JP2011060840A - 露光装置及び露光方法、並びにそれを用いたデバイスの製造方法 - Google Patents

露光装置及び露光方法、並びにそれを用いたデバイスの製造方法 Download PDF

Info

Publication number
JP2011060840A
JP2011060840A JP2009206043A JP2009206043A JP2011060840A JP 2011060840 A JP2011060840 A JP 2011060840A JP 2009206043 A JP2009206043 A JP 2009206043A JP 2009206043 A JP2009206043 A JP 2009206043A JP 2011060840 A JP2011060840 A JP 2011060840A
Authority
JP
Japan
Prior art keywords
exposure
substrate
driving
substrate stage
grid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009206043A
Other languages
English (en)
Inventor
Masatoshi Endo
正俊 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2009206043A priority Critical patent/JP2011060840A/ja
Publication of JP2011060840A publication Critical patent/JP2011060840A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】ウエハステージの駆動方向によって発生する微小振動を適切に処理し、1つのウエハ内の露光精度を均一に保つ露光装置及び露光方法を提供する。
【解決手段】原版を保持する原版ステージと、基板を保持、及び移動可能とする基板ステージと、原版のパターンを基板に投影する投影光学系と、基板ステージの位置を計測する位置計測手段と、該位置計測手段の計測値に基づいて、基板ステージの駆動を制御する制御手段と、を有し、ステップ・アンド・リピート方式によって原版のパターンを基板に露光する露光装置であって、制御手段は、基板ステージが、基板を位置決めするために露光位置に向けて駆動する際、予め測定した、基板ステージの駆動方向による、目標位置、倍率、若しくは回転のうち、少なくとも1つのずれ量に基づいて、基板ステージの駆動位置の補正を実施する(S103〜S107)。
【選択図】図9

