JP2011181553A - 半導体ウエハの処理方法と処理済の半導体ウエハ - Google Patents

半導体ウエハの処理方法と処理済の半導体ウエハ Download PDF

Info

Publication number
JP2011181553A
JP2011181553A JP2010041648A JP2010041648A JP2011181553A JP 2011181553 A JP2011181553 A JP 2011181553A JP 2010041648 A JP2010041648 A JP 2010041648A JP 2010041648 A JP2010041648 A JP 2010041648A JP 2011181553 A JP2011181553 A JP 2011181553A
Authority
JP
Japan
Prior art keywords
semiconductor wafer
area
average
drift layer
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010041648A
Other languages
English (en)
Other versions
JP5502528B2 (ja
Inventor
Takeshi Ishikawa
剛 石川
Yukihiko Watanabe
行彦 渡辺
Takashi Katsuno
高志 勝野
Takeo Yamamoto
武雄 山本
Takeshi Endo
剛 遠藤
Hirokazu Fujiwara
広和 藤原
Masaki Konishi
正樹 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Denso Corp
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Denso Corp
Priority to JP2010041648A priority Critical patent/JP5502528B2/ja
Publication of JP2011181553A publication Critical patent/JP2011181553A/ja
Application granted granted Critical
Publication of JP5502528B2 publication Critical patent/JP5502528B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

【課題】不均質性が存在する半導体ウエハを処理して不均質性の影響を効率的に軽減できる処理技術を提供する。
【解決手段】半導体ウエハの表面を複数区域に分割し、分割された区域ごとに、特性低下要因の平均存在密度を特定する(S12)。分割された区域ごとに、その区域内の平均存在密度に基づいて、予め用意されている複数種類のマスクパターンのなかから1種類のマスクパターンを選択する(S15)。複数種類のマスクパターンは、複数の開口部を備えており、開口部が均一に分布しているとともに、種類によって開口比率が相違するという制約に従っており、平均存在密度が高いほど開口比率が高い種類のマスクパターンを選択する。分割された区域ごとに選択したマスクパターンの開口部から、異種物質を注入する(S21)。
【選択図】図4

