自動変速機2の出力軸回転数)Noを検出するカウンタシャフト回転数センサ203が設けられる。各回転数センサ201〜203により検出された回転数データはAT−ECU5に出力される。また、クランクシャフト回転数センサ201により検出された回転数データはFI−ECU4にも出力される。
また、車両の所定の位置には、車両の車速Nvを検出する車速センサ204が設けられる。車速センサ204により検出された車速データはAT−ECU5に出力される。なお、車速Nvを専用に検出する車速センサ204を設けることなく、メインシャフト22の回転数Niまたはカウンタシャフト23の回転数Noから車速Nvを算出するようにしてもよい。例えば、「Nv=Ni×変速レシオ×タイヤ周長」あるいは「Nv=No×タイヤ周長」のような関係式に基づいて車速Nvを検出(算出)することができる。なお、本発明において、車速要素とは、車速センサ204により検出される車速Nvそのものに限らず、メインシャフト22の回転数Niまたはカウンタシャフト23の回転数Noなど、車速Nvに相関性を持つ要素であればよい。
エンジン1の近傍には、エンジン1を冷却するためのエンジン冷却水の温度Twを検出する冷却水温センサ205と、エンジン1の図示しないスロットルの開度THを検出するスロットル開度センサ206とが設けられる。冷却水温センサ205により検出されたエンジン冷却水の温度データおよびスロットル開度センサ206により検出されたスロットル開度データはFI−ECU4に出力される。
アクセルペダル8の近傍には、アクセルペダル8の開度を検出するアクセルペダル開度センサ207が設けられる。アクセルペダル開度センサ207により検出されたアクセルペダル開度APのデータはFI−ECU4及びAT−ECU5に与えられる。アクセルペダル開度に応じてスロットル開度が制御され、エンジン1の回転が制御される。従って、アクセルペダル開度はエンジン負荷要素に相当している。なお、本発明において、エンジン負荷要素とは、アクセルペダル開度に限らず、スロットル開度あるいはエンジン回転数Neなど、エンジン負荷に相関性を持つ要素であればよい。
油圧制御装置6内の図示しないオイルタンクの近傍には、油圧制御装置6の作動油(および潤滑油)の温度TATFを検出する油温センサ208が設けられる。油温センサ208により検出された作動油温TATFのデータはAT−ECU5に出力される。
FI−ECU4は、各センサ201、205〜207から入力された検出データやAT−ECU5から入力される各種データに基づいて、エンジン1の出力、すなわちエンジン1の回転数Neを制御するものである。また、AT−ECU5は、各センサ201〜204、208から入力された検出データやFI−ECU4から入力された各種データに基づいて、後述する油圧制御装置6内のバルブ群を制御して、複数の摩擦係合要素(クラッチ)のいずれかの係合を行うものである。さらに、AT−ECU5は、油圧制御装置6を介してトルクコンバータ3のロックアップクラッチ35のON,OFF制御を行い、さらにはスリップ制御を行うようになっていてもよい。
[ロックアップ制御の説明]
次に、AT−ECU5によって実行される本発明に関係するロックアップ制御と変速制御について、図2の機能ブロック図を参照して説明する。
ロックアップ制御部50において、ロックアップクラッチ作動制御特性提供手段51は、車速要素(Nv)とエンジン負荷要素(AP)とを引数としてトルクコンバータ3のロックアップクラッチ作動制御形態(ON又はOFF)を決定するロックアップクラッチ作動制御特性(LCマップ)を、1つの変速段につき3パターン以上(LCマップ1〜n)提供するように構成されている。ここで、各パターンは、自動変速機2の作動油温TATFを引数として選択されるものであり、該作動油温が高くなるにつれて、ロックアップクラッチ35をONとする車速要素(Nv)の最低限界値が高速側に移行するように設定されている。このように、作動油温を引数として、1つの変速段につき3パターン以上のLCマップ1〜nを提供するようにした理由は次の通りである。
ロックアップクラッチ35をONとするか又はOFFとするかの最適な作動形態は、各変速段毎に、車速要素(Nv)とエンジン負荷要素(AP)との相関関係で決まり、そのようなロックアップクラッチ作動制御形態(ON又はOFF)を決定するロックアップクラッチ作動制御特性(LCマップ)を各変速段につき1つ具備することが公知である。しかし、前述のように、自動変速機の作動油温が上昇すると、オイルポンプの吐出量が減少し、ロックアップクラッチ制御に必要な作動油圧を確保することができなくなるので、作動油温を考慮してロックアップクラッチ制御を行う必要がある。