Description

本発明は、露光装置及び露光方法、並びにそれを用いたデバイスの製造方法に関するものである。
露光装置は、半導体デバイスや液晶表示装置等の製造工程であるリソグラフィ工程において、原版(レチクル、又はマスク)のパターンを、投影光学系を介して感光性の基板(表面にレジスト層が形成されたウエハやガラスプレート等)に転写する装置である。例えば、半導体製造用の露光装置では、被処理基板であるウエハを保持、及び移動可能とするウエハステージが、微小ではあるが、駆動後に振動するという現象がある。近年、露光装置にナノメートルオーダーの高精度が求められる中で、微小とはいえウエハステージの振動が与える露光精度への影響は、無視できるものではない。
そこで、例えば、特許文献1は、ウエハステージの駆動によって発生する構造体の変形を補正する機構を有する露光装置を開示している。この露光装置を採用することにより、ウエハステージの駆動後に、ある程度振動の影響を低減させることが可能である。一方、ウエハに露光するグリッド毎に、オフセットを加算するという方法を用いた露光装置も存在する。この露光装置は、振動成分以外の要因、例えば、レンズの収差による影響補正等のウエハステージ自体とは関係のない要因も含め、グリッド毎に対して補正を行う。
特開2001−44109号公報
しかしながら、従来のウエハステージでは、ウエハを保持する以外の箇所に振動を計測するための機構を備えることを要し、また、ウエハステージを構成する部材の材質や重量の差分によって、駆動する方向により、発生する振動の幅や周期に違いが見られる。更には、特許文献1に示す露光装置では、ウエハステージの駆動後の振動は、ある程度抑えられるが、この振動を収束させるまでには、微細ながら時間がかかる。そこで、スループット向上のため、ウエハステージの駆動後、時間をかけて振動を収めた後に露光処理を実施するよりも、振動中に露光処理を実施する場合がある。その結果、露光時の駆動方向により、ウエハステージに現れるオフセット量(Shift、Mag.、Rot.)には、違いが発生する。ここで、「Shift」は、目標位置に対するずれ量であり、「Mag.」は、駆動時の倍率のずれ量であり、更に、「Rot.」は、駆動時の回転のずれ量である。一般的な露光装置において、ウエハに対してレチクルのパターンを転写する方法は、ウエハ上の転写が行われていない箇所にウエハステージを移動して転写を行った後、再び、ウエハ上の転写が行われていない箇所にウエハステージを移動して転写を行う。この場合、ウエハステージの移動に費やす時間、及び距離を短くするために、連続して同じ方向にウエハステージを移動させて、露光処理を行う方法が広く用いられている。したがって、駆動方向によりウエハステージに現れるオフセット量の違いは、1つのウエハ内の露光精度を不均一にする可能性がある。
本発明は、このような状況を鑑みてなされたものであり、ウエハステージの駆動方向によって発生する微小振動を適切に処理し、1つのウエハ内の露光精度を均一に保つ露光装置及び露光方法を提供することを目的とする。
上記課題を解決するために、本発明は、原版を保持する原版ステージと、基板を保持、及び移動可能とする基板ステージと、原版のパターンを基板に投影する投影光学系と、基板ステージの位置を計測する位置計測手段と、該位置計測手段の計測値に基づいて、基板ステージの駆動を制御する制御手段と、を有し、ステップ・アンド・リピート方式によって原版のパターンを基板に露光する露光装置であって、制御手段は、基板ステージが、基板を位置決めするために露光位置に向けて駆動する際、予め測定した、基板ステージの駆動方向による、目標位置、倍率、若しくは回転のうち、少なくとも1つのずれ量に基づいて、基板ステージの駆動位置の補正を実施する。
本発明によれば、基板ステージの駆動方向(XYZ方向)によって、それぞれ発生するずれ量(オフセット)に基づいて、基板ステージの駆動位置を補正するので、1つのウエハ内の露光精度を均一にすることが可能となる。
本発明の実施形態に係る露光装置の構成を示す概略図である。 記憶装置に保存されるグリット情報の一例を示す図である。 グリット情報に基づく、ウエハ上のグリッド位置を示す概略図である。 露光順序を矢印で記したウエハの平面図である。 ウエハステージの駆動後、各軸に発生する振動の様子を示す図である。 第1実施形態に係るグリッドの位置を記したウエハを示す平面図である。 オフセット値を管理するメモリ情報の一例を示す図である。 コンソール部に表示されるオフセット値の入力画面である。 第1実施形態における露光処理の流れを示すフローチャート図である。 第2実施形態に係るグリッドの位置を記したウエハを示す平面図である。 オフセット値を管理するメモリ情報の一例を示す図である。 コンソール部に表示されるオフセット値の入力画面である。 第2実施形態における露光処理の流れを示すフローチャート図である。
以下、本発明を実施するための形態について図面等を参照して説明する。
(第1実施形態)
まず、本発明の露光装置の構成について説明する。図1は、本発明の実施形態に係る露光装置の構成を示す概略図である。本実施形態における露光装置は、半導体デバイス製造工程に使用される、被処理基板であるウエハに対して露光処理を施す装置であり、特に、ステップ・アンド・リピート方式を採用した走査型投影露光装置である。なお、以下の図において、投影光学系の光軸に平行にZ軸を取り、該Z軸に垂直な平面内で走査露光時のウエハの走査方向にY軸を取り、該Y軸に直交する非走査方向にX軸を取って説明する。露光装置1は、照明光学系2と、レチクル3を保持するレチクルステージ4と、投影光学系5と、ウエハ6を保持するウエハステージ7と、露光装置1の各構成要素を制御する制御部8とを備える。
照明光学系2は、不図示の光源部を備え、転写用の回路パターンが形成されたレチクル3を照明する装置である。光源部において、光源としては、例えば、レーザを使用する。使用可能なレーザは、波長約193nmのArFエキシマレーザ、波長約248nmのKrFエキシマレーザ、波長約157nmのF2エキシマレーザ等である。なお、レーザの種類は、エキシマレーザに限定されず、例えば、YAGレーザを使用しても良いし、レーザの個数も限定されない。また、光源部にレーザが使用される場合、レーザ光源からの平行光束を所望のビーム形状に整形する光束整形光学系、コヒーレントなレーザをインコヒーレント化するインコヒーレント光学系を使用することが好ましい。更に、光源部に使用可能な光源は、レーザに限定されるものではなく、一又は複数の水銀ランプやキセノンランプ等のランプも使用可能である。
また、照明光学系2は、不図示であるが、レンズ、ミラー、ライトインテグレーター、及び絞り等を含む。一般に、内部の光学系は、コンデンサーレンズ、ハエの目レンズ、開口絞り、コンデンサーレンズ、スリット、結像光学系の順で整列する。この場合、ライトインテグレーターは、ハエの目レンズや2組のシリンドリカルレンズアレイ板を重ねることによって構成されるインテグレーター等を含む。なお、ライトインテグレーターは、光学ロッドや回折要素に置換される場合もある。また、開口絞りは、円形絞り、変形照明用の輪帯照明絞り、及び4重極照明絞り等として構成される。
レチクル3は、例えば、石英ガラス製の原版であり、転写されるべき回路パターンが形成されている。また、レチクルステージ4は、XY方向に移動可能な原版ステージであって、レチクル3を保持、及び位置決めするための装置である。走査露光を行う場合、レチクルステージ4は、Y軸方向にスキャン駆動する。更に、レチクルステージ4は、移動鏡10と、該移動鏡10にレーザビームを投射し、その反射光を受光することによってレチクルステージ4の位置を検出するためのレーザ干渉計11を有する。
投影光学系5は、照明光学系2からの露光光ILで照明されたレチクル3上のパターンを所定倍率(例えば、1/4、若しくは1/5)でウエハ6上に投影露光する。投影光学系5としては、複数の光学要素のみから構成される光学系や、複数の光学要素と少なくとも一枚の凹面鏡とから構成される光学系(カタディオプトリック光学系)が採用可能である。若しくは、投影光学系5として、複数の光学要素と少なくとも一枚のキノフォーム等の回折光学要素とから構成される光学系や、全ミラー型の光学系等も採用可能である。
ウエハ6は、表面上にレジスト(感光剤)が塗布された、単結晶シリコン製の基板である。また、ウエハステージ7は、XYZ方向に移動可能な基板ステージであって、ウエハ6を保持、及び位置決めするための装置である。ウエハステージ7は、ウエハ6を吸着保持する保持部15と、該保持部15を支持する支持体16とを有する。また、ウエハステージ7は、不図示であるが、支持体16の鉛直方向上面に、空気ばねによるアクチュエータ部を備える。走査露光を行う場合、ウエハステージ7は、レチクルステージ4と同様、Y軸方向にスキャン駆動する。なお、通常の走査露光の場合、レチクルステージ4及びウエハステージ7は、互いに逆方向にスキャン駆動する。一方、静止露光の場合、レチクルステージ4及びウエハステージ7は、露光中は共に駆動しない。更に、ウエハステージ7は、移動鏡12と、該移動鏡12にレーザビームを投射し、その反射光を受光することによってウエハステージ7の位置、及び振動を検出するためのレーザ干渉計(位置計測手段)13を有する。更に、ウエハステージ7の上部(Z軸上)には、ウエハステージ7のZ軸に対する位置、及び振動を検出するレーザ干渉計14を有する。
制御部8は、露光処理、及び、該露光処理に際してレチクル3やウエハ6の駆動等を実施するために、光学系やステージ系等の各構成要素を制御する制御手段である。制御部8は、本発明の露光方法をシーケンス、若しくはプログラムの形態で実施するものであり、磁気記憶装置やメモリ等で構成される記憶装置17を備えたコンピュータ、及びシーケンサ等で構成される。また、制御部8は、ユーザーが各種動作命令を設定するためのコンソール部18を備える。制御部8は、LAN等のケーブルを介し、露光処理の開始(露光光ILの出力)や、レチクルステージ4及びウエハステージ7の駆動等の指令を各構成要素に送信する。また、制御部8は、レチクルステージ4及びウエハステージ7の位置、及び振動の計測値を、各レーザ干渉計11、13、14を介して集約する。この集約された各情報は、記憶装置17に保存される。本実施形態では、制御部8は、記憶装置17に予め保存、及び管理されているオフセット値(Shift、Mag.、Rot.)を演算し、該オフセット値を加味した座標位置(目標位置)にウエハステージ7を駆動することが可能である。ここで、「Shift」は、目標位置に対するずれ量であり、「Mag.」は、駆動時の倍率のずれ量であり、更に、「Rot.」は、駆動時の回転のずれ量である。なお、制御部8は、露光装置1本体と一体で構成されても良いし、若しくは、露光装置1本体の設置場所とは異なる場所に設置し、遠隔で制御するものであっても良い。
コンソール部18では、ユーザーが、予めレシピ情報の入力を行う。図2は、入力されたレシピ情報に基づく、記憶装置17に保存されるグリット情報(メモリ情報)の一例を示す概略図である。グリッド情報20は、露光処理時にウエハステージ7が移動する位置である露光位置(ウエハステージ7の移動座標)21と、どの方向からウエハステージ7の駆動が行われるかを示す駆動方向22と、露光量23との各情報を有する。なお、コンソール部18は、露光装置1の稼動状況や、エラーが発生した場合の情報も表示する。
図3は、グリット情報20に基づく、ウエハ6上の露光処理を実施するグリッドの位置(レイアウト)を示す概略図である。図3に示すように、グリッドは、例えば、ウエハ6上の座標(X、Y)=(―100.0mm、−200.0mm)に位置すると仮定する。ここで、実際に露光処理が実施される座標(露光位置D)は、ウエハステージ7上の座標で投影光学系5の直下にあり、(X、Y)=(0.0mm、0.0mm)で固定する。したがって、ウエハ6は、ウエハステージ7上に保持されているため、制御部8は、露光時には、ウエハステージ7を露光座標Dの下に移動させ、グリッドを移動させる必要がある。即ち、図3のグリッドを露光する場合、駆動目標座標は、ウエハステージ7上の座標で、(X、Y)=(100.0mm、200.0mm)となる。結果的に、グリッド情報20は、露光時にウエハステージ7が移動する露光位置21を保持するため、露光位置21としては、(X、Y)=(100.0mm、200.0mm)の値が保持される。図2における駆動方向22は、「上」は、Y軸に対し−方向から+方向に、「下」は、Y軸に対し+方向から−方向に、「左」は、X軸に対し+方向から−方向に、「右」は、X軸に対し−方向から+方向にウエハステージ7が移動後、露光処理を実施することを示す。即ち、ウエハステージ7は、あるグリッドを露光するために、露光座標Dの位置まで上下左右のいずれかの方向に移動する。
制御部8は、レシピ情報を記憶装置17に保存する際、上記のように、ウエハ6上の露光処理を実施する位置をウエハステージ7の駆動座標に変換し、露光位置21として再度保存する。通常、露光レイアウトであるレシピ情報は、複数のグリッドから形成される。したがって、制御部8は、レシピ情報の保存の際、複数のグリッド1つ1つに対して、複数のグリッド情報20の生成を行う。
次に、本実施形態に係る露光装置1の基本動作について説明する。図4は、レチクル3上のパターンをウエハ6上に転写する露光順序を矢印で記したウエハ6を示す概略図(平面図)である。露光装置1は、パターン(例えば、回路図等)をグリッドGとし、ウエハ6に対して転写する。通常、露光装置1は、1つのグリッドGを転写した後、図4に示す矢印のように、ウエハステージ7をX、Y軸にそれぞれ移動させ、繰返し転写を行う。なお、厳密には、ウエハステージ7は、Z軸に対しても駆動しているが、ここでは不図示とする。このようなウエハステージ7の移動において、ウエハステージ7では、駆動後、微小振動が発生する。図5は、ウエハステージ7の駆動後、XYZの各軸に発生する振動の様子を模式的に示した図である。図5の各図において、縦軸は、発生した振動の振幅F(Fx、Fy、Fz)であり、各軸の中心を0とし、上方向がプラス側、下方向がマイナス側の振動である。一方、横軸は、時間Tである。図5に示すように、ウエハステージ7の振幅(振動)は、一般的な物理原則に従い、時間が経過するにつれて収束する。ここで、駆動方向によりウエハステージに現れるオフセット量に違いが生じていない場合、即ち、理論上の振動は、図5(a)に示すように、XYZの各軸において、ステージ座標の中心位置に対して、ずれが生じない。しかしながら、通常、駆動方向によりウエハステージ7に現れるオフセット量に違いが生じるので、図5(b)〜(d)に示すように、XYZの各軸では、ステージ座標の中心位置に対して、ずれが生じる。そこで、以下に、露光装置1が、微小振動の中心位置をステージ座標の中心位置に合わせるように、ウエハステージ7の駆動位置を補正する方法について説明する。