Description

本発明は、半導体ウエハの処理方法と、処理済の半導体ウエハに関する。
半導体ウエハには、結晶欠陥や表面の凹凸といった不均質性が存在する。不均質性が存在する半導体ウエハから複数個の半導体装置を量産すると、半導体装置ごとに特性がばらついてしまう。そこで、結晶欠陥が存在する半導体ウエハを処理し、結晶欠陥の影響を除去する技術が開発されている。特許文献1の技術では、半導体ウエハを観察して結晶欠陥が存在する位置を特定し、特定された位置に半導体ウエハと反対導電型のイオンを注入する。この結果、結晶欠陥に沿って電流が流れることが禁止され、結晶欠陥の影響が除去される。
特開2009‐44083号公報
しかしながら、結晶欠陥の存在位置を特定し、特定した位置にイオンを注入する処理は量産になじまない。例えば、イオン注入領域を制限するマスクパターンを予め用意しておくといったことができない。
本明細書で開示される技術は、こうした実情に鑑みて開発されたものであり、その目的は、不均質性が存在する半導体ウエハを処理して不均質性の影響を効率的に軽減することができる処理技術を提供することである。
本明細書で開示される技術は、半導体ウエハを処理して均質化する方法に関する。この処理方法では、半導体ウエハの表面を複数区域に分割し、分割された区域ごとに特性低下要因の平均存在密度を特定する。また、分割された区域ごとに、その区域内の平均存在密度に基づいて、予め用意されている複数種類のマスクパターンのなかから1種類のマスクパターンを選択する。さらに、分割された区域ごとに、選択したマスクパターンの開口から、異種物質を注入する。複数種類のマスクパターンは、複数の開口を備えており、開口が均一に分布しているとともに、種類によって開口比率が相違するという制約に従って予め用意されている。また、平均存在密度が高いほど開口比率が高い種類のマスクパターンを選択する。
分割された区域ごとに異種物質を注入する工程は、全部の区域に同時に異種物質を注入してもよいし、順々に注入してもよい。重要なことは、区域ごとに利用するマスクパターンを選択することである。
上記構成によれば、半導体ウエハの区域ごとに、予め用意されている複数種類のマスクパターンのなかから1種類のマスクパターンを選択して処理する。結晶欠陥の存在位置を特定し、特定された位置を処理する方法よりも効率的に、半導体ウエハを均質な状態に変化させることができる。
特性の不均質な半導体ウエハは、区域ごとに、結晶欠陥や表面の凹凸等の平均存在密度が相違する。半導体ウエハに存在する結晶欠陥や表面の凹凸等は、その半導体ウエハから半導体装置を製造した場合に、その半導体装置の特性を低下させる要因となる。特性の不均質な半導体ウエハは、区域ごとに、特性低下要因の平均存在密度が相違している。
半導体ウエハに、半導体ウエハとは異なる物質を注入すると、特性低下要因の影響が軽減される。例えば、半導体ウエハと反対導電型のイオンまたは絶縁物質を注入すれば、半導体装置に流れるリーク電流を低下させられる。
本処理方法では、特性低下要因が多く存在する区域ほど、その特性低下要因の影響を除去するための物質が多く注入される。これによって、区域同士を比較したときに、特性低下要因による影響の差が少ない状態に調整することができる。不均質な半導体ウエハを均質なウエハに変化させることができる。しかも、前記したように、マスクパターンを選択して処理すればよく、量産化に適している。
本明細書で開示される技術は、均質に処理された半導体ウエハを提供する。この半導体ウエハは、半導体ウエハの表面が複数区域に分割されており、分割された区域ごとに均一な分布パターンで異種物質注入領域が形成されている。この半導体ウエハでは、区域内に存在する特性低下要因の平均存在密度が高いほど異種物質注入領域の存在比率が高い関係にあるという特徴を備えている。
この半導体ウエハは、区域同士を比較したときに、特性低下要因による影響の差が少ない状態に調整されている。この半導体ウエハから複数個の半導体装置を量産すると、特性の揃った複数個の半導体装置を量産することができる。
実施例1の処理済みの半導体ウエハを示す平面図。 図1のII−II線における断面構造を示す端面図。 実施例1の半導体ウエハを用いて製造されるJBSダイオードの断面構造を示す端面図。 実施例1の半導体ウエハの処理手順を示すフローチャート。 実施例1の半導体ウエハの処理装置を示す模式図。 実施例1の半導体ウエハの処理工程(ステップ14)における断面構造を示す端面図。 実施例1の半導体ウエハの処理工程(ステップ16)における断面構造を示す端面図。 実施例1の半導体ウエハの処理工程(ステップ16)における断面構造を示す端面図。 実施例1の半導体ウエハの処理工程(ステップ19)における断面構造を示す端面図。 実施例1の半導体ウエハの処理工程(ステップ21)における断面構造を示す端面図。 実施例1の半導体ウエハの処理工程(ステップ22)における断面構造を示す端面図。 実施例1の半導体ウエハの処理工程(ステップ23)における断面構造を示す端面図。 実施例2の処理済みの半導体ウエハを示す平面図。 実施例3の処理済みの半導体ウエハを示す平面図。 実施例4の処理済みの半導体ウエハを示す平面図。
以下に本発明の実施例の特徴を説明する。
(特徴1)半導体ウエハを用いて量産される半導体装置は、JBS(ジャンクション・バリア・ショットキー)ダイオードである。
(特徴2)1個のJBSとなる区域に分割して、本処理を実施する。
(特徴3)基板上にドリフト層が形成されている半導体ウエハを処理する。処理済の半導体ウエハを観察すると、ドリフト層に複数個の反対導電型のコラムが形成されている。各反対導電型のコラムの大きさは同じであり、その分布パターンが半導体ウエハ内の区域によって異なっている。隣り合うコラムの間隔は、区域内の特性低下要因の平均存在密度が高いほど、狭い。
(実施例1)