本発明においては、この点につき考察し、自動変速機の作動油温が上昇してもオイルポンプ回転数が上昇すれば、ロックアップクラッチ制御に必要な作動油圧を確保することができる場合もあることに着目した。すなわち、ロックアップクラッチ制御に必要な作動油圧を確保することができる最適条件が、作動油温TATFとオイルポンプ回転数(すなわちエンジン出力回転数Ne若しくは変速機入力軸回転数Niと等価であり、同一変速比においては車速Nvとも等価である)との連続的な相関関係によって定まることを見出した。図3は、そのような相関関係を示すグラフであり、オイルポンプ回転数に代替するものとして変速機入力軸回転数Niを縦軸に取り、作動油温TATFを横軸に取っている。図3において、「LC制御可能」領域とは、ロックアップクラッチ制御に必要な作動油圧を確保することができる条件を満たしている領域であり、「LC制御不能」領域とは、ロックアップクラッチ制御に必要な作動油圧を確保することができる条件を満たしていない領域である。図に示されたLC制御可能最低回転数ラインは作動油温TATFと入力軸回転数Niの関数であり、該ラインより上が「LC制御可能」領域であり、それより下が「LC制御不能」領域である。すなわち、LC制御可能最低回転数ラインは、作動油温TATFの連続的な変動値をパラメータとしてLC制御可能な最低回転数(Ne,Ni又はNvの最低限界値)を連続的に規定している。図から明らかなように、作動油温が高くなるにつれて、LC制御可能最低回転数が上昇する。
以上の考察をベースにして、図3の特性を満たすように、つまり、作動油温が高くなるにつれて、LC制御可能最低回転数が上昇するような特性で、作動油温を引数として、1つの変速段につき3パターン以上のロックアップクラッチ作動制御特性(LCマップ1〜n)を用意する。そのように用意されるパターンは、作動油温が高くなるにつれて、ロックアップクラッチ35をONとする車速要素(Nv)の最低限界値が高速側に移行するように設定されるものである。この点につき、図4を参照して更に説明する。
図4は、上記のようにして用意する本発明に従うロックアップクラッチ作動制御特性の一例を示すもので、便宜上、複数のパターン(LCマップ1,n)を重ねて描いたものである。たて軸がアクセルペダル開度AP(エンジン負荷要素)、横軸が車速Nv(車速要素)である。実線M1は、或る油温T1に対応するパターン(LCマップ1)のロックアップクラッチON(LC ON)線であり、一点鎖線は、同じく油温T1に対応するパターン(LCマップ1)のロックアップクラッチOFF(LC OFF)線である。LC ON線よりも高車速側(図で右側)の領域がロックアップクラッチをONとする領域であり、LC OFF線よりも低車速側(図で左側)の領域がロックアップクラッチをOFFとする領域である。このパターン(LCマップ1)において、ロックアップクラッチ35をONとする車速要素(Nv)の最低限界値V1は、図3の特性から、油温T1についてのLC制御可能最低回転数Ni_1に対応する値とされる。なお、LC OFF線がLC ON線よりも幾分低車速側に位置している理由は、ロックアップクラッチのON、OFF制御にヒステリシス特性を持たせるためである。
実線Mnは、上記油温T1よりも高い或る油温Tnに対応するパターン(LCマップn)のロックアップクラッチON(LC ON)線であり、点線は、同じく油温Tnに対応するパターン(LCマップn)のロックアップクラッチOFF(LC OFF)線である。このパターン(LCマップn)において、ロックアップクラッチ35をONとする車速要素(Nv)の最低限界値Vnは、図3の特性から、油温TnについてのLC制御可能最低回転数Ni_nに対応する値とされる。なお、このLCマップnは、LCマップ1に比べて、横軸の車速要素(Nv)の最低限界値の特性が異なっているが、縦軸のアクセルペダル開度AP方向の特性は同じである。従って、図で、Vnの車速ラインよりも右側の特性は、LCマップnとLCマップ1とで共通している。
本発明においては、例えば図3の油温T1からTnの間で、更に任意の1又は複数の油温T2、T3・・・を選定し、各選定した油温T2、T3・・・についてのLC制御可能最低回転数Ni_2、Ni_3・・・に対応する車速V2、V3・・・を最低限界値とするパターン(LCマップ2,3・・・)を用意する。図4において、二点鎖線M2は油温T2についてのLC制御可能最低回転数Ni_2に対応する車速V2を最低限界値とするパターン(LCマップ2)を示し、二点鎖線M3は油温T3についてのLC制御可能最低回転数Ni_3に対応する車速V3を最低限界値とするパターン(LCマップ3)を示す。なお、図示の便宜上、M2,M3についてはLC ON線とLC OFF線とを区別しないで描いてある。
