JP2011220213A - 建設機械の内燃機関における排気ガス浄化システム - Google Patents

建設機械の内燃機関における排気ガス浄化システム Download PDF

Info

Publication number
JP2011220213A
JP2011220213A JP2010089730A JP2010089730A JP2011220213A JP 2011220213 A JP2011220213 A JP 2011220213A JP 2010089730 A JP2010089730 A JP 2010089730A JP 2010089730 A JP2010089730 A JP 2010089730A JP 2011220213 A JP2011220213 A JP 2011220213A
Authority
JP
Japan
Prior art keywords
reducing agent
exhaust gas
catalyst
nox
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010089730A
Other languages
English (en)
Inventor
Ka Ho
河 宝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP2010089730A priority Critical patent/JP2011220213A/ja
Publication of JP2011220213A publication Critical patent/JP2011220213A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

【課題】還元剤を再補充する回数を減らし、高いNOx浄化率で排気ガス中のNOxを浄化できる建設機械の内燃機関における排気ガス浄化システムを提供する。
【解決手段】ディーゼルエンジンと、酸化触媒と、排気ガス中に含まれる粒子状物質を捕集するDPFと、排気ガス中の一酸化炭素を還元剤に用いて、排気ガスの窒素酸化物を還元浄化するNOx浄化触媒と、選択的接触還元触媒とを備えた建設機械の内燃機関における排気ガス浄化システムであって、エンジンの排気通路に上流から順に設けた酸化触媒、DPF、NOx浄化触媒、選択的接触還元触媒と、選択的接触還元触媒の上流に設けた還元剤添加装置と、DPFの上流側に設けた排気温度センサと、排気温度センサから検出温度を取り込み、この検出温度が予め設定した設定温度よりも高い場合に、還元剤添加装置に還元剤噴射指令を出力する制御手段とを備えた。
【選択図】 図1

Description

本発明は、建設機械の内燃機関における排気ガス浄化システム及び排気ガス浄化方法に係り、さらに詳しくは、ディーゼルエンジン等の排気ガス中のNOxを浄化する選択的接触還元触媒(SCR触媒)を備えた建設機械の内燃機関における排気ガス浄化システムに関する。
ディーゼルエンジンから排出される排気ガスには、煤やSOF(Soluble Organic Fraction)などの粒子状物質(以下、PMという)や窒素酸化物(以下、NOxという)が含まれているため、これらを除去した後に大気中に排出する必要がある。この要求に対して、ディーゼルエンジン(以下、エンジンという)の排気管の途中にPM捕集用のDPF(ディーゼルパティキュレートフィルタ)とNOxを浄化するNOx還元触媒とを、上流側から下流側に順次直列に配置した排気ガスの浄化装置が知られている(例えば、特許文献1参照)。
また、エンジンの広い運転領域にわたって、高いNOx浄化率を得るために、排気通路に上流から順に選択的接触還元触媒とNOx吸蔵還元型触媒を直列に設けた内燃機関の排気ガス浄化システムがある(例えば、特許文献2参照)。
特開平4―050421号公報 特開2004−218475号公報
例えば、特許文献2に記載された内燃機関の排気ガス浄化システムにおいては、尿素水溶液を貯蔵する尿素水溶液タンクが設けられ、この尿素水溶液タンク内の尿素水溶液量を監視し、必要であれば補充することが要求されている。トラックやバス等の一般的な車両の場合、例えば市街地の施設に移動することで、容易に尿素水溶液を補充することができる。
しかし、例えば油圧ショベルなどの建設機械は、鉱山や山奥などインフラの整備されていない遠隔な場所で稼動することが多く、頻繁に尿素水溶液を補充するのは経済的に大きな負担になる。更に、車体上に尿素水溶液タンクを配置する大きなスペースが必要となり、製造段階における設計の自由度を損なうという問題がある。
また、上述した排気ガス浄化システムの構成では、NOx吸蔵還元型触媒のNOx吸蔵能力を回復させるため、NOx再生燃焼運転を行うことが必要となり、従来機より燃費が悪化する可能性がある。
本発明は、このような問題点を解決するためになされたもので、その目的は、還元剤を再補充する回数を減らし、使い勝手をよくし、高いNOx浄化率で排気ガス中のNOxを浄化できる建設機械の内燃機関における排気ガス浄化システムを提供するものである。
上記の目的を達成するために、第1の発明は、ディーゼルエンジンと、酸化触媒と、排気ガス中に含まれる粒子状物質を捕集するDPFと、排気ガス中の一酸化炭素を還元剤に用いて、排気ガスの窒素酸化物を還元浄化するNOx浄化触媒と、選択的接触還元触媒とを備えた建設機械の内燃機関における排気ガス浄化システムであって、前記エンジンの排気通路に上流から順に設けた前記酸化触媒、前記DPF、前記NOx浄化触媒、前記選択的接触還元触媒と、前記選択的接触還元触媒の上流に設けた還元剤添加装置と、前記DPFの上流側に設けた排気温度センサと、前記排気温度センサから検出温度を取り込み、この検出温度が予め設定した設定温度よりも高い場合に、前記還元剤添加装置に還元剤噴射指令を出力する制御手段とを備えたものとする。
また、第2の発明は、第1の発明において、前記制御手段は、触媒温度とNOx浄化率の関係に基づく前記NOx浄化触媒の特性の下降曲線と、触媒温度とNOx浄化率の関係に基づく前記選択的接触還元触媒の特性の上昇曲線との交点によって得られる設定温度を記憶する記憶部と、前記排気温度センサからの検出温度と、前記記憶部に記憶した設定温度とを比較し、前記検出温度が前記設定温度よりも高い場合に、前記還元剤添加装置に還元剤噴射指令を出力する演算部とを備えたことを特徴とする。
更に、第3の発明は、第2の初径において、前記選択的接触還元触媒の下流にNOxセンサを更に設け、前記制御手段は、前記記憶部に記憶した規制値と、前記NOxセンサから検出したNOx濃度とを比較し、前記検出NOx濃度が前記規制値以下の場合に、前記還元剤添加装置に還元剤噴射終了指令を出力する演算部を備えたことを特徴とする。
また、第4の発明は、第1乃至第3の発明のいずれかにおいて、前記選択的接触還元触媒の下流にさらに酸化触媒を設けたことを特徴とする。
更に、第5の発明は、第1乃至第4の発明のいずれかにおいて、前記還元剤添加装置は、尿素水溶液、アンモニア水溶液、及び液体アンモニアのいずれかを還元剤として供給することを特徴とする。
本発明によれば、排気通路の上流側から順にDPF、NOx浄化触媒、SCR触媒を設け、低温域のNOxをNOx浄化触媒で浄化し、高温域のNOxのみをSCR触媒で浄化するので、SCR触媒用の還元剤である尿素水溶液の使用量を減らすことができ、還元剤を再補充する回数を減らすことができる。この結果、そのメンテナンス性が向上すると共に使い勝手がよく、高いNOx浄化率で排気ガス中のNOxを浄化できる建設機械の内燃機関における排気ガス浄化システムを提供することができる。
本発明の建設機械の内燃機関における排気ガス浄化システムの一実施の形態を示すシステム構成図である。 本発明の建設機械の内燃機関における排気ガス浄化システムの一実施の形態を構成するNOx浄化触媒とSCR触媒のNOx浄化率を示す特性図である。 本発明の建設機械の内燃機関における排気ガス浄化システムの一実施の形態の制御内容を示すフローチャート図である。 本発明の建設機械の内燃機関における排気ガス浄化システムの一実施の形態の還元剤噴射制御内容を示すフローチャート図である。
以下に、本発明の建設機械の内燃機関における排気ガス浄化システムの一実施の形態を図面を用いて説明する。図1は本発明の建設機械の内燃機関における排気ガス浄化システムの一実施の形態を示すシステム構成図である。
図1において、1はエンジン、2はエンジンの排気通路に連設された排気ガス浄化装置を示している。エンジン1は各気筒共通のコモンレール3を備えている。コモンレール3に蓄えられた高圧の燃料(軽油)は、各気筒に設けられたインジェクタ4に供給され、各インジェクタ4からそれぞれの気筒内に噴射されている。
吸気通路5にはターボチャージャ6が装備されていて、図示しないエアクリーナから吸入された吸気は、吸気通路5からターボチャージャ6のコンプレッサ6aへと流入し、コンプレッサ6aで過給された吸気はインタークーラ7及び吸気制御弁8を介して吸気マニホールド9に導入されている。
一方、エンジン1からの排気は、排気マニホールド10及びターボチャージャ6のタービン6bを介して排気管11に流入している。排気マニホールド10と吸気マニホールド9との間には、EGR弁12を介して連通するEGR通路13が設けられている。排気管11の一端側はターボチャージャ6のタービン6bの吐出側に接続され、排気管11の他端側は排気ガス浄化装置2の一端側に接続されている。また、タービン6bの回転軸はコンプレッサ6aの回転軸と連結されている。排気管11に流入する排気が、タービン6bの図示しないタービン翼に衝突し、タービン6bとコンプレッサ6aとを駆動している。
排気ガス浄化装置2は、排気通路の上流から順に前段酸化触媒20、排気ガスに含まれるPMを捕集するDPF21、NOx浄化触媒22、SCR触媒23、後段酸化触媒24より構成される。
前段酸化触媒20は、排気中のNOを酸化させてNOを生成し、このNOを酸化剤としてDPF21に供給するものである。また、DPF21は、ハニカム型のコージェライト担体からなる。
このように前段酸化触媒20とDPF21とを配置することにより、DPF21に捕集され堆積しているPMは、前段酸化触媒20から供給されたNOと反応して酸化し、DPF21の連続再生が行われるようになっている。このNOは、Oよりエネルギー障壁が小さいため、低い温度でDPF21に捕集されたPMを酸化除去できるという特徴がある。
前段酸化触媒20とDPF21との間には、DPF21の入口側の排気温度を検出する排気温度センサ(DPF入口)40と、DPF21前後の排気差圧を検出する排気差圧センサ42とが設けられている。排気差圧センサ42によって検出された排気差圧は、DPF21の詰まり具合を判断するデータとして用いられている。
NOx浄化触媒22は排気ガスの一酸化炭素(CO)を還元剤に用いて、排気ガスのNOxを還元浄化する触媒である。排気ガスに含まれるCOを利用するため、還元剤コストがかからないというメリットがある。例えば、イリジウムを酸化タングステン及びシリカからなる複合体に担持したことからなることを特徴とする一酸化炭素による窒素酸化物を選択的に還元する還元用触媒などが知られている。本実施の形態において、NOx浄化触媒22の上流側と下流側には、NOxの濃度を検出するNOxセンサ(NOx浄化触媒上流)43とNOxセンサ(SCR触媒上流)44とが設けられている。
SCR触媒23の上流には、後述する尿素水溶液を噴射供給する噴射ノズル55と入口側の排気温度を検出する排気温度センサ(SCR触媒入口)45とが設けられている。噴射ノズル55は還元剤噴射装置54に接続されている。噴射ノズル55から噴射された尿素水溶液は、排気熱により熱分解又は加水分解してアンモニアとなり、SCR触媒23に供給される。また、SCR触媒23の下流には、下流側のNOxの濃度を検出するNOxセンサ(SCR触媒下流)46が設けられている。
SCR触媒23は供給されたアンモニアを吸着し、吸着したアンモニアと排気中のNOxとの脱硝反応を促進することにより、NOxを浄化して無害なNとする。
例えば、還元剤の過剰供給又は急激な温度変化により、NOxと反応せずにSCR触媒23から流出したアンモニア(アンモニアスリップ)は、後段酸化触媒24によって酸化され、NまたはNOxとなる。ここで生成されるNOxは更に後段酸化触媒24に流入するアンモニアと反応してNになる。したがって、後段酸化触媒24に流入するアンモニアは無害なNとなって大気中に放出されるようになっている。
尿素水溶液を貯蔵する還元剤貯蔵タンク50は、尿素水溶液の残量を検出する還元剤レベルセンサ56と、尿素水溶液の濃度を検出する還元剤濃度センサ57とを備えていて、それぞれの検出信号が後述のDCU70に入力されている。
ポンプ51は、尿素水溶液を還元剤貯蔵タンク50から吸引して、噴射ノズル55まで圧縮供給している。
還元剤制御弁52の開度が後述のDCU70により制御されることにより、圧縮された尿素水溶液が、還元剤供給配管53と還元剤噴射装置54とを介して噴射ノズル55から排気ガス中に噴射されている。還元剤添加装置は、ポンプ51、還元剤制御弁52、還元剤供給配管53、還元剤噴射装置54及び噴射ノズル55を備えている。
ECU60は、エンジン1の運転制御をはじめとして総合的な制御を行うための制御装置であり、各種手順を実行する演算部(CPU)と、予め各種設定値を記憶する記憶部(メモリ)と、入出力装置等を備えるコントローラユニットで構成され、様々な制御量の演算を行うと共に、その制御量に基づき各種デバイスの制御を行っている。
ECU60の入力側には、各種制御に必要な情報を収集するため、上述した排気温度センサ(DPF入口)、排気差圧センサ42、NOxセンサ(SCR触媒上流)44、NOxセンサ(SCR触媒下流)46、排気温度センサ(SCR触媒入口)45のほか、エンジン回転数を検出する回転速度センサ47などの各種センサ類が接続されていて、出力側には演算した制御量に基づき制御が行われる各気筒のインジェクタ4、吸気制御弁8及びEGR弁12などの各種デバイス類が接続されている。
DCU70は、還元剤噴射制御を行うための制御装置であり、ECU60と同様のコントローラユニットで構成されている。DCU70の入力側には、上述した還元剤レベルセンサ56、還元剤濃度センサ57などの各種センサ類が接続されていて、出力側には演算した制御量に基づき制御が行われる還元剤制御弁52などの各種デバイス類が接続されている。
制御の大略としては、まず、排気温度センサ(SCR触媒入口)45で検出された排気温度と予め設定された還元剤噴射開始温度Tsとを比較し、排気温度がTs以上の場合に、以下の制御が開始される。NOxセンサ(SCR触媒上流)44によって検出されたNOx濃度と還元剤濃度センサ57によって検出された還元剤濃度に基づき、エンジン1から排出されるNOxをSCR触媒23で選択的還元するために必要な還元剤供給量を算出する。次に、算出した還元剤供給量が確保されるように、還元剤制御弁52の開度を制御している。
DCU70とECU60とはCAN通信で繋がっていて、エンジン側の情報(例えば、NOxセンサ、温度センサ、回転センサの各検出信号)がECU60を通じてDCU70に提供される。また、例えば、還元剤の残量、還元剤の噴射量、還元剤の濃度等の選択的還元触媒に関する情報もDCU70を通じてECU60に提供される。なお、CANとは、Controller Area Networkの略称であって、車載向けの多重通信に使用されるリアルタイム・アプリケーション向けのシリアル通信をいう。
次に、DCU70における還元剤噴射開始温度Tsの設定について、図1及び図2を用いて説明する。図2は本発明の建設機械の内燃機関における排気ガス浄化システムの一実施の形態を構成するNOx浄化触媒とSCR触媒のNOx浄化率を示す特性図である。
図2において、横軸は触媒温度、縦軸はNOx浄化率を示す。NOx浄化触媒22の特性Aは、比較的低温域においてNOx浄化率が高く、高音域ではNOx浄化率が低くなっている。一方、SCR触媒23の特性Bは、加水分解及び接触的選択反応の関係から、比較的高温域でNOx浄化率が高く、低温域ではNOx浄化率が低くなっている。図2において、NOx浄化触媒22の特性Aの下降曲線と、SCR触媒23の特性Bの上昇曲線との交点部の温度をTaで示している。
一方、図1に示すように、NOx浄化触媒22の上流側には、前段酸化触媒20が配置されている。NOx浄化触媒22は、排気ガスの一酸化炭素(CO)を還元剤に用いるものである。したがって、例えば、排気ガスの温度が、前段酸化触媒20の活性化温度Tb以上である場合には、排気ガスのCOが前段酸化触媒20で酸化されてしまい、NOx浄化触媒22における還元剤が不足し、NOx浄化率が低減してしまう。
このため、還元剤噴射開始温度Tsは、NOx浄化触媒22の特性Aの下降曲線とSCR触媒23の特性Bの上昇曲線との交点部の温度Taと、前段酸化触媒20の活性化温度Tbとを比較して、いずれか低い方の温度に設定している。具体的には、例えば、DCU70を構成する記憶部(メモリ)に上述した温度Taと前段酸化触媒20の活性化温度Tbとが、記憶され、演算部において、還元剤噴射開始温度Tsが設定されている。このように、還元剤噴射開始温度Tsを設定し、SCR触媒23の前にNOx浄化触媒22を配置することにより、設定温度Ts以下の低温域では、排気ガス中の一酸化炭素(CO)が前段酸化触媒20に酸化されずにNOx浄化触媒22でNOxを浄化できる。設定温度Ts以上の高温域のみSCR触媒23用の還元剤である尿素水溶液を供給するので還元剤の使用量を減らすことでき、還元剤を補充する間隔を延ばすことができる。
次に、上述した本発明の建設機械の内燃機関における排気ガス浄化システムの一実施の形態の制御内容を図3及び図4を用いて説明する。図3は本発明の建設機械の内燃機関における排気ガス浄化システムの一実施の形態の制御内容を示すフローチャート図、図4は本発明の建設機械の内燃機関における排気ガス浄化システムの一実施の形態の還元剤噴射制御内容を示すフローチャート図である。図3及び図4において図1及び図2に示す符号と同符号のものは、同一部分であるので、その詳細な説明は省略する。
まず、排気ガス浄化システムの一実施の形態の制御内容を説明する。
エンジン1の起動と共にフローチャートのスタートの信号が確立する。ステップ(S11)では、PM捕集量の計算が行われる。具体的には、エンジン1の回転数、負荷及び稼働時間などから、PM量を算出し、このPM算出量の累積からPM捕集量を計算する。または、DPF21前後の排気差圧を計測する排気差圧センサ42の検出信号からPM捕集量を計算する。
次のステップ(S12)では、DPF21の再生を行うか否かを判断する。具体的には、ステップ(S11)で計算したPM捕集量と設定値との比較を行い、PM捕集量が設定値以上の場合には、YESと判断され再生制御が必要であるとしてステップ(S13)に移る。また、PM捕集量が設定値以下の場合には、NOと判断されステップ(S16)に移る。
ステップ(S13)では、PM再生制御が開始される。DPF21に捕集されたPMの増加に伴い、排気抵抗が増加すると、燃費が悪化するなどエンジン性能に悪影響を与えるので、溜まったPMを再生する必要がある。具体的には、排気温度センサ(DPF入口)40の検出値である排気温度に基づいて、ポスト噴射等の多段噴射で再生用の燃料噴射制御を行い、急激なPMの燃焼を防止することにより、DPF21の溶損などを防いでいる。
ステップ(S14)では、PM再生制御の終了を判断する。具体的には、排気差圧センサ42の検出信号とタイマの値(再生時間)に基づきPM再生制御終了を判断する。例えば、20分再生燃焼を行い、排気差圧センサ42の検出値が設定値より小さい場合には、YESと判断されPM再生制御が終了したとしてステップ(S15)に移る。また、排気差圧センサ42の検出値が設定値より大きい場合には、NOと判断されステップ(S13)に戻りPM再生制御が継続される。
ステップ(S15)では、再生制御が終了となり、ステップ(S11)に戻る。なお、PM再生制御が終了後、例えば、排気差圧センサ42の検出値の累積計算や、再生時間のタイマをリセットする。
ステップ(S12)において、DPF21の再生不要と判断されて移ったステップ(S16)では、NOx濃度が計測される。具体的には、NOxセンサ(NOx浄化触媒上流)43でNOx濃度を検出する。
ステップ(S17)では、ステップ(S16)で計測したNOx濃度が規制値以内か否かを判断する。計測したNOx濃度が規制値以内の場合には、YESと判断されステップ(S11)に戻り、規制値以上の場合には、NOと判断されステップ(S18)に移る。
ステップ(S18)では、排気ガス温度が上述した設定値である還元剤噴射開始温度Ts以下か否かが判断される。具体的には、排気温度センサ(DPF入口)40から検出される排気ガス温度と、還元剤噴射開始温度Tsとの比較を行い、排気ガス温度が設定値Ts以下の場合には、YESと判断され還元剤噴射が不要であるとしてステップ(S19)に移る。また、排気ガス温度が設定値Ts以上の場合には、NOと判断されステップ(S20)に移る。
ステップ(S19)では、還元剤噴射制御を行わずにステップ(S11)に戻る。
ステップ(S20)では、後述する還元剤噴射制御が開始される。
ステップ(S21)では、NOx濃度が規制値以内か否かを判断する。具体的には、NOxセンサ(SCR触媒下流)46で検出したNOx濃度と規制値とを比較する。計測したNOx濃度が規制値以内の場合には、YESと判断されステップ(S22)に移り還元剤噴射制御を終了し、規制値以上の場合には、NOと判断されステップ(S20)に戻り、還元材噴射制御を続ける。
ステップ(S22)では、還元剤噴射制御を終了しステップ(S11)に戻る。
次に、排気ガス浄化システムの一実施の形態の還元剤噴射制御内容を説明する。DCU70が、主に、還元剤噴射制御を行うが、上述したように、ECU(60とDCU70とはシリアル通信で繋がっていて、エンジン側の情報(例えば、NOxセンサ、温度センサ、回転センサの各検出信号)がECU60を通じてDCU70に提供され、選択的還元触媒に関する情報(例えば、還元剤の残量、還元剤の噴射量、還元剤の濃度等の検出信号)もDCU70を通じてECU60に提供されている。
ステップ(S31)では、排気ガス中のNOx濃度を計算する。具体的には、NOxセンサ(SCR触媒上流)44で検出したNOx濃度をECU50から取得する。
ステップ(S32)では、還元剤の濃度測定を行う。具体的には、尿素水溶液を貯蔵する還元剤貯蔵タンク50に設けられた還元剤濃度センサ57で検出された尿素水溶液の濃度を検出する。
ステップ(S33)では、還元剤噴射量の設定が行われる。具体的には、ステップ(S31)とステップ(S32)で得られたNOx濃度と還元剤の濃度に基づき、次の化学反応式より還元剤噴射量を設定する。尿素水溶液が次の反応式化1、及び化2によりアンモニアに分解する。そして、アンモニアは、高温域では主に反応式化3により、SCR触媒内でNOxと反応して、NとHOを生成する。
Figure 2011220213
Figure 2011220213
Figure 2011220213
ステップ(S34)では、還元剤噴射が開始される。具体的には、還元剤貯蔵タンク50からの還元剤である尿素水溶液をポンプ51により圧縮供給し、還元剤制御弁52の開度を制御することで、還元剤噴射量を制御している。還元剤制御弁52により制御された尿素水溶液が、還元剤供給配管53と還元剤噴射装置54とを介して噴射ノズル55から排気ガス中に噴射されている。
ステップ(S35)では、NOx濃度が規制値以内か否かを判断する。具体的には、NOxセンサ(SCR触媒下流)46で検出したNOx濃度と規制値とを比較する。計測したNOx濃度が規制値以内の場合には、YESと判断されステップ(S36)に移り還元剤噴射制御を終了し、規制値以上の場合には、NOと判断されステップ(S34)に戻り、還元材噴射制御を続ける。
ステップ(S36)では、還元剤噴射制御を終了する。具体的には、還元剤制御弁52を閉止することで、還元剤噴射を終了させる。
上述した本発明の一実施の形態によれば、排気通路の上流側から順にDPF21、NOx浄化触媒22、SCR触媒23を設け、低温域のNOxをNOx浄化触媒22で浄化し、高温域のNOxのみをSCR触媒23で浄化するので、SCR触媒23用の還元剤である尿素水溶液の使用量を減らすことができ、還元剤を再補充する回数を減らすことができる。この結果、そのメンテナンス性が向上すると共に使い勝手がよく、高いNOx浄化率で排気ガス中のNOxを浄化できる建設機械の内燃機関における排気ガス浄化システムを提供することができる。
また、上述の一実施の形態によれば、DPF21におけるPM燃焼の際の一部排気熱を前段のNOx浄化触媒22が吸収するので、SCR触媒23の熱劣化を防止することができる。
さらに、上述の一実施の形態によれば、SCR触媒23の下流に後段酸化触媒24を配置しているので、SCR触媒23において、還元剤の過剰供給又は急激な温度変化により、SCR触媒23上でNOx還元に使用されず下流に流出したアンモニアガスを下流の後段酸化触媒24で酸化でき、アンモニアガスの大気中の放出を防止できる。また、強制再生でのPM燃焼の際に生じるCO、HCも下流の後段酸化触媒24により酸化できる。
また、上述の一実施の形態によれば、SCR触媒23の前にNOx浄化触媒22を配置することにより、設定温度Ts以下の低温域では、排気ガス中の一酸化炭素(CO)が前段酸化触媒20に酸化されずにNOx浄化触媒22でNOxを浄化できる。設定温度Ts以上の高温域のみSCR触媒23用の還元剤である尿素水溶液を供給するので還元剤の使用量を減らすことでき、還元剤補充する間隔を延ばすことができる。また、小さい還元剤貯蔵タンク50を使用することが可能になり、製造段階における設計上の自由度が増加し、メンテナス性も向上する。
更に、上述の一実施の形態によれば、排気ガスの一酸化炭素(CO)を還元剤に用いて、排気ガスの窒素酸化物(NOx)を還元浄化するNOx浄化触媒22を使用しているので、還元剤コストがかからないというメリットがある。また、例えば、特許文献2に開示された排気ガスの浄化装置のように、NOx吸蔵還元型触媒のNOx吸蔵能力を回復させるためのNOx再生燃焼運転を行う必要がないので、燃費が悪化しないというメリットがある。
なお、本発明の実施の形態においては、排気ガス浄化システムのSCR触媒23の還元剤として尿素水溶液を例に説明したが、これに限られるものではなく、アンモニア水溶液や液体アンモニアであってもよい。これにより、比較的容易にアンモニア(NH)をSCR触媒23へ供給できる。
1 エンジン
2 排気ガス浄化装置
3 コモンレール
4 インジェクタ
5 吸気通路
6 ターボチャージャ
7 インタークーラ
8 吸気制御弁
9 吸気マニホールド
10 排気マニホールド
11 排気管
12 EGR弁
20 前段酸化触媒
21 DPF
22 NOx浄化触媒
23 SCR触媒
24 後段酸化触媒
40 排気温度センサ(DPF入口)
42 排気差圧センサ
43 NOxセンサ(NOx浄化触媒上流)
44 NOxセンサ(SCR触媒上流)
45 排気温度センサ(SCR触媒入口)
46 NOxセンサ(SCR触媒下流)
50 還元剤貯蔵タンク
51 ポンプ
52 還元剤制御弁
53 還元剤供給配管
54 還元剤噴射装置
55 噴射ノズル
57 還元剤濃度センサ
60 ECU
70 DCU

Claims (5)

  1. ディーゼルエンジンと、
    酸化触媒と、
    排気ガス中に含まれる粒子状物質を捕集するDPFと、
    排気ガス中の一酸化炭素を還元剤に用いて、排気ガスの窒素酸化物を還元浄化するNOx浄化触媒と、
    選択的接触還元触媒とを備えた建設機械の内燃機関における排気ガス浄化システムであって、
    前記エンジンの排気通路に上流から順に設けた前記酸化触媒、前記DPF、前記NOx浄化触媒、前記選択的接触還元触媒と、
    前記選択的接触還元触媒の上流に設けた還元剤添加装置と、
    前記DPFの上流側に設けた排気温度センサと、
    前記排気温度センサから検出温度を取り込み、この検出温度が予め設定した設定温度よりも高い場合に、前記還元剤添加装置に還元剤噴射指令を出力する制御手段とを備えた
    ことを特徴とする建設機械の内燃機関における排気ガス浄化システム。
  2. 請求項1記載の建設機械の内燃機関における排気ガス浄化システムにおいて、
    前記制御手段は、触媒温度とNOx浄化率の関係に基づく前記NOx浄化触媒の特性の下降曲線と、触媒温度とNOx浄化率の関係に基づく前記選択的接触還元触媒の特性の上昇曲線との交点によって得られる設定温度を記憶する記憶部と、
    前記排気温度センサからの検出温度と、前記記憶部に記憶した設定温度とを比較し、前記検出温度が前記設定温度よりも高い場合に、前記還元剤添加装置に還元剤噴射指令を出力する演算部とを備えた
    ことを特徴とする建設機械の内燃機関における排気ガス浄化システム。
  3. 請求項2に記載の建設機械の内燃機関における排気ガス浄化システムにおいて、
    前記選択的接触還元触媒の下流にNOxセンサを更に設け、
    前記制御手段は、前記記憶部に記憶した規制値と、前記NOxセンサから検出したNOx濃度とを比較し、前記検出NOx濃度が前記規制値以下の場合に、前記還元剤添加装置に還元剤噴射終了指令を出力する演算部を備えた
    ことを特徴とする建設機械の内燃機関における排気ガス浄化システム。
  4. 請求項1乃至3のいずれか1項に記載の建設機械の内燃機関における排気ガス浄化システムにおいて、
    前記選択的接触還元触媒の下流にさらに酸化触媒を設けた
    ことを特徴とする建設機械の内燃機関における排気ガス浄化システム。
  5. 請求項1乃至4のいずれか1項に記載の建設機械の内燃機関における排気ガス浄化システムにおいて、
    前記還元剤添加装置は、尿素水溶液、アンモニア水溶液、及び液体アンモニアのいずれかを還元剤として供給する
    ことを特徴とする建設機械の内燃機関における排気ガス浄化システム。
JP2010089730A 2010-04-08 2010-04-08 建設機械の内燃機関における排気ガス浄化システム Pending JP2011220213A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010089730A JP2011220213A (ja) 2010-04-08 2010-04-08 建設機械の内燃機関における排気ガス浄化システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010089730A JP2011220213A (ja) 2010-04-08 2010-04-08 建設機械の内燃機関における排気ガス浄化システム

Publications (1)

Publication Number Publication Date
JP2011220213A true JP2011220213A (ja) 2011-11-04

Family

ID=45037499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010089730A Pending JP2011220213A (ja) 2010-04-08 2010-04-08 建設機械の内燃機関における排気ガス浄化システム

Country Status (1)

Country Link
JP (1) JP2011220213A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016130518A (ja) * 2016-02-01 2016-07-21 住友建機株式会社 ショベル
CN112112717A (zh) * 2020-10-16 2020-12-22 中国矿业大学 一种矿用防爆柴油机尾气净化装置
CN115217584A (zh) * 2022-03-01 2022-10-21 广州汽车集团股份有限公司 氢气发动机的排气处理装置及排气处理方法、车辆

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003529699A (ja) * 1998-11-13 2003-10-07 エンゲルハード・コーポレーシヨン NOxの還元を向上させる段階的還元剤注入
JP2004218475A (ja) * 2003-01-10 2004-08-05 Isuzu Motors Ltd 内燃機関の排気ガス浄化システム及び内燃機関の排気ガス浄化方法
JP2006512529A (ja) * 2003-01-02 2006-04-13 ダイムラークライスラー・アクチェンゲゼルシャフト 排気ガス後処理装置及び方法
JP2006342737A (ja) * 2005-06-09 2006-12-21 Mitsubishi Fuso Truck & Bus Corp 排気浄化装置
JP2006348886A (ja) * 2005-06-17 2006-12-28 Denso Corp NOx除去装置
JP2007175654A (ja) * 2005-12-28 2007-07-12 National Institute Of Advanced Industrial & Technology 窒素酸化物の選択的還元触媒
JP2009041430A (ja) * 2007-08-08 2009-02-26 Isuzu Motors Ltd NOx浄化方法及びNOx浄化システム
JP2009085178A (ja) * 2007-10-02 2009-04-23 Toyota Motor Corp 内燃機関の排気浄化装置
JP2009517599A (ja) * 2005-12-02 2009-04-30 イートン コーポレーション 改質装置の温度管理を用いたlnt脱硫酸方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003529699A (ja) * 1998-11-13 2003-10-07 エンゲルハード・コーポレーシヨン NOxの還元を向上させる段階的還元剤注入
JP2006512529A (ja) * 2003-01-02 2006-04-13 ダイムラークライスラー・アクチェンゲゼルシャフト 排気ガス後処理装置及び方法
JP2004218475A (ja) * 2003-01-10 2004-08-05 Isuzu Motors Ltd 内燃機関の排気ガス浄化システム及び内燃機関の排気ガス浄化方法
JP2006342737A (ja) * 2005-06-09 2006-12-21 Mitsubishi Fuso Truck & Bus Corp 排気浄化装置
JP2006348886A (ja) * 2005-06-17 2006-12-28 Denso Corp NOx除去装置
JP2009517599A (ja) * 2005-12-02 2009-04-30 イートン コーポレーション 改質装置の温度管理を用いたlnt脱硫酸方法
JP2007175654A (ja) * 2005-12-28 2007-07-12 National Institute Of Advanced Industrial & Technology 窒素酸化物の選択的還元触媒
JP2009041430A (ja) * 2007-08-08 2009-02-26 Isuzu Motors Ltd NOx浄化方法及びNOx浄化システム
JP2009085178A (ja) * 2007-10-02 2009-04-23 Toyota Motor Corp 内燃機関の排気浄化装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016130518A (ja) * 2016-02-01 2016-07-21 住友建機株式会社 ショベル
CN112112717A (zh) * 2020-10-16 2020-12-22 中国矿业大学 一种矿用防爆柴油机尾气净化装置
CN112112717B (zh) * 2020-10-16 2024-05-14 中国矿业大学 一种矿用防爆柴油机尾气净化装置
CN115217584A (zh) * 2022-03-01 2022-10-21 广州汽车集团股份有限公司 氢气发动机的排气处理装置及排气处理方法、车辆
CN115217584B (zh) * 2022-03-01 2024-03-08 广州汽车集团股份有限公司 氢气发动机的排气处理装置及排气处理方法、车辆

Similar Documents

Publication Publication Date Title
JP4789242B2 (ja) 排気浄化装置
US8356470B2 (en) Method of controlling NOx purification system and NOx purification system
JP5296291B2 (ja) 排気ガス浄化システム
JP5087836B2 (ja) 排気ガス浄化システムの制御方法及び排気ガス浄化システム
KR101509689B1 (ko) 배기 가스 정화 장치 및 이를 포함하는 배기 장치
JP4592504B2 (ja) 排気浄化装置
JP4521824B2 (ja) 排気浄化装置
US8713916B2 (en) NOx purification system and method for control of NOx purification system
JP5118331B2 (ja) 排気浄化装置
JP4592505B2 (ja) 排気浄化装置
WO2013172215A1 (ja) 排気ガス浄化システム及び排気ガス浄化方法
JP5093062B2 (ja) 内燃機関の排気浄化装置
WO2007060785A1 (ja) 排気ガス浄化システムの制御方法及び排気ガス浄化システム
WO2006123510A1 (ja) 排気ガス浄化方法及び排気ガス浄化システム
JP4986915B2 (ja) 排気浄化装置
US9702286B2 (en) Exhaust gas purification system and exhaust gas purification method
JP2007138866A (ja) 排気ガス浄化システムの再生制御方法及び排気ガス浄化システム
JP2013142363A (ja) ディーゼルエンジンの排気ガス浄化装置
JP2013002283A (ja) 排気浄化装置
JP5054607B2 (ja) 排気浄化装置
JP4847939B2 (ja) 排気浄化装置
JP5159739B2 (ja) エンジンの排気浄化装置
CN113272536A (zh) 一种发动机尾气后处理装置及方法
JP2008157188A (ja) 排気浄化装置
JP2010053703A (ja) 排気浄化装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120509

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131015