本明細書で開示される発明を具体化した実施例1の半導体ウエハ及びその処理方法を、図1〜図12を参照して説明する。
図1は、本明細書に開示される技術によって処理された半導体ウエハ10を示す平面図である。図1に示すように、半導体ウエハ10は、同じ大きさの複数の区域(図1では16個の区域)に分割されている。図1では、半導体ウエハ10の複数の区域のうち、紙面上側に位置する3つの領域を、第1区域R1、第2区域R2、及び第3区域R3としている。なお、以下の説明及び図面においては、この3つの区域R1,R2,R3の説明及び図示を行い、他の区域の説明及び図示は省略する。第4〜第16領域にも同じ説明が適用される。
図2は、図1のII−II線における断面構造を示している。図2に示すように、半導体ウエハ10は、n型の基板11の表面に、n型のドリフト層12がエピタキシャル成長することによって形成されている。なお図2では、ドリフト層12のハッチングを省略している。ドリフト層12には、その表面側から下方に伸びるp型のコラム15(異種物質注入領域)が形成されている。基板11とドリフト層12とコラム15とは、いずれも炭化珪素からなる。図1及び図2に示すように、各コラム15は、いずれも同じ大きさの略直方体形状であり、表面が細長い略矩形状である。また、各区域R1,R2,R3ごとに、コラム15の存在比率が異なっている。なお、コラム15の存在比率の設定については、後に詳細に説明する。
この半導体ウエハ10を用いて、図3に示すJBSダイオード20が製造される。図3に示すように、JBSダイオード20では、半導体ウエハ10のドリフト層12の表面の各区域R1,R2,R3の端部に、層間絶縁膜37が形成されている。また、ドリフト層12の表面の各区域R1,R2,R3の中央部にはショットキー電極38が接続されている。ショットキー電極38は、端部が屈曲しており、層間絶縁膜37の上にまで伸びている。ショットキー電極38は、チタン、モリブデン、ニッケル、およびこれらの合金などから形成されている。また、ショットキー電極38の上に、アルミニウムなどの表面電極39が形成されている。図3に示すように、1枚の半導体ウエハ10に複数個(この場合16個)のJBSダイオード20を提供する構造が製造される。その後に、区域の境界である切断線21に沿って切断することによって、16個のJBSダイオード20が量産される。図1の個々の領域は、個々のJBSダイオード20に対応する。各区域R1,R2,R3の特性が予め均質化されていれば、それらの区域から製造される複数個のJBSダイオード20の特性が均質なものとなる。
次に、半導体ウエハ10のドリフト層12に形成されるコラム15と、半導体ウエハ10に存在している特性低下要因との関係について説明する。図2に示すように、各区域R1,R2,R3内には、結晶欠陥17や、ドリフト層12の表面に生じている凹部18などが存在している。これらの特性低下要因は、基板11を形成する際、又はドリフト層12をエピタキシャル成長させる際に生じる。本実施例の基板11は、炭化珪素からなるため、転位や積層欠陥などの結晶欠陥を含まない高品質の結晶成長を行うことが困難である。ドリフト層12は、基板11上にエピタキシャル成長しているため、基板11にこうした結晶欠陥があると、その欠陥が伝播される。また、ドリフト層12をエピタキシャル成長させる際に、その表面の一部が平坦化されないで凹凸が生じたり、上記欠陥の近傍に凹凸が生じたりすることもある。半導体ウエハ10に、結晶欠陥17や表面凹部18等が存在していると、この半導体ウエハ10から図3に示すJBSダイオード20を形成した場合に、この部位をリーク電流が流れる。結晶欠陥17や表面凹部18等はJBSダイオード20の特性を低下させる要因となる。半導体ウエハ10の各区域R1,R2,R3ごとに、特性低下要因の平均存在密度(単位面積あたりの数)が不均一であると、各区域R1,R2,R3に形成されるJBSダイオードの特性にもばらつきが生じる。
そこで、この半導体ウエハ10では、図2に示すように、各区域R1,R2,R3ごとに測定した特性低下要因の平均存在密度が高いほど、コラム15の存在比率を高くすることによって、区域R1,R2,R3ごとの特性を均質にするようにしている。すなわち、図示されているケースでは、図2に示すように、結晶欠陥17と凹部18とを加算した値、すなわち特性低下要因の総数が、第1区域R1、第3区域R3、第2区域R2の順に多くなっている。区域R1,R2,R3内の特性低下要因の平均存在密度が高いほど、各区域R1,R2,R3に形成するコラム15の個数が多くなっている。すなわち、各コラム15は同じ大きさであるため、各区域R1,R2,R3では、特性低下要因の平均存在密度が高いほど、コラム15の存在比率が大きくなっている。半導体ウエハ10では、特性低下要因が多い区域ほど、コラム15が多く存在しており、特性低下要因による影響を低減する処理が多く加えられている。したがって、区域R1,R2,R3を相互を比較したときに、特性低下要因の差が少ない状態に調整することができる。すなわち、半導体ウエハ10は、区域ごとの特性のばらつきが少ない均質なウエハとなっている。
また、各区域R1,R2,R3では、特性低下要因の平均存在密度が高いほど、コラム15の存在比率が高いため、特性低下要因の平均存在密度が高いほど、隣り合う2つのコラム15の間隔が短くなっているということができる。隣り合う2つのコラム15の間隔は、詳細には、下記の表1〜3に基づいて設定されている。
Figure 2011181553
Figure 2011181553
Figure 2011181553
表1〜3は、半導体ウエハ10を用いて形成したJBSダイオード20において、逆方向に1200〔V〕の電圧を印加した場合に、リーク電流を約1×10−5〔A/cm〕に抑えるための特性低下要因の平均存在密度〔cm−2〕とコラム間隔〔μm〕との関係を示している。表1はドリフト層12の厚みが8〔μm〕の場合、表2はドリフト層12の厚みが10〔μm〕の場合、表3はドリフト層12の厚みが13〔μm〕の場合の特性低下要因の平均存在密度とコラム間隔との関係を示している。なお、この表では、特性低下要因を、ドリフト層12の表面に存在している底角が120〔°〕で深さが50〔nm〕の凹部とし、この凹部の平均存在密度とコラム間隔との関係を示している。また、コラム15の不純物濃度は、1×1019〔cm−3〕、幅は1.0〔μm〕、深さ0.7〔μm〕としている。
表1は、ドリフト層12の厚みが8〔μm〕であって、ドリフト層12の不純物濃度が4×1015〔cm−3〕、6×1015〔cm−3〕、8×1015〔cm−3〕のそれぞれの場合での特性低下要因の平均存在密度〔cm−2〕と隣り合う2つのコラム15の間隔〔μm〕との関係を示している。ドリフト層12の厚みが8〔μm〕でドリフト層12の不純物濃度が4×1015〔cm−3〕の場合には、特性低下要因の平均存在密度が1800〔cm−2〕未満であれば、隣り合う2つのコラム15の間隔〔μm〕は3.3〔μm〕に設定されている。特性低下要因の平均存在密度が、3000〔cm−2〕、6000〔cm−2〕、18000〔cm−2〕と高くなると、リーク電流が高くなりやすい。したがって、リーク電流を約1×10−5〔A/cm〕に抑えるために、コラム間隔〔μm〕は、3.0〔μm〕、2.8〔μm〕、2.5〔μm〕と、徐々に狭くなるように設定されている。また、ドリフト層12の不純物濃度が高いほど、特性低下要因の平均存在密度が同じ場合でも、リーク電流が高くなりやすい。そのため、例えば、特性低下要因の平均存在密度が3000〔cm−2〕である場合には、不純物濃度が4×1015〔cm−3〕の場合にはコラム間隔が3.0〔μm〕に設定され、不純物濃度が6×1015〔cm−3〕の場合にはコラム間隔が2.8〔μm〕に設定され、不純物濃度が8×1015〔cm−3〕の場合にはコラム間隔が2.5〔μm〕に設定されている。すなわち、ドリフト層12の不純物濃度が高くなるほどコラム間隔が狭く設定されている。
表2は、ドリフト層12の厚みが10〔μm〕であって、ドリフト層12の不純物濃度が4×1015〔cm−3〕、6×1015〔cm−3〕、8×1015〔cm−3〕のそれぞれの場合での特性低下要因の平均存在密度〔cm−2〕と隣り合う2つのコラム15の間隔〔μm〕との関係を示している。また、表3は、ドリフト層12の厚みが13〔μm〕であって、ドリフト層12の不純物濃度が4×1015〔cm−3〕、6×1015〔cm−3〕、8×1015〔cm−3〕のそれぞれの場合での特性低下要因の平均存在密度〔cm−2〕と隣り合う2つのコラム15の間隔〔μm〕との関係を示している。例えば、ドリフト層12の不純物濃度が同じである場合には、ドリフト層12の厚みが薄いほど、リーク電流は高くなりやすい。したがって、ドリフト層12の不純物濃度が4×1015〔cm−3〕であって、特性低下要因の平均存在密度が6000〔cm−2〕の場合にリーク電流を約1×10−5〔A/cm〕に抑えるには、表1に示すドリフト層12の厚みが8〔μm〕の場合には、コラム間隔が2.8〔μm〕に設定され、表2に示すドリフト層12の厚みが10〔μm〕の場合には、コラム間隔は3.3〔μm〕に設定され(平均存在密度が7200〔cm−2〕よりも少ないため、コラム間隔を3.3〔μm〕とすればよい)、表3に示すドリフト層12の厚みが10〔μm〕の場合には、3.9〔μm〕に設定されている。このように、ドリフト層12の不純物濃度が同じである場合には、ドリフト層12の厚みが薄いほど、特性低下要因の平均存在密度に対するコラム間隔が狭く設定されている。
以上のように、半導体ウエハ10では、ドリフト層12における不純物濃度及び厚みに基づいて、特性低下要因の平均存在密度に応じたコラム間隔が設定されている。なお、1枚の半導体ウエハ10では、ドリフト層12の厚み及び不純物濃度は略一定であるため、各区域R1,R2,R3ごとの特性低下要因の平均存在密度が多いほど、表1〜3に従ってコラム間隔が狭くなり、コラム15の存在比率は高くなっている。
処理済の半導体ウエハ10は、基板11上にドリフト層12が形成されている半導体ウエハ10に、以下の処理によってコラム15を形成することによって得ることができる。図4は、その処理手順を示すフローチャートであり、図5は、処理手順のステップ11,12,15〜17で用いられる処理装置60の構成を示している。また、図6〜図12は、半導体ウエハ10の各処理工程における断面構造を示している。図5に示すように、処理装置60は、検出部61と制御部68と露光部70とを備えている。
図4に示すように、まず、ステップ11において半導体ウエハ10全体の特性低下要因の計測及び分布状態を非破壊的に測定する。本実施例では、図5に示す処理装置60の検出部61が、フォトルミネッセンス法 によって、半導体ウエハ10の特性低下要因を特定する。なお、検出部61が、特性低下要因の平均存在密度を特定する方法としては、この方法に限定されず、カソードルミネッセンス法、エレクトロルミネッセンス法、X線トポグラフィー法を用いるようにしてもよい。検出部61は、励起光源62と分光レンズ63と分光器64と結像レンズ65と光検出器66とを備えている。励起光源62は、半導体ウエハ10に光を照射する。これによって半導体ウエハ10から放出される光は、分光レンズ63を通じて分光器64に導入される。分光レンズ63を用いることで、正反射光が分光器64に導入されることを抑制することができる。分光器64から出射された光は、結像レンズ65によって結像され、光検出器66に導入される。制御部68は、光検出器66に導入された光の情報に基づいて、半導体ウエハ10の各部位の結晶状態及びドリフト層12表面の凹凸を検出する。制御部68に、半導体ウエハ10の特性低下要因の計測及び分布状態の情報が保存される。
次に、図4のステップ12に移り、図5の処理装置60の制御部68が、半導体ウエハ10を複数の区域R1,R2,R3に分割するとともに、ステップ11で測定した特性低下要因の数及びその分布状態に基づいて各区域R1,R2,R3の特性低下要因の平均存在密度を特定する。なお、ステップ11及びステップ12では、半導体ウエハ10全体の特性低下要因の計測及び分布状態を検出した後に、各区域R1,R2,R3の特性低下要因の平均存在密度を特定するようにしている。しかしながら、最初のステップで半導体ウエハ10を各区域R1,R2,R3に分割し、各区域R1,R2,R3ごとの特性低下要因の計測等を行うようにしてもよい。この場合には、上記各種の解析方法を用いてもよいし、半導体ウエハ10の各区域R1,R2,R3ごとに、基板11側からドリフト層12側へ流れる逆方向のリーク電流を測定することによって、各区域R1,R2,R3の特性低下要因の平均存在密度を特定するようにしてもよい。
次に、図4のステップ13に移り、図6に示すように、ドリフト層12の表面に酸化膜30を形成する。なお、ドリフト層12表面に形成される膜としては、酸化膜30に限られず、耐熱性を有するマスク材であればよい。次に、ステップ14に移り、図6に示すように、酸化膜30上にレジスト31が塗布され、ステップ15に移る。図5に示すように、制御部68は、特性低下要因の平均存在密度に対応するマスクパターンの種類を示す表を記憶している記憶部69を備えている。ステップ15では、制御部68が、記憶部69が記憶している表に区域R1内の特定低下要因の平均存在密度を適用することによって、複数種類のマスクパターンの中から区域R1に適した1種類のマスクパターンを選択する。なお、制御部68には、ドリフト層12の膜厚や不純物濃度の情報が予め入力されており、制御部68は、この情報に対応して、記憶部69が記憶している表を利用する。複数種類のマスクパターンは、いずれも、複数の開口を備えており、開口が均一に分布しているとともに、種類によって開口比率が相違している。
次に、図4のステップ16に移り、図5に示す処理装置60の露光部70によって半導体ウエハ10を露光する。露光部70は、光源71とコンデンサレンズ72と複数種類のレチクル73a,73b,73cと投影レンズ74とを備えている。複数種類のレチクル73a,73b,73cのそれぞれには、前記したパターンで開口が形成されている。制御部68は、複数種類のレチクル73a,73b,73cから選択した1種類のマスクパターンに対応するレチクル73aによって露光が行われるように、露光部70を制御する。図5に示すように、露光部70では、光源71から光が出射され、この光がコンデンサレンズ72を介して、選択されたレチクル73aを均一な照度分布で照射する。レチクル73を透過した光は、投影レンズ74を介して半導体ウエハ10の区域R1においてレジスト31上に結像される。このようにして、選択されたマスクパターンが、半導体ウエハ10上のレジスト31に投影される。図7は、レジスト31のうち区域R1にマスクパターンが露光された部位を破線で示している。
次に、図4のステップ17に移り、第2区域R2の処理に移る。ステップ15で、区域R2の特定低下要因の平均存在密度に基づいて、予め用意されている複数種類のマスクパターンの中から1種類のマスクパターンを選択する。本実施例では、第2区域R2の平均存在密度が低いため、処理装置60の制御部68には、ステップ15で開口比率が低い種類のマスクパターンを選択される。これにより、露光部70では、開口比率の低い種類のマスクパターンに対応するレチクル73cが用いられ、第2区域R2の露光が行われる。第2区域R2の露光を行った後には、第3区域R3の露光が行われ、順次区域ごとに露光が行われる。なお、図8は、区域R1〜R3のレジスト31にマスクパターンが露光された状態を破線で示している。このように、区域R1,R2,R3ごとに、特性低下要因の存在密度に基づいて異なるマスクパターンが投影される。
次に、図4のステップ18に移り、現像を行う。これにより、図9に示すように、レジスト31では、露光によって光が照射された部位が除去され、レジスト31に開口33aが形成される。次に、図4のステップ19に移り、酸化膜30がドライエッチングされる。これにより、図9に示すように、酸化膜30では、レジスト31の開口33aに対応した部位に開口33bが形成され、ドリフト層12の表面が露出する。そして、図4のステップ20に移り、図10に示すようにレジスト31を除去する。このようにして、半導体ウエハ10の各区域R1,R2,R3では、区域ごとの特性低下要因の平均存在密度が高いほど、酸化膜30のマスクに形成される開口33bの比率が高くなっている。次に、図4のステップ21に移り、図10に示すように、酸化膜30の開口33bに対応して異種物質が注入される。なお、本実施例では、ドリフト層12内にp型のコラム15を形成するために、アルミニウムイオンまたはボロンイオンを注入する。このとき、炭化珪素の結晶性が回復しやすいように、基板11の温度を500℃程度に維持して、イオン注入を行う。
その後、図4のステップ22に移り、図11に示すように、ドリフト層12の表面をレジスト等のカーボン膜35で保護する。この状態で、1600℃以上の温度条件下で、活性化アニールを行い、コラム15を活性化させる。次に、ステップ23に移り、犠牲酸化を行い、カーボン膜35を除去するとともに、酸化膜36を形成する。その後、ステップ24に移り、電極形成等を行う。この工程では、酸化膜36を除去し、図3に示すように、層間絶縁膜37を堆積させ、デバイス領域をエッチングして開口を形成する。この開口にショットキー電極38を形成し、ショットキー電極38の上に表面電極39を形成する。
以上のように、本実施例では、半導体ウエハ10の区域R1,R2,R3ごとに、予め用意されている複数種類のマスクパターンのなかから1種類のマスクパターンを選択して処理を行う。したがって、半導体ウエハ10の結晶欠陥17や凹部18の存在位置を特定し、特定された位置を処理する方法よりも効率的に均質な半導体ウエハ10を量産することができる。
半導体ウエハ10の区域R1,R2,R3ごとに、結晶欠陥17や凹部18といった特性低下要因が多い区域R1,R2,R3ほど、コラム15を多く形成するために、区域R1,R2,R3相互を比較したときに、特性低下要因による影響の差が少ない状態に調整することができ、不均質な半導体ウエハを均質なウエハとすることができる。
(実施例2)
次に、本明細書で開示される発明に係る半導体ウエハを具体化した実施例2を、図13を参照して説明する。
実施例2の半導体ウエハ81では、コラム82の構成が実施例1とは異なっている。本実施例では、各コラム82が、いずれも同じ大きさの略円柱形状であり、各区域R1,R2,R3内に均一に点在している。本実施例では、分割された区域R1,R2,R3ごとに、その区域R1,R2,R3内に存在する特性低下要因の平均存在密度が高いほどコラム82の数が多く、コラム82の存在比率が高くなっている。また、本実施例の半導体ウエハ81も上記実施例1と同様の方法によって処理されている。これにより、結晶欠陥の存在位置を特定し、特定された位置を処理する方法よりも均質な半導体ウエハ81を効率的に量産することができる。また、半導体ウエハ81の区域ごとの特性のばらつきを低減して均質なウエハとすることができる。その他の構成、及び作用効果は実施例1と同じである。
なお、実施例2の変形例として、区域内に点在するコラムの形状を多角形状(例えば、六角形状)としてもよい。
(実施例3)
次に、本明細書で開示される発明に係る半導体ウエハを具体化した実施例3を、図14を参照して説明する。
実施例3の半導体ウエハ83では、コラム84の構成が上記各実施例とは異なっている。本実施例のコラム84は、表面形状(基板に沿った断面形状)が、区域の輪郭と一致する矩形状であり、内部に円形の穴が均一に点在している形状となっている。本実施例では、分割された区域R1,R2,R3ごとに、その区域R1,R2,R3内に存在する特性低下要因の平均存在密度が高いほど、コラム84に形成される円形の穴が少なく、コラム84の存在比率が高くなっている。本実施例の半導体ウエハ83も、上記実施例1と同様の方法によって処理されている。本実施例においても、結晶欠陥の存在位置を特定し、特定された位置を処理する方法よりも均質な半導体ウエハ83を効率的に量産することができる。また、半導体ウエハ83の区域ごとの特性のばらつきを低減して均質なウエハとすることができる。その他の構成、及び作用効果は実施例1と同じである。
なお、実施例3の変形例として、各区域に形成されるコラムが、矩形の内部に穴が開いた形状とする場合には、区域ごとの穴の数を同じ数にして、特性低下要因の平均存在密度が高いほど穴の大きさを小さくすることによって、コラムの存在比率を高くするようにしてもよい。
(実施例4)
次に、本明細書で開示される発明に係る半導体ウエハを具体化した実施例4を、図15を参照して説明する。
実施例4の半導体ウエハ86では、コラム86の構成が上記各実施例とは異なっている。本実施例のコラム86は、表面形状(基板に沿った断面形状)が、環状に形成されている。各区域R1,R2,R3では、複数のコラム86は同心円状に形成されており、各コラム86の幅は同じ長さとなっている。本実施例では、分割された区域R1,R2,R3ごとに、その区域R1,R2,R3内に存在する特性低下要因の平均存在密度が高いほどコラム86の数が多く、コラム86の存在比率が高くなっている。また、本実施例の半導体ウエハ85も上記実施例1と同様の方法によって処理されている。これにより、結晶欠陥の存在位置を特定し、特定された位置を処理する方法よりも均質な半導体ウエハ85を効率的に量産することができる。また、半導体ウエハ85の区域ごとの特性のばらつきを低減して均質なウエハとすることができる。その他の構成、及び作用効果は実施例1と同じである。
(その他の実施例)
上記各実施例では、ドリフト層にボロンイオンや反対導電型のコラムを形成するようにしている。しかしながら、ドリフト層に異種物質注入領域として絶縁物質が注入された領域を形成するようにしてもよい。
上記各実施例では、半導体ウエハを、同じ表面積の複数の区域に分割している。半導体ウエハにおいて分割される区域は、例えば1個の半導体装置の大きさにあわせた区域であってもよい。また、半導体ウエハにおいて分割される各区域の大きさが区域ごとに異なっていてもよい。例えば、1個の半導体装置を平面視したときに複数個の半導体領域が存在している半導体装置を量産する場合には、その半導体領域に対応する区域に分割して均質化処理してもよい。
上記各実施例では、異種物質を全部の区域に同時に異種物質を注入している。しかしながら、区域ごとに異種物質を順次注入するようにしてもよい。
以上、本明細書に開示される技術の具体例を詳細に説明したが、これらは例示にすぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。
また、本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時の請求項記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は、複数目的を同時に達成するものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。
10,81,83,85:半導体ウエハ
11:基板
12:ドリフト層
15、82,84,86:コラム
17:結晶欠陥
18:凹部
20:ダイオード
30:酸化膜
31:レジスト
33:開口
37:層間絶縁膜
38:ショットキー電極
39:表面電極
60:処理装置
61:検出部
68:制御部
70:露光部
73a,73b,73c:レチクル

Claims (2)

  1. 半導体ウエハの表面を複数区域に分割し、
    分割された区域ごとに、特性低下要因の平均存在密度を特定し、
    分割された区域ごとに、その区域内の前記平均存在密度に基づいて、予め用意されている複数種類のマスクパターンのなかから1種類のマスクパターンを選択し、
    分割された区域ごとに、選択したマスクパターンの開口から、異種物質を注入する方法であり、
    前記複数種類のマスクパターンは、複数の開口を備えており、開口が均一に分布しているとともに、種類によって開口比率が相違するという制約に従っており、
    前記平均存在密度が高いほど開口比率が高い種類のマスクパターンを選択することを特徴とする半導体ウエハの処理方法。
  2. 半導体ウエハの表面が複数区域に分割されており、
    分割された区域ごとに、均一な分布パターンで異種物質注入領域が形成されており、
    その区域内に存在する特性低下要因の平均存在密度が高いほど異種物質注入領域の存在比率が高い関係にある半導体ウエハ。
JP2010041648A 2010-02-26 2010-02-26 半導体ウエハの処理方法と処理済の半導体ウエハ Expired - Fee Related JP5502528B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010041648A JP5502528B2 (ja) 2010-02-26 2010-02-26 半導体ウエハの処理方法と処理済の半導体ウエハ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010041648A JP5502528B2 (ja) 2010-02-26 2010-02-26 半導体ウエハの処理方法と処理済の半導体ウエハ

Publications (2)

Publication Number Publication Date
JP2011181553A true JP2011181553A (ja) 2011-09-15
JP5502528B2 JP5502528B2 (ja) 2014-05-28

Family

ID=44692801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010041648A Expired - Fee Related JP5502528B2 (ja) 2010-02-26 2010-02-26 半導体ウエハの処理方法と処理済の半導体ウエハ

Country Status (1)

Country Link
JP (1) JP5502528B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013098226A (ja) * 2011-10-28 2013-05-20 Hitachi Ltd 半導体装置
JP2013110388A (ja) * 2011-10-28 2013-06-06 Hitachi Ltd 半導体装置
JP2014204087A (ja) * 2013-04-09 2014-10-27 新日鐵住金株式会社 炭化ケイ素ショットキーバリアダイオード。
DE112012007246B4 (de) 2012-12-20 2022-12-22 Mitsubishi Electric Corporation Verfahren zur Herstellung einer Siliciumcarbidhalbleitervorrichtung

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01105531A (ja) * 1987-10-16 1989-04-24 Sumitomo Electric Ind Ltd 半導体集積回路の製造方法
JP2002170784A (ja) * 2000-12-01 2002-06-14 Denso Corp 炭化珪素半導体装置及びその製造方法
JP2007251023A (ja) * 2006-03-17 2007-09-27 Toyota Motor Corp スーパージャンクション構造を有する半導体装置とその製造方法
JP2009044083A (ja) * 2007-08-10 2009-02-26 Central Res Inst Of Electric Power Ind 炭化珪素単結晶ウェハの欠陥検出方法、及び炭化珪素半導体素子の製造方法
WO2009088081A1 (ja) * 2008-01-09 2009-07-16 Rohm Co., Ltd. 半導体装置及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01105531A (ja) * 1987-10-16 1989-04-24 Sumitomo Electric Ind Ltd 半導体集積回路の製造方法
JP2002170784A (ja) * 2000-12-01 2002-06-14 Denso Corp 炭化珪素半導体装置及びその製造方法
JP2007251023A (ja) * 2006-03-17 2007-09-27 Toyota Motor Corp スーパージャンクション構造を有する半導体装置とその製造方法
JP2009044083A (ja) * 2007-08-10 2009-02-26 Central Res Inst Of Electric Power Ind 炭化珪素単結晶ウェハの欠陥検出方法、及び炭化珪素半導体素子の製造方法
WO2009088081A1 (ja) * 2008-01-09 2009-07-16 Rohm Co., Ltd. 半導体装置及びその製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013098226A (ja) * 2011-10-28 2013-05-20 Hitachi Ltd 半導体装置
JP2013110388A (ja) * 2011-10-28 2013-06-06 Hitachi Ltd 半導体装置
DE112012007246B4 (de) 2012-12-20 2022-12-22 Mitsubishi Electric Corporation Verfahren zur Herstellung einer Siliciumcarbidhalbleitervorrichtung
JP2014204087A (ja) * 2013-04-09 2014-10-27 新日鐵住金株式会社 炭化ケイ素ショットキーバリアダイオード。

Also Published As

Publication number Publication date
JP5502528B2 (ja) 2014-05-28

Similar Documents

Publication Publication Date Title
JP5192661B2 (ja) 炭化珪素半導体素子の製造方法
US8012837B2 (en) Method of manufacturing semiconductor device
JP6493690B2 (ja) SiCエピタキシャルウェハ及びその製造方法、並びに、ラージピット欠陥検出方法、欠陥識別方法
JP5502528B2 (ja) 半導体ウエハの処理方法と処理済の半導体ウエハ
US20220223482A1 (en) EVALUATION METHOD AND MANUFACTURING METHOD OF SiC EPITAXIAL WAFER
CN1605127A (zh) 具有表面击穿保护的低压穿通双向瞬态电压抑制器件及其制造方法
JP5791830B2 (ja) 炭化珪素半導体装置の製造方法
US11249027B2 (en) SiC substrate evaluation method and method for manufacturing SiC epitaxtal wafer
JP2016025241A (ja) 炭化珪素半導体装置の製造方法
WO2018123506A1 (ja) SiCウェハの欠陥測定方法、標準サンプル及びSiCエピタキシャルウェハの製造方法
JP2019125637A (ja) テスト条件決定装置及びテスト条件決定方法
US20230055999A1 (en) SiC EPITAXIAL WAFER, AND METHOD OF MANUFACTURING THE SAME
JP5720560B2 (ja) 半導体基板の評価方法
CN102915999B (zh) 沟槽多晶硅过腐蚀台阶测试图形及其形成方法
JP2007214491A (ja) 半導体基板欠陥検出方法及び半導体基板欠陥検出装置
JP7065729B2 (ja) 炭化珪素半導体装置の製造方法
JP7179219B1 (ja) SiCデバイス及びその製造方法
JP7294502B1 (ja) SiC単結晶基板
JP7216248B1 (ja) SiCデバイス及びSiCデバイスの製造方法
CN115621113B (zh) SiC外延晶片和SiC外延晶片的制造方法
US20240136409A1 (en) Silicon carbide wafer and silicon carbide semiconductor device including the same
JP7056515B2 (ja) 炭化珪素半導体装置の製造方法
JP2007081045A (ja) シリコン・ウェーハの製造方法
JP5614394B2 (ja) 気相成長装置の清浄度評価方法
JP2020063186A (ja) SiCエピタキシャルウェハ

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20120725

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120725

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140313

R150 Certificate of patent or registration of utility model

Ref document number: 5502528

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees