JP2011145461A - 画像形成装置 - Google Patents

画像形成装置 Download PDF

Info

Publication number
JP2011145461A
JP2011145461A JP2010005771A JP2010005771A JP2011145461A JP 2011145461 A JP2011145461 A JP 2011145461A JP 2010005771 A JP2010005771 A JP 2010005771A JP 2010005771 A JP2010005771 A JP 2010005771A JP 2011145461 A JP2011145461 A JP 2011145461A
Authority
JP
Japan
Prior art keywords
relative phase
image
unit
cyan
correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010005771A
Other languages
English (en)
Other versions
JP4987092B2 (ja
Inventor
Michio Tomita
教夫 冨田
Yoshikazu Harada
吉和 原田
Yoshiaki Kikuchi
吉晃 菊池
Koichi Yamauchi
孝一 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2010005771A priority Critical patent/JP4987092B2/ja
Priority to US13/005,668 priority patent/US8452209B2/en
Priority to CN201110007698.6A priority patent/CN102129189B/zh
Publication of JP2011145461A publication Critical patent/JP2011145461A/ja
Application granted granted Critical
Publication of JP4987092B2 publication Critical patent/JP4987092B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/50Machine control of apparatus for electrographic processes using a charge pattern, e.g. regulating differents parts of the machine, multimode copiers, microprocessor control
    • G03G15/5054Machine control of apparatus for electrographic processes using a charge pattern, e.g. regulating differents parts of the machine, multimode copiers, microprocessor control by measuring the characteristics of an intermediate image carrying member or the characteristics of an image on an intermediate image carrying member, e.g. intermediate transfer belt or drum, conveyor belt
    • G03G15/5058Machine control of apparatus for electrographic processes using a charge pattern, e.g. regulating differents parts of the machine, multimode copiers, microprocessor control by measuring the characteristics of an intermediate image carrying member or the characteristics of an image on an intermediate image carrying member, e.g. intermediate transfer belt or drum, conveyor belt using a test patch
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/01Apparatus for electrographic processes using a charge pattern for producing multicoloured copies
    • G03G15/0105Details of unit
    • G03G15/0131Details of unit for transferring a pattern to a second base
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G2215/00Apparatus for electrophotographic processes
    • G03G2215/00025Machine control, e.g. regulating different parts of the machine
    • G03G2215/00029Image density detection
    • G03G2215/00059Image density detection on intermediate image carrying member, e.g. transfer belt
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G2215/00Apparatus for electrophotographic processes
    • G03G2215/00025Machine control, e.g. regulating different parts of the machine
    • G03G2215/00029Image density detection
    • G03G2215/00063Colour
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G2215/00Apparatus for electrophotographic processes
    • G03G2215/01Apparatus for electrophotographic processes for producing multicoloured copies
    • G03G2215/0151Apparatus for electrophotographic processes for producing multicoloured copies characterised by the technical problem
    • G03G2215/0158Colour registration
    • G03G2215/0161Generation of registration marks

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Color Electrophotography (AREA)
  • Control Or Security For Electrophotography (AREA)

Abstract

【課題】第1像担持体の周速度の周期的変動と前記第2グループ像担持体の周速度の周期的変動との相対位相ずれを最適なものに補正することが可能な画像形成装置を提供する
【解決手段】画像形成装置Dは、演算部303によって、基準粗密波αaの振幅Bと、検出粗密波α(i)の振幅C(i)と、相対位相角度φ(i)とに基づいて、位相ずれ量A(i)を補正用相対位相角度θ(j)毎にそれぞれ演算し、設定部304によって、位相ずれ量A(i)を特定し、かつ、特定した位相ずれ量A(i)に対応する補正用相対位相角度θ(j)を設定し、補正部305によって、設定部304で設定した補正用相対位相角度θ(j)に基づき第1及び第2駆動部110,120の少なくとも一方を作動制御して第1像担持体3aの周速度Vの周期的変動と第2グループ像担持体30bの周速度Vの周期的変動との相対位相ずれを補正する。
【選択図】図15