ところで、用意できるパターン数は有限個であるため、各パターン(LCマップ)は、個々の油温に対してではなく、油温範囲に対して割り当てられる(油温範囲によって持ち替えられる)。例えば、LCマップ1は油温T1以下の油温範囲に対して割り当てられ、LCマップ2はT1〜T2の油温範囲に対して割り当てられ、LCマップ3はT2〜T3の油温範囲に対して割り当てられる。このように、3以上の油温領域のそれぞれに応じて異なるパターンからなるロックアップクラッチ作動制御特性を用意することにより、作動油温の変動に対してロックアップクラッチ装置の保護性能を高めかつ効率的なロックアップ制御を行うことができ、燃費及びドライバビリティの面で有利である。
図2に戻り、ロックアップクラッチ作動制御特性提供手段51は、上記のような1つの変速段についてのロックアップクラッチ作動制御特性の複数のパターン(LCマップ)を、複数変速段のそれぞれについて、提供するように構成されている。そのためには、ロックアップクラッチ作動制御特性提供手段51は、各パターン(LCマップ)を個別にメモリ内にそれぞれ記憶しておくことにより各パターン(LCマップ)を提供する構成からなっていてもよいし、あるいは、ロックアップクラッチ35をONとする車速要素(Nv)の最低限界値が最も低いパターン(例えばLCマップ1)を基本のパターンとしてメモリに記憶しておき、この基本のパターン(例えばLCマップ1)を変更することにより他のパターン(例えばLCマップ2,3,・・・n)を提供するようになっていてもよい。
図2において、油温取得手段52は、自動変速機2の現在の作動油温TATFを示す情報を取得する。油温取得手段52は、油温センサ208(図1)が検出した作動油温TATFのデータを取得する構成であればよい。しかし、これに限らず、演算によって自動変速機2の各部の発熱量を推定演算して作動油温を推定演算するようにしていもよい。
選択手段53は、取得した自動変速機2の現在の作動油温TATFを示す情報に応じて、現在の変速段に関して前記ロックアップクラッチ作動制御特性提供手段51が提供する前記3以上のパターンのいずれかを選択する。例えば、現在の作動油温TATFがT1以下の範囲であればLCマップ1を選択し、T1〜T2の油温範囲であればLCマップ2を選択し、T1〜T2の油温範囲であればLCマップ3を選択する。
制御手段54は、現在の車速Nv(車速要素)とアクセルペダル開度AP(エンジン負荷要素)とを引数として、前記選択されたパターン(LCマップ)からロックアップクラッチ作動制御形態を決定し、決定したロックアップクラッチ作動制御形態に従いトルクコンバータ3のロックアップクラッチ35の作動を制御する。
図2に示すロックアップ制御部50の動作例について説明すると、例えば、図3の例において作動油温TATFがT1以下であって図4の例におけるLCマップ1が選択されている状態で、アクセルペダル開度APが2、車速Nvが25km/hであれば、制御手段54はロックアップクラッチ作動制御形態をOFFと決定し、ロックアップクラッチ35をONとしない。この状態で現在のアクセルペダル開度AP及び車速Nvの交点が実線M1のLC ON線を高車速側の方に超えると、制御手段54はロックアップクラッチ作動制御形態をONと決定し、ロックアップクラッチ35をONとするように油圧制御装置6を制御する。
この状態で、作動油温TATFが上昇して、T1よりも高くなると、選択手段53はT1〜T2の油温範囲に対応するLCマップ2を選択する。このとき、現在のアクセルペダル開度AP及び車速Nvの交点が、LCマップ2のLC OFF線(M2)よりも低車速側にあるとすると、制御手段54はロックアップクラッチ作動制御形態をOFFと決定し、ロックアップクラッチ35をOFFとするように油圧制御装置6を制御する。ここで、もし、中間のLCマップ2がなく、LCマップ1とLCマップnの2つしかマップがないとすると、LCマップ2が適用される運転状態においてもLCマップ1が適用されることとなり、ロックアップクラッチはONのままであり、OFFされず、従って、ロックアップクラッチ35の保護が図れない。従って、本発明に従い1つの変速段につき3以上のパターン(LCマップ)を提供することは、ロックアップクラッチ装置の保護を手厚くする面で有利であることが分かる。