本実施形態では、露光装置1が、ウエハステージ7の駆動方向に対してオフセット値を適用し、ウエハステージ7の駆動位置を補正する場合について説明する。まず、本実施形態において適用するウエハ6上のグリット位置について説明する。図6は、ウエハ6上の露光対象となるグリッドG1、G2の位置をそれぞれ示した平面図である。なお、図6における座標は、図3に示すウエハ6上の座標に対応する。グリッドG1、G2を座標で示すと、グリットG1は、(X、Y)=(−150.0mm、200.0mm)であり、グリットG2は、(X、Y)=(−100.0mm、200.0mm)である。ここで、グリットG1は、グリットGSの露光処理後に露光されるグリッドであり、グリットGSの座標は、(X、Y)=(−150.0mm、150.0mm)である。グリットG1の露光に際し、ウエハステージ7は、露光位置Dに対して上に移動する。また、グリットG2は、グリットG1の露光処理後に露光されるグリッドであり、グリットG2の露光に際し、ウエハステージ7は、露光位置Dに対して右に移動する。即ち、グリットG1に設定された駆動方向22は、「上」(Y軸に対して+方向)であり、一方、グリットG2に設定された駆動方向22は、右(X軸に対して+方向)である。なお、この場合、グリットG1、G2の露光量23の設定値は、共に500J/mとする。
次に、ウエハステージ7の駆動方向に対して発生した微小振動に起因する位置ずれを集約し、最終的に、グリッド露光時においてウエハステージ7の駆動座標に加算するオフセット値(補正値)を管理するメモリの状態について説明する。図7は、記憶装置17に保存されたメモリ情報(メモリ領域)の一例を示す概略図である。メモリ領域70は、ウエハステージ7の駆動方向が、「上」の場合に加えるオフセット値71、「下」の場合に加えるオフセット値72、「左」の場合に加えるオフセット値73、及び、「右」の場合に加えるオフセット値74を有する。
図8は、コンソール部18に表示されるオフセット値の入力画面である。ユーザーは、入力画面80において、ウエハステージ7の駆動方向が「上」の場合の、X方向のオフセット値を入力部81に、一方、Y方向のオフセット値を入力部82に入力する。同様に、ユーザーは、駆動方向が「下」の場合、X方向の値を入力部83、Y方向の値を入力部84に、「左」の場合、X方向の値を入力部85、Y方向の値を入力部86に、更に、「右」の場合、X方向の値を入力部87、Y方向の値を入力部88に入力する。次に、ユーザーは、オフセット値の入力後、Save(登録)ボタン89を押下することで、記憶装置17のオフセット管理のメモリ領域70に入力値を記憶させる。ここで、入力する各オフセット値は、ユーザーが、予めウエハステージ7の駆動動作時に測定し、取得する。この場合、入力されるオフセット値には、「Shift」、「Mag.」、「Rot.」の各ずれ量が含まれる。なお、露光装置1に、ウエハステージ7の駆動指令と対比させて目標位置とのずれを算出し、自動でオフセット値を取得するような装置を設置する構成もあり得る。
次に、本実施形態の露光装置における、ウエハ6上のグリットを露光する露光処理の流れについて説明する。図9は、露光処理の流れを示すフローチャート図である。まず、制御部8は、露光開始の指示を受けると(ステップS101)、記憶装置17から露光対象のグリッド情報20を取得する(ステップS102)。次に、制御部8は、ウエハステージ7の現在位置をレーザ干渉計13、14から取得し、ステップS102において取得したウエハステージ7の露光位置21に基づいて、現在位置から露光に必要なウエハステージ7の駆動距離(X、Y)を算出する。更に、ステップS103では、制御部8は、露光対象となるグリッドに対してウエハステージ7がどの方向から駆動されるかという情報を駆動方向22から取得し、取得された駆動方向22の設定値に基づいて、処理を分岐する(ステップS103)。
ステップS103において、取得された駆動方向22が「上」である場合は、制御部8は、駆動方向が「上」の場合のオフセット値71を、算出した駆動距離に加算し、最終的なウエハステージ7の駆動位置を算出する補正を実施する(ステップS104)。ここで、制御部8は、算出した駆動位置情報をグリッド情報の露光位置21として記憶装置17に保存する。同様に、ステップS103において、取得された駆動方向22が「下」である場合、制御部8は、駆動方向が「下」の場合のオフセット値72を、算出した駆動距離に加算し、最終的なウエハステージ7の駆動位置を算出する補正を実施する(ステップS105)。ステップS103において、取得された駆動方向22が「左」である場合、制御部8は、駆動方向が「左」の場合のオフセット値73を、算出した駆動距離に加算し、最終的なウエハステージ7の駆動位置を算出する補正を実施する(ステップS106)。更に、ステップS103において、取得された駆動方向22が「右」である場合、制御部8は、駆動方向が「右」の場合のオフセット値74を、算出した駆動距離に加算し、最終的なウエハステージ7の駆動位置を算出する補正を実施する(ステップS107)。以上、ステップS104〜S107が、取得したオフセット値を、算出した駆動距離に加算する加算工程である。この加算工程の処理が終了した後、制御部8は、算出した露光位置21にウエハステージ7を移動させ(ステップS108)、露光処理を実施し(ステップS109)、露光対象のグリッドの露光処理を終了する(ステップS110)。以上、ステップS103に示すグリット情報20から駆動方向22を取得する工程と、ステップS104〜S107に示す加算工程とが、本実施形態の特徴となる補正工程である。
次に、図6におけるグリッドG1を露光する場合を例に、ウエハステージ7の最終的な露光位置の算出について説明する。ステップS102において、制御部8が取得するグリッドG1のグリット情報20は、図6の例を用いると、露光位置21が、(X、Y)=(−150.0mm、200.0mm)で、駆動方向22が、「上」である。また、ステップS103において、制御部8が取得するウエハステージ7の現在位置は、グリットGSの座標である(X、Y)=(−150.0mm、150.0mm)である。即ち、ウエハステージ7の駆動距離は、(X、Y)=(0mm、50mm)となる。次に、制御部8は、ステップS103において、駆動方向として「上」を選択するので、引き続き、ステップS104に移行する。ステップS104において、制御部8は、図7の例に示す駆動方向が「上」の場合のオフセット値(X、Y)=(1.0nm、−1.0nm)を、算出した駆動距離(0mm、50mm)に加算し、(X、Y)=(1.0nm、49999999.0nm)の値を得る。制御部8は、この値をウエハステージ7の位置に加算し、補正後の露光位置21(X、Y)=(−149999999.0nm、199999999.0nm)を得て、この値を、最終的な露光位置とする。
同様に、図6におけるグリッドG2を露光する場合は、ステップS102において、制御部8が取得するグリッドG2のグリット情報20は、露光位置21が、(X、Y)=(−100.0mm、200.0mm)で、駆動方向22が、「右」である。また、この場合、ステップS103において、制御部8が取得するウエハステージ7の現在位置は、グリットG1の最終座標である(X、Y)=(−149999999.0nm、199999999.0nm)である。即ち、ウエハステージ7の駆動距離は、(X、Y)=(49999999.0nm、1.0nm)である。次に、制御部8は、ステップS103において、駆動方向として「右」を選択するので、引き続き、ステップS107に移行する。ステップS107において、制御部8は、図7の例に示す駆動方向が「右」の場合のオフセット値(X、Y)=(0.0nm、−2.0nm)を、算出した駆動距離に加算し、(X、Y)=(49999999.0nm、1.0nm)の値を得る。制御部8は、この値をウエハステージ7の位置に加算し、補正後の露光位置21(X、Y)=(−10000000.0nm、199999999.0nm)を得て、この値を、最終的な露光位置とする。
以上のように、本発明は、ステップS103に示す駆動方向22を取得する工程と、ステップS104〜S107に示す、ウエハステージ7の駆動方向による加算工程とからなる補正工程により、ウエハステージ7の駆動位置を補正する。これにより、本発明の露光装置1は、最終的な露光位置をより正確に導き出すことが可能となり、結果的に、1つのウエハ内の露光精度を均一にすることが可能となる。
(第2実施形態)
次に、本発明の第2の実施形態に係る露光装置について説明する。第1の実施形態において、露光装置は、ウエハステージ7の駆動方向に対してオフセット値を適用して駆動位置を補正したが、これに対して、本実施形態の特徴は、露光装置が、ウエハステージ7の駆動方向に対して一次関数を適用して駆動位置を補正する点にある。なお、本実施形態の露光装置の構成は、第1の実施形態と同一であり、以下、同一の構成要素には同一の符号を付して説明する。
まず、本実施形態において適用するウエハ6上のグリット位置について説明する。図10は、ウエハ6上の露光対象となるグリッドG3、G4の位置をそれぞれ示した平面図である。なお、図10における座標は、図3に示すウエハ6上の座標に対応する。グリッドG3、G4を座標で示すと、グリットG3は、(X、Y)=(100.0mm、−200.0mm)であり、グリットG4は、(X、Y)=(50.0mm、−200.0mm)である。ここで、グリットG3は、グリットGVの露光処理後に露光されるグリッドであり、グリットGVの座標は、(X、Y)=(150.0mm、−200.0mm)である。これに対して、グリットG4は、グリットG3の露光処理後に露光されるグリッドである。この場合、駆動方向22は、グリッドGVから駆動されるので各自「左」である。更に、グリッドGVは、グリッドGTの露光処理後に露光されるグリッドである。ここで、グリットGVの駆動方向22の設定値は、「下」であり、グリットGVは、既に、後述する処理により補正された後の座標を有するものとする。なお、この場合、グリットG3、G4の露光量23の設定値は、共に500J/mとする。
次に、オフセット値(Shift、Mag.、Rot.)がずれた場合に、制御部8が目標位置の演算に用いる補正式について説明する。[数1]は、記憶装置17に保存された、オフセット値を補正するための補正式である。但し、[数1]において、(Px、Py)は、補正後の座標であり、βxは、X軸の倍率のずれ量(Mag.X)であり、θxは、X軸の回転のずれ量(Rot.X)であり、更に、Sxは、X軸のずれ量(Shift X)である。同様に、βyは、Y軸の倍率のずれ量(Mag.Y)であり、θyは、Y軸の回転のずれ量(Rot.Y)であり、Syは、Y軸のずれ量(Shift Y)である。即ち、[数1]の補正式は、XY方向における駆動距離の変数を導入する一次関数である。
Figure 2011060840
次に、ウエハステージ7の駆動方向に対して発生した微小振動に起因する位置ずれを集約するための、[数1]に適用するオフセット変数を管理するメモリの状態について説明する。図11は、記憶装置17に保存されたメモリ情報(メモリ領域)の一例を示す概略図である。メモリ領域110は、ウエハステージ7の駆動方向が、「上」の場合に加えるオフセット値111、「下」の場合に加えるオフセット値112、「左」の場合に加えるオフセット値113、及び、「右」の場合に加えるオフセット値114を有する。各オフセット値111〜114は、Mag.X[ppm]、Rot.X[ppm]、Shift X[nm]、Mag.Y[ppm]、Rot.Y[ppm]、Shift Y[nm]の各設定値を有する。
図12は、コンソール部18に表示されるオフセット値の入力画面である。入力画面120において、ユーザーは、ウエハステージ7の駆動方向に基づいて、オフセットの各設定値を入力する。例えば、駆動方向が「上」の場合、ユーザーは、Mag.Xを入力部121に、Mag.Yを入力部122に、Rot.Xを入力部123に、Rot.Yを入力部124に、Shift Xを入力部125に、更に、Shift Yを入力部126に入力する。同様に、ユーザーは、駆動方向が「下」、「左」、及び「右」の場合も、入力画面120内の各入力部にオフセット値を入力することが可能である。次に、ユーザーは、オフセット値の入力後、Save(登録)ボタン145を押下することで、記憶装置17のオフセット管理のメモリ領域120に入力値を記憶させる。ここで、第1の実施形態と同様に、入力する各オフセット値は、ユーザーが、予めウエハステージ7の駆動動作時に測定し、取得する。
次に、本実施形態の露光装置における、ウエハ6上のグリットを露光する露光処理の流れについて説明する。図13は、露光処理の流れを示すフローチャート図である。まず、制御部8は、露光開始の指示を受けると(ステップS201)、記憶装置17から露光対象のグリッド情報20を取得する(ステップS202)。ここで、記憶装置17は、露光対象のグリッドの駆動方向22が、前回露光したグリッドと同一方向の駆動であるかを確認するための、前回露光したグリッドの駆動方向を保持するメモリ領域Tを有する。そこで、次に、制御部8は、露光対象のグリッドの駆動方向22が、メモリ領域Tと同一であるかを判断する(ステップS203)。
ステップS203において、制御部8は、駆動方向と同一でない(No)と判断した場合、露光対象であるグリッドの駆動方向22をメモリ領域Tに保存する(ステップS204)。ここで、制御部8は、ウエハステージ7の現在位置をレーザ干渉計13、14から取得し、取得した座標を、駆動距離を算出する基準となる座標(基準座標P)とするため、記憶装置17に保存する。次に、制御部8は、基準座標Pと、グリッドの露光位置21に基づいて、ウエハステージ7の駆動量(X、Y)を算出する(ステップS205)。
一方、ステップS203において、制御部8は、駆動方向と同一である(Yes)と判断した場合、次の露光処理のために、露光対象のグリッドの駆動方向22をメモリ領域Tに再度保存する(ステップS206)。次に、制御部8は、駆動距離と、グリッドの露光位置21に基づいて、基準座標Pからのウエハステージ7の駆動量(X、Y)を算出する(ステップS207)。
ステップS205、又はS207の終了後、次に、制御部8は、露光対象のグリッドがどの方向から駆動するかという情報を駆動方向22から取得し、取得した駆動方向に基づいて、処理を分岐する(ステップS208)。まず、ステップS208において、駆動方向22が「上」である場合、制御部8は、ステップS205、又はS207で算出した駆動距離と、[数1]の補正式と、図11に示すオフセット値とに基づいて、基準座標Pを基準とした補正を加えた駆動距離を算出する。次に、制御部8は、基準座標Pに、算出した駆動距離を加算し、ウエハステージ7の最終的な露光位置21として、記憶装置17に保存する(ステップS209)。一方、制御部8は、ステップS208において取得した駆動方向22が「下」、「左」、若しくは「右」である場合も上記と同様の処理を実施する(ステップS210、S211、S212)。以上、ステップS209〜S212が、取得したオフセット値を、算出した駆動距離に加算する加算工程である。この加算工程の処理が終了した後、制御部8は、算出した露光位置21にウエハステージ7を移動させ(ステップS213)、露光処理を実施し(ステップS214)、露光対象のグリッドの露光処理を終了する(ステップS215)。以上、ステップS203に示す露光対象のグリッドの駆動方向22を、メモリ領域T内のものと比較判断する工程から、ステップS209〜S212に示す加算工程までが、本実施形態の特徴となる補正工程である。
次に、図10におけるグリッドG3を露光する場合を例に、ウエハステージ7の最終的な露光位置の算出について説明する。なお、グリットG3は、グリットGVの露光処理後に露光されるが、この場合、グリッドGVの駆動方向の情報(メモリ領域T)は、「下」である。まず、制御部8は、露光開始後、ステップS202において、露光対象のグリッドG3の情報20を取得する。次に、制御部8は、ステップS203において、前回の露光したグリッドと同一方向の駆動であるかを確認する。ここで、記憶装置17のメモリ領域Tに予め保存されているメモリ情報(この場合、「下」)と、グリットG3の駆動方向の情報(この場合、「左」)とは一致しないので、制御部8は、ステップS204に処理を移行する。ステップS204において、制御部8は、再度、メモリ領域Tの駆動方向に「左」と保存する。ここで、制御部8は、ウエハステージ7の現在位置(グリットGV(X、Y)=(150.0mm、−200.0mm))を、レーザ干渉計13、14から取得し、基準座標P(X、Y)=(150.0mm、−200.0mm)として記憶装置17に保存する。次に、ステップS205において、制御部8は、基準座標PからグリットG3の露光位置21(X、Y)=(100.0mm、−200.0mm)までの駆動量(駆動距離(X、Y)=(−50mm、0mm))を算出する。
次に、制御部8は、ステップS208において、露光対象のグリッドがどの方向から駆動するかを駆動方向22から取得するが、この場合、「左」であるので、ステップS211に移行する。ステップS211において、制御部8は、ステップS205にて算出した駆動量と、[数1]と、図11における「左」のオフセット値に基づいて、露光処理を実施するための補正を加えた駆動位置を算出する。この場合、補正を加えた駆動位置は、次式のように表される。
X=(X+βx×X−θy×Y)−Sx
=−50000000.0+0.5−0.0−2.0
=−50000001.5[nm]
Y=(θx×X+Y+βy×Y)−Sy
=0.5+0.0+0.0+1.0
=1.5[nm]
次に、制御部8は、基準座標Pに、補正を加えた駆動位置を加算し、最終的な露光位置21を算出する。即ち、この場合、最終的な露光位置21は、(X、Y)=(99999998.5nm、−199999998.5nm)となる。そして、制御部8は、算出した最終的な露光位置21に基づいて、ウエハステージ7を駆動し、グリットG3に対する露光処理を実施する。
次に、図10におけるグリッドG4を露光する場合を例に、ウエハステージ7の最終的な露光位置の算出について説明する。なお、グリットG4は、グリットG3の露光処理後に露光されるが、この場合、グリッドG3の駆動方向の情報(メモリ領域T)は、「左」である。まず、制御部8は、露光開始後、ステップS202において、露光対象のグリッドG4の情報20を取得する。次に、制御部8は、ステップS203において、前回の露光したグリッドと同一方向の駆動であるかを確認する。ここで、記憶装置17のメモリ領域Tに予め保存されているメモリ情報(この場合、「左」)と、グリットG4の駆動方向の情報(この場合、「左」)とは一致するので、制御部8は、ステップS206に処理を移行する。ステップS206において、制御部8は、再度、メモリ領域Tの駆動方向に「左」と保存する。次に、制御部8は、ステップS207において、基準位置P(X、Y)=(150.0mm、−200.0mm)から、グリットG4の露光位置21(X、Y)=(50.0mm、−200.0mm)への駆動量を算出する。この場合、駆動量(駆動距離)は、(X、Y)=(−100mm、0mm)である。
次に、制御部8は、ステップS208において、露光対象のグリッドがどの方向から駆動するかを駆動方向22から取得するが、この場合、「左」であるので、ステップS211に移行する。ステップS211において、制御部8は、ステップS207にて算出した駆動量と、[数1]と、図11における「左」のオフセット値に基づいて、露光処理を実施するための補正を加えた駆動位置を算出する。この場合、補正を加えた駆動位置は、次式のように表される。
X=(X+βx×X−θy×y)−Sx
=−100000000.0+1.0−0.0−2.0
=−100000001.0[nm]
Y=(θx×X+Y+βy×Y)−Sy
=1.0+0.0+0.0+1.0
=2.0[nm]
次に、制御部8は、基準座標Pに、補正を加えた駆動位置を加算し、最終的な露光位置21を算出する。即ち、この場合、最終的な露光位置21は、(X、Y)=(49999999.0nm、−199999998.0nm)となる。そして、制御部8は、算出した最終的な露光位置21に基づいて、ウエハステージ7を駆動し、グリットG3に対する露光処理を実施する。
以上のように、本発明は、露光対象のグリッドの駆動方向22を、メモリ領域T内のものと比較判断する工程から、ウエハステージ7の駆動方向による加算工程までの各工程からなる補正工程により、ウエハステージ7の駆動位置を補正する。これにより、本発明の露光装置1は、最終的な露光位置をより正確に導き出すことが可能となり、結果的に、1つのウエハ内の露光精度を均一にすることが可能となる。
(デバイスの製造方法)
次に、本発明の一実施形態のデバイス(半導体デバイス、液晶表示デバイス等)の製造方法について説明する。半導体デバイスは、ウエハに集積回路を作る前工程と、前工程で作られたウエハ上の集積回路チップを製品として完成させる後工程を経ることにより製造される。前工程は、前述の露光装置を使用して感光剤が塗布されたウエハを露光する工程と、ウエハを現像する工程を含む。後工程は、アッセンブリ工程(ダイシング、ボンディング)と、パッケージング工程(封入)を含む。液晶表示デバイスは、透明電極を形成する工程を経ることにより製造される。透明電極を形成する工程は、透明導電膜が蒸着されたガラス基板に感光剤を塗布する工程と、前述の露光装置を使用して感光剤が塗布されたガラス基板を露光する工程と、ガラス基板を現像する工程を含む。本実施形態のデバイス製造方法によれば、従来よりも高品位のデバイスを製造することができる。
(その他の実施形態)
以上、本発明の好ましい実施形態について説明したが、本発明はこれらの実施形態に限定されず、その要旨の範囲内で種々の変形及び変更が可能である。
例えば、第1の実施形態では、オフセットとして「Shift」、「Mag.」、「Rot.」の各設定値をまとめて補正を実施するが、本発明は、各オフセット値を個別に採用しても実施可能である。また、1つのグリッドに対して、駆動方向によるオフセット値を用いるだけでなく、図4に示す最上段のグリッド行のように駆動方向が連続している場合は、前のグリッドで適用した補正値を更に加えて補正しても良い。例えば、図9におけるステップS104〜S107において駆動距離に加算する値に補正値を加える際に、前のグリッドで補正したオフセット値も加える。これにより、ウエハステージ7の駆動方向が連続して同じ場合、前のグリッドを露光する時点でウエハステージ7にオフセット分のずれが発生している場合があるので、更に正確な補正が可能となる。更に、図7に示すメモリ領域70は、第1実施形態に係る補正処理に使用されるが、予めウエハステージ7の駆動距離に合わせた複数のオフセットを記憶装置17に保存しておくことで、加算するオフセット値を変更しても良い。即ち、駆動距離が異なると、振動の発生量も異なり、結果的に補正すべきオフセット値が異なる場合がある。そこで、記憶装置17内に複数のメモリ領域70を存在させ、制御部8が、図9のステップS104〜S107において、採用するオフセットを適宜決定するように制御することで、更に正確な補正が可能となる。
また、例えば、第2の実施形態では、補正式として一次関数を用いたが、高次の多項式を用いても良い。[数2]は、第2の実施形態に採用可能な多項式の一例である。ここで、βx、θx、βy、θyの各値は、別途オフセット値(変数値)が入力される。
Figure 2011060840
更に、本発明は、ウエハステージ7の駆動方向を、「上下左右」のみならず、「右上、左上、右下、左下」の斜め方向を加えても適用可能である。この場合、斜め方向のオフセット値を管理するメモリ領域、及び図9(若しくは、図13)のフローチャートに斜め方向の処理を加えれば良い。
1 露光装置
6 基板
7 基板ステージ
8 制御部
13 レーザ干渉計
14 レーザ干渉計

Claims (8)

  1. 原版を保持する原版ステージと、基板を保持、及び移動可能とする基板ステージと、前記原版のパターンを前記基板に投影する投影光学系と、前記基板ステージの位置を計測する位置計測手段と、該位置計測手段の計測値に基づいて、前記基板ステージの駆動を制御する制御手段と、を有し、ステップ・アンド・リピート方式によって前記原版のパターンを前記基板に露光する露光装置であって、
    前記制御手段は、前記基板ステージが、前記基板を位置決めするために露光位置に向けて駆動する際、予め測定した、前記基板ステージの駆動方向による、目標位置、倍率、若しくは回転のうち、少なくとも1つのずれ量に基づいて、前記基板ステージの駆動位置の補正を実施することを特徴とする露光装置。
  2. 前記制御手段は、前記基板ステージの駆動方向による補正値を、前記基板ステージの駆動座標に加算することで前記駆動位置を補正することを特徴とする請求項1に記載の露光装置。
  3. 前記補正値は、前記ずれ量に基づいて取得する値であることを特徴とする請求項2に記載の露光装置。
  4. 前記補正値は、予め設定した、前記ずれ量を変数とする補正式を用いて算出することを特徴とする請求項2に記載の露光装置。
  5. 前記補正式は、一次関数、若しくは、高次の多項式であることを特徴とする請求項4に記載の露光装置。
  6. 原版を保持する原版ステージと、基板を保持、及び移動可能とする基板ステージと、前記原版のパターンを前記基板に投影する投影光学系と、前記基板ステージの位置を計測する位置計測手段と、該位置計測手段の計測値に基づいて、前記基板ステージの駆動を制御する制御手段と、を有し、ステップ・アンド・リピート方式によって前記原版のパターンを前記基板に露光する露光方法であって、
    前記制御手段が、前記基板ステージが前記基板を位置決めするために露光位置に向けて駆動する際、予め測定した、前記基板ステージの駆動方向による、目標位置、倍率、若しくは回転のうち、少なくとも1つのずれ量に基づいて、前記基板ステージの駆動位置を補正する補正工程を有することを特徴とする露光方法。
  7. 前記補正工程は、更に、前記制御手段が、前記基板ステージの駆動方向による補正値を前記基板ステージの駆動座標に加算する加算工程を有することを特徴とする請求項6に記載の露光方法。
  8. 請求項1に記載の露光装置、若しくは、請求項6に記載の露光方法を用いて基板を露光する工程と、
    前記基板を現像する工程と、
    を有することを特徴とするデバイスの製造方法。
JP2009206043A 2009-09-07 2009-09-07 露光装置及び露光方法、並びにそれを用いたデバイスの製造方法 Pending JP2011060840A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009206043A JP2011060840A (ja) 2009-09-07 2009-09-07 露光装置及び露光方法、並びにそれを用いたデバイスの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009206043A JP2011060840A (ja) 2009-09-07 2009-09-07 露光装置及び露光方法、並びにそれを用いたデバイスの製造方法

Publications (1)

Publication Number Publication Date
JP2011060840A true JP2011060840A (ja) 2011-03-24

Family

ID=43948174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009206043A Pending JP2011060840A (ja) 2009-09-07 2009-09-07 露光装置及び露光方法、並びにそれを用いたデバイスの製造方法

Country Status (1)

Country Link
JP (1) JP2011060840A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013258211A (ja) * 2012-06-11 2013-12-26 Canon Inc 露光装置および物品の製造方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0282510A (ja) * 1988-09-19 1990-03-23 Hitachi Ltd 位置合わせ方法
JPH05182893A (ja) * 1992-01-07 1993-07-23 Hitachi Ltd パターン露光方法およびその装置
JPH06168867A (ja) * 1992-11-30 1994-06-14 Nikon Corp 露光方法及び露光装置
JPH0774095A (ja) * 1994-06-20 1995-03-17 Nikon Corp 露光装置
JPH09186073A (ja) * 1996-01-04 1997-07-15 Canon Inc 露光装置および方法
JPH1097987A (ja) * 1996-09-25 1998-04-14 Canon Inc 走査型露光装置および方法
JP2001345256A (ja) * 2000-06-01 2001-12-14 Nikon Corp ステージ装置および露光装置
JP2002175963A (ja) * 2000-12-05 2002-06-21 Nikon Corp ステージ装置とその位置制御方法および露光装置並びに露光方法
JP2002198285A (ja) * 2000-12-25 2002-07-12 Nikon Corp ステージ装置およびその制振方法並びに露光装置
JP2006339179A (ja) * 2005-05-31 2006-12-14 Tochigi Nikon Corp 露光方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0282510A (ja) * 1988-09-19 1990-03-23 Hitachi Ltd 位置合わせ方法
JPH05182893A (ja) * 1992-01-07 1993-07-23 Hitachi Ltd パターン露光方法およびその装置
JPH06168867A (ja) * 1992-11-30 1994-06-14 Nikon Corp 露光方法及び露光装置
JPH0774095A (ja) * 1994-06-20 1995-03-17 Nikon Corp 露光装置
JPH09186073A (ja) * 1996-01-04 1997-07-15 Canon Inc 露光装置および方法
JPH1097987A (ja) * 1996-09-25 1998-04-14 Canon Inc 走査型露光装置および方法
JP2001345256A (ja) * 2000-06-01 2001-12-14 Nikon Corp ステージ装置および露光装置
JP2002175963A (ja) * 2000-12-05 2002-06-21 Nikon Corp ステージ装置とその位置制御方法および露光装置並びに露光方法
JP2002198285A (ja) * 2000-12-25 2002-07-12 Nikon Corp ステージ装置およびその制振方法並びに露光装置
JP2006339179A (ja) * 2005-05-31 2006-12-14 Tochigi Nikon Corp 露光方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013258211A (ja) * 2012-06-11 2013-12-26 Canon Inc 露光装置および物品の製造方法

Similar Documents

Publication Publication Date Title
JP4174660B2 (ja) 露光方法及び装置、プログラム及び情報記録媒体、並びにデバイス製造方法
JP4898419B2 (ja) 露光量のおよびフォーカス位置のオフセット量を求める方法、プログラムおよびデバイス製造方法
US20040070740A1 (en) Exposure method and exposure apparatus
KR101060982B1 (ko) 노광 방법 및 디바이스 제조 방법, 노광 장치, 그리고 프로그램을 기록한 컴퓨터 판독가능 기록 매체
JP2007317713A (ja) 光学素子駆動装置
WO2006126569A1 (ja) 露光方法及びリソグラフィシステム
JP2010186918A (ja) アライメント方法、露光方法及び露光装置、デバイス製造方法、並びに露光システム
US8343693B2 (en) Focus test mask, focus measurement method, exposure method and exposure apparatus
JP2009105097A (ja) 露光装置及びデバイス製造方法
JP2006261607A (ja) 液浸露光装置、液浸露光方法及びデバイス製造方法。
US7859643B2 (en) Apparatus for moving curved-surface mirror, exposure apparatus and device manufacturing method
JP2013161992A (ja) 変形可能な反射光学素子、光学系、及び露光装置
JP2013247258A (ja) アライメント方法、露光方法、及びデバイス製造方法、並びにデバイス製造システム
JP5668999B2 (ja) 露光方法及び露光装置、並びにデバイス製造方法
JP2011060840A (ja) 露光装置及び露光方法、並びにそれを用いたデバイスの製造方法
KR101019389B1 (ko) 노광 장치
JP2009088018A (ja) ステージ制御方法、ステージ制御装置、露光方法及び露光装置並びにデバイス製造方法
JP2011018861A (ja) 露光装置及び露光方法、それを用いたデバイスの製造方法
JPWO2007007626A1 (ja) 露光方法及び露光装置、並びにデバイス製造方法
JP6610719B2 (ja) 駆動システム及び駆動方法、露光装置及び露光方法、並びにデバイス製造方法
JP5414288B2 (ja) 露光方法及び装置、並びにデバイス製造方法
JP2000195784A (ja) 露光装置およびデバイス製造方法
JP5473500B2 (ja) 露光装置、露光装置の制御方法、及びデバイス製造方法
JP6478593B2 (ja) 投影光学系の製造方法、および、デバイス製造方法
JP2022130036A (ja) 露光装置、露光方法及び物品の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130724

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131203