JP2011068997A - 鉄−炭素−マンガン合金からなるストリップ - Google Patents

鉄−炭素−マンガン合金からなるストリップ Download PDF

Info

Publication number
JP2011068997A
JP2011068997A JP2010281215A JP2010281215A JP2011068997A JP 2011068997 A JP2011068997 A JP 2011068997A JP 2010281215 A JP2010281215 A JP 2010281215A JP 2010281215 A JP2010281215 A JP 2010281215A JP 2011068997 A JP2011068997 A JP 2011068997A
Authority
JP
Japan
Prior art keywords
strip
iron
carbon
steel
manganese alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010281215A
Other languages
English (en)
Inventor
Nicolas Guelton
ニコラ・ゲルトン
Michel Faral
ミシェル・ファラル
Odile Faral
オディル・ファラル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ArcelorMittal France SA
Original Assignee
ArcelorMittal France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ArcelorMittal France SA filed Critical ArcelorMittal France SA
Publication of JP2011068997A publication Critical patent/JP2011068997A/ja
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/021Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular fabrication or treatment of ingot or slab
    • C21D8/0215Rapid solidification; Thin strip casting
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing

Abstract

【課題】従来の方法よりも迅速にかつ低廉に製造する方法によって得られる高マンガン鋼からなるストリップを提供する。
【解決手段】鉄-炭素-マンガン合金からなる厚さ1.5〜10mmの薄いストリップが鋳造機械において溶融金属から直接鋳造され、溶融金属の組成は、重量%で、C0.001〜1.6%;Mn6〜30%;Ni≦10%;(Mn+Ni)16〜30%;Si≦2.5%;Al≦6%;Cr≦10%;(P+Sn+Sb+As)≦0.2%;(S+Se+Te)≦0.5%;(V+Ti+Nb+B+Ta+Zr+希土類)≦3%;(Mo+W)≦0.5%;N≦0.3%;Cu≦5%;および鉄と製錬から生じる不純物からなる残部;であり、ストリップは一つまたは二つ以上の工程において10〜90%の加工度で冷間圧延され、そしてストリップは再結晶化焼きなましを受ける。
【選択図】なし

Description

本発明は鉄系合金からなるストリップの製造に関する。より詳しくは、本発明は、薄いストリップの形での直接鋳造による鉄-炭素-マンガン合金からなるストリップの製造に関する。
Fe-Mn(11〜14%)-C(1.1〜1.4%)からなるハッドフィールド鋼は、「高マンガン鋼」とも称されるが、古くから知られている。これは非常に強度が高く、また繰り返し加えられる摩擦力または衝撃の影響下で時効を受け得る、という特徴を有する。また、ハッドフィールド鋼とFe-Cr-Niオーステナイト系ステンレス鋼(これにおいてはニッケルがマンガンによって段階的に置換され、クロムがアルミニウムによって段階的に置換される)から同時に誘導されるFe-Mn(15〜35%)-A1(0〜10%)-Cr(0〜20%)-C(0〜1.5%)のタイプのオーステナイト鋼も知られている。これらの高マンガン鋼は、高い強度レベルと優れた延性を同時に備えることを可能にする高い加工硬化性によって特徴づけられる。従ってこれらは、自動車工業において引抜き加工や打抜き加工によって製造される強化要素の製造のために有効に用いることができる。これらの鋼における高い加工硬化性は、γ→εマルテンサイト変態によって強化されることがある機械的双晶をよりどころとしている。双晶は伝播によって塑性変形を促進するが、しかし、相互に妨害するとき、それらは降伏応力を増大させるのにも寄与する。
様々な文献がそのような高マンガン鋼の組成と製造について論じていて、例えばWO93/13233、WO95/26423、WO97/24467がある。これらの鋼はこれまでは常に、厚さがおよそ200mmの厚スラブの連続鋳造/熱間圧延/冷間圧延/焼きなまし/酸洗い/スキンパスという慣用のプロセスによって製造されてきた。このプロセスは本質的に三つの欠点を有する。第一にコストの問題であり、これは、非常に大きな投資を要するプラントであるストリップミルの使用と、スラブを圧延する前に強く再加熱する必要があるために大量のエネルギーを消費することによる。第二に、この再加熱の間にストリップが高温割れを起こす危険性があることであり、この間に厚いスケールの層も形成され、これは製品の表面品質と製造プロセスの冶金効率の両者について好ましくない。第三に、全体として、それは長い製造プロセスであり、そのため顧客の側からの強い要求に常に迅速に対応することを可能にはしない。
本発明の目的は、高いマンガン含有量を有する鉄系合金からなるストリップを公知の従来の方法よりも迅速にかつ低廉に製造し、そしてそのような従来の方法による製品と少なくとも同等の品質を有する製品を得ることを可能にする方法を提供することである。
この目的のため、本発明の主題は、鉄-炭素-マンガン合金からなるストリップを製造するための方法であり:
厚さ1.5〜10mmの薄いストリップが鋳造機械において溶融金属から直接鋳造され、前記溶融金属の組成は、重量%で、C0.001〜1.6%;Mn6〜30%;Ni≦10%;(Mn+Ni)16〜30%;Si≦2.5%;A1≦6%;Cr≦10%;(P+Sn+Sb+As)≦0.2%;(S+Se+Te)≦0.5%;(V+Ti+Nb+B+Ta+Zr+希土類)≦3%;(Mo+W)≦0.5%;N≦0.3%;Cu≦5%;および鉄と製錬から生じる不純物からなる残部;であり、
前記ストリップは一つまたは二つ以上の工程において10〜90%の加工度で冷間圧延され、そして
前記ストリップは再結晶化焼きなましを受ける。
本発明はまた、上記方法によって製造され得るストリップに関する。
すでに理解されたように、本発明は、第一に、溶融金属を薄いストリップの形で直接鋳造するための方法の使用をよりどころとしている。この薄いストリップは、小さなサイズのプラントを用いてインライン(直列)の熱間圧延を受けることができ、このプラントの製造コストと運転コストはストリップミルのコストよりもずっと小さい。さらに、ストリップミルにおける熱間圧延の省略によって、上述した再加熱の間の高温割れの危険性が解消されるだろう。次いで、冷間圧延、焼きなまし、および任意のスキンパスの操作が行われ、これらの操作は、後に詳述する態様によって、所望の製品特性が得られることを可能にする。
本発明は以下の記載を読むことによってさらに明確に理解されよう。
厚さ1.5〜10mmの薄い鋼ストリップを直接鋳造する方法は、現時点で、特に「2ロール鋳造(twin-roll casting)」と呼ばれる形で周知である。溶融した鋼は近接した二つの水平なロール(これらは内部で冷却されて反対方向に回転している)の側壁に接して凝固し、そして凝固したストリップの形でロールの下に出てくる。凝固したストリップは直接コイル状に巻くことができ、次いで冷却処理プラントに送られ、あるいはコイル巻きされる前にインラインの熱間圧延を受ける。本発明によれば、そのような方法を用いることによって、ストリップミルに通すことが省略されるために、高マンガン鋼からなるストリップを製造するプロセスを短縮することが可能になる。一方、このストリップミルに通すことは、スラブを鋳造することから開始する従来の方法においては必須のことである。この省略は、高マンガン・オーステナイト鋼が冷却されている間に相変態を生じないことによって特徴づけられるものであるときには、なお一層好都合である。これは、フェライト系炭素鋼またはフェライト系ステンレス鋼の熱間圧延の通常の作用の一つが、相変態が起こる直前でのミクロ組織の調質(微細化)だからである。しかし、成形温度において最良の強度/延性の折衷を提供する高マンガン鋼は、少なくとも変形を行う前には、凝固した時点から冷却の終了までの間、完全にオーステナイト相を呈する。従って、高マンガン・オーステナイト鋼の熱間圧延には顕著な冶金上の利点はない。その作用は、冷間圧延することが可能なストリップを得るための製品の単純な厚さの低減に限定される。従ってそのような場合、最終の厚さに比較的近い厚さを有するストリップを、薄いストリップの鋳造によって得ることには、鋳造された後にこのストリップにいかなる中心気孔も存在しない限り、何らの欠点もない。上述したような軽いインラインの熱間圧延は、そのような気孔を閉鎖するのに十分なものである。
本発明は、重量%で下記の組成を有する高マンガン鋼の製造に適用される:
炭素の含有量は0.001〜1.6%であり、好ましくは0.2〜0.8%である。0.2%未満の含有量では溶融した鋼のプールを脱炭しなければならず、これは実行するのに費用がかかり、特にマンガンがすでにかなりの量で存在するときにそうであり、さらに、この0.2%という最少量は、炭素と転位の相互作用が起こるのを許容し、炭素は、転位を固定することによって、双晶よりも強い硬化を生じさせ、そして引張り強さを50〜100MPa改善させる。0.8%を超える量では、最適な機械的特性を得る目的で添加される他の合金元素の含有量を最適にするのが困難になる。
マンガンの含有量は6〜30%である。ただし、マンガンとニッケルの含有量の合計は16〜30%であり、ニッケルの含有量は10%以下である。
ケイ素の含有量は2.5%以下であり、ただし、この元素は任意に添加される。
アルミニウムの含有量は6%以下であり、ただし、この元素は任意に添加される。
クロムが存在する場合、クロムの含有量は10%以下である。
リンの含有量は0.2%以下であり、存在する可能性のあるスズ、アンチモン、およびヒ素は、この観点から、鋼の組成の中でリンと類似していてリンと両立することが知られている。この含有量を超えると、ストリップの偏析領域に欠陥が生じる危険性があり、これらの欠陥は偏析が起こる位置での凝固の遅れによって生じ、もし溶融状態にある金属が製品中の特定の場所に依然として存在している間に製品が熱間圧延されるならば、その結果、ミクロ組織の凝集力が失われる危険性がある。