Description

本発明は、複数の画像をそれぞれ形成する複数の像担持体を備えた画像形成装置、特に、第1像担持体を含む第1グループ像担持体と、複数の第2像担持体を含みかつ該複数の第2像担持体が互いに連動して回転する第2グループ像担持体とを備え、複数の画像を中間転写体等の記録媒体上に重ね合わせる画像形成装置に関する。
複数の画像(例えば、トナー像)のそれぞれに対応する複数の感光体等の像担持体を一定の周速度でそれぞれ回転させて、電子写真方式等の画像形成プロセスにより形成し、前記複数の画像を重ね合わせる画像形成装置、いわゆるタンデム型の画像形成装置が従来から知られている。例えば、フルカラー画像を形成する場合、互いに異なる複数色(通常、イエロー(Y)、マゼンタ(M)、シアン(C)、ブラック(K)の各色成分)のトナー像をそれらに対応する複数の像担持体にタイミングを合わせて形成し、各トナー像を中間転写体や記録材(例えば用紙)等の記録媒体に重ねて転写し、該記録媒体が中間転写体のときはさらに記録材に転写する。
ところで、複数の画像が複数の像担持体にそれぞれタイミングを合わせて形成されていても、各像担持体の画像を重ね合わせるときに画像がずれることがある。このような画像ずれの発生を防止するべく各像担持体の画像を精度よく重ねることは重要なことである。
画像ずれ発生の要因としては、例えば、各像担持体の偏芯、駆動部から各像担持体への回転駆動を伝達する駆動ギヤ等の駆動伝達用回転部材の偏芯等に起因した周速度の周期的変動による回転ムラの位相ずれを例示できる。
この点に関し、特許文献1には、基準色用のラインと検出色用のラインとの幅或いは間隔を検出し、検出した幅或いは間隔に基づいて基準色に対する検出色の位置ずれ量を演算する画像形成装置において、基準色用の像担持体の回転位相に対する検出色用の像担持体の回転位相を最適と判断された位相関係に調整するにあたり、最適と判断される位相関係は、基準色用の像坦持体の回転位相を固定し、基準色用の像坦持体の回転位相に対する検出色用の像担持体の回転位相を所定の角度ごとに調整して基準色に対する検出色の位置ずれ量を検出する位置ずれ量検出の仕方を、像担持体の駆動むらの少なくとも1周期以上にわたって行い、検出した位置ずれ量の振幅と基準色に対する検出色の回転位相の関係を基に、位置ずれ量の振幅が最小となる基準色に対する検出色の回転位相の関係を求め、求めた回転位相の関係をもって最適と判断される位相関係とすることを開示している。
特開2006−78850号公報
ところが、特許文献1に記載の画像形成装置では、各像担持体を個別に駆動する各モータを備え、各モータを個別に調整することで、基準色用の像坦持体(具体的にはブラック用感光体ドラム)の周速度の周期的変動と複数の検出色用の像担持体(具体的にはイエロー、マゼンタ、シアン用の各感光体ドラム)の周速度の周期的変動との相対位相ずれをそれぞれ最適なものに補正できるものの、複数の検出色用の像担持体が互いに連動して回転する場合には次のような不都合がある。
すなわち、従来の画像形成装置では、複数の画像をそれぞれ形成する複数の像担持体のうち第1像担持体を含む第1グループ像担持体と、残りの像担持体のうち複数の第2像担持体を含む第2グループ像担持体とを独立して駆動することがある。
具体的には、ブラックの画像は、通常、モノクロの画像形成時に他の色の画像が形成されることなく単独で形成される。この場合、ブラックに対応する第1像担持体(例えばブラック用感光体ドラム)及び該第1像担持体上に画像を形成するための画像形成部材(ブラックの現像装置を含む部材)を、その他の画像(イエロー、マゼンタ、シアンの画像)にそれぞれ対応する複数の第2像担持体(例えばイエロー、マゼンタ、シアン用の各感光体ドラム)及び該複数の第2像担持体上に画像を形成するための画像形成部材(イエロー、マゼンタ、シアンの各現像装置を含む部材)とは異なる第1駆動部で駆動する。なお、像担持体及び画像形成部材を駆動する駆動部としては、例えば、ステッピングモータが挙げられる。
一方、ブラック以外の画像(例えばイエロー、マゼンタ、シアンの画像)用のものを駆動する必要があるが、駆動部品の点数を削減して画像形成装置の小型化を実現すべく、互いに連動して回転する複数の第2像担持体(例えばイエロー、マゼンタ、シアン用の各感光体ドラム)及び該第2像担持体に対応する画像形成部材を共通の(一つの)第2駆動部で同時に駆動するようにすれば、部品点数を削減できる。
このように、複数の第2像担持体が互いに連動して回転する構成の画像形成装置では、前述したように、第1像担持体の偏芯、複数の第2像担持体のそれぞれの偏芯、第1駆動部から第1像担持体への回転駆動を伝達する駆動ギヤ等の駆動伝達用回転部材の偏芯、第2駆動部から複数の第2像担持体への回転駆動を伝達する駆動ギヤ等の駆動伝達用回転部材のそれぞれの偏芯等に起因した周速度の周期的変動による周方向の位置ずれが発生すると、第2グループ感光体における複数の第2像担持体(例えばイエロー、マゼンタ、シアン用の各感光体ドラム)が互いに連動して回転するために、該複数の第2像担持体の間において互いに周速度の周期的変動による相対的な位相のずれ(相対位相ずれ)を調整できない上、第1像坦持体(例えばブラック用感光体ドラム)と、複数の第2像担持体とのそれぞれの間においても相対位相ずれをそれぞれ調整することができない。
このため、第1像担持体の周速度の周期的変動と、第2グループ像担持体の周速度の周期的変動(互いに調整できない複数の第2像担持体周速度の周期的変動)との相対位相ずれを最適なものに補正することが必要となる。
そこで、本発明は、複数の画像をそれぞれ形成する複数の像担持体のうち第1像担持体を含む第1グループ像担持体と、残りの像担持体のうち複数の第2像担持体を含みかつ該複数の第2像担持体が互いに連動して回転する第2グループ像担持体とを備え、前記複数の画像を記録媒体上に重ね合わせる画像形成装置であって、前記第1像担持体の周速度の周期的変動と前記第2グループ像担持体の周速度の周期的変動との相対位相ずれを最適なものに補正することが可能な画像形成装置を提供することを目的とする。
本発明は、前記課題を解決するために、複数の画像をそれぞれ形成する複数の像担持体のうち第1像担持体を含む第1グループ像担持体と、残りの像担持体のうち複数の第2像担持体を含みかつ該複数の第2像担持体が互いに連動して回転する第2グループ像担持体とを備え、前記複数の画像を記録媒体上に重ね合わせる画像形成装置であって、前記第1グループ像担持体を一定の周速度で回転させる第1駆動部と、前記第2グループ像担持体を前記周速度で回転させる第2駆動部と、前記第1像担持体に対応する基準用パターンを周方向のピッチ毎に前記記録媒体上に形成し、かつ、前記複数の第2像担持体にそれぞれ対応する複数の検出用パターンを前記ピッチ毎に前記記録媒体上にそれぞれ形成するパターン形成部と、前記基準用パターンにおける前記周速度による周方向の位置ずれを示す位置ずれ量の周期的変化を表した基準粗密波の振幅を検出し、かつ、前記複数の検出用パターンにおける前記周速度による周方向の位置ずれを示す位置ずれ量の周期的変化をそれぞれ表した複数の検出粗密波の振幅をそれぞれ検出し、さらに前記基準粗密波に対する前記複数の検出粗密波の相対位相角度をそれぞれ検出する検出部と、前記基準粗密波の振幅と、前記複数の検出粗密波の振幅と、前記基準粗密波に対する前記複数の検出粗密波の相対位相角度とに基づいて、前記第1像担持体の前記周速度の周期的変動に対する前記第2グループ像担持体における前記複数の第2像担持体の前記周速度の周期的変動の相対位相ずれをそれぞれ示す複数の位相ずれ量を予め設定されている単位角度を順次積算した複数の補正用相対位相角度毎にそれぞれ演算する演算部と、前記複数の補正用相対位相角度毎にそれぞれ演算した前記複数の位相ずれ量を特定し、かつ、特定した位相ずれ量に対応する補正用相対位相角度を設定する設定部と、前記設定部で設定した補正用相対位相角度に基づき前記第1及び第2駆動部の少なくとも一方を作動制御して前記第1像担持体の前記周速度の周期的変動と前記第2グループ像担持体の前記周速度の周期的変動との相対位相ずれを補正する補正部とを備えていることを特徴とする画像形成装置を提供する。
本発明に係る画像形成装置によれば、前記演算部によって、前記基準粗密波の振幅と、前記複数の検出粗密波の振幅と、前記基準粗密波に対する前記複数の検出粗密波の相対位相角度とに基づいて、前記第1像担持体の前記周速度の周期的変動に対する前記第2グループ像担持体における前記複数の第2像担持体の前記周速度の周期的変動の相対位相ずれをそれぞれ示す複数の位相ずれ量を前記複数の補正用相対位相角度毎にそれぞれ演算し、前記設定部によって、前記複数の補正用相対位相角度毎にそれぞれ演算した前記複数の位相ずれ量を特定して得られた位相ずれ量に対応する補正用相対位相角度を設定し、前記補正部によって、前記設定部で設定した補正用相対位相角度に基づき前記第1及び第2駆動部の少なくとも一方を作動制御して前記第1像担持体の前記周速度の周期的変動と前記第2グループ像担持体の前記周速度の周期的変動との相対位相ずれを補正するので、前記第1像担持体の周速度の周期的変動と前記第2グループ像担持体の周速度の周期的変動との相対位相ずれを最適なものに補正することが可能となる。
本発明において、前記基準粗密波の振幅をBとし、前記複数の検出粗密波の振幅をC(i)(但し、iは1以上m以下の整数、mは2以上の整数)とし、前記基準粗密波に対する前記複数の検出粗密波の相対位相角度をφ(i)とし、前記複数の補正用相対位相角度をθ(j)(但し、jは1以上n以下の整数、nは2以上の整数)とすると、前記演算部は、前記複数の位相ずれ量A(i)を下記式によって前記複数の補正用相対位相角度毎にそれぞれ演算する態様を例示できる。
A(i)=√(B2+C(i)2−2×B×C(i)×cos(φ(i)+θ(j)))
この態様では、前記複数の位相ずれ量を簡単な演算式によって求めることができ、それだけ演算のための演算構成の容易化を実現できる。
本発明において、前記演算部は、前記複数の位相ずれ量に対して前記複数の補正用相対位相角度毎に平均値を算出し、前記設定部は、前記演算部で算出した前記複数の補正用相対位相角度毎の平均値のうち、最小の値に対応する補正用相対位相角度を設定する態様を例示できる。
この態様では、前記複数の位相ずれ量に対して前記複数の補正用相対位相角度毎に算出した平均値のうちの最小の値を選定するだけで、最適な補正用相対位相角度を容易に設定することができ、それだけ演算のための演算構成の容易化を実現できる。
本発明において、前記演算部は、前記複数の位相ずれ量に対して前記複数の補正用相対位相角度毎に最大値を算出し、前記設定部は、前記演算部で算出した前記複数の補正用相対位相角度毎の最大値のうち、最小の値に対応する補正用相対位相角度を設定する態様を例示できる。
この態様では、前記複数の位相ずれ量に対して前記複数の補正用相対位相角度毎に算出した最大値のうちの最小の値を選定するだけで、最適な補正用相対位相角度を容易に設定することができ、それだけ演算のための演算構成の容易化を実現できる。
本発明において、前記単位角度は、前記像担持体の少なくとも1回転に相当する角度を等分した角度であることが好ましい。
この場合、前記単位角度を前記像担持体の少なくとも1回転に相当する角度を等分した角度とすることで、前記複数の位相ずれ量を精度よく求めることができる。
本発明において、画像を形成するにあたって、ブラックは文字が印字される色であることが多いため、文字原稿の画質向上を考慮して、前記第1グループ像担持体でブラックの画像形成を行って、第2グループ像担持体でカラーの画像形成を行うことが好ましい。すなわち、前記第1グループ像担持体は、ブラックの画像形成を行うためのものであり、前記第2グループ像担持体は、カラーの画像形成を行うためのものであることが好ましい。
以上説明したように、本発明に係る画像形成装置によると、前記基準粗密波の振幅と、前記複数の検出粗密波の振幅と、前記基準粗密波に対する前記複数の検出粗密波の相対位相角度とに基づいて、前記複数の位相ずれ量を前記複数の補正用相対位相角度毎にそれぞれ演算し、前記複数の補正用相対位相角度毎にそれぞれ演算した前記複数の位相ずれ量を特定し、さらに、特定した位相ずれ量に対応する補正用相対位相角度を設定し、該補正用相対位相角度に基づき前記第1及び第2駆動部の少なくとも一方を作動制御して前記第1像担持体の前記周速度の周期的変動と前記第2グループ像担持体の前記周速度の周期的変動との相対位相ずれを補正するので、前記第1像担持体の周速度の周期的変動と前記第2グループ像担持体の周速度の周期的変動との相対位相ずれを最適なものに補正することができる。
本発明の実施の形態に係るカラー画像形成装置を概略的に示す断面図である。 図1に示すカラー画像形成装置における駆動装置の駆動伝達系を概略的に示すシステム構成図であって、第1及び第2駆動部から感光体ドラムへの回転駆動を伝達するギヤトレイン並びに第1及び第2位相検知センサを示す図である。 図1に示すカラー画像形成装置における駆動装置を詳細に示す斜視図である。 図1に示すカラー画像形成装置におけるシステム構成を概略的に示すブロック図である。 図4Aに示す制御部を詳細に示すブロック図である。 中間転写ベルト上にブラック基準用パターン、シアン検出用パターン、マゼンタ検出用パターン及びイエロー検出用パターンを形成した一例を示す平面図である。 中間転写ベルト上において中間転写ベルトの幅方向における両端部に形成された各パターンとパターン検知センサとの位置関係を示す平面図である。 各パターンのうちのシアン検出用パターンをシアン用感光体ドラムに形成するための各信号のタイミングを示すタイミングチャートである。 シアン検出用パターンとブラック基準用パターンとの形成タイミングを示すタイミングチャートである。 各パターンのサンプリングポイントでの基本正弦波の総和が0となる位置を示すタイミングチャートである。 シアン検出粗密波の振幅を表した概念図である。 シアン検出粗密波の位相差を求める際のI象限〜IV象限を説明するための説明図である。 シアン検出用パターンをシアン用感光体ドラムの360°の回転角度において17点で作成して偏差を実測した結果を示すグラフである。 図12に示す17点のうちの3点における偏差を抽出して示すグラフである。 図13に示す偏差からサインカーブフィッティング計算式により求めたシアン検出粗密波の式を波形に表したグラフである。 位相ずれ量の式を説明するための説明図であって、(a)は、振幅が共に同じとした場合のブラック基準粗密波及びシアン検出粗密波の相対位相ずれがない状態でのブラック基準パターン及びシアン検出パターンをそれぞれ示す図であり、(b)は、振幅が共に同じとした場合のブラック基準粗密波及びシアン検出粗密波の相対位相ずれがある状態でのブラック基準パターン及びシアン検出パターンをそれぞれ示す図であり、(c)は、ブラック基準粗密波に対して振幅が異なるシアン検出粗密波が相対位相角度だけずれている状態を示す図であり、(d)は、(c)に示すブラック基準粗密波及びシアン検出粗密波を円運動で表した図である。 位相ずれ量の式を説明するための説明図であって、(a)は、ブラック基準粗密波の振幅とシアン検出粗密波の振幅と相対位相角度とが三角形の二辺とそれらのなす角度に対応する関係にあることを示す図であり、(b)は、ブラック基準粗密波に対するシアン検出粗密波の相対位相角度を0°にしたときのブラック用感光体の回転ムラに対するシアン用感光体ドラムの回転ムラの相対位相ずれ量の波形の一例を示す図である。 表3に示す値を折れ線グラフで示した図である。 第1及び第2位相センサの検知信号を示すタイミングチャートである。 ブラック用感光体ドラムを駆動する第1駆動部への出力信号に対する第2グループ感光体を駆動する第2駆動部への出力信号の動作タイミングを示すタイミングチャートであって、(a)及び(b)は、第2グループ感光体の位相がブラック用感光体ドラムの位相に対して最適な相対位相角度だけ進んだ状態及び遅れた状態をそれぞれ示す図であり、(c)は、ブラック用感光体ドラムの回転ムラと第2グループ感光体の回転ムラとの相対位相ずれを補正した後の状態を示す図である。 ブラック用感光体ドラムの回転ムラと第2グループ感光体の回転ムラとの相対位相ずれを補正した後のブラック基準粗密波に対するシアン、マゼンタ及びイエロー検出粗密波αのグラフの一例であって、(a)は、第1設定モードによって補正したグラフであり、(b)は、第2設定モードによって補正したグラフである。
以下、本発明に係る実施の形態について図面を参照しながら説明する。なお、以下の実施の形態は、本発明を具体化した例であって、本発明の技術的範囲を限定する性格のものではない。
図1は、本発明の実施の形態に係るカラー画像形成装置Dを概略的に示す側面図である。
図1に示すカラー画像形成装置Dは、原稿の画像を読み取る原稿読取装置B1と、この原稿読取装置B1により読み取られた原稿の画像又は外部から受信した画像をカラーもしくは単色で普通紙等の記録材に記録形成する装置本体Aとを備えている。
原稿読取装置B1では、原稿が原稿セットトレイ41にセットされると、ピックアップローラ44が原稿表面に押し付けられて回転され、原稿がトレイ41から引き出され、サバキローラ45と分離パッド46間を通過して1枚ずつに分離されてから搬送経路47へと搬送される。