一方、図3の例において作動油温TATFがTn以上であって図4の例におけるLCマップnが選択されている状態を想定する。この状態で、アクセルペダル開度APが5/8開度、車速Nvが70km/hであれば、制御手段54はロックアップクラッチ作動制御形態をONと決定し、ロックアップクラッチ35をONとしている。この状態で減速されて現在のアクセルペダル開度AP及び車速Nvの交点が破線のLC OFF線を低車速側の方に超えると、制御手段54はロックアップクラッチ作動制御形態をOFFと決定し、ロックアップクラッチ35をOFFとするように油圧制御装置6を制御する。これによって、ロックアップクラッチ装置の保護が図られる。
この状態で、作動油温TATFが下降して、T3〜Tnの油温範囲T1よりも高くなると、選択手段53はT3〜Tnの油温範囲に対応するLCマップ3を選択する。このとき、現在のアクセルペダル開度AP及び車速Nvの交点が、LCマップ3のLC ON線(M3)よりも高車速側にあるとすると、制御手段54はロックアップクラッチ作動制御形態をONと決定し、ロックアップクラッチ35をONとするように油圧制御装置6を制御する。ここで、もし、中間のLCマップ3がなく、LCマップ1とLCマップnの2つしかマップがないとすると、LCマップ3が適用される運転状態においてもLCマップnが適用されることとなり、ロックアップクラッチはOFFのままであり、ONされず、従って、ロックアップON制御を効率的に行うことができない。従って、本発明に従い1つの変速段につき3以上のパターン(LCマップ)を提供することは、ロックアップON制御を効率的に行えることとなり、燃費及びドライバビリティの面で有利であることが分かる。
[ロックアップ制御に連動若しくは協調した変速制御の説明]
ところで、作動油温TATFの上昇に応じてロックアップクラッチ作動制御特性が高車速側へ変更された場合、変更前のロックアップクラッチ作動制御特性においてはクラッチONであったものが変更後ではクラッチOFFに切り替わる部分的領域が発生する。例えば、図4の例で、LCマップ1から2に変更された場合において、LCマップ1のクラッチON領域とLCマップ2のクラッチOFF領域の共通部分の領域がそれである。そのような部分的領域が変速制御特性(変速パターン)においてアップシフトの対象領域に重なっているとすると、作動油温の上昇に応じてロックアップクラッチ作動制御特性が高車速側へ変更されたとき、現車速が当該部分的領域内に属している場合、ロックアップクラッチの状態が直ちにONからOFFに切り替わり、かつ、変速段が次段にアップシフトされ、変速段の切り替わりにより、間もなくロックアップクラッチの状態がONに切り替わる、という事態が生じることがあり得る。
図5は、図4に示したLCマップ1,2,3,nに、当該変速段の変速制御特性つまりアップシフト(UPシフト)線及びダウンシフト(DNシフト)線の一例を、重ね合わせて示すグラフである。図中の斜線部分が、上記部分的領域である。M1線で示すLCマップ1においては、斜線領域はロックアップON領域であり、油温の上昇によって、M2線で示すLCマップ2に切り換わると、この斜線領域はロックアップOFF領域に切り換わる。油温の上昇によってLCマップ2に切り換わったときに、斜線領域においてAPとNvの交点がアップシフト線を高車速側に向けて跨ぐとアップシフトが指示されることになり、ロックアップONからOFFへの切り替わりとアップシフトが相次いで起こり、変速段の切り替わりによって、その後間もなくロックアップクラッチの状態がONに切り替わる、という現象が起こり得る。このような現象は、ドライバビリティ及び燃費に良い影響を与えないので、改善されるべきである。本発明においては、図2に示す変速制御部55において、そのための改善策を施している。
変速制御部55は、自動変速機2の変速段のアップシフト又はダウンシフトを制御するための変速制御特性(変速シフトマップ=UPシフト線及びDNシフト線)を提供する変速制御特性提供手段56を具備しており、例えばメモリ内に複数種類の変速シフトマップを記憶してなるものである。
変速制御部55は、更に、前記選択手段53で選択されたパターン(LCマップ)が示すロックアップクラッチ作動制御特性においてロックアップクラッチ35をOFFとする領域が、前記変速制御特性におけるアップシフト又はダウンシフトを指示する領域に含まれないように、変速制御特性を変更する変更手段57とを備えている。この場合、選択手段53で選択されるパターン(LCマップ)は油温によって一義的に決定されるから、変更手段57は、選択手段53でどのようなパターンが選択されているかを敢えて判定することなく、現在の油温TATFに応じて、しかるべく変速制御特性を変更する、若しくは、しかるべく予め変更された変速制御特性を選択する、ように構成されていてよい。
変速制御特性提供手段56は、図5に示したようなUPシフト線及びDNシフト線でなる、通常知られた変速制御特性(これを基本の変速制御特性という)を提供する。変更手段57は、例えば作動油温TATFに応じてLCマップ2(M2線)が選択される場合、基本の変速制御特性におけるM2線よりも低車速側つまりロックアップOFF側の領域をアップシフト又はダウンシフトを指示する領域に含まないように該変速制御特性を変更する。すなわち、M2線の車速V2がUPシフト線及びDNシフト線の最低限界となるように変更する。同様に、油温に応じてLCマップ3(M3線)が選択された場合、基本の変速制御特性におけるM3線よりも低車速側つまりロックアップOFF側の領域をアップシフト又はダウンシフトを指示する領域に含まないように該変速制御特性を変更する。すなわち、M3線の車速V3がUPシフト線及びDNシフト線の最低限界となるように変更する。
たとえば、M1線で示すLCマップ1が選択されているときに、APとNvの交点が斜線領域に入っていて、ロックアップON状態となっているとする。油温の上昇によって、M2線で示すLCマップ2に切り換わると、前記斜線領域はロックアップOFF領域に切り換わる。このとき、変更手段57によって、M2線の車速V2がUPシフト線及びDNシフト線の最低限界となるように変速制御特性が変更されるので、APとNvの交点が斜線領域に入っている限りはアップシフトもダウンシフトも指示されない。やがて、APとNvの交点がLCマップ2のLC ON線をまたいで高車速側に移行するとロックアップONが指示される。また、同時に若しくはその後、APとNvの交点がアップシフトUPシフト線の最低限界をまたいで高車速側に移行するとアップシフトが指示される。このように、本実施例によれば、油温に応じてLCマップが変更されたときに、変更後のロックアップOFF領域が、変速制御特性におけるアップシフト又はダウンシフトを指示する領域に含まれないように、該変速制御特性を連動して変更しているので、アップシフト又はダウンシフト時に過渡的にロックアップOFFされ、その後間もなくロックアップONに復帰するといった不安定な制御がなされないようになり、ドライバビリティの悪化を防ぐことができる。
変速段決定手段58は、車速Nvおよびアクセルペダル開度APATを引数として現在選択されている変速制御特性(変速シフトマップ)を参照し、アップシフト又はダウンシフトによる次の変速段を決定する。そして、決定した次の変速段を実現するように、油圧制御装置6に変速指示を出し、該油圧制御装置6を介して自動変速機2のクラッチ群7を制御する
なお、上述の例では、変速制御特性提供手段56は、基本の変速制御特性を提供し(メモリに記憶しておく)、変更手段57で基本の変速制御特性を変更することで、油温TATFに応じた変速制御特性の変更(若しくは予め変更された変速制御特性の選択)を行うように説明した。しかし、これに限らず、1つの変速段につき各油温範囲に応じて予め変更された変速制御特性の複数のパターン(変速シフトマップ)を、複数変速段のそれぞれについて、メモリ内に予め記憶しておき、現在の油温TATFに応じた変速制御特性(変速マップ)を選択するようにしてもよい。そのように選択する実施態様も変更手段57による変更に含まれるものとする。また、その場合、上述のようにUPシフト線及びDNシフト線の最低限界を油温範囲に応じて異ならせるような変更形態に限らず、UPシフト線及びDNシフト線の形状全体(AP方向の特性)を適切に変更するようにしてもよく、むしろそうした方が、ドライバビリティの確保のためには好ましい。
[登降坂走行用の変速制御特性の優先]
登降坂走行用の変速制御特性として、通常の変速制御特性に比べて、全体的に高車速側に特性を移動させたUPシフト線及びDNシフト線を用いるようにすることが従来より行われている。これにより、通常より低い変速ギヤ段を使用して高トルクで登降坂走行が行えるようにしている。図2における登降坂用変速制御特性提供手段60は、そのような登降坂走行用の変速制御特性を提供するように構成されている。図5を参照して上述した本実施例に係る作動油温に応じた変速制御特性の変更制御を行う場合も、作動油温が高くなるほど、UPシフト線及びDNシフト線の車速要素の最低限界がより高車速側に移動される。この場合、本実施例においては、登降坂用変速制御特性提供手段60で提供される登降坂走行用の変速制御特性の方が、変更手段57で変更された変速制御特性よりも、車速要素の最低限界が高車速側である場合は、登降坂走行用の変速制御特性の方を優先して使用するようにしている。図2における比較手段59は、そのために、現在選択されている登降坂走行用の変速制御特性(変速シフトパターン)における車速要素の最低限界(最低回転数)と、現在の作動油温に応じて変更手段57で変更された変速制御特性における車速要素の最低限界(最低回転数)とを比較し、最低限界(最低回転数)が高い方の変速制御特性を選択する。
[処理フローの一例]
図6は、AT−ECU5によって実行される変速段決定シーケンスの全体フローを示すフローチャートである。この全体フローは車両の走行中に所定の時間毎に行われる。まず、ステップS1では車両が登降坂状態であるかを判定し、ステップS2では路面のμ状態を判定する処理を実行する。ステップS3では、シフトマップ選択処理を実行する。このシフトマップ選択処理では、図2に示した変速制御部55における変速制御特性提供手段56、変更手段57、比較手段59、登降坂用変速制御特性提供手段60の部分の機能に対応する処理、及びロックアップ制御部50におけるロックアップクラッチ作動制御特性提供手段51、選択手段53の部分の機能に対応する処理を行う。
図7は、このシフトマップ選択処理で行われる処理の具体例を示しており、ステップS31では、現在の変速段に対応する基本の変速シフトマップを選択する(変速制御特性提供手段56の機能に相当)。ステップS32では、現在の作動油温TATFに応じて該変速シフトマップを変更する(変更手段57の機能に相当)。ステップS33では、現在の変速段に対応する複数のLCマップ1〜nの中から、現在の作動油温TATFに応じた1つのLCマップを選択する(ロックアップクラッチ作動制御特性提供手段51及び選択手段53の機能に相当)。ステップS34では、前記ステップS1の判定結果が登降坂状態であるか否かを調べ、NOであれば、シフトマップ選択処理を終了する。この場合、ステップS32で変更した変速シフトマップを使用することが最終的に決定される。
一方、登降坂状態であれば、ステップS35に行き、登降坂用の変速シフトマップを選択し、この登降坂用の変速シフトマップと油温に応じた(ステップS32で変更した)変速シフトマップとを比較し、最低限界(最低回転数)が高い方の変速シフトマップを選択する(比較手段59及び登降坂用変速制御特性提供手段60の機能に相当)。この場合、登降坂用の変速シフトマップの方が最低限界(最低回転数)が高ければ、登降坂用の変速シフトマップを使用することが最終的に決定され、油温に応じた(ステップS32で変更した)変速シフトマップの方が最低限界(最低回転数)が高ければ、該油温に応じた変速シフトマップを使用することが最終的に決定される。
図6に戻り、ステップS4では、ステップS3で選択された(最終的に決定された)変速シフトマップを参照して、アクセルペダル開度APと車速Nvに応じて、アップシフトすべか、若しくはダウンシフトすべきかを判断し、締結すべき変速段を決定する(変速段決定手段58の機能に相当)。ステップS5では、ステップS4で決定した変速段を実現するように、自動変速機2の各クラッチの締結/非締結を制御するためのクラッチ圧制御処理を実行する。
ステップS6では、Fi協調制御処理を実行する。これにより、最終の変速段の設定時に、エンジン1の制御と協調して、入力トルクを制御する。
ステップS7では、LC領域判断処理を実行する。このLC領域判断処理では、図2に示したロックアップ制御部50における制御手段54の部分の機能に対応する処理を行う。すなわち、前記ステップS33で選択されたLCマップを参照して、アクセルペダル開度APと車速Nvを引数として、ロックアップON領域に入っているか、あるいはロックアップOFF領域に入っているかを診断する。ステップS8では、LC圧制御処理を実行する。すなわち、ステップS7において判断されたロックアップON又はOFFに応じて、ロックアップクラッチ35への供給油圧を制御する。
なお、上述の例では、ロックアップ作動制御特性(LCマップ)で設定可能なロックアップ作動制御形態は、ロックアップONとOFFの2通りであるとしているが、公知のように、ロックアップクラッチ35をスリップさせる作動制御形態を含んでいてもよい。
1 エンジン
2 自動変速機
3 トルクコンバータ
5 AT−ECU((変速制御用の電子制御装置)
6 油圧制御装置
8 アクセルペダル
21 クランクシャフト
22 メインシャフト
35 ロックアップクラッチ
50 ロックアップ制御部
51 ロックアップクラッチ作動制御特性提供手段
52 作動油温取得手段
53 選択手段
54 制御手段
55 変速制御部
56 変速制御特性提供手段
57 変更手段
58 変速段決定手段
59 比較手段
60 登降坂用変速制御特性提供手段60
208 油温センサ

Claims (2)

  1. 車速要素とエンジン負荷要素とを引数としてトルクコンバータのロックアップクラッチ作動制御形態を決定するロックアップクラッチ作動制御特性を1つの変速段につき3パターン以上提供するように構成されたロックアップクラッチ作動制御特性提供手段と、ここで、各パターンは、自動変速機の作動油温を引数として選択されるものであり、該作動油温が高くなるにつれて、ロックアップクラッチをONとする車速要素の最低限界値が高速側に移行するように設定されてなり、
    自動変速機の現在の作動油温を示す情報を取得する手段と、
    取得した自動変速機の現在の作動油温を示す情報に応じて前記3以上のパターンのいずれかを選択する手段と、
    車速要素とエンジン負荷要素とを引数として前記選択されたパターンからロックアップクラッチ作動制御形態を決定し、決定したロックアップクラッチ作動制御形態に従いトルクコンバータのロックアップクラッチの作動を制御する制御手段と
    を具備する自動変速機の制御装置。
  2. 自動変速機の変速段のアップシフト又はダウンシフトを制御するための変速制御特性を提供する手段と、
    前記選択されたパターンが示すロックアップクラッチ作動制御特性においてロックアップクラッチをOFFとする領域が、前記変速制御特性におけるアップシフト又はダウンシフトを指示する領域に含まれないように、前記変速制御特性を変更する変更手段と
    を更に具備する請求項1に記載の自動変速機の制御装置。
JP2010095466A 2010-04-16 2010-04-16 自動変速機の制御装置 Expired - Fee Related JP5632183B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010095466A JP5632183B2 (ja) 2010-04-16 2010-04-16 自動変速機の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010095466A JP5632183B2 (ja) 2010-04-16 2010-04-16 自動変速機の制御装置

Publications (2)

Publication Number Publication Date
JP2011226524A true JP2011226524A (ja) 2011-11-10
JP5632183B2 JP5632183B2 (ja) 2014-11-26

Family

ID=45042098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010095466A Expired - Fee Related JP5632183B2 (ja) 2010-04-16 2010-04-16 自動変速機の制御装置

Country Status (1)

Country Link
JP (1) JP5632183B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020176696A (ja) * 2019-04-19 2020-10-29 トヨタ自動車株式会社 自動車の制御装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09152028A (ja) * 1995-09-29 1997-06-10 Mazda Motor Corp 自動変速機の制御装置
JP2000002326A (ja) * 1998-06-18 2000-01-07 Nissan Motor Co Ltd 無段変速機のロックアップ制御および変速制御装置
JP2000130575A (ja) * 1998-10-23 2000-05-12 Nissan Motor Co Ltd 自動変速機のロックアップ制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09152028A (ja) * 1995-09-29 1997-06-10 Mazda Motor Corp 自動変速機の制御装置
JP2000002326A (ja) * 1998-06-18 2000-01-07 Nissan Motor Co Ltd 無段変速機のロックアップ制御および変速制御装置
JP2000130575A (ja) * 1998-10-23 2000-05-12 Nissan Motor Co Ltd 自動変速機のロックアップ制御装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020176696A (ja) * 2019-04-19 2020-10-29 トヨタ自動車株式会社 自動車の制御装置
JP7176465B2 (ja) 2019-04-19 2022-11-22 トヨタ自動車株式会社 自動車の制御装置

Also Published As

Publication number Publication date
JP5632183B2 (ja) 2014-11-26

Similar Documents

Publication Publication Date Title
JP4535115B2 (ja) 車両の制御装置
JP4553045B2 (ja) 自動変速機の変速制御装置
JP6212446B2 (ja) 自動変速機の油圧異常検出装置
JP4918570B2 (ja) 車両用自動変速機の制御装置
JP4240058B2 (ja) 車両用自動変速機の変速制御装置
EP2148115B1 (en) Control device for vehicular automatic transmission
JP4922317B2 (ja) エンジントルクの制御装置
JP5620949B2 (ja) 自動変速機の制御装置
JP6418187B2 (ja) 車両の変速制御装置
JP5369101B2 (ja) 自動変速機のライン圧制御装置
US20180163855A1 (en) Control method for vehicle with dct
US8439799B1 (en) Controller for automatic transmission
JP2008075850A (ja) 車両の制御装置、制御方法およびその制御方法をコンピュータで実現されるプログラムならびにそのプログラムを記録した記録媒体
JP4766100B2 (ja) 車両の制御装置
US20210062875A1 (en) Control device for automatic transmission
JP5199984B2 (ja) 自動変速機のロックアップ制御装置
JP6306435B2 (ja) 車両の制御装置
JP5632183B2 (ja) 自動変速機の制御装置
JP5194753B2 (ja) 車両用変速機の変速制御装置
JP4848769B2 (ja) 車両用自動変速機の油圧制御装置
JP2011149524A (ja) 自動変速機の制御装置
JP2011149484A (ja) トルクコンバータの制御装置
JP5050774B2 (ja) 車両の制御装置
JP4696692B2 (ja) 自動変速制御装置
JP2019173765A (ja) 制御装置及び、制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140930

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141009

R150 Certificate of patent or registration of utility model

Ref document number: 5632183

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees