JP2011222630A - 光起電力装置の製造方法 - Google Patents

光起電力装置の製造方法 Download PDF

Info

Publication number
JP2011222630A
JP2011222630A JP2010088032A JP2010088032A JP2011222630A JP 2011222630 A JP2011222630 A JP 2011222630A JP 2010088032 A JP2010088032 A JP 2010088032A JP 2010088032 A JP2010088032 A JP 2010088032A JP 2011222630 A JP2011222630 A JP 2011222630A
Authority
JP
Japan
Prior art keywords
antireflection film
type
photovoltaic device
forming
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010088032A
Other languages
English (en)
Inventor
Toshiya Murakami
俊也 村上
Takashi Sawai
崇 澤井
Junji Kobayashi
淳二 小林
Atsuo Hama
篤郎 濱
Mitsuhiro Nonogaki
光裕 野々垣
Takeshi Takada
剛 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010088032A priority Critical patent/JP2011222630A/ja
Publication of JP2011222630A publication Critical patent/JP2011222630A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

【課題】反射防止膜の剥離によるピンホールの発生を防止することができる光起電力装置の製造方法を得ること。
【解決手段】p型シリコン基板12の受光面側に、n型不純物を拡散させたn型拡散層13を形成する不純物拡散層形成工程と、n型拡散層13上に反射防止膜15を形成する反射防止膜形成工程と、反射防止膜15上に銀を含むペースト材料を表面電極形状に形成する表面電極形状形成工程と、シリコン基板12の裏面上に裏面電極形状に、金属を含むペースト材料を形成する裏面電極形状形成工程と、シリコン基板12を焼成する焼成工程と、を含み、反射防止膜形成工程の直前に、シリコン基板12の受光面上の不純物を除去する不純物除去工程を含む。
【選択図】図2−1

Description

この発明は、光起電力装置の製造方法に関するものである。
現在、地球上で用いられている光起電力装置としての太陽電池としては、シリコン(Si)太陽電池が主流である。Si太陽電池の量産においては、そのプロセスフローをなるべく簡素化することで製造コストの低減が図られている(たとえば、特許文献1,2参照)。
このようなSi太陽電池の一般的な製造方法について説明する。まず、太陽電池用基板として、p型Si基板を準備し、その表面にドナーとなる原子(たとえばリン(P))を熱的に拡散させ、導電型を反転させたn型拡散層を形成する。多くの場合、n型拡散層はp型Si基板の全面に形成される。このn型拡散層のシート抵抗は、数十Ω/□程度であり、その深さは0.3〜0.5μm程度である。通常、リンの拡散源としては、オキシ塩化リン(POCl3)が用いられることが多い。
ついで、n型拡散層が形成されたp型Si基板の一主面(表面)をレジストによって保護し、p型Si基板の表面のみにn型拡散層を残すようにエッチングを行う。エッチング処理後に残存したレジストは、有機溶剤などを用いて除去される。その後、プラズマCVD(Chemical Vapor Deposition)法などの成膜法によって、反射防止膜として、たとえばシリコン窒化膜をn型拡散層上に70〜90nmの厚さで形成する。
ついで、p型Si基板の裏面に、裏面側電極形成用のアルミニウムペーストをスクリーン印刷し、乾燥させる。通常、アルミニウムペースト面上の一部またはアルミニウムペースト面に設けた開口部に銀ペーストを印刷し、乾燥させる。また、p型Si基板の表面のシリコン窒化膜上に表面電極形成用の銀ペーストを裏面と同様にスクリーン印刷し、乾燥させる。その後、Si基板を700〜900℃程度で数分〜十数分程度、たとえば近赤外線ランプ照射炉中で焼成する。この結果、p型Si基板の裏面側では、焼成中に、アルミニウムペーストに含まれるアルミニウムがp型Si基板中へ不純物として拡散し、アルミニウムの高濃度不純物を含んだp+層が形成される。このp+層は、一般的にBSF(Back Surface Field)層と称され、太陽電池のエネルギ変換効率の向上に寄与する。
しかしながら、上記従来の太陽電池の製造方法では、焼成時に反射防止膜が剥離してピンホールが生じることがある。反射防止膜にピンホールが生じると、Siウェハに対する光の吸収率が低下し、発電効率が低下してしまう。発電効率が著しく悪い場合は不良となることもあるため、太陽電池の製造歩留まり低下の要因ともなる。したがって、反射防止膜に発生するピンホールの発生を防止することが課題となっている。
ところで、半導体装置の分野でも、絶縁層上の最終保護膜としてシリコン窒化膜(SiN膜)を堆積する場合に、下地の前処理不足が影響して後の処理工程でSiN膜の剥離が発生することが知られている。このような現象を回避するために、下地に均一な酸化膜を堆積することでSiN膜の剥離を抑制する技術が開示されている(たとえば、特許文献3参照)。
特開平10−335267号公報 特開2004−207493号公報 特開2009−59993号公報
しかし、太陽電池の場合、基板であるとともに光電変換層として機能するSi基板に絶縁体である酸化膜を堆積すると、後の電極形成工程で、電極とSi基板との間に酸化膜が存在するため接触が不十分となり、太陽電池のエネルギ変換効率の向上を妨げる可能性がある。つまり、特許文献3による方法を太陽電池に適用しても、反射防止膜に発生するピンホールの発生を防止する理想的な解決手法とはならない。このように、反射防止膜の剥離によるピンホールの発生を防止し、歩留まりに優れた光電変換装置の製造方法は従来提供されていなかった。
この発明は、上記に鑑みてなされたもので、反射防止膜の剥離によるピンホールの発生を防止することができる光起電力装置の製造方法を得ることを目的とする。
上記目的を達成するため、この発明にかかる光起電力装置の製造方法は、第1の導電型の半導体基板の第1の主面側に、第2の導電型の不純物を拡散させた不純物拡散層を形成する不純物拡散層形成工程と、前記不純物拡散層上に反射防止膜を形成する反射防止膜形成工程と、前記反射防止膜上に銀を含むペースト材料を表面電極形状に形成する表面電極形状形成工程と、前記半導体基板の前記第1の主面に対向する第2の主面上に、金属を含むペースト材料を裏面電極形状に形成する裏面電極形状形成工程と、前記半導体基板を焼成する焼成工程と、を含む光起電力装置の製造方法において、前記反射防止膜形成工程の直前に、前記半導体基板の前記第1の主面上の不純物を除去する不純物除去工程を含むことを特徴とする。
この発明によれば、反射防止膜の堆積前のシリコン表面に付着した有機物を除去するようにしたので、反射防止膜堆積後の焼成工程で、有機物が気化および膨張して反射防止膜を剥離させる現象を抑制できるため、ピンホールのない反射防止膜の形成が保証され、ひいては歩留まりに優れた光起電力装置を実現できるという効果を有する。
図1−1は、一般的な光起電力装置の全体構成の一例を模式的に示す上面図である。 図1−2は、図1−1の裏面図である。 図1−3は、図1−2のA−A断面図である。 図2−1は、この実施の形態による光起電力装置の製造方法の処理手順の一例を模式的に示す断面図である(その1)。 図2−2は、この実施の形態による光起電力装置の製造方法の処理手順の一例を模式的に示す断面図である(その2)。 図3は、光起電力装置の製造方法の従来例を模式的に示す断面図である。
以下に添付図面を参照して、この発明の実施の形態にかかる光起電力装置を詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。また、以下の実施の形態で用いられる光起電力装置の断面図は模式的なものであり、層の厚みと幅との関係や各層の厚みの比率などは現実のものとは異なる。
最初に、この実施の形態によって製造される太陽電池などの光起電力装置の構成の概要について説明する。図1−1〜図1−3は、一般的な光起電力装置の全体構成の一例を模式的に示す図であり、図1−1は光起電力装置の上面図であり、図1−2は光起電力装置の裏面図であり、図1−3は図1−2のA−A断面図である。
これらの図に示されるように、光起電力装置10は、半導体基板としてのp型シリコン(Si)基板(以下、単にSi基板ともいう)12と、このp型Si基板12の一方の主面(受光面)側の表面に形成されるn型の不純物を拡散させたn型拡散層13と、他方の主面(裏面)側の表面に形成されるSi基板12よりも高濃度にp型の不純物を含むp+層からなるBSF層14と、を含む光電変換層11を備える。
また、光起電力装置10は、光電変換層11の受光面への入射光の反射を防止するシリコン窒化膜などからなる反射防止膜15と、光電変換層11で発電された電気を局所的に集電するために受光面に所定のピッチで複数平行に設けられる銀を主成分とするグリッド電極21と、グリッド電極21で集電された電気を外部に取り出すためにグリッド電極21にほぼ直交して設けられる銀を主成分とするバス電極22と、光電変換層11で発電された電気の集電と光電変換層11を透過した入射光の反射を目的としてp型Si基板12の裏面のほぼ全面に設けられるアルミニウムを主成分とする裏面集電電極31と、この裏面集電電極31に生じた電気を外部に取り出す銀を主成分とする裏面取出電極32と、を備える。BSF層14中の裏面取出電極32の形成位置には、裏面取出電極32を構成する銀とBSF層14を構成するSiとが拡散した導電層33が形成されている。また、正方形状の裏面取出電極32は、受光面側に形成されたバス電極22と略同一方向に配列されて形成されている。ここで、裏面取出電極32は、正方形状を有しているが、矩形状や円形状であってもよい。
なお、受光面側(表面側)のグリッド電極21とバス電極22とを合わせて、以下では、表面電極20ともいい、裏面側の裏面集電電極31と裏面取出電極32とを合わせて、以下では、裏面電極30ともいう。また、光起電力装置10の受光面側には、微細な凹凸が形成されたテクスチャ構造を有していてもよい。このテクスチャ構造は、光起電力装置の表面で光の多重反射を生じさせて、実効的に反射率を低減し、変換効率を高めるために設けられる構造である。
このように構成された光起電力装置10では、太陽光が光起電力装置10の受光面側からpn接合面(p型Si基板12とn型拡散層13との接合面)に照射されると、ホールと電子が生成する。pn接合面付近の電界によって、生成した電子はn型拡散層13に向かって移動し、ホールはBSF層14に向かって移動する。これにより、n型拡散層13に電子が過剰となり、BSF層14にホールが過剰となる結果、光起電力が発生する。この光起電力はpn接合を順方向にバイアスする向きに生じ、n型拡散層13に接続した表面電極20がマイナス極となり、BSF層14に接続した裏面電極30がプラス極となり、図示しない外部回路に電流が流れる。
つぎに、このような光起電力装置10の製造方法について説明する。図2−1〜図2−2は、この実施の形態による光起電力装置の製造方法の処理手順の一例を模式的に示す断面図である。なお、ここでは図1−3に対応する断面領域を用いて、光起電力装置10の製造方法について説明を行う。
まず、p型Si基板12を用意する(図2−1(a))。Si基板12としては、単結晶基板でも多結晶基板でもよい。そして、p型Si基板12をたとえばオキシ塩化リンガス雰囲気中で加熱することによって、p型Si基板12の表面、裏面、端面にリンを拡散させる。これによって、p型Si基板12の表面、裏面、端面に導電型を反転させたn型拡散層13を形成して半導体pn接合を形成する。ここで、n型拡散層13のシート抵抗は、数十Ω/□程度であり、n型拡散層13の深さは0.3〜0.5μm程度である。
ついで、n型拡散層13を形成したp型Si基板12の表面にレジストを形成する。そして、このレジストをマスクとして用いてp型Si基板12にエッチング処理を施し、その後、有機溶剤などを用いてレジストを除去する。これによって、p型Si基板12の表面にのみn型拡散層13が残存し、裏面および端面の不要なn型拡散層13が除去された状態となる(図2−1(b))。このp型Si基板12(n型拡散層13)の表面には、有機物51が付着している状態にある。
ついで、p型Si基板12の表面、特にn型拡散層13の表面の有機物除去処理を行う(図2−1(c))。具体的には、(1)真空中もしくはガス雰囲気中での加熱処理によって、または(2)紫外線照射処理によって、p型Si基板12の表面、特にn型拡散層13の表面に付着している有機物51を除去する。(1)の真空中またはガス雰囲気中での加熱処理では、付着した有機物51が分解可能な温度範囲に加熱されればよい。また、加熱処理は450℃以上において、真空中やArやN2などの不活性ガス雰囲気中で行うことが望ましいが、空気中などの雰囲気下で行ってもよい。p型Si基板12の表面に有機物51が付着している場合には、真空中またはガス雰囲気中もしくは空気中で加熱処理することによって有機物51が分解され、水や二酸化炭素となって大気中に拡散する。また、(2)の紫外線照射処理では発生するオゾンによって有機物51が分解され、水や二酸化炭素となって大気中に拡散する。
その後、反射防止膜15として、たとえばプラズマCVD(Plasma Enhanced CVD)法によってシリコン窒化膜などの絶縁膜を70〜90nm程度の一様な厚さで、有機物除去処理が行われたn型拡散層13上に成膜する(図2−1(d))。反射防止膜15は、p型Si基板12の表面のパッシベーション膜としての機能を兼ねている。
ついで、p型Si基板12の裏面側に、裏面電極パターンを形成する(図2−2(a))。つまり、裏面取出電極32の基となる電極ペーストである銀ペーストを特定のパターン(後段で形成されるバス電極22と同方向に配列した正方形のパターン)でスクリーン印刷した後、銀ペーストの配置パターンと略同一のパターンをマスクとして裏面集電電極31の基となる電極ペーストであるアルミニウムペーストをスクリーン印刷し、100〜300℃程度で乾燥させる。銀ペーストは、主として銀粒子と溶剤とガラスフリットとからなる導電性ペーストであり、アルミニウムペーストは、主としてアルミニウム粒子と溶剤とガラスフリットとからなる導電性ペーストである。銀ペーストとアルミニウムペーストの印刷、乾燥処理を施すことによって、p型Si基板12の裏面に裏面取出電極形成用パターン32aと裏面集電電極形成用パターン31aが形成される。裏面集電電極形成用パターン31aの厚さは、20〜40μm程度である。なお、ここでは銀ペーストおよびアルミニウムペーストを配置した後に乾燥を行う例を挙げたが、先に配置した銀ペーストを指触乾燥または完全乾燥させてから、アルミニウムペーストを配置してもよい。また、ここでは先に銀ペーストを配置し、ついでアルミニウムペーストを配置したが、逆順で配置してもよい。
その後、p型Si基板12の表面側に、表面電極パターンを形成する(図2−2(b))。表面電極20のパターン、すなわちグリッド電極21とバス電極22とのパターンを、反射防止膜15上に銀ペーストでスクリーン印刷し、100〜300℃程度で乾燥させる。銀ペーストの印刷、乾燥処理を施すことによって、反射防止膜15上に所定形状の表面電極形成用パターン(バス電極形成用パターン22a)が形成される。
そして、p型Si基板12に対して、たとえば近赤外線ランプ照射炉中で焼成処理を施す。ここで、焼成処理は、温度700〜900℃程度で、数分〜十数分程度の時間で実施される。
焼成処理を施すと、p型Si基板12の裏面側では、裏面集電電極形成用パターン31aを構成するアルミニウムペーストからp型Si基板12中にアルミニウムが不純物として拡散する。これによって、p型Si基板12の裏面側にアルミニウムを不純物として高濃度に含んだBSF層14が形成され、残った裏面集電電極形成用パターン31aは裏面集電電極31となる。また、このとき裏面取出電極形成用パターン32aを構成する銀ペーストからp型Si基板12中に銀が不純物として拡散し、導電層33も形成され、残った裏面取出電極形成用パターン32aは、裏面取出電極32となる。ここで、光電変換効率を向上させるためには、p型Si基板12の裏面の大部分にBSF層14を形成することが望ましい。したがって、裏面集電電極31は、p型Si基板12の裏面の大部分を覆うように形成されることが好ましい。
一方、p型Si基板12の表面側では、ファイアスルーによって、表面電極形成用パターン(バス電極形成用パターン22a)を構成する銀ペーストに含まれるガラスフリット成分が反射防止膜15である窒化シリコンを溶融し、n型拡散層13と導通した表面電極(バス電極22)が形成される。以上によって、p型Si基板12の表面側にn型拡散層13が形成され、裏面側にBSF層14が形成された光電変換層11が形成される(図2−2(c))。
以上のような工程を実施することにより、図1−1〜図1−3に示される構造の光起電力装置が得られる。なお、上記の一連の工程によって複数の光起電力装置を作製した後に、各光起電力装置の裏面取出電極32および表面取出電極22に対して相互に銅箔などをはんだ付けして、直列接続したり、直列接続したものを並列接続したりすることによって、複数の光起電力装置から構成される光起電力装置のモジュールを形成できる。
以上のような工程を経て作製した光起電力装置は、反射防止膜15の成膜前にp型Si基板12の表面の有機物を除去できるため、焼成工程での反射防止膜15の剥離を抑制できる。このため、光起電力装置へ照射された光を効率よく吸収でき、発電効率の低下を防止できる。さらに、特性が著しく悪い不良セルの発生を抑えることができ、光起電力装置製造の歩留まり向上にも寄与する。
つぎに、この実施の形態と比較するために、従来の光起電力装置の製造方法について説明する。図3は、光起電力装置の製造方法の従来例を模式的に示す断面図である。なお、ここでは、従来例として、特許文献1に記載されている方法について説明する。また、この図3は、従来の光起電力装置の製造方法において反射防止膜が剥がれる様子を模式的に示す図であり、理解の容易のため、表面電極20および裏面電極30の図示を省略している。
従来の光起電力装置の製造方法においても、上記した実施の形態と同様に図2−1(b)までと同様の処理を行って、p型Si基板12の一方の主面にn型拡散層13を形成する。その後、有機物51が残存した状態のn型拡散層13上に反射防止膜15をプラズマCVD法で堆積する(図3(a))。このとき、p型Si基板12と反射防止膜15との間に有機物51が閉じ込められることになる。
その後、上記した実施の形態の図2−2で示した手順と同様に、裏面には裏面電極形成のためのアルミニウムペーストおよび銀ペーストをスクリーン印刷し、ペーストに含まれる有機物を乾燥させる。また、表面には表面電極形成のための銀ペーストをスクリーン印刷して、ペーストに含まれる有機物を乾燥させる。これによって、図示しない裏面電極形成用パターンと表面電極形成用パターンとが形成される。そして、700〜900℃程度の温度で、数分〜十数分程度の焼成処理を行って、裏面にはBSF層を形成し、表面では銀ペーストに含まれるガラスフリット成分が反射防止膜を溶融し、表面電極とn型拡散層13とを導通させる。
図3(a)に示されるように、n型拡散層13と反射防止膜15との間に有機物51が閉じ込められた状態で焼成処理が行われると、高温の熱処理によって、p型Si基板12と反射防止膜15との間に挟まれた有機物が分解および気化することで体積が膨張し、反射防止膜15を剥離させる。その結果、反射防止膜15にピンホール52が生じる(図3(b))。
このようなピンホール52が生じた場合には、光の吸収率が下がるため、発電効率の向上に寄与しないという問題が生じる。また、特性の著しく低いセルが得られる場合があるため、光起電力装置のセル製造歩留まり低下にもつながる。
これに対して、この実施の形態によれば、反射防止膜15の堆積前に、(1)真空中またはガス雰囲気中もしくは空気中での加熱処理、あるいは(2)紫外線照射処理を行うことによって、p型Si基板12の表面の有機物が除去される。その結果、焼成処理時の有機物の分解、気化による反射防止膜15の剥離や、これによって発生するピンホール52の発生を抑制することができる。したがって、ピンホール52のない反射防止膜15の形成が保障され、ひいては高発電効率のセルの作製および歩留まりに優れた光起電力装置の製造を実現することができる。
なお、上述した説明では、p型シリコン基板12を用いて光起電力装置を製造する場合を例に挙げたが、n型シリコン基板を用いて光起電力装置を製造する場合や、他の半導体基板を用いて光起電力装置を製造する場合にも、上記した実施の形態を適用することができる。
以上のように、本発明にかかる光起電力装置の製造方法は、pn接合を形成した半導体基板に反射防止膜を形成した構造の光起電力装置に有用である。
10 光起電力装置
11 光電変換層
12 シリコン基板
13 n型拡散層
14 BSF層
15 反射防止膜
20 表面電極
21 グリッド電極
22 バス電極
22 表面取出電極
22a バス電極形成用パターン
30 裏面電極
31 裏面集電電極
31a 裏面集電電極形成用パターン
32 裏面取出電極
32a 裏面取出電極形成用パターン
33 導電層
51 有機物
52 ピンホール

Claims (5)

  1. 第1の導電型の半導体基板の第1の主面側に、第2の導電型の不純物を拡散させた不純物拡散層を形成する不純物拡散層形成工程と、
    前記不純物拡散層上に反射防止膜を形成する反射防止膜形成工程と、
    前記反射防止膜上に銀を含むペースト材料を表面電極形状に形成する表面電極形状形成工程と、
    前記半導体基板の前記第1の主面に対向する第2の主面上に、金属を含むペースト材料を裏面電極形状に形成する裏面電極形状形成工程と、
    前記半導体基板を焼成する焼成工程と、
    を含む光起電力装置の製造方法において、
    前記反射防止膜形成工程の直前に、前記半導体基板の前記第1の主面上の不純物を除去する不純物除去工程を含むことを特徴とする光起電力装置の製造方法。
  2. 前記不純物除去工程では、真空中で前記半導体基板の加熱処理を行うことを特徴とする請求項1に記載の光起電力装置の製造方法。
  3. 前記不純物除去工程では、ガス雰囲気中で前記半導体基板の加熱処理を行うことを特徴とする請求項1に記載の光起電力装置の製造方法。
  4. 前記ガスは、不活性ガスまたは空気であることを特徴とする請求項3に記載の光起電力装置の製造方法。
  5. 前記不純物除去工程では、前記半導体基板に紫外線照射処理を行うことを特徴とする請求項1に記載の光起電力装置の製造方法。
JP2010088032A 2010-04-06 2010-04-06 光起電力装置の製造方法 Pending JP2011222630A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010088032A JP2011222630A (ja) 2010-04-06 2010-04-06 光起電力装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010088032A JP2011222630A (ja) 2010-04-06 2010-04-06 光起電力装置の製造方法

Publications (1)

Publication Number Publication Date
JP2011222630A true JP2011222630A (ja) 2011-11-04

Family

ID=45039254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010088032A Pending JP2011222630A (ja) 2010-04-06 2010-04-06 光起電力装置の製造方法

Country Status (1)

Country Link
JP (1) JP2011222630A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114464686A (zh) * 2021-12-28 2022-05-10 浙江爱旭太阳能科技有限公司 一种新型隧穿钝化接触结构电池及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05217673A (ja) * 1992-01-31 1993-08-27 Nec Kansai Ltd 薄膜el素子の製造方法
JPH0684877A (ja) * 1992-08-31 1994-03-25 Kyushu Electron Metal Co Ltd Siウエーハ保管ケースの乾燥方法及び乾燥装置
JPH11354514A (ja) * 1998-06-09 1999-12-24 Sony Corp クラスターツール装置及び成膜方法
JP2000294551A (ja) * 1999-04-06 2000-10-20 Seiko Epson Corp 半導体装置の製造方法
JP2004207493A (ja) * 2002-12-25 2004-07-22 Mitsubishi Electric Corp 半導体装置、その製造方法および太陽電池
JP2004221396A (ja) * 2003-01-16 2004-08-05 Matsushita Electric Ind Co Ltd 半導体装置の製造方法
JP2008034583A (ja) * 2006-07-28 2008-02-14 Kyocera Corp 太陽電池素子の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05217673A (ja) * 1992-01-31 1993-08-27 Nec Kansai Ltd 薄膜el素子の製造方法
JPH0684877A (ja) * 1992-08-31 1994-03-25 Kyushu Electron Metal Co Ltd Siウエーハ保管ケースの乾燥方法及び乾燥装置
JPH11354514A (ja) * 1998-06-09 1999-12-24 Sony Corp クラスターツール装置及び成膜方法
JP2000294551A (ja) * 1999-04-06 2000-10-20 Seiko Epson Corp 半導体装置の製造方法
JP2004207493A (ja) * 2002-12-25 2004-07-22 Mitsubishi Electric Corp 半導体装置、その製造方法および太陽電池
JP2004221396A (ja) * 2003-01-16 2004-08-05 Matsushita Electric Ind Co Ltd 半導体装置の製造方法
JP2008034583A (ja) * 2006-07-28 2008-02-14 Kyocera Corp 太陽電池素子の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114464686A (zh) * 2021-12-28 2022-05-10 浙江爱旭太阳能科技有限公司 一种新型隧穿钝化接触结构电池及其制备方法

Similar Documents

Publication Publication Date Title
JP5172480B2 (ja) 光電変換装置およびその製造方法
JP5490231B2 (ja) 太陽電池素子およびその製造方法ならびに太陽電池モジュール
US9281435B2 (en) Light to current converter devices and methods of manufacturing the same
JP2009147070A (ja) 太陽電池の製造方法
JP2015130527A (ja) 太陽電池及びその製造方法
WO2010001473A1 (ja) 光起電力装置およびその製造方法
JP6199727B2 (ja) 太陽電池の製造方法
KR101597532B1 (ko) 후면전극형 태양전지의 제조방법
JP2010171263A (ja) 光起電力装置の製造方法
KR20130092494A (ko) 태양 전지의 제조 방법 및 태양 전지
TWI424582B (zh) 太陽能電池的製造方法
JP2013048126A (ja) 光起電力装置およびその製造方法
JP6426486B2 (ja) 太陽電池素子の製造方法
JP2010080578A (ja) 光電変換素子およびその製造方法
JP5623131B2 (ja) 太陽電池素子およびその製造方法ならびに太陽電池モジュール
JP2016051767A (ja) 太陽電池素子の製造方法
JP5645734B2 (ja) 太陽電池素子
KR20120078904A (ko) 후면 전극형 태양전지 및 이의 제조방법
JP2010080576A (ja) 光電変換素子およびその製造方法
JP2015106585A (ja) 太陽電池素子の製造方法および太陽電池モジュール
JP2014146553A (ja) 太陽電池の電極用導電性ペーストおよびその製造方法
JP2011222630A (ja) 光起電力装置の製造方法
JP2010192858A (ja) 太陽電池セルおよびその製造方法
JP5377226B2 (ja) 太陽電池セル及びその製造方法
JP2007266328A (ja) 光電変換素子、およびそれから構成される光電変換モジュール

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130813

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130814

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131210