硫黄、セレン、およびテルルの含有量の合計は0.5%以下である。
バナジウム、チタン、ニオブ、ホウ素、タンタル、ジルコニウム、および希土類は、窒化物と炭窒化物を析出させるが、これらの含有量の合計は3%以下である。
モリブデンとタングステンの含有量の合計は0.5%以下である。
窒素の含有量は0.3%以下である。
銅の含有量は0.3%以下である。
本発明によれば、上で定義した組成を有する高マンガン鋼(その組成の典型例はFe−C:0.55%−Mn:21.5%)が、溶融金属から直接、厚さ1.5〜10mmの薄いストリップの形で鋳造される。この目的のため、厚さ約3〜4mmのストリップの2ロール鋳造が、本発明に従う方法を実施するのに特に適している。
ストリップがロールを出るとき、ストリップはガス中で吹き付けられることによって不活性化されたチャンバーのような領域を通過するのが好ましく、その中でストリップは非酸化性の環境(不活性な窒素またはアルゴンの雰囲気、あるいはこれを還元するために特定の割合の水素を含む雰囲気であってもよい)にさらされ、それによってその表面上でのスケールの形成が防止または制限される。鋳造タイプの鋼はスケールの形成に特に感受性が高く、そして溶融金属から直接鋳造される薄いストリップ上でこの形成を制限することは、通常の連続鋳造プラントで鋳造しなければならずそして次いで熱間圧延される前に再加熱される厚いスラブ上でこの形成を制限することよりも困難ではない、ということが認められている。この不活性領域の出口には、ショットブラストまたは表面上への固体CO2のブラスト(blasting)またはブラシング(brushing)によってストリップのスケール除去を行うための装置を設けてもよく、それによって、用心を払ったにもかかわらず形成されたスケールを除去することができる。ストリップの周囲の雰囲気を不活性化しようとするのではなく、スケールが自然に形成されたままにして、次いでこのスケールを上述のもののような装置によって除去することを選択することもできる。
ストリップが不活性化プラントまたはスケール除去プラントを出た直後、できるだけ早く、このストリップをインラインの熱間圧延に供するのが好ましい。しかしこれは、ストリップが気孔と表面仕上げに関して直ちに満足できるものである場合は、必須のことではない。かなりの程度まで、スケールの形成を防止するかまたは制限するか、および/または形成されたスケールを除去するのに好ましく採用される処置を正当化するのが、この圧延である。その理由は、スケールの層を有するストリップでこの熱間圧延を実施すれば、ストリップの表面の内部にスケールがちりばめられる可能性があり、それによってその表面品質が劣化するからである。この熱間圧延の本質的な役割は、ストリップが凝固する間にそのコア部分に形成されやすい気孔の全てを閉鎖することと、(特に、粗さの高い鋳造ロールが用いられたときに)ストリップの表面に存在する粗さのピークを平坦化することによって表面仕上げを改善することである。気孔が正しく閉鎖されることを望む場合、この熱間圧延の間にストリップに適用されるべき最小の加工度は10%であり、典型的には20%である。しかし、(一つまたは二つ以上の工程で得られる)60%までの加工度も考えられ、特に、表面粗さの高いストリップが所望される場合、あるいは厚さが非常に小さい最終製品を得ることが所望される場合に、そうである。この熱間圧延が実施される際の温度は、冶金的見地からはあまり重要ではない。というのは、すでに述べたが、この鋼はあらゆる温度においてオーステナイト組織を有し、従って熱間圧延の品質上の結果に影響する相変態を受けないからである。
この任意であるがしかし好ましい熱間圧延の後、ストリップをコイル巻きしてもよい。この際にも温度は実際的な見地から以外にはあまり重要ではない。というのは、コイル巻きされたストリップが小さな速度で冷却される間に、結晶粒成長以外には、顕著な冶金的変態は起こりにくいからである。いずれにしても、結晶粒成長は限られた程度にしか起こらず、その影響は、後に行われる冷間圧延と焼きなまし操作によって容易に消すことができるだろう。任意に、ストリップがコイル形状にある間の時間は、炭化物、窒化物、および炭窒化物の析出を完了させる機会となる。
鋳造されたストリップは、次いで熱間圧延され、次いで(直ちに、またはコイル巻きとコイル巻き出しの操作の後)冷間圧延され、好ましくは冷間圧延の前に、ストリップの良好な表面仕上げが得られるのを可能にする酸洗い(例えば塩酸中で)が行われる。この冷間圧延の間に適用される加工度は10〜90%であり、典型的には約75%である。それは一つまたは二つ以上の工程で得られる。出発製品が厚さ3〜4mmの鋳造されたストリップの場合、熱間圧延の後には2.5〜3mmの厚さに加工され、最終的に得られるのは典型的には厚さが約0.6〜0.8mmの冷間圧延されたストリップである。
次いで、ストリップは再結晶化焼きなましを受けるが、これは高い引張り強さと延性の特性を付与する目的で行われる。この焼きなましは様々な方法で行うことができ、例えば下記の方法がある:
「コンパクト焼きなまし(compact annealing)」と称される焼きなましであって、これにおいては、ストリップは900〜1000℃または1100℃の温度まで約500℃/sの速度で加熱され、次いで直ぐに100〜6000℃/sの速度で冷却される。この冷却速度はストリップの厚さと冷却剤の特性に依存する。典型的には、1000℃に加熱された厚さ0.8mmのストリップは、ヘリウム中で急冷されるときは200℃/sで冷却され、水中で急冷されるときは5000℃/sで冷却される。
連続焼きなましであって、これにおいては、ストリップは800〜850℃に加熱され、次いでこの温度に約60〜120秒間保持される。
箱型焼きなまし(box annealing)であって、これにおいては、ストリップは700〜750℃に約10〜90分間保持される。
全ての場合において、10μm未満のサイズの再結晶粒が得られる。一般に、本発明に従う高マンガン鋼は焼きなましの条件における広範囲の変化を許容する。というのは、結晶粒成長を妨げる合金元素の含有量が高いからである。
表1は、下記の組成を有する鋼において得られた引張り特性を示す:C=0.57%、Mn=21.47%、Si=0.038%、Ni=0.03%、Cr=0.005%、Cu=0.003%、P=0.009%、N=0.034%、S=0.005%、Al=0.003%、およびMo=0.003%。この鋼は上述の本発明に従う下記の処理を受けた:厚さ4mmのストリップの2ロール鋳造、このストリップの厚さ2.6mmまでの熱間圧延、厚さ1mmまでの冷間圧延、そして最後の、90秒間800℃での連続焼きなまし。比較のため、表1はまた、C=0.53%、Mn=26.4%、Si=0.045%、P=0.013%、Al=1.6%、およびN=0.074%の組成の高マンガン鋼からなるストリップを製造するための従来の方法によって得られた対照の鋼の引張り特性も示している。これはWO93/13233に記載されたストリップに相当する。引張り特性は圧延方向に平行に測定された。
Figure 2011068997
この表は、特に、対照の鋼と比較して本発明の鋼において機械的強度が30%以上改善されたことを示している。結果における偏倚は4%未満である。機械的強度におけるこの改善は延性の低下を伴うものではなく、それとは全く反対である。というのは、破断点伸びはそれ自体かなり増大しているからである。
ストリップを製造するプロセスは焼きなましの後に(あるいは焼きなまししたストリップを酸洗いした後に)停止することができ、あるいはこのプロセスは、通常の方法に従って行われるスキンパス操作によって通常に完了することができる。

Claims (1)

  1. 鉄-炭素-マンガン合金からなるストリップであって、前記鉄-炭素-マンガン合金が、重量%で、C0.001〜1.6%;Mn6〜30%;Ni≦10%;(Mn+Ni)16〜30%;Si≦2.5%;A1≦6%;Cr≦10%;(P+Sn+Sb+As)≦0.2%;(S+Se+Te)≦0.5%;(V+Ti+Nb+B+Ta+Zr+希土類)≦3%;(Mo+W)≦0.5%;N≦0.3%;Cu≦5%;および鉄と製錬から生じる不純物からなる残部;からなる組成を有し、
    厚さ1.5〜10mmの薄いストリップが鋳造機械において前記の組成を有する溶融金属から直接鋳造され、
    前記ストリップは一つまたは二つ以上の工程において10〜90%の加工度で冷間圧延され、そして
    前記ストリップは再結晶化焼きなましを受ける、
    以上の工程を含む方法によって製造されたストリップ。
JP2010281215A 1999-07-07 2010-12-17 鉄−炭素−マンガン合金からなるストリップ Withdrawn JP2011068997A (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR9908758A FR2796083B1 (fr) 1999-07-07 1999-07-07 Procede de fabrication de bandes en alliage fer-carbone-manganese, et bandes ainsi produites

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000206004A Division JP4713709B2 (ja) 1999-07-07 2000-07-07 鉄−炭素−マンガン合金からなるストリップを製造するための方法

Publications (1)

Publication Number Publication Date
JP2011068997A true JP2011068997A (ja) 2011-04-07

Family

ID=9547798

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2000206004A Expired - Fee Related JP4713709B2 (ja) 1999-07-07 2000-07-07 鉄−炭素−マンガン合金からなるストリップを製造するための方法
JP2010281215A Withdrawn JP2011068997A (ja) 1999-07-07 2010-12-17 鉄−炭素−マンガン合金からなるストリップ

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2000206004A Expired - Fee Related JP4713709B2 (ja) 1999-07-07 2000-07-07 鉄−炭素−マンガン合金からなるストリップを製造するための方法

Country Status (9)

Country Link
US (1) US6358338B1 (ja)
EP (1) EP1067203B1 (ja)
JP (2) JP4713709B2 (ja)
AT (1) ATE260992T1 (ja)
BR (1) BR0002544A (ja)
CA (1) CA2314624C (ja)
DE (1) DE60008641T2 (ja)
ES (1) ES2215008T3 (ja)
FR (1) FR2796083B1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101439613B1 (ko) 2012-07-23 2014-09-11 주식회사 포스코 굽힘 가공성과 연신율이 우수한 고강도 고망간 강판 및 그 제조방법
CN104178702A (zh) * 2014-08-08 2014-12-03 无棣向上机械设计服务有限公司 一种高韧性耐磨合金材料及其制备方法
WO2017111489A1 (ko) * 2015-12-22 2017-06-29 주식회사 포스코 내수소취화성이 우수한 오스테나이트계 강재
JP2019516018A (ja) * 2016-04-28 2019-06-13 ポスコPosco 降伏比に優れた超高強度高延性鋼板及びその製造方法

Families Citing this family (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2795743B1 (fr) * 1999-07-01 2001-08-03 Lorraine Laminage Tole d'acier a basse teneur en aluminium pour emballage
DE10046181C2 (de) * 2000-09-19 2002-08-01 Krupp Thyssen Nirosta Gmbh Verfahren zum Herstellen eines überwiegend aus Mn-Austenit bestehenden Stahlbands oder -blechs
DE10060948C2 (de) * 2000-12-06 2003-07-31 Thyssenkrupp Stahl Ag Verfahren zum Erzeugen eines Warmbandes aus einem einen hohen Mangan-Gehalt aufweisenden Stahl
DE10128544C2 (de) * 2001-06-13 2003-06-05 Thyssenkrupp Stahl Ag Höherfestes, kaltumformbares Stahlblech, Verfahren zu seiner Herstellung und Verwendung eines solchen Blechs
DE10130774C1 (de) 2001-06-26 2002-12-12 Thyssenkrupp Stahl Ag Verfahren zum Herstellen von hochfesten, aus einem Warmband kaltverformten Stahlprodukten mit guter Dehnbarkeit
US7485196B2 (en) * 2001-09-14 2009-02-03 Nucor Corporation Steel product with a high austenite grain coarsening temperature
GB0204558D0 (en) * 2002-02-27 2002-04-10 Allen Edgar Eng Railway crossings, etc
KR100887119B1 (ko) * 2002-08-30 2009-03-04 주식회사 포스코 쌍롤형 박판 주조기를 이용한 고 망간 강의 박판 제조 방법
DE10259230B4 (de) 2002-12-17 2005-04-14 Thyssenkrupp Stahl Ag Verfahren zum Herstellen eines Stahlprodukts
FR2857980B1 (fr) * 2003-07-22 2006-01-13 Usinor Procede de fabrication de toles d'acier austenitique fer-carbone-manganese, a haute resistance, excellente tenacite et aptitude a la mise en forme a froid, et toles ainsi produites
DE10349400B3 (de) * 2003-10-21 2005-06-16 Thyssenkrupp Nirosta Gmbh Verfahren zum Herstellen von gegossenem Stahlband
KR101178775B1 (ko) 2003-12-23 2012-09-07 막스-플랑크-인스티투트 퓌어 아이젠포르슝 게엠베하 경량 구조강의 핫 스트립의 제조 방법
DE102004054444B3 (de) * 2004-08-10 2006-01-19 Daimlerchrysler Ag Verfahren zur Herstellung von Stahlbauteilen mit höchster Festigkeit und Plastizität
FR2876708B1 (fr) * 2004-10-20 2006-12-08 Usinor Sa Procede de fabrication de toles d'acier austenitique fer-carbone-manganese laminees a froid a hautes caracteristiques mecaniques, resistantes a la corrosion et toles ainsi produites
FR2876711B1 (fr) * 2004-10-20 2006-12-08 Usinor Sa Procede de revetement au trempe a chaud dans un bain de zinc des bandes en acier fer-carbone-manganese
JP2008519160A (ja) * 2004-11-03 2008-06-05 ティッセンクルップ スチール アクチェンゲゼルシャフト Twip特性をもつ高強度の鋼ストリップ又はシートの製造方法、コンポーネント及び高強度鋼ストリップ又はシートの製造方法
FR2878257B1 (fr) 2004-11-24 2007-01-12 Usinor Sa Procede de fabrication de toles d'acier austenitique, fer-carbone-manganese a tres hautes caracteristiques de resistance et d'allongement, et excellente homogeneite
FR2881144B1 (fr) * 2005-01-21 2007-04-06 Usinor Sa Procede de fabrication de toles d'acier austenitique fer-carbone-manganese a haute resistance a la fissuration differee, et toles ainsi produites
WO2006082104A1 (en) * 2005-02-02 2006-08-10 Corus Staal Bv Austenitic steel having high strength and formability, method of producing said steel and use thereof
DE102005008410B3 (de) * 2005-02-24 2006-02-16 Thyssenkrupp Stahl Ag Verfahren zum Beschichten von Stahlbändern und beschichtetes Stahlband
KR100711361B1 (ko) * 2005-08-23 2007-04-27 주식회사 포스코 가공성이 우수한 고망간형 고강도 열연강판 및 그 제조방법
KR100674618B1 (ko) 2005-09-16 2007-01-29 주식회사 포스코 쌍롤형 박판 주조기를 이용한 고 망간강의 박판 제조 방법
US9999918B2 (en) 2005-10-20 2018-06-19 Nucor Corporation Thin cast strip product with microalloy additions, and method for making the same
US9149868B2 (en) * 2005-10-20 2015-10-06 Nucor Corporation Thin cast strip product with microalloy additions, and method for making the same
US10071416B2 (en) * 2005-10-20 2018-09-11 Nucor Corporation High strength thin cast strip product and method for making the same
KR100742833B1 (ko) 2005-12-24 2007-07-25 주식회사 포스코 내식성이 우수한 고 망간 용융도금강판 및 그 제조방법
KR100742823B1 (ko) * 2005-12-26 2007-07-25 주식회사 포스코 표면품질 및 도금성이 우수한 고망간 강판 및 이를 이용한도금강판 및 그 제조방법
EP1878811A1 (en) * 2006-07-11 2008-01-16 ARCELOR France Process for manufacturing iron-carbon-manganese austenitic steel sheet with excellent resistance to delayed cracking, and sheet thus produced
DE102006039307B3 (de) * 2006-08-22 2008-02-21 Thyssenkrupp Steel Ag Verfahren zum Beschichten eines 6-30 Gew.% Mn enthaltenden warm- oder kaltgewalzten Stahlbands mit einer metallischen Schutzschicht
KR101008117B1 (ko) * 2008-05-19 2011-01-13 주식회사 포스코 표면특성이 우수한 고가공용 고강도 박강판 및용융아연도금강판과 그 제조방법
KR101027250B1 (ko) * 2008-05-20 2011-04-06 주식회사 포스코 고연성 및 내지연파괴 특성이 우수한 고강도 냉연강판,용융아연 도금강판 및 그 제조방법
KR101054773B1 (ko) * 2008-09-04 2011-08-05 기아자동차주식회사 Twip형 초고강도 강판의 제조방법
JP5286409B2 (ja) * 2008-11-05 2013-09-11 本田技研工業株式会社 高強度鋼板およびその製造方法
DE102008056844A1 (de) 2008-11-12 2010-06-02 Voestalpine Stahl Gmbh Manganstahlband und Verfahren zur Herstellung desselben
EP2208803A1 (de) 2009-01-06 2010-07-21 ThyssenKrupp Steel Europe AG Höherfester, kaltumformbarer Stahl, Stahlflachprodukt, Verfahren zur Herstellung eines Stahlflachprodukts sowie Verwendung eines Stahlflachproduktes
US20110277886A1 (en) 2010-02-20 2011-11-17 Nucor Corporation Nitriding of niobium steel and product made thereby
DE102009003598A1 (de) * 2009-03-10 2010-09-16 Max-Planck-Institut Für Eisenforschung GmbH Korrosionsbeständiger austenitischer Stahl
KR101090822B1 (ko) * 2009-04-14 2011-12-08 기아자동차주식회사 고강도 트윕 강판 및 그 제조방법
JP4714801B2 (ja) * 2009-04-14 2011-06-29 新日本製鐵株式会社 被削性に優れた低比重鍛造用鋼
WO2010126268A2 (ko) * 2009-04-28 2010-11-04 연세대학교 산학협력단 고강도 및 고연성을 갖는 고망간 질소 함유 강판 및 그 제조방법
BRPI1002010A2 (pt) * 2010-06-30 2012-03-06 Universidade Federal De Minas Gerais Chapa de aço laminada a frio e recozida com efeito twip e processo de obtenção
EP2402472B2 (de) 2010-07-02 2017-11-15 ThyssenKrupp Steel Europe AG Höherfester, kaltumformbarer Stahl und aus einem solchen Stahl bestehendes Stahlflachprodukt
CN101892420B (zh) * 2010-07-29 2012-09-19 中国计量学院 一种制备高强高韧FeMnC合金钢的再结晶退火工艺
WO2012052626A1 (fr) 2010-10-21 2012-04-26 Arcelormittal Investigacion Y Desarrollo, S.L. Tole d'acier laminee a chaud ou a froid, don procede de fabrication et son utilisation dans l'industrie automobile
CN101956134B (zh) * 2010-11-01 2012-08-08 福州大学 一种高强度、高塑性含铜高碳twip钢及其制备工艺
IT1403129B1 (it) * 2010-12-07 2013-10-04 Ct Sviluppo Materiali Spa Procedimento per la produzione di acciaio ad alto manganese con resistenza meccanica e formabilità elevate, ed acciaio così ottenibile.
KR20120065464A (ko) * 2010-12-13 2012-06-21 주식회사 포스코 항복비 및 연성이 우수한 오스테나이트계 경량 고강도 강판 및 그의 제조방법
DE102011000089A1 (de) * 2011-01-11 2012-07-12 Thyssenkrupp Steel Europe Ag Verfahren zum Herstellen eines warmgewalzten Stahlflachprodukts
KR101510505B1 (ko) * 2012-12-21 2015-04-08 주식회사 포스코 우수한 도금성과 초고강도를 갖는 고망간 용융아연도금강판의 제조방법 및 이에 의해 제조된 고망간 용융아연도금강판
DE102013003516A1 (de) 2013-03-04 2014-09-04 Outokumpu Nirosta Gmbh Verfahren zur Herstellung eines ultrahochfesten Werkstoffs mit hoher Dehnung
US20140261918A1 (en) 2013-03-15 2014-09-18 Exxonmobil Research And Engineering Company Enhanced wear resistant steel and methods of making the same
US10450624B2 (en) 2013-07-10 2019-10-22 Thyssenkrupp Steel Europe Ag Method for producing a flat product from an iron-based shape memory alloy
DE102013012118A1 (de) * 2013-07-18 2015-01-22 C.D. Wälzholz GmbH Kaltgewalztes Schmalband in Form von Flachdraht oder Profilen aus einem hochfesten Stahl für den Einsatz in flexiblen Rohren, insbesondere in flexiblen Rohren für Offshore-Anwendungen sowie Verfahren zur Herstellung derartiger kaltgewalzter Schmalbänder
KR101598499B1 (ko) * 2013-10-21 2016-03-02 연세대학교 산학협력단 고강도 및 고연성 강판 및 그 제조방법
CN104087872B (zh) * 2014-06-24 2016-04-06 宁国市正兴耐磨材料有限公司 一种风扇磨煤机冲击板
DE102014009534A1 (de) * 2014-06-25 2015-12-31 Salzgitter Flachstahl Gmbh Stahlprodukt zum Schutz elektrischer Bauteile vor mechanischer Beschädigung
AR101904A1 (es) * 2014-09-29 2017-01-18 Nippon Steel & Sumitomo Metal Corp Material de acero y tuberías expansibles para la industria del petróleo
DE102015111866A1 (de) * 2015-07-22 2017-01-26 Salzgitter Flachstahl Gmbh Umformbarer Leichtbaustahl mit verbesserten mechanischen Eigenschaften und Verfahren zur Herstellung von Halbzeug aus diesem Stahl
DE102015112886A1 (de) * 2015-08-05 2017-02-09 Salzgitter Flachstahl Gmbh Hochfester aluminiumhaltiger Manganstahl, ein Verfahren zur Herstellung eines Stahlflachprodukts aus diesem Stahl und hiernach hergestelltes Stahlflachprodukt
DE102015112889A1 (de) * 2015-08-05 2017-02-09 Salzgitter Flachstahl Gmbh Hochfester manganhaltiger Stahl, Verwendung des Stahls für flexibel gewalzte Stahlflachprodukte und Herstellverfahren nebst Stahlflachprodukt hierzu
KR101726081B1 (ko) * 2015-12-04 2017-04-12 주식회사 포스코 저온 충격 인성이 우수한 선재 및 그 제조방법
DE102016110661A1 (de) 2016-06-09 2017-12-14 Salzgitter Flachstahl Gmbh Verfahren zur Herstellung eines kaltgewalzten Stahlbandes aus einem hochfesten, manganhaltigen Stahl
DE102016115618A1 (de) 2016-08-23 2018-03-01 Salzgitter Flachstahl Gmbh Verfahren zur Herstellung eines höchstfesten Stahlbandes mit verbesserten Eigenschaften bei der Weiterverarbeitung und ein derartiges Stahlband
RU2714975C1 (ru) 2016-08-23 2020-02-21 Зальцгиттер Флахшталь Гмбх Способ изготовления высокопрочной стальной полосы с улучшенными свойствами для дальнейшей обработки и стальная полоса такого типа
DE102016117508B4 (de) 2016-09-16 2019-10-10 Salzgitter Flachstahl Gmbh Verfahren zur Herstellung eines Stahlflachprodukts aus einem mittelmanganhaltigen Stahl und ein derartiges Stahlflachprodukt
RU2667258C1 (ru) * 2018-04-10 2018-09-18 Юлия Алексеевна Щепочкина Сплав на основе железа
JP7326454B2 (ja) * 2019-01-22 2023-08-15 アペラム 溶接性の改善された鉄-マンガン合金
CN112536424B (zh) * 2020-11-13 2022-05-17 华北理工大学 分段控温调整气体流量快速脱碳炼钢的装置及使用方法
CN113512686B (zh) * 2021-07-16 2022-04-12 天津市新天钢钢铁集团有限公司 一种高合金含量的热轧、整卷退火、酸洗钢带的生产方法
CN115216705B (zh) * 2022-06-29 2023-10-27 张家港中美超薄带科技有限公司 一种基于薄带连铸的低密度钢的低能耗生产方法
CN115287548B (zh) * 2022-10-10 2023-01-17 山东瑞泰新材料科技有限公司 高膨胀合金钢及其制备方法和应用
CN115786809B (zh) * 2022-11-29 2024-03-26 江西宝顺昌特种合金制造有限公司 一种高强度Fe-Ni-Cr高膨胀钢及其制造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH075984B2 (ja) * 1988-12-20 1995-01-25 新日本製鐵株式会社 薄肉鋳造法を用いたCr系ステンレス鋼薄板の製造方法
JP2863541B2 (ja) * 1989-03-29 1999-03-03 新日本製鐵株式会社 薄肉鋳造法を用いたCr系ステンレス鋼薄板の製造方法
JPH0784616B2 (ja) * 1989-04-05 1995-09-13 新日本製鐵株式会社 耐応力腐食割れ性に優れ表面品質の優れたCr―Ni系ステンレス鋼薄板の製造法
JPH0788534B2 (ja) * 1989-04-05 1995-09-27 新日本製鐵株式会社 表面品質が優れたCr―Ni系ステンレス鋼薄板の製造方法
JPH04120252A (ja) * 1990-09-11 1992-04-21 Nippon Steel Corp シャドウマスク用素材およびその製造方法
US5431753A (en) * 1991-12-30 1995-07-11 Pohang Iron & Steel Co. Ltd. Manufacturing process for austenitic high manganese steel having superior formability, strengths and weldability
KR950009223B1 (ko) * 1993-08-25 1995-08-18 포항종합제철주식회사 프레스 성형성, 열간가공성 및 고온내산화성이 우수한 오스테나이트계 스테인레스강
KR970001324B1 (ko) * 1994-03-25 1997-02-05 김만제 열간가공성이 우수한 고망간강 및 그 열간압연 방법
KR970043162A (ko) * 1995-12-30 1997-07-26 김종진 고망간강 냉연강판의 소둔열처리 방법 및 산세방법

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101439613B1 (ko) 2012-07-23 2014-09-11 주식회사 포스코 굽힘 가공성과 연신율이 우수한 고강도 고망간 강판 및 그 제조방법
CN104178702A (zh) * 2014-08-08 2014-12-03 无棣向上机械设计服务有限公司 一种高韧性耐磨合金材料及其制备方法
WO2017111489A1 (ko) * 2015-12-22 2017-06-29 주식회사 포스코 내수소취화성이 우수한 오스테나이트계 강재
JP2019516018A (ja) * 2016-04-28 2019-06-13 ポスコPosco 降伏比に優れた超高強度高延性鋼板及びその製造方法

Also Published As

Publication number Publication date
BR0002544A (pt) 2001-03-13
FR2796083B1 (fr) 2001-08-31
US6358338B1 (en) 2002-03-19
EP1067203A1 (fr) 2001-01-10
DE60008641T2 (de) 2005-02-03
DE60008641D1 (de) 2004-04-08
JP4713709B2 (ja) 2011-06-29
CA2314624C (fr) 2009-04-07
ES2215008T3 (es) 2004-10-01
ATE260992T1 (de) 2004-03-15
CA2314624A1 (fr) 2001-01-07
JP2001049348A (ja) 2001-02-20
FR2796083A1 (fr) 2001-01-12
EP1067203B1 (fr) 2004-03-03

Similar Documents

Publication Publication Date Title
JP4713709B2 (ja) 鉄−炭素−マンガン合金からなるストリップを製造するための方法
EP1846584B2 (en) Austenitic steel having high strength and formability method of producing said steel and use thereof
CN102216474B (zh) 磷含量提高的锰钢带及其制备方法
US6328826B1 (en) Method of fabricating “TRIP” steel in the form of thin strip, and thin strip obtained in this way
KR101476866B1 (ko) 양호한 스탬핑성을 갖는 저밀도 강
US20070212249A1 (en) Thin cast strip product with microalloy additions, and method for making the same
CN104532120A (zh) 高强度薄铸钢带产品及其制备方法
JP2008528796A5 (ja)
JP4224733B2 (ja) フェライト系ステンレス鋼の薄板ストリップの製造方法
US20180257133A1 (en) Thin Cast Strip Product with Microalloy Additions, and Method for Making the Same
JP2010100877A (ja) 靭性に優れるフェライト系ステンレス熱延鋼板の製造方法
JP3449126B2 (ja) スプリングバック量が小さいオーステナイト系ステンレス冷延鋼板およびその製造方法
JPS5959827A (ja) 加工性の優れた熱延鋼板の製造方法
US6290787B1 (en) Process for manufacturing drawable sheet by direct casting of thin strip, and sheet thus obtained
JPH0681036A (ja) リジング性および加工性に優れたフエライト系ステンレス鋼板の製造方法
JP3941363B2 (ja) 延性、加工性および耐リジング性に優れたフェライト系ステンレス冷延鋼板およびその製造方法
JP2001098328A (ja) 延性、加工性および耐リジング性に優れたフェライト系ステンレス鋼板の製造方法
US7288158B2 (en) Manufacturing process for producing high strength steel product with improved formability
EP0378705B2 (en) PROCESS FOR PRODUCING THIN Cr-Ni STAINLESS STEEL SHEET EXCELLENT IN BOTH SURFACE QUALITY AND QUALITY OF MATERIAL
US20090065104A1 (en) Method of producing a cold-rolled strip with a ferritic structure
JP3026540B2 (ja) ステンレス鋼板の製造方法
CN105543687A (zh) 具有微合金添加剂的薄铸造带材产品及其制造方法
JP2000256749A (ja) 耐リジング性に優れた高純度フェライト系ステンレス鋼板の製造方法
JP3923485B2 (ja) 深絞り性に優れたフェライト単相系ステンレス鋼の製造方法
JP2682398B2 (ja) ステンレス鋼の熱間圧延方法

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20120426