この搬送経路47では、原稿の先端がレジストローラ49に当接して、レジストローラ49と平行に揃えられ、この後に原稿がレジストローラ49により搬送されて原稿ガイド51と読取ガラス52間を通過する。このとき、第1走査部53の光源からの光が読取ガラス52を介して原稿表面に照射され、その反射光が読取ガラス52を介して第1走査部53に入射し、この反射光が第1及び第2走査部53,54のミラーで反射されて結像レンズ55へと導かれ、結像レンズ55によって原稿表面の画像がCCD(Charge Coupled Device)56上に結像される。CCD56は、原稿表面の画像を読み取り、その画像を示す画像データを出力する。さらに、原稿は、搬送ローラ57により搬送され、排紙ローラ58を介して原稿排紙トレイ59に排出される。
また、原稿読取装置B1は、原稿台ガラス61上に載置された原稿を読み取ることができる。レジストローラ49、原稿ガイド51、原稿排紙トレイ59等とそれらよりも上側の部材とは、一体化されたカバー体となっており、原稿読取装置B1の背面側で副走査方向に沿った軸線回りに開閉可能に枢支されている。この上側のカバー体が開かれると、原稿台ガラス61が開放されて、原稿台ガラス61上に原稿を載置することができる。原稿台ガラス61上に載置された原稿はカバー体が閉じられることで該カバー体に保持される。そして、原稿読み取りの指示があると、第1及び第2走査部53,54が副走査方向に移動されつつ、第1走査部53によって原稿台ガラス61上の原稿表面が露光される。原稿表面からの反射光は、第1及び第2走査部53,54によって結像レンズ55へと導かれ、結像レンズ55によってCCD56上に結像され、ここで原稿画像が読み取られる。このとき、第1及び第2走査部53,54が相互に所定の速度関係を維持しつつ移動されて、原稿表面→第1及び第2走査部53,54→結像レンズ55→CCD56という反射光の光路の長さが変化しないように第1及び第2走査部53,54の位置関係が常に維持され、これによりCCD56上での原稿表面の画像のピントが常に正確に維持される。
こうして読み取られた原稿画像全体は、画像データとしてカラー画像形成装置Dの装置本体Aへと送受され、装置本体Aにおいて画像が記録材に記録される。
一方、カラー画像形成装置Dの装置本体Aは、複数の画像を該各画像にそれぞれ対応する複数の像担持体として作用する感光体ドラム3(3a,3b,3c,3d)を用いて形成し、それらの画像を重ね合わせるものである。装置本体Aは、露光装置1、現像装置2(2a,2b,2c,2d)、記録材搬送方向に沿って並設された感光体ドラム3(3a,3b,3c,3d)、帯電器5(5a,5b,5c,5d)、クリーナ装置4(4a,4b,4c,4d)、転写部として作用する中間転写ローラ6(6a,6b,6c,6d)を含む中間転写ベルト装置8、定着装置12、搬送装置18、給紙部として作用する給紙トレイ10及び排紙部として作用する排紙トレイ15を備えている。
カラー画像形成装置Dの装置本体Aにおいて扱われる画像データは、ブラック(K)、シアン(C)、マゼンタ(M)、イエロー(Y)の各色を用いたカラー画像に応じたもの、又は単色(例えばブラック)を用いたモノクロ画像に応じたものである。従って、現像装置2(2a,2b,2c,2d)、感光体ドラム3(3a,3b,3c,3d)、帯電器5(5a,5b,5c,5d)、クリーナ装置4(4a,4b,4c,4d)、中間転写ローラ6(6a,6b,6c,6d)は各色に応じた4種類の画像を形成するようにそれぞれ4個ずつ設けられ、それぞれの末尾符号a〜dのうち、符号aがブラックに、符号bがシアンに、符号cがマゼンタに、符号dがイエローに対応付けられて、4つの画像ステーションが構成されている。以下、末尾符号a〜dは省略して説明する。
感光体ドラム3は、装置本体Aの上下方向のほぼ中央に配置されている。帯電器5は、感光体ドラム3の表面を所定の電位に均一に帯電させるための帯電手段であり、接触型であるローラ型やブラシ型の帯電器のほか、チャージャ型の帯電器が用いられる。
露光装置1は、ここでは、レーザ光源42a〜42d(図1では図示せず、後述する図4A参照)及び走査光学系43を備えたレーザスキャニングユニット(LSU)であり、帯電された感光体ドラム3の表面を画像データに応じて露光して、その表面に画像データに応じた静電潜像を形成する。
現像装置2は、感光体ドラム3上に形成された静電潜像を(K,C,M,Y)のトナーにより現像する。クリーナ装置4は、現像及び画像転写後に感光体ドラム3表面に残留したトナーを除去及び回収する。
感光体ドラム3の上方に配置されている中間転写ベルト装置8は、中間転写ローラ6に加えて、記録媒体として作用する中間転写ベルト(中間転写体の一例)7、中間転写ベルト駆動ローラ21、従動ローラ22、テンションローラ23及び中間転写ベルトクリーニング装置9を備えている。
中間転写ベルト駆動ローラ21、中間転写ローラ6、従動ローラ22、テンションローラ23等のローラ部材は、中間転写ベルト7を張架して支持し、中間転写ベルト7を所定の移動方向(図中矢印C方向)に周回移動させる。
中間転写ローラ6は、中間転写ベルト7内側に回転可能に支持され、中間転写ベルト7を介して感光体ドラム3に圧接されており、感光体ドラム3のトナー像を中間転写ベルト7に転写するための転写バイアスが印加される。
中間転写ベルト7は、各感光体ドラム3に接触するように設けられており、各感光体ドラム3表面のトナー像を中間転写ベルト7に順次重ねて転写することによって、カラーのトナー像(各色のトナー像)を形成する。この転写ベルト7は、ここでは、厚さ100μm〜150μm程度のフィルムを用いて無端ベルト状に形成されている。
感光体ドラム3から中間転写ベルト7へのトナー像の転写は、中間転写ベルト7内側(裏面)に圧接されている中間転写ローラ6によって行われる。中間転写ローラ6には、トナー像を転写するために高電圧の転写バイアス(例えば、トナーの帯電極性(−)とは逆極性(+)の高電圧)が印加される。中間転写ローラ6は、ここでは、直径8〜10mmの金属(例えばステンレス)軸をベースとし、その表面は、導電性の弾性材(例えばEPDM、発泡ウレタン等)により覆われたローラである。この導電性の弾性材により、記録材に対して均一に高電圧を印加することができる。
カラー画像形成装置Dの装置本体Aは、転写部として作用する転写ローラ11aを含む2次転写装置11をさらに備えている。転写ローラ11aは、中間転写ベルト7の中間転写ベルト駆動ローラ21とは反対側(外側)に接触している。
上述のように各感光体ドラム3表面のトナー像は、中間転写ベルト7で積層され、画像データによって示されるカラーのトナー像となる。このように積層された各色のトナー像は、中間転写ベルト7と共に搬送され、2次転写装置11によって記録材上に転写される。
中間転写ベルト7と2次転写装置11の転写ローラ11aとは、相互に圧接されてニップ域を形成する。また、2次転写装置11の転写ローラ11aには、中間転写ベルト7上の各色のトナー像を記録材に転写させるための電圧(例えば、トナーの帯電極性(−)とは逆極性(+)の高電圧)が印加される。さらに、そのニップ域を定常的に得るために、2次転写装置11の転写ローラ11aもしくは中間転写ベルト駆動ローラ21の何れか一方を硬質材料(金属等)とし、他方を弾性ローラ等の軟質材料(弾性ゴムローラや発泡性樹脂ローラ等)としている。
また、2次転写装置11によって中間転写ベルト7上のトナー像が記録材上に完全に転写されず、中間転写ベルト7上にトナーが残留することがあり、この残留トナーが次工程でトナーの混色を発生させる原因となる。このため、中間転写ベルトクリーニング装置9によって残留トナーを除去及び回収する。中間転写ベルトクリーニング装置9には、例えばクリーニング部材として中間転写ベルト7に接触するクリーニングブレードが備えられており、このクリーニングブレードで残留トナーを除去及び回収することができる。従動ローラ22は、中間転写ベルト7を内側(裏側)から支持しており、クリーニングブレードは、外側から従動ローラ22に向けて押圧するように中間転写ベルト7に接触している。
給紙トレイ10は、記録材を格納しておくためのトレイであり、装置本体Aの画像形成部の下側に設けられている。また、画像形成部の上側に設けられている排紙トレイ15は、印刷済みの記録材をフェイスダウンで載置するためのトレイである。
また、装置本体Aには、給紙トレイ10の記録材を2次転写装置11や定着装置12を経由させて排紙トレイ15に送るための搬送装置18が設けられている。この搬送装置18は、Sの字形状の搬送路Sを有し、この搬送路Sに沿って、ピックアップローラ16、各搬送ローラ13、レジスト前ローラ19、レジストローラ14、定着装置12及び排紙ローラ17等の搬送部材を配置したものである。
ピックアップローラ16は、給紙トレイ10の記録材搬送方向下流側端部に設けられ、給紙トレイ10から記録材を1枚ずつ搬送路Sに供給する呼び込みローラである。各搬送ローラ13及びレジスト前ローラ19は、記録材の搬送を促進補助するための小型のローラである。各搬送ローラ13は、搬送路Sに沿って複数箇所に設けられている。レジスト前ローラ19は、レジストローラ14の搬送方向上流側の直近に設けられており、記録材をレジストローラ14へと搬送するようになっている。
レジストローラ14は、レジスト前ローラ19にて搬送されてきた記録材を一旦停止させて、記録材の先端を揃え、中間転写ベルト7と2次転写装置11間のニップ域で中間転写ベルト7上のカラートナー像が記録材に転写されるように、感光体ドラム3及び中間転写ベルト7の回転にあわせて、記録材をタイミングよく搬送する。
例えば、レジストローラ14は、中間転写ベルト7と2次転写装置11との間のニップ域で中間転写ベルト7上のカラートナー像の先端が記録材における画像形成範囲の先端に合うように、記録材を搬送する。
定着装置12は、ヒートローラ31及び加圧ローラ32を備えている。ヒートローラ31及び加圧ローラ32は、記録材を挟み込んで搬送する。
ヒートローラ31は、所定の定着温度となるように温度制御され、加圧ローラ32と共に記録材を熱圧着することにより、記録材に転写されたトナー像を溶融、混合、圧接し、記録材に対して熱定着させる機能を有している。
各色のトナー像の定着後での記録材は、排紙ローラ17によって排紙トレイ15上に排出される。
なお、4つの画像形成ステーションのうち少なくとも一つを用いて、モノクロ画像を形成し、モノクロ画像を中間転写ベルト装置8の中間転写ベルト7に転写することも可能である。このモノクロ画像も、カラー画像と同様に、中間転写ベルト7から記録材に転写され、記録材上に定着される。
また、記録材の表(オモテ)面だけではなく、両面の画像形成を行う場合は、記録材の表面の画像を定着装置12により定着した後に、記録材を材搬送路Sの排紙ローラ17により搬送する途中で、排紙ローラ17を停止させてから逆回転させ、記録材を表裏反転経路Srに通して、記録材の表裏を反転させてから、記録材を再びレジストローラ14へと導き、記録材の表面と同様に、記録材の裏面に画像を記録して定着し、記録材を排紙トレイ15に排出する。
[パターン検知センサの構成]
カラー画像形成装置Dは、パターン検知センサ34をさらに備えている。なお、以下の説明では、感光体ドラムの符号3、現像装置の符号2及び転写部6の末尾符号は省略せずに感光体ドラム3a,3b,3c,3d、現像装置(ここでは現像ユニット)2a,2b,2c,2d及び転写部(ここでは中間転写ローラ)6a,6b,6c,6dとする。
パターン検知センサ34は、無端状の中間転写ベルト7の移動方向Cにおいて感光体ドラム(ここではブラック用感光体ドラム3a)よりも下流側に配置されている。具体的には、パターン検知センサ34は、中間転写ベルト7の表面と対向するように配置されている。
パターン検知センサ34は、ここでは、発光部341及び受光部342を有する反射型の光センサ(フォトインタラプタ)とされている。パターン検知センサ34は、後述するように、中間転写ベルト7に形成された各パターンPa〜Pd(後述する図5参照)を検出するようになっている。詳しくは、パターン検知センサ34は、発光部341から中間転写ベルト7の表面又は各パターンPa〜Pdにて反射される入射光を受光部342で検知するようになっている。
[駆動装置の構成]
カラー画像形成装置Dは、感光体ドラム3を駆動する駆動装置100(図1では図示せず、後述する図2及び図3参照)をさらに備えている。
図2は、図1に示すカラー画像形成装置Dにおける駆動装置100の駆動伝達系を概略的に示すシステム構成図であって、第1及び第2駆動部110,120から感光体ドラム3a,3b,3c,3dへの回転駆動を伝達するギヤトレイン並びに第1及び第2位相検知センサ170a,170bを示す図である。また、図3は、図1に示すカラー画像形成装置Dにおける駆動装置100を詳細に示す斜視図である。
カラー画像形成装置Dは、感光体ドラム3a,3b,3c,3dのうち第1感光体ドラム(ここではブラック用感光体ドラム3a)を含む第1グループ感光体30a(第1グループ像担持体の一例)と、残りの複数の第2感光体ドラム(ここではシアン用感光体ドラム3b、マゼンタ用感光体ドラム3c、イエロー用感光体ドラム3d)を含みかつ第2感光体ドラム3b,3c,3dが互いに連動して回転する第2グループ感光体30b(第2グループ像担持体の一例)とを備えている。ここでは、第1グループ感光体30aは、モノクロの画像形成(モノクロ印刷)を行うためのものであり、第2グループ感光体30bは、第1グループ感光体30aと協働してフルカラーの画像形成を行うためのものである。なお、各感光体ドラム3a,3b,3c,3dの直径は何れも同一径とされている。
駆動装置100は、第1駆動部110と、第2駆動部120と、第1回転部材(ここでは第1駆動伝達用回転部材)150と、第2回転部材(ここでは第2駆動伝達用回転部材)160と、第1及び第2位相検知センサ170a,170bとを備えている。
第1駆動部110は、第1グループ感光体30aを駆動するためのものである。第2駆動部120は、第2グループ感光体30bを駆動するためのものである。ここでは、第1駆動部110及び第2駆動部120は、ステッピングモータとされている。
第1駆動伝達用回転部材150は、第1駆動部110から第1グループ感光体30aへの回転駆動を伝達するものであり、ここでは、第1軸ギヤ111と、第1中間ギヤ112と、ブラック用感光体駆動ギヤ130とからなっている。第2駆動伝達用回転部材160は、第2駆動部120から第2グループ感光体30bへの回転駆動を伝達するものであり、ここでは、第2軸ギヤ121と、第2から第4中間ギヤ122〜124と、カラー用(シアン用、マゼンタ用及びイエロー用)感光体駆動ギヤ140(140b〜140d)とからなっている。なお、これらのギヤは、回転軸線の方向が互いに平行となっている。
具体的には、ブラック用感光体駆動ギヤ130は、ブラック用感光体ドラム3aの回転軸と同軸上に連結されており、第1中間ギヤ112に噛合している。第1駆動部110の回転軸に設けられた第1軸ギヤ111は、第1中間ギヤ112に噛合している。これにより、第1駆動部110が回転駆動することで、第1軸ギヤ111、第1中間ギヤ112及びブラック用感光体駆動ギヤ130を介して、ブラック用感光体駆動ギヤ130に連結されたブラック用感光体ドラム3aを回転させることができる。
また、シアン用感光体駆動ギヤ140bは、シアン用感光体ドラム3bの回転軸と同軸上に連結されており、第3中間ギヤ123に噛合している。マゼンタ用感光体駆動ギヤ140cは、マゼンタ用感光体ドラム3cの回転軸と同軸上に連結されており、第2中間ギヤ122、第3中間ギヤ123及び第4中間ギヤ124に噛合している。イエロー用感光体駆動ギヤ140dは、イエロー用感光体ドラム3dの回転軸と同軸上に連結されており、第4中間ギヤ124に噛合している。第2駆動部120の回転軸に設けられた第2軸ギヤ121は、第2中間ギヤ122に噛合している。これにより、第2駆動部120が回転駆動することで、第2軸ギヤ121、第2中間ギヤ122及びマゼンタ用感光体駆動ギヤ140cを介して、マゼンタ用感光体駆動ギヤ140cに連結されたマゼンタ用感光体ドラム3cを、マゼンタ用感光体駆動ギヤ140c、第3中間ギヤ123及びシアン用感光体駆動ギヤ140bを介して、シアン用感光体駆動ギヤ140bに連結されたシアン用感光体ドラム3bを、また、マゼンタ用感光体駆動ギヤ140c、第4中間ギヤ124及びイエロー用感光体駆動ギヤ140dを介して、イエロー用感光体駆動ギヤ140dに連結されたイエロー用感光体ドラム3dを回転させることができる。
これにより、カラー用の各感光体ドラム3b、3c、3bの第2駆動部120を共通のものにすることができる。また、シアン、マゼンタ及びイエロー用の各感光体ドラム3b,3c,3dが共通の第2駆動部120によって互いに連動して回転する。こうして、第1駆動部110によって感光体ドラム3aをモノクロ印刷時に単独で回転させることができる。
なお、第1駆動部110は、ブラック用現像ユニット2aも駆動するようになっており、第2駆動部120は、シアン用現像ユニット2b、マゼンタ用現像ユニット2c及びイエロー用現像ユニット2dも駆動するようになっている。
[位相検知センサの構成]
第1位相検知センサ170aは、ここでは、発光部171a及び受光部172aを有する透過型の光センサ(フォトインタラプタ)とされている。第1位相検知センサ170aは、ブラック用感光体3aの回転によって回転する回転部材の突起部又は切り欠き部(ここではブラック用感光体駆動ギヤ130のリブ部131を切り欠いた切り欠き部131a)を検出するようになっている。詳しくは、第1位相検知センサ170aは、発光部171aから受光部172aに入射される入射光をブラック用感光体駆動ギヤ130の回転に伴う突起部又は切り欠き部131aの周回移動によって突起部又は切り欠き部131aで遮断又は通過させることで、入射光の有無を受光部172aで検知するようになっている。
また、第2位相検知センサ170bは、ここでは、発光部171b及び受光部172bを有する透過型の光センサ(フォトインタラプタ)とされている。第2位相検知センサ170bは、第2グループ感光体30bの回転によって回転する回転部材の突起部又切り欠き部(ここではカラー用感光体駆動ギヤ140(具体的にはイエロー用感光体駆動駆動ギヤ140d)のリブ部141を切り欠いた切り欠き部141a)を検出するようになっている。詳しくは、第2位相検知センサ170bは、発光部171bから受光部172bに入射される入射光をカラー用感光体駆動ギヤ140の回転に伴う突起部又は切り欠き部141aの周回移動によって突起部又は切り欠き部141aで遮断又は通過させることで、入射光の有無を受光部172bで検知するようになっている。
なお、第1及び第2位相検知センサ170a,170bは、反射型の光センサであってもよい。
[制御システムの構成]
カラー画像形成装置Dは、カラー画像形成装置D全体を制御する制御部300をさらに備えている。
図4Aは、図1に示すカラー画像形成装置Dにおけるシステム構成を概略的に示すブロック図である。
制御部300は、図4Aに示す制御装置100の駆動負荷の駆動を制御する。駆動装置100は、さらに、駆動制御部として作用する駆動制御回路200、第1駆動部駆動制御回路210、第2駆動部駆動制御回路220及びベルト駆動部28を備えている。
既述したように、第1駆動部110は、第1グループ感光体30aのブラック用感光体3a及びブラック用現像ユニット2aを駆動するモータとされている。第2駆動部120は、第2グループ感光体30bのカラー用感光体3b,3b,3d及びカラー用現像ユニット2b,2c,2dを駆動するモータとされている。
駆動制御回路200は、制御部300からの指示信号を基に第1駆動部110及び第2駆動部120の作動制御を行うようになっている。
第1駆動部駆動制御回路210は、駆動制御回路200と第1駆動部110との間に接続されている。第2駆動部駆動制御回路220は、駆動制御回路200と第2駆動部120との間に接続されている。
駆動制御回路200は、第1駆動部駆動制御回路210に対し、第1駆動部110の起動及び停止の指令を与えるようになっている。第1駆動部駆動制御回路210は、駆動制御回路200の指示の下、第1駆動部110の起動、停止及び駆動速度を制御する回路であり、ここでは、駆動制御回路200から指令される目標速度に第1駆動部110の駆動速度を一致させるように制御するサーボ制御回路とされている。そして、駆動制御回路200は、画像形成時に第1駆動部110を予め定められたプロセス速度(画像形成用の駆動速度)で駆動するように第1駆動部駆動制御回路210に指令するようになっている。
また、駆動制御回路200は、第2駆動部駆動制御回路220に対し、第2駆動部120の起動及び停止の指令を与えるようになっている。第2駆動部駆動制御回路220は、駆動制御回路200の指示の下、第2駆動部120の起動、停止及び駆動速度を制御する回路であり、ここでは、駆動制御回路200から指令される目標速度に第2駆動部120の駆動速度を一致させるように制御するサーボ制御回路とされている。そして、駆動制御回路200は、画像形成時に第2駆動部120を前記プロセス速度で駆動するように第2駆動部駆動制御回路220に指令するようになっている。
そして、第1駆動部110は、駆動制御回路200の指示の下に作動制御されて、ブラック用感光体ドラム3aを一定の周速度Vで回転駆動する。第2駆動部120は、駆動制御回路200の指示の下に作動制御されて、第2グループ感光体30bにおいて互いに連動して回転するシアン用感光体ドラム3b、マゼンタ用感光体ドラム3c及びイエロー用感光体ドラム3dを周速度Vで回転駆動する。
ベルト駆動部28は、中間転写ベルト駆動ローラ21を駆動する駆動モータとされている。ベルト駆動部28は、中間転写ベルト駆動ローラ32を介して中間転写ベルト7を回転駆動する。ベルト駆動部28は、駆動制御回路200の指示の下に作動制御されて、中間転写ベルト7を周速度Vで周回移動させるようになっている。
駆動制御回路200は、入力系に位相検知センサ170a,170bが接続されている。
第1位相検知センサ170aは、ブラック用感光体ドラム3aの回転タイミングを検知する。第2位相検知センサ170bは、第2グループ感光体30bの回転タイミングを検知する。
制御部300は、さらに、カラー画像形成装置Dの構成部であって、図示していない各部の動作も制御する。
制御部300は、入力系に画像入力部62及びパターン検知センサ34が接続され、かつ、出力系にLSU1が接続されている。
画像入力部62は、出力すべき画像の画像データを外部から取得する。画像データを提供するソースは、通信線を介してカラー画像形成装置Dに接続される機器である。この機器の一例は、パーソナルコンピュータなどのホストである。他の一例は、イメージスキャナである。取得された画像データは、印刷処理のために、後述する記憶手段320(図4B参照)のRAMに格納される。画像入力部62から取得される画像データには、その属性を示す情報が付与されている。付与された属性には、各画像の縦横のサイズ、モノクロ画像とカラー画像の種別等が含まれる。
LSU1は、ブラック用レーザダイオード42aと、シアン用レーザダイオード42bと、マゼンタ用レーザダイオード42cとイエロー用レーザダイオード42dとを備えている。
LSU1は、図示しない画像処理部から記憶手段320のRAMにおける画像メモリ領域に格納された画像データに基づく信号(画素信号)を受領する。画像処理部は、画像データを処理して出力すべき画像の各画素に応じた変調信号をLSU1に提供する。
なお、変調信号は、ブラック、シアン、マゼンタ、イエローの色成分ごとに提供される。ブラック、シアン、マゼンタ、イエローの各変調信号は、LSU1内のレーザダイオード42a,42b,42c,42dの発光をそれぞれ変調するために用いられる。
ブラック、シアン、マゼンタ及びイエロー用の各感光体ドラム3a〜3dに静電潜像を形成する場合、制御部300は、ブラック用レーザダイオード42aと、カラー用レーザダイオードであるシアン用レーザダイオード42b、マゼンタ用レーザダイオード42c及びイエロー用レーザダイオード42dとをそれぞれ発光させ、一様に帯電されたブラック、シアン、マゼンタ及びイエロー用の各感光体ドラム3a〜3d上をそれぞれ露光するように制御する。
また、制御部300は、パターン検知センサ34で読み取った各パターンPa〜Pd(図5参照)の検出タイミングを正規のタイミングと比較して偏差を求める。タイミングの偏差は、中間転写ベルト7の周速度Vを用いて位置の偏差に換算することができる。このタイミングの偏差ついては、のちほど詳述する。
図4Bは、図4Aに示す制御部300を詳細に示すブロック図である。図4Bに示すように、制御部300は、CPU(Central Processing Unit)等のマイクロコンピュータからなる処理部310と、ROM(Read Only Memory)、RAM(Random Access Memory)やデータ書き換え可能な不揮発性メモリ等の記憶装置を含む記憶手段320と含んでいる。
制御部300は、処理部310が記憶手段320のROMに予め格納された制御プログラムを記憶手段320のRAM上にロードして実行することにより、各種構成要素の作動制御を行うようになっている。記憶手段320のRAMは、制御部300に対して作業用のワークエリアおよび画像データを格納する画像メモリとしての領域を提供する。
詳しくは、制御部300は、取得された画像データを、付与された属性に対応付けてRAMに格納する。画像データは、ジョブ単位でRAMに格納され、さらに一つのジョブが複数ページからなる場合は、ページ単位で格納される。画像データが、外部のホストから、ページ記述言語の形式で入力される場合、制御部300は、入力された画像データを展開して画像メモリ領域に格納する。記憶手段320のROMは、制御部300が実行する処理手順を定めたプログラムを格納する。
記憶手段320は、後述するパターン形成部301、検出部302、演算部303、設定部304及び補正部305で用いられる各種データや演算式を格納する。
[相対位相ずれの補正]
ところで、カラー画像形成装置Dでは、シアン用感光体ドラム3b、マゼンタ用感光体ドラム3c及びイエロー用感光体ドラム3dが互いに連動して回転するように構成されているので、ブラック用感光体ドラム3aの偏芯、シアン用感光体ドラム3b、マゼンタ用感光体ドラム3c及びイエロー用感光体ドラム3dのそれぞれの偏芯、第1駆動部110からブラック用感光体ドラム3aへの回転駆動を伝達する駆動ギヤ等の駆動伝達用回転部材の偏芯、第2駆動部120からシアン用感光体ドラム3b、マゼンタ用感光体ドラム3c及びイエロー用感光体ドラム3dへの回転駆動を伝達する駆動ギヤ等の駆動伝達用回転部材のそれぞれの偏芯等に起因した周速度Vの周期的変動(以下、回転ムラという)による周方向の位置ずれが発生すると、第2グループ感光体30bにおけるシアン用感光体ドラム3b、マゼンタ用感光体ドラム3c及びイエロー用感光体ドラム3dが互いに連動して回転するために、シアン、マゼンタ及びイエロー用の各感光体ドラム3b〜3dの間において互いに回転ムラによる相対位相ずれを調整できない上、ブラック用感光体ドラム3aと、シアン、マゼンタ及びイエロー用の各感光体ドラム3b〜3dとのそれぞれの間においても回転ムラによる相対位相ずれをそれぞれ調整することができない。
このため、本実施の形態に係るカラー画像形成装置Dでは、ブラック用感光体ドラム3aの回転ムラと、第2グループ感光体30bの回転ムラ(互いに調整できないシアン、マゼンタ及びイエロー用の各感光体ドラム3b〜3dの回転ムラ)との相対位相ずれを最適なものに補正するために、次のような制御構成を備えている。
すなわち、制御部300は、パターン形成部301、検出部302、演算部303、設定部304及び補正部305として機能するように構成されている。
[パターン形成部について]
図5は、中間転写ベルト7上にブラック基準用パターンPa(図示例ではPa1,Pa2,Pa3)、シアン検出用パターンPb(図示例ではPb1,Pb2,Pb3)、マゼンタ検出用パターンPc(図示例ではPc1,Pc2,Pc3)及びイエロー検出用パターンPd(図示例ではPd1,Pd2,Pd3)を形成した一例を示す平面図である。
パターン形成部301は、本実施の形態では、基準色の基準用パターンとしてブラック画像であるブラック基準用パターンPaを形成し、かつ、検出色の検出用パターンとしてカラー画像であるシアン検出用パターンPb、マゼンタ検出用パターンPc及びイエロー検出用パターンPdをそれぞれ形成する。
すなわち、パターン形成部301は、ブラック用感光体ドラム3aで形成されるブラック基準用パターンPaを周方向における所定の一定ピッチ(ここでは回転角度θp=120°)毎に中間転写ベルト7(記録媒体の一例)上に形成する。
また、パターン形成部301は、シアン、マゼンタ及びイエロー用の各感光体ドラム3b〜3dでそれぞれ形成されるシアン検出用パターンPb、マゼンタ検出用パターンPc及びイエロー検出用パターンPdを何れもブラック基準用パターンPaと同一ピッチ(ここでは回転角度θp=120°)毎に中間転写ベルト7上にそれぞれ形成する。
詳しくは、パターン形成部301は、ブラック、シアン、マゼンタ及びイエロー用の各感光体ドラム3a〜3d上にLSU1にて各パターンPa〜Pdに対応する静電潜像を形成し、該形成した静電潜像を現像装置(ここでは現像ユニット)2a〜22dにてトナー像に現像し、現像したトナー像を各パターンPa〜Pdとして転写部(ここでは中間転写ローラ)6a〜6dにて中間転写ベルト7に静電的に転写する。なお、本実施の形態では、基準用パターンの色をブラックとしているが、他の色つまりイエロー、マゼンダ、シアンのうち何れかを基準用パターンの色にしてもよい。
具体的には、パターン形成部301は、各パターンPa〜Pdを形成するにあたり、記憶手段320に予め格納されている各パターンPa〜Pdのパターンデータを取得する。パターン形成部301は、取得したパターンデータを画像メモリ領域に展開して各パターンPa〜Pdを準備する。その後、パターン形成部301は、展開した各パターンPa〜PdのデータをLSU1に転送する。
そして、LSU1において、データを受領した各レーザダイオード42a〜42dは、感光体ドラム3a〜3d上に各パターンPa〜Pdに対応する静電潜像をそれぞれ形成する。
現像ユニット2a〜2dは、LSU1で形成された静電潜像を現像して各パターンPa〜Pdのトナー像を形成する。各パターンPa〜Pdのトナー像は、中間転写ローラ6a〜6dにて中間転写ベルト7上にそれぞれ転写される。こうして、中間転写ベルト7上にブラック基準用パターンPa、シアン検出用パターンPb、マゼンタ検出用パターンPc及びイエロー検出用パターンPdが形成される。
各パターンPa〜Pdは、中間転写ベルト7上において中間転写ベルト7の幅方向(主走査方向)Eに延びる直線状に、かつ、移動方向Cに揃うように整列して形成されている。
中間転写ベルト7の移動方向Cの下流側から上流側に向けて、各パターンが同じ順序で、ここでは、各シアン検出用パターンPb1,Pb2,Pb3、各ブラック基準用パターンPa1,Pa2,Pa3、各マゼンタ検出用パターンPc1,Pc2,Pc3及び各イエロー検出用パターンPd1,Pd2,Pd3がこの順で形成される。なお、各パターンPa〜Pdは、中間転写ベルト7の幅方向Eにおける複数箇所で検知されてもよい。例えば、各パターンPa〜Pdは、中間転写ベルト7の幅方向Eにおける一方の端部に形成されてもよいし、両端部に形成されてもよい。
図6は、中間転写ベルト7上において中間転写ベルト7の幅方向Eにおける両端部に形成された各パターンPa〜Pdとパターン検知センサ34(図示例では第1及び第2パターン検知センサ34a,34b)との位置関係を示す平面図である。
パターン検知センサ34は、中間転写ベルト7の幅方向(主走査方向)Eの異なる位置に形成される各パターンPa〜Pdに対応して設けられている。図6に示す例では、パターン検知センサ34は、第1及び第2パターン検知センサ34a、34bからなっている。中間転写ベルト7上の幅方向Eにおける複数箇所の各パターンPa〜Pdが形成されるべき位置に対向して配置されている。なお、中間転写ベルト7の幅方向Eにおける複数箇所で各パターンPa〜Pdを検知する場合、その値は、該複数箇所で検知した値の平均値をとすることができる。
そして、中間転写ベルト7に形成された各パターンPa〜Pdには、各感光体ドラム3a〜3dの周速度Vの周期的変動によるピッチ変動成分がそれぞれ含まれる。このピッチ変動に不一致があると、画像の色ずれとして認識される。
図7は、各パターンPa〜Pdのうちのシアン検出用パターンPb(Pb1,Pb2,Pb3)をシアン用感光体ドラム3bに形成するための各信号のタイミングを示すタイミングチャートである。なお、図中、符号S0は、任意のタイミングで制御部300から出力され、かつ、パターン検出処理におけるスタート基準となる検出開始信号である。
以下の説明では、回転角度、距離が混在して記載されているが、いずれも時間に換算して解釈される。
レーザ発光信号CS1,CS2,CS3は、シアン用レーザダイオード42bからシアン用感光体ドラム3bに対して検出開始信号S0を基準にして回転角度θp(ここでは120°)毎に出力される。レーザ発光信号CS1、CS2、CS3は、短冊状のシアン検出用パターンPb(Pb1,Pb2,Pb3)(図5及び図6参照)をそれぞれ形成するための信号とされる。
検出開始信号S0から遅延時間TL後に位置する正規位置で検出信号C1,C2,C3が検出される時間は、レーザ発光信号CS1,CS2,CS3にてそれぞれ形成されたシアン検出用パターンPb(Pb1,Pb2,Pb3)が、回転ムラのない本来検出されるべき時間である。ここで、遅延時間TLは、シアン用感光体ドラム3bがLSU1におけるシアン用レーザダイオード42bからのレーザビームによる露光位置から転写位置まで回転する時間と、中間転写ベルト7がシアン画像の転写位置からパターン検知センサ34までの移動する時間との合計時間に相当する。
正規位置に対する測定位置で検出信号C1,C2,C3が検出される時間は、レーザ発光信号CS1,CS2,CS3にてそれぞれ形成されたシアン検出用パターンPb(Pb1,Pb2,Pb3)が、回転ムラのある実際に検出された時間であり、正規位置での検出信号C1,C2,C3とのずれがΔ1,Δ2,Δ3で表されている。
なお、再現波形は、シアン検出粗密波とすることができ、例えば、後述するサインカーブフィッティング計算式により、Δ1,Δ2,Δ3に基づいて計算し、シアン検出粗密波α(1)=C(1)×sin(ε(1)+τ(1))+ρ(1)で表すことができる。ここで、粗密波とは、各パターンPa〜Pdにおける回転ムラによる周方向の位置ずれを示す位置ずれ量の周期的変化を表したものである。式中のC(1)は粗密波の振幅を、ε(1)は粗密波の角度を、τ(1)は粗密波の位相角度を、ρ(1)は粗密波の副走査方向のシフト値を表している。
基本正弦波は、シアン検出粗密波α(1)に対する基本波形であり、y=sin(ε(1))で表される。この場合、正規位置がε(1)=0に相当する。このことは、後述するブラック基準粗密波αa、マゼンタ検出粗密波α(2)、及びイエロー検出粗密波α(3)についても同様である。
図8は、シアン検出用パターンPbとブラック基準用パターンPaとの形成タイミングを示すタイミングチャートである。なお、図8において、シアン用感光体ドラム3bにおけるタイミングチャートは図7に示すものと同じである。
本実施の形態では、異なる色の各パターンは、中間転写ベルト7の移動方向(副走査方向)Cの異なる位置に形成されており、各パターン間の間隔(距離h、例えば3mm程度、図5参照)を開けている。
従って、図8に示すように、レーザ発光信号KS1,KS2,KS3は、ブラック用レーザダイオード42aからブラック用感光体ドラム3aに対して検出開始信号S0から遅延した遅延時間Tbを基準にして回転角度θp(ここでは120°)毎に出力される。レーザ発光信号KS1,KS2,KS3も、シアンの場合と同様、短冊状のブラック基準用パターンPa(Pa1,Pa2,Pa3)(図5及び図6参照)をそれぞれ形成するための信号とされる。ここで、遅延時間Tbは、ブラック用感光体ドラム3aとシアン用感光体ドラム3bとの間の距離Q1(図1参照)から、異なる色の各隣り合うパターン間の間隔(距離h、例えば3mm)を差し引いた値を周速度Vで除した時間である。ブラック用感光体ドラム3aとシアン用感光体ドラム3bとの間の距離Q1と、シアン用感光体ドラム3bとマゼンタ用感光体ドラム3cとの間の距離Q2と、マゼンタ用感光体ドラム3cとイエロー用感光体ドラム3dとの間の距離Q3とは、ここでは何れも同一距離とされており、例えば、100mm程度を挙げることができる。また、各感光体ドラム3a〜3dの直径もここでは何れも同一距離とされており、例えば、30mm程度を挙げることができる。
検出開始信号S0から遅延時間(Tb+TL)後に位置する正規位置で検出信号K1,K2,K3が検出される時間は、レーザ発光信号KS1,KS2,KS3にてそれぞれ形成されたブラック基準用パターンPa(Pa1,Pa2,Pa3)が、回転ムラのない本来検出されるべき時間である。ここで、遅延時間TLは、ブラック用感光体ドラム3aがLSU1におけるブラック用レーザダイオード42aからのレーザビームによる露光位置から転写位置まで回転する時間と、中間転写ベルト7がブラック画像の転写位置からパターン検知センサ34までの移動する時間との合計時間に相当する(図1参照)。
正規位置に対する測定位置で検出信号K1,K2,K3が検出される時間は、レーザ発光信号KS1,KS2,KS3にてそれぞれ形成されたブラック基準用パターンPa(Pa1,Pa2,Pa3)が、回転ムラのある実際に検出された時間であり、正規位置での検出信号K1,K2,K3とのずれがΔ1,Δ2,Δ3で表されている。
また、異なる色の各隣り合うパターン間の間隔(距離h)を回転角度に換算したときの値をψとすると、例えば、各隣り合うパターン間の間隔(距離h)が3mmのとき、感光体ドラムの直径が30mmであれば、回転角度ψは約11.5°とされる。つまり、ブラック基準用パターンPa(Pa1,Pa2,Pa3)とシアン検出用パターンPb(Pb1,Pb2,Pb3)とが重ならないよう、回転角度ψに対応する遅延時間Tbだけ早い時間、シアン検出用パターンPb(Pb1,Pb2,Pb3)の印字を開始している。
なお、再現波形は、ブラック基準粗密波とすることができ、シアン検出粗密波α(1)と同様、後述するサインカーブフィッティング計算式により、Δ1,Δ2,Δ3に基づいて計算してブラック基準粗密波αa=B×sin(εk+τk)+ρkで表すことができる。
マゼンタ検出用パターンPc(Pc1,Pc2,Pc3)のマゼンタ検出粗密波α(2)及びイエロー検出用パターンPd(Pd1,Pd2,Pd3)のイエロー検出粗密波α(3)についても、シアン検出粗密波α(1)及びブラック基準粗密波αaの場合と同様に考えることができる。
すなわち、マゼンタ検出粗密波α(2)及びイエロー検出粗密波α(3)についても、後述するサインカーブフィッティング計算式により得ることができ、マゼンタ検出粗密波α(2)=C(2)×sin(ε(2)+τ(2))+ρ(2)、イエロー検出粗密波α(3)=C(3)×sin(ε(3)+τ(3))+ρ(3)でそれぞれ表すことができる。
ここで、変数ρk,ρ(1),ρ(2),ρ(3)は、副走査方向のシフト値であり、主としてLSU1におけるポリゴンミラーなど走査光学系43の熱膨張に起因するものと考えられる。この要素に対しては、各色の副走査ラインの書き出しタイミングを変えることによって調整することができる。
[検出部について]
検出部302は、ブラック基準粗密波αaの振幅Bを検出する。また、検出部302は、m個(mは2以上の整数、ここでは3個)のシアン、マゼンタ及びイエロー検出粗密波α(i)(iは1以上m以下の整数)の振幅C(i)をそれぞれ検出する。さらに、検出部302は、ブラック基準粗密波αaに対するm個(ここでは3個)のシアン、マゼンタ及びイエロー検出粗密波α(i)の相対位相角度φ(i)をそれぞれ検出する。
本実施の形態では、検出部302は、ブラック基準粗密波αa、シアン検出粗密波α(1)、マゼンタ検出粗密波α(2)及びイエロー検出粗密波α(3)の以下の式(1)〜式(4)を用いて検出する。
αa=B×sin(εk+τk)+ρk … 式(1)
α(1)=C(1)×sin(ε(1)+τ(1))+ρ(1) … 式(2)
α(2)=C(2)×sin(ε(2)+τ(2))+ρ(2) … 式(3)
α(3)=C(3)×sin(ε(3)+τ(3))+ρ(3) … 式(4)
これらの粗密波αa,α(1),α(2),α(3)は、本出願人が既に出願した発明(特開2009−251109号公報)のサインカーブフィッティング計算式により求めることができる。
(サインカーブフィッティング計算式について)
図9は、各パターンPa〜Pdのサンプリングポイントでの基本正弦波の総和が0となる位置を示すタイミングチャートである。
各感光体ドラム3a〜3d上にそれぞれ各感光体ドラム3a〜3dの回転角度θp(ここでは120゜)おきにS個の点(Sは2以上の整数、ここでは0゜、120゜、240゜の3点)の各パターンPa〜Pdが作成される。この回転角度θpにより、各パターンPa〜Pdの作成数及び同パターン間距離を調整することができる。なお、サインカーブフィッティング計算法を用いる場合には、各パターンPa〜Pdの作成数及び同パターン間距離を最小(例えば3個)にすることが好ましい。なお、本実施の形態では、パターン数を3にしているが、4以上であってもよい。つまり、感光体ドラム3a〜3d上にそれぞれ感光体ドラム3a〜3dの回転角度θp(例えば90゜)おきにS個の点(例えば0゜、90゜、180゜、270゜の4点)のパターンを作成してもよい。
ここで、サンプリングポイントでの基本正弦波の総和が0となるとは、図9の例では、3つのサンプリングポイントでの、基本正弦波におけるそれぞれの偏差(Δ1,Δ2,Δ3)の合計が0になることをいう。
図9では、回転角度0゜での偏差は0、回転角度120゜での偏差と回転角度240゜での偏差はΔ2=−Δ3の関係にあり、Δ1+Δ2+Δ3=0となる。このような条件でサンプリングすることにより、前述した副走査方向のシフト値ρk,ρ(1),ρ(2),ρ(3)を偏差Δs(sは1以上S以下の整数、Sは2以上の整数)の平均値から取得することができ、好都合である。
そして、以下のサインカーブフィッティング計算法を適用することで、位相差及び振幅を短時間かつ最小のパターン数で取得することができる。
図7及び図8に示すシアン検出粗密波α(1)は以下の式(5)で表される。ここで、前述の式(2)も示しておく。
α(1)=a×sin(ε(1))+b×con(ε(1))+ρ(1) … 式(5)
α(1)=C(1)×sin(ε(1)+τ(1))+ρ(1) … 式(2)
シアン検出用パターンPbの偏差Δs(ここではΔ1,Δ2,Δ3)及び角度εs(1)(ここではε1(1)=0、ε2(1)=120°、ε3(2)=240゜)から以下の式(6)〜式(10)を用いて、式(5)の振幅a,b、式(2)の振幅C(1)及び位相角度τ(1)及び副走査方向のシフト値ρ(1)を求める。
なお、Δsは、正規位置に対する時間差として検出した値(Δt)としてもよいし、Δtに周速度Vを乗じて変換した距離ΔLとしてもよい。また、Δsは、距離ΔLを1ドットの大きさ(例えば600dpi=約42μm)で除して変換したドット数ΔDとすることもできる。ドット数ΔDに変換して計算した場合、計算値の振幅や色ずれがドット数で算出されるので、テストパターンをプリントアウトして目視確認するとき、計算結果との照合が容易であり好都合である。
式(5)の振幅a、振幅b及び副走査方向のシフト値ρ(1)は、次の式(6)〜式(8)で表すことができる。
Figure 2011145461
また、図10は、シアン検出粗密波α(1)の振幅C(1)を表した概念図である。振幅C(1)は、図10に示すように、次の式(9)で表すことができる。
Figure 2011145461
また、位相角度τ(1)は、次の式(10)で得られたτを表1の変換式により変換することで求めることができる。
τ=arcsin(b/C(1)) … 式(10)
Figure 2011145461
これは、振幅a及び振幅bを、図11に示すI象限〜IV象限に対応させて変換する必要があるためである。また、変換式の計算結果におけるτ(1)の数値範囲は、
0≦τ(1)<360
で示される。
式(1)から式(10)及び表1のテーブルデータTBは、記憶手段320に予め記憶されている。
図12は、シアン検出用パターンPbをシアン用感光体ドラム3bの360°の回転角度において、0°,120°,240°の3点を含む17点で作成して偏差Δ1〜Δ17を実測した結果を示すグラフである。
図13は、図12に示す17点のうちの0°,120°,240°の3点における偏差(0,−0.8,−3.1)を抽出して示すグラフである。
検出部302は、図14に示すデータを記憶手段320に予め記憶されている式(6)〜式(10)及び表1のテーブルデータTBに適用して算出すると、
a=1.33
b=1.30
C(1)=1.86
ρ(1)=−1.3
τ=44.3°
τ(1)=44.3°
が得られる。
これらの値を記憶手段320に予め記憶されている式(2)に代入すると、シアン検出粗密波α(1)は、α(1)=1.86×sin(ε(1)+44.3)−1.3となる。
図14は、図13に示す偏差からサインカーブフィッティング計算式により求めたシアン検出粗密波α(1)の式[1.86×sin(ε(1)+44.3)−1.3]を波形に表したグラフである。なお、図14に示すサインカーブは、位相角度τ(1)=44.3°だけシフトしていることを分かり易く表すために副走査方向のシフト量ρ(1)=0として描かれている。
そして、ブラック基準粗密波αa、マゼンタ検出粗密波α(2)及びイエロー検出粗密波α(3)の式についても、シアン検出粗密波α(1)と同様に求めることができる。なお、各粗密波αa,α(i)は何れも同一周期とされている。
このようにして、検出部302は、式(1)の振幅Bとしてブラック基準粗密波αaの振幅を、式(2)の振幅C(1)としてシアン検出粗密波α(1)の振幅を、式(3)の振幅C(2)としてマゼンタ検出粗密波α(2)の振幅を、さらに式(4)の振幅C(3)としてイエロー検出粗密波α(3)の振幅をそれぞれ検出することができる。
また、ブラック基準粗密波αa、シアン検出粗密波α(1)、マゼンタ検出粗密波α(2)及びイエロー検出粗密波α(3)は、何れも角度εk,ε(1),ε(2),ε(3)が0のときに、ブラック基準用パターンPa1,Pa2,Pa3、マゼンタ検出用パターンPc1,Pc2,Pc3及びイエロー検出用パターンPc1,Pc2,Pc3の正規位置になっている。従って、検出部302は、式(1)の位相角度τkと式(2)の位相角度τ(1)の偏差(τk−τ(1))としてブラック基準粗密波αaに対するシアン検出粗密波α(1)の相対位相角度を検出することができる。また、式(1)の位相角度τkと式(3)の位相角度τ(2)の偏差(τk−τ(2))としてブラック基準粗密波αaに対するマゼンタ検出粗密波α(2)の相対位相角度を検出することができる。さらに、式(1)の位相角度τkと式(4)の位相角度τ(3)の偏差(τk−τ(3))としてブラック基準粗密波αaに対するイエロー検出粗密波α(3)の相対位相角度を検出することができる。
なお、ブラック基準用パターンPa1,Pa2,Pa3、マゼンタ検出用パターンPc1,Pc2,Pc3及びイエロー検出用パターンPc1,Pc2,Pc3の正規位置をシアン検出用パターンPb1,Pb2,Pb3の正規位置に合わせる場合には、各隣り合うパターン間の間隔(距離h)に対する回転角度ψを考慮して、ブラック基準粗密波αaでは角度εk=ε(1)−ψとされ、マゼンタ検出粗密波α(2)では角度ε(2)=ε(1)−2×ψとされ、イエロー検出粗密波α(3)では角度ε(3)=ε(1)−3×ψとされる。
本実施の形態では、サインカーブフィッティング計算式を用いたが、パターン数Sの数を増やすことで、得られた偏差Δsの最大値と最小値の差の1/2を振幅B,C(i)として検出し、ブラック基準粗密波の偏差Δsの最大値に対するシアン、マゼンタ及びイエロー検出粗密波の偏差Δsの最大値(ブラック基準粗密波の最大値に対して1周期未満にある最大値)の位相差を相対位相角度φ(i)としてそれぞれ検出するか、或いは、ブラック基準粗密波の偏差Δsの最小値に対するシアン、マゼンタ及びイエロー検出粗密波の偏差Δsの最小値(ブラック基準粗密波の最小値に対して1周期未満にある最小値)の位相差を相対位相角度φ(i)としてそれぞれ検出してもよい。
式(1)から式(4)を用いて、ブラック基準粗密波αaの振幅B、シアン検出粗密波α(1)、マゼンタ検出粗密波α(2)及びイエロー検出粗密波α(3)の振幅C(1),C(2),C(3)、ブラック基準粗密波に対するシアン検出粗密波α(1)、マゼンタ検出粗密波α(2)及びイエロー検出粗密波α(3)の相対位相角度φ(1),φ(2),φ(3)を検出した一例を以下の表2に示す。
Figure 2011145461
[演算部について]
演算部303は、ブラック基準粗密波αaの振幅Bと、シアン、マゼンタ及びイエロー検出粗密波α(i)の振幅C(i)と、ブラック基準粗密波αaに対するシアン、マゼンタ及びイエロー検出粗密波α(i)の相対位相角度φ(i)とに基づいて、ブラック用感光体3aの回転ムラに対するシアン、マゼンタ及びイエロー用の各感光体ドラム3b〜3dの回転ムラの相対位相ずれをそれぞれ示すシアン、マゼンタ及びイエロー位相ずれ量A(i)を予め設定されている単位角度θhを0°から順次積算した複数の補正用相対位相角度θ(j)(但し、jは1以上n以下の整数、nは2以上の整数)毎にそれぞれ演算する。ここで、単位角度θhは、補正部305にて補正するときに用いる基本となる角度である。単位角度θhは、記憶手段320に予め記憶されている。
詳しくは、演算部303は、シアン、マゼンタ及びイエロー位相ずれ量A(i)を下記式によってn個の補正用相対位相角度θ(j)毎にそれぞれ演算する。下記式は予め記憶手段320に記憶されている。
A(i)=√(B2+C(i)2−2×B×C(i)×cos(φ(i)+θ(j)))
本実施の形態では、記憶手段320に予め記憶されている単位角度θhは、感光体ドラム3a〜3dの少なくとも1回転に相当する角度をn等分(nは2以上の整数)した角度である。具体的には、n=8とされており、単位角度θhは、感光体ドラム3a〜3dの1回転に相当する360°を8等分した角度45°である。よって、0°から単位角度θh毎に積算した補正用相対位相角度θ(1)〜θ(8)は、それぞれ、0°,45°,90°,135°,180°,225°,270°,315°とされている。
(位相ずれ量の式について)
ここで、位相ずれ量A(i)の式について説明する。なお、以下では、ブラック用感光体3aの回転ムラに対するシアン用感光体ドラム3bの回転ムラの相対位相ずれ量A(1)に代表させて説明する。ブラック用感光体3aの回転ムラに対するマゼンタ及びイエロー用の感光体ドラム3c,3dの回転ムラの相対位相ずれ量A(2),A(3)については、シアンの場合と同様であり、ここでは、説明を省略する。
図15及び図16は、位相ずれ量A(i)の式を説明するための説明図である。図15(a)は、振幅が共に同じとした場合のブラック基準粗密波αa及びシアン検出粗密波α(1)の相対位相ずれがない状態でのブラック基準パターンPa及びシアン検出パターンPbをそれぞれ示しており、図15(b)は、振幅が共に同じとした場合のブラック基準粗密波αa及びシアン検出粗密波α(1)の相対位相ずれがある状態でのブラック基準パターンPa及びシアン検出パターンPbをそれぞれ示している。
ブラック基準パターンPa及びシアン検出パターンPbは、回転ムラがあると、図15(a)及び図15(b)に示すように、ピッチが広い状態と狭い状態とが周期的に発生する。ブラック基準パターンPa及びシアン検出パターンPbのピッチについて回転ムラがないときの正規のピッチに対する偏差を表したものがそれぞれブラック基準粗密波αa及びシアン検出粗密波α(1)である。
そして、図15(b)に示すように、ブラック基準粗密波αaとシアン検出粗密波α(1)との相対位相ずれが大きくなると、ブラック基準パターンPaとシアン検出パターンPbとの間のずれが極端に大きくなり、それだけ画像に対する影響が大きくなる。
図15(c)は、ブラック基準粗密波αaに対して振幅が異なるシアン検出粗密波α(1)が相対位相角度φだけずれている状態を示しており、図15(d)は、図15(c)に示すブラック基準粗密波αa及びシアン検出粗密波α(1)を円運動で表している。
図15(c)に示すように、ブラック基準粗密波αa及びシアン検出粗密波α(1)を正弦波とした場合、図15(d)に示すように、正弦波は円運動を振幅方向に投影したものであるので、図16(a)に示す概念図で説明することができる。
図16(a)は、ブラック基準粗密波αaの振幅Bと、シアン検出粗密波α(1)の振幅C(1)と、相対位相角度φとが三角形の二辺とそれらのなす角度に対応する関係にあることを示している。
図16(a)に示すように、三角形の一つの辺がブラック基準粗密波αaの振幅Bとされ、もう一つの辺がシアン検出粗密波α(1)の振幅C(1)とされ、それらのなす角度が相対位相角度φとされる。そして、残りの辺がブラック用感光体3aの回転ムラに対するシアン用感光体ドラム3bの回転ムラの相対位相ずれ量A(1)となる。
この相対位相ずれ量A(1)は、以下に示すように三角関数の定理によって導き出すことができる。
すなわち、振幅Bと相対位相ずれ量A(1)との頂点から振幅C(1)に向かって垂線Wを引くと、相対位相ずれ量A(1)を求めるには、相対位相ずれ量A(1)を斜線とする直角三角形の残り二辺L1,L2の長さが分かればよい。
残り二辺L1,L2のうち、垂線Wを構成する辺の長さL1は、
L1=B×sin(φ)
ここで、垂線Wで分断される振幅C(1)のうち、相対位相ずれ量A(1)側の長さをL2、振幅B側の長さをL3とすると、
L3=B×cos(φ)
L2=C(1)−L3=C(1)−B×cos(φ)
(L1)2+(L2)2=(A(1))2であるから、
A(1)=√((L1)2+(L2)2
=√((B×sinφ)2+(C(1)−B×cos(φ))2
=√(B2+(C(1))2−2×B×C(1)×cos(φ))
ここで、補正用相対位相角度は、θ(j)、ブラック基準粗密波αaに対するシアン検出粗密波α(1)の相対位相角度はφ(1)であるから、φ=φ(1)+θ(j)となり、相対位相角度φ(1)から補正用相対位相角度θ(j)毎にずらしたときのブラック用感光体3aの回転ムラに対するシアン用感光体ドラム3bの回転ムラの相対位相ずれ量A(1)の式は、
A(1)=√(B2+C(1)2−2×B×C(1)×cos(φ(1)+θ(j)))
となる。
図16(b)は、ブラック基準粗密波αaに対するシアン検出粗密波α(1)の相対位相角度φ(1)を0°にしたときのブラック用感光体3aの回転ムラに対するシアン用感光体ドラム3bの回転ムラの相対位相ずれ量の波形A(1)の一例を示している。
ブラック基準粗密波αaに対するシアン検出粗密波α(1)の相対位相角度φ(1)を0°にした場合には、図16(b)に示すように、相対位相ずれ量は、補正用相対位相角度(j)が0°のときに最小の値を示し、補正用相対位相角度θ(j)が180°のときに最大の値を示す。
同様に、ブラック用感光体3aの回転ムラに対するマゼンタ及びイエロー用の各感光体ドラム3c,3dの回転ムラの相対位相ずれ量A(2),A(3)の式は、
A(2)=√(B2+C(2)2−2×B×C(2)×cos(φ(2)+θ(j)))
A(3)=√(B2+C(3)2−2×B×C(3)×cos(φ(3)+θ(j)))
となり、こうして、前述のとおり、位相ずれ量A(i)の式で表すことができる。
演算部303は、ブラック基準粗密波αaの振幅B、シアン検出粗密波α(1)、マゼンタ検出粗密波α(2)及びイエロー検出粗密波α(3)の振幅C(1),C(2),C(3)、ブラック基準粗密波に対するシアン検出粗密波α(1)、マゼンタ検出粗密波α(2)及びイエロー検出粗密波α(3)の相対位相角度φ(1),φ(2),φ(3)を記憶手段320に予め記憶されている相対位相ずれ量A(1),A(2),A(3)の式に代入することで、相対位相ずれ量A(1),A(2),A(3)を算出する。
例えば、相対位相ずれ量A(1),A(2),A(3)の式に対して表2の値を代入すると、次の表3の結果となる。なお、表3及び後述する表4及び表5並びに図17及び図20においてずれ量の単位はドットとしている。
Figure 2011145461
図17は、表3に示す値を折れ線グラフで示した図である。図17に示すように、ブラック用感光体ドラム3aの回転ムラに対する第2グループ感光体30bにおけるシアン、マゼンタ及びイエロー用の各感光体ドラム3b〜3dの回転ムラの位相がそれぞれ相対的にずれているのが分かる。
この場合、ブラック用感光体ドラム3aの回転ムラに対してシアン、マゼンタ及びイエロー用の各感光体ドラム3b〜3dの回転ムラの相対位相ずれをそれぞれ調整すればよいが、シアン、マゼンタ及びイエロー用の各感光体ドラム3b〜3dは、互いに連動して回転するため、各相対位相ずれをそれぞれ調整することができない。従って、ブラック用感光体ドラム3aの回転ムラに対する第2グループ感光体30bにおけるシアン、マゼンタ及びイエロー用の各感光体ドラム3b〜3dの回転ムラの相対位相ずれを最適なものに補正する必要がある。
[設定部について]
そこで、設定部304は、補正用相対位相角度θ(j)毎にそれぞれ演算したシアン、マゼンタ及びイエロー用の各感光体ドラム3b〜3dの回転ムラの位相ずれ量A(1),A(2),A(3)を特定し、さらに、特定した位相ずれ量に対応する補正用相対位相角度θ(j)を設定する。
詳しくは、設定部304は、位相ずれ量A(1),A(2),A(3)に基づきブラック用感光体ドラム3aの回転ムラに対するシアン、マゼンタ及びイエロー用の各感光体ドラム3b,3c,3dの回転ムラの相対位相ずれが最適となる補正用相対位相角度θ(j)を次の第1設定モード又は第2設定モードで設定する。なお、第1設定モード及び第2設定モードは選択的に切り替え可能とされている。
(第1設定モード)
第1設定モードでは、演算部303は、シアン、マゼンタ及びイエロー用の各感光体ドラム3b〜3dの回転ムラの位相ずれ量A(1),A(2),A(3)に対して補正用相対位相角度θ(j)毎に平均値を算出する。表3の結果に対する補正用相対位相角度θ(j)毎の平均値を以下の表4に示す。
Figure 2011145461
次に、設定部304は、演算部303で算出した補正用相対位相角度θ(j)毎の平均値のうち、最小の値(表4の例では1.1dot)に対応する補正用相対位相角度θ(j)(表4の例では45°)を最適な補正用相対位相角度θ(j)(j=2、図17中γ1参照)とする。
(第2設定モード)
第2設定モードでは、演算部303は、シアン、マゼンタ及びイエロー用の各感光体ドラム3b〜3dの回転ムラの位相ずれ量A(1),A(2),A(3)に対して補正用相対位相角度θ(j)毎に最大値を算出する。表3の結果に対する補正用相対位相角度θ(j)毎の最大値を以下の表5に示す。
Figure 2011145461
次に、設定部304は、演算部303で算出した補正用相対位相角度θ(j)毎の最大値のうち、最小の値(表5の例では1.9dot)に対応する補正用相対位相角度θ(j)(表5の例では90°)を最適な補正用相対位相角度θ(j)(j=3、図17中γ2参照)とする。
第1設定モード又は第2設定モードで設定された最適な補正用相対位相角度θ(j)は、記憶手段320に記憶される。
[補正部について]
補正部305は、記憶手段320に記憶された最適な補正用相対位相角度θ(j)(表4の例では45°(j=2)、表5の例では90°(j=3))に基づき第1及び第2駆動部110,120の少なくとも一方を作動制御してブラック用感光体ドラム3aの回転ムラと第2グループ感光体30bの回転ムラとの相対位相ずれを補正する。
(感光体ドラムの回転位相調整)
図18は、第1及び第2位相センサ170a,170bの検知信号を示すタイミングチャートである。
補正部305は、図18に示すように、ブラック用感光体3aの位相を検知する第1位相検知センサ170aの検知信号Tkと、第2グループ感光体30bの位相を検知する第2位相検知センサ170bの検知信号Tcとの検知タイミングTpを調整することで、ブラック用感光体ドラム3aの回転ムラと第2グループ感光体30bの回転ムラとの相対位相ずれを補正する。
具体的には、補正部305は、図19に示す画像形成後の第1及び第2駆動部110,120の停止タイミングを調整する停止動作を実行する。
図19は、ブラック用感光体ドラム3aを駆動する第1駆動部110への出力信号に対する第2グループ感光体30bを駆動する第2駆動部120への出力信号の動作タイミングを示すタイミングチャートである。図19(a)及び図19(b)は、第2グループ感光体30bの位相がブラック用感光体ドラム3aの位相に対して最適な相対位相角度θ(j)だけ進んだ状態及び遅れた状態をそれぞれ示している。また、図19(c)は、ブラック用感光体ドラム3aの回転ムラと第2グループ感光体30bの回転ムラとの相対位相ずれを補正した後の状態を示している。
例えば、図19(a)に示すように、第2グループ感光体30bの位相がブラック用感光体ドラム3aの位相に対して最適な相対位相角度θ(j)だけ進んだ状態であれば、第2駆動部120の停止動作を第1駆動部110の停止動作よりθ(j)だけ早めることで、図19(c)に示すように、ブラック用感光体ドラム3aの回転ムラと第2グループ感光体30bの回転ムラとの相対位相ずれを適正に補正することができる。
逆に、図19(b)に示すように、第2グループ感光体30bの位相がブラック用感光体ドラム3aの位相に対して最適な相対位相角度θ(j)だけ遅れた状態であれば、第2駆動部120の停止動作を第1駆動部110の停止動作よりθ(j)だけ遅らせることで、図19(c)に示すように、ブラック用感光体ドラム3aの回転ムラと第2グループ感光体30bの回転ムラとの相対位相ずれを補正することができる。
なお、ブラック用感光体ドラム3a及び第2グループ感光体30bの何れか一方を停止させてから、k周回転後(kは2以上の整数)に同様にθ(j)の補正を施して停止させることで、ブラック用感光体ドラム3aの回転ムラと第2グループ感光体30bの回転ムラとの相対位相ずれの補正を行ってもよい。
また、ブラック用感光体ドラム3aに対して第2グループ感光体30aが最適な相対位相角度となっている状態であれば、図19(c)に示すように、両者を同時に停止させる。もしくは、ブラック用感光体ドラム3a及び第2グループ感光体30bの何れか一方を停止させてから、k周回転後に他方を停止させることで、ブラック用感光体ドラム3aと第2グループ感光体30bとの相対位相関係を変化させずに、両者を停止させることができる。
以上説明したように、本実施の形態に係るカラー画像形成装置Dによれば、演算部303によって、ブラック基準粗密波αaの振幅Bと、シアン、マゼンタ及びイエロー検出粗密波α(i)の振幅C(i)と、ブラック基準粗密波αaに対するシアン、マゼンタ及びイエロー検出粗密波α(i)の相対位相角度φ(i)とに基づいて、ブラック用感光体ドラム3aの回転ムラに対する第2グループ感光体30bにおけるシアン、マゼンタ及びイエロー用の各感光体ドラム3b〜3dの回転ムラの相対位相ずれをそれぞれ示す位相ずれ量A(i)を補正用相対位相角度θ(j)毎にそれぞれ演算し、設定部304によって、補正用相対位相角度θ(j)毎にそれぞれ演算した位相ずれ量A(i)を特定して得られた位相ずれ量A(i)に対応する補正用相対位相角度θ(j)を設定し、補正部305によって、設定部304で設定した補正用相対位相角度θ(j)に基づき第1及び第2駆動部110,120の少なくとも一方を作動制御してブラック用感光体ドラム3aの回転ムラと第2グループ感光体30bの回転ムラとの相対位相ずれを補正するので、ブラック用感光体ドラム3aの回転ムラと第2グループ感光体30bの回転ムラとの相対位相ずれを最適なものに補正することが可能となる。
また、複数の位相ずれ量A(i)を上述した簡単な演算式[√(B2+C(i)2−2×B×C(i)×cos(φ(i)+θ(j)))]によって求めることができ、それだけ演算のための演算構成の容易化を実現できる。
また、第1設定モードでは、位相ずれ量A(i)に対して補正用相対位相角度θ(j)毎に算出した平均値のうちの最小の値を選定するだけで、最適な補正用相対位相角度θ(j)を容易に設定することができ、それだけ演算のための演算構成の容易化を実現でき、第2設定モードでは、位相ずれ量A(i)に対して補正用相対位相角度θ(j)毎に算出した最大値のうちの最小の値を選定するだけで、最適な補正用相対位相角度θ(j)を容易に設定することができ、それだけ演算のための演算構成の容易化を実現できる。
また、補正用相対位相角度θ(j)を感光体ドラム3a〜3dの少なくとも1回転に相当する角度を等分した角度とすることで、位相ずれ量A(i)を精度よく求めることができる。
また、第1グループ感光体30aは、ブラックの画像形成を行うためのものであり、第2グループ感光体30bは、カラーの画像形成を行うためのものであるので、通常は文字が印字されるブラックの文字原稿の画質を効果的に向上させることができる。
図20は、ブラック用感光体ドラム3aの回転ムラと第2グループ感光体30bの回転ムラとの相対位相ずれを補正した後のブラック基準粗密波αaに対するシアン、マゼンタ及びイエロー検出粗密波α(i)のグラフの一例である。図20(a)は、第1設定モードによって補正したグラフを示しており、図20(b)は、第2設定モードによって補正したグラフを示している。図20において、横軸は中間転写ベルト7の移動方向Cの距離を示している。なお、図20に示す例は、表4、表5及び図17に示す例とは異なる例のものである。
図20(a)及び図20(b)に示すように、第1設定モードと第2設定モードとで相対位相角度θ(j)の値が異なると、中間転写ベルト7の移動方向Cの距離において、ブラックに対するシアン、マゼンタ及びイエローの各色の位置ずれのずれ量が異なる。
この点、本実施の形態においては、第1設定モード及び第2設定モードは選択的に切り替え可能とされているので、第2グループ感光体30bにおけるシアン、マゼンタ及びイエロー用の各感光体ドラム3b〜3dの間でのそれぞれの回転ムラの相対位相ずれの状況や、第2グループ感光体30bの回転ムラとブラック用感光体ドラム3aの回転ムラとの相対位相ずれのバランスに応じて、より最適な補正状態になるように、第1設定モードの補正と第2設定モードの補正とを使い分けることができる。
3a ブラック用感光体ドラム(第1像担持体の一例)
3b シアン用感光体ドラム(複数の第2像担持体の一例)
3c マゼンタ用感光体ドラム(複数の第2像担持体の一例)
3d イエロー用感光体ドラム(複数の第2像担持体の一例)
7 中間転写ベルト(記録媒体の一例)
30a 第1グループ感光体(第1グループ像担持体の一例)
30b 第2グループ感光体(第2グループ像担持体の一例)
110 第1駆動部
120 第2駆動部
301 パターン形成部
302 検出部
303 演算部
304 設定部
305 補正部
A(i) 基準粗密波に対する検出粗密波の位相ずれ量
A(1) ブラック基準粗密波に対するシアン検出粗密波の位相ずれ量
A(2) ブラック基準粗密波に対するマゼンタ検出粗密波の位相ずれ量
A(3) ブラック基準粗密波に対するイエロー検出粗密波の位相ずれ量
B ブラック基準粗密波の振幅
C(i) 検出粗密波の振幅
C(1) シアン検出粗密波の振幅
C(2) マゼンタ検出粗密波の振幅
C(3) イエロー検出粗密波の振幅
D 画像形成装置
Pa ブラック基準パターン(基準用パターンの一例)
Pb シアン検出用パターン(複数の検出用パターンの一例)
Pc マゼンタ検出用パターン(複数の検出用パターンの一例)
Pd イエロー検出用パターン(複数の検出用パターンの一例)
V 周速度
αa ブラック基準粗密波(基準粗密波の一例)
α(i) 複数の検出粗密波
α(1) シアン検出粗密波(複数の検出粗密波の一例)
α(2) マゼンタ検出粗密波(複数の検出粗密波の一例)
α(3) イエロー検出粗密波(複数の検出粗密波の一例)
θh 単位角度
θp 回転角度
θ(j) 補正用相対位相角度
φ(i) 基準粗密波に対する複数の検出粗密波の相対位相角度
φ(1) ブラック基準粗密波に対するシアン検出粗密波の相対位相角度
φ(2) ブラック基準粗密波に対するマゼンタ検出粗密波の相対位相角度
φ(3) ブラック基準粗密波に対するエロー検出粗密波の相対位相角度

Claims (6)

  1. 複数の画像をそれぞれ形成する複数の像担持体のうち第1像担持体を含む第1グループ像担持体と、残りの像担持体のうち複数の第2像担持体を含みかつ該複数の第2像担持体が互いに連動して回転する第2グループ像担持体とを備え、前記複数の画像を記録媒体上に重ね合わせる画像形成装置であって、
    前記第1グループ像担持体を一定の周速度で回転させる第1駆動部と、
    前記第2グループ像担持体を前記周速度で回転させる第2駆動部と、
    前記第1像担持体に対応する基準用パターンを周方向のピッチ毎に前記記録媒体上に形成し、かつ、前記複数の第2像担持体にそれぞれ対応する複数の検出用パターンを前記ピッチ毎に前記記録媒体上にそれぞれ形成するパターン形成部と、
    前記基準用パターンにおける前記周速度による周方向の位置ずれを示す位置ずれ量の周期的変化を表した基準粗密波の振幅を検出し、かつ、前記複数の検出用パターンにおける前記周速度による周方向の位置ずれを示す位置ずれ量の周期的変化をそれぞれ表した複数の検出粗密波の振幅をそれぞれ検出し、さらに前記基準粗密波に対する前記複数の検出粗密波の相対位相角度をそれぞれ検出する検出部と、
    前記基準粗密波の振幅と、前記複数の検出粗密波の振幅と、前記基準粗密波に対する前記複数の検出粗密波の相対位相角度とに基づいて、前記第1像担持体の前記周速度の周期的変動に対する前記第2グループ像担持体における前記複数の第2像担持体の前記周速度の周期的変動の相対位相ずれをそれぞれ示す複数の位相ずれ量を予め設定されている単位角度を順次積算した複数の補正用相対位相角度毎にそれぞれ演算する演算部と、
    前記複数の補正用相対位相角度毎にそれぞれ演算した前記複数の位相ずれ量を特定し、かつ、特定した位相ずれ量に対応する補正用相対位相角度を設定する設定部と、
    前記設定部で設定した補正用相対位相角度に基づき前記第1及び第2駆動部の少なくとも一方を作動制御して前記第1像担持体の前記周速度の周期的変動と前記第2グループ像担持体の前記周速度の周期的変動との相対位相ずれを補正する補正部と
    を備えていることを特徴とする画像形成装置。
  2. 請求項1に記載の画像形成装置であって、
    前記基準粗密波の振幅をBとし、前記複数の検出粗密波の振幅をC(i)(但し、iは1以上m以下の整数、mは2以上の整数)とし、前記基準粗密波に対する前記複数の検出粗密波の相対位相角度をφ(i)とし、前記複数の補正用相対位相角度をθ(j)(但し、jは1以上n以下の整数、nは2以上の整数)とすると、前記演算部は、前記複数の位相ずれ量A(i)を下記式によって前記複数の補正用相対位相角度毎にそれぞれ演算することを特徴とする画像形成装置。
    A(i)=√(B2+C(i)2−2×B×C(i)×cos(φ(i)+θ(j)))
  3. 請求項1又は請求項2に記載の画像形成装置であって、
    前記演算部は、前記複数の位相ずれ量に対して前記複数の補正用相対位相角度毎に平均値を算出し、前記設定部は、前記演算部で算出した前記複数の補正用相対位相角度毎の平均値のうち、最小の値に対応する補正用相対位相角度を設定することを特徴とする画像形成装置。
  4. 請求項1又は請求項2に記載の画像形成装置であって、
    前記演算部は、前記複数の位相ずれ量に対して前記複数の補正用相対位相角度毎に最大値を算出し、前記設定部は、前記演算部で算出した前記複数の補正用相対位相角度毎の最大値のうち、最小の値に対応する補正用相対位相角度を設定することを特徴とする画像形成装置。
  5. 請求項1から請求項4までの何れか一つに記載の画像形成装置であって、
    前記単位角度は、前記像担持体の少なくとも1回転に相当する角度を等分した角度であることを特徴とする画像形成装置。
  6. 請求項1から請求項5までの何れか一つに記載の画像形成装置において、
    前記第1グループ像担持体は、ブラックの画像形成を行うためのものであり、
    前記第2グループ像担持体は、カラーの画像形成を行うためのものであることを特徴とする画像形成装置。
JP2010005771A 2010-01-14 2010-01-14 画像形成装置 Active JP4987092B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010005771A JP4987092B2 (ja) 2010-01-14 2010-01-14 画像形成装置
US13/005,668 US8452209B2 (en) 2010-01-14 2011-01-13 Image forming apparatus
CN201110007698.6A CN102129189B (zh) 2010-01-14 2011-01-14 图像形成装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010005771A JP4987092B2 (ja) 2010-01-14 2010-01-14 画像形成装置

Publications (2)

Publication Number Publication Date
JP2011145461A true JP2011145461A (ja) 2011-07-28
JP4987092B2 JP4987092B2 (ja) 2012-07-25

Family

ID=44258609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010005771A Active JP4987092B2 (ja) 2010-01-14 2010-01-14 画像形成装置

Country Status (3)

Country Link
US (1) US8452209B2 (ja)
JP (1) JP4987092B2 (ja)
CN (1) CN102129189B (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102946507B (zh) * 2012-10-31 2015-04-29 广东欧珀移动通信有限公司 一种降低摄像头拍照背景噪声的方法及系统
JP2018182614A (ja) * 2017-04-18 2018-11-15 株式会社リコー 画像読取装置、圧板開閉検知方法、及び画像形成装置
JP6994949B2 (ja) 2018-01-05 2022-01-14 株式会社東芝 画像形成装置及び位置補正方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007304250A (ja) * 2006-05-10 2007-11-22 Ricoh Co Ltd 画像形成装置
JP2008250124A (ja) * 2007-03-30 2008-10-16 Ricoh Co Ltd 画像形成装置および回転位置調整方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3767328B2 (ja) 2000-06-05 2006-04-19 セイコーエプソン株式会社 画像形成装置および画像形成方法
JP2004295094A (ja) 2003-03-07 2004-10-21 Toshiba Corp カラー画像形成装置及びカラー画像形成方法
US7587157B2 (en) * 2006-01-25 2009-09-08 Ricoh Co., Ltd. Image forming apparatus capable of correcting a rotation speed of an image carrier
JP4980733B2 (ja) 2006-01-25 2012-07-18 株式会社リコー 画像形成装置
JP4639243B2 (ja) * 2008-04-02 2011-02-23 シャープ株式会社 画像形成装置
JP5132439B2 (ja) * 2008-06-20 2013-01-30 キヤノン株式会社 画像形成装置及びその制御方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007304250A (ja) * 2006-05-10 2007-11-22 Ricoh Co Ltd 画像形成装置
JP2008250124A (ja) * 2007-03-30 2008-10-16 Ricoh Co Ltd 画像形成装置および回転位置調整方法

Also Published As

Publication number Publication date
JP4987092B2 (ja) 2012-07-25
US8452209B2 (en) 2013-05-28
CN102129189A (zh) 2011-07-20
CN102129189B (zh) 2013-12-18
US20110170886A1 (en) 2011-07-14

Similar Documents

Publication Publication Date Title
US6931227B2 (en) Image-formation apparatus, controlling method thereof and image-formation method
US8081905B2 (en) Image forming apparatus and method of correcting rotation angular velocity of image bearing member
US8351830B2 (en) Belt conveying device and image forming apparatus
US7885587B2 (en) Image forming apparatus with color shift correction suppressing periodic fluctuations of a surface moving speed of a latent image support
US7576763B2 (en) Hybrid imager printer using reflex writing to color register an image
JP4980733B2 (ja) 画像形成装置
JP5036200B2 (ja) 画像形成装置
JP5232609B2 (ja) 画像形成装置
US7848687B2 (en) Image forming device and deviation correcting method
JP2006017615A (ja) マーク検出装置、回転体駆動装置及び画像形成装置
JP4639243B2 (ja) 画像形成装置
JP4987092B2 (ja) 画像形成装置
JP2007298868A (ja) 画像形成装置及び画像形成方法
JP5039433B2 (ja) 画像形成装置
JP2015212064A (ja) 画像形成装置
JP2018194654A (ja) 画像形成装置
JPH05119571A (ja) カラー画像形成装置
JPH08123120A (ja) カラー画像形成装置
JP2004258126A (ja) 画像形成装置、及びその画像書き出し位置調整方法
JPH04340563A (ja) カラー画像形成装置
JP5506532B2 (ja) 画像形成装置及び像担持体の相対位相ずれの補正方法
JP2003057910A (ja) 画像形成装置
JP2002323806A (ja) 画像形成装置
JP2010049027A (ja) 画像形成装置
JP2008292764A (ja) 画像形成装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120424

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4987092

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3