KR101060982B1 - 노광 방법 및 디바이스 제조 방법, 노광 장치, 그리고 프로그램을 기록한 컴퓨터 판독가능 기록 매체 - Google Patents

노광 방법 및 디바이스 제조 방법, 노광 장치, 그리고 프로그램을 기록한 컴퓨터 판독가능 기록 매체 Download PDF

Info

Publication number
KR101060982B1
KR101060982B1 KR1020067010388A KR20067010388A KR101060982B1 KR 101060982 B1 KR101060982 B1 KR 101060982B1 KR 1020067010388 A KR1020067010388 A KR 1020067010388A KR 20067010388 A KR20067010388 A KR 20067010388A KR 101060982 B1 KR101060982 B1 KR 101060982B1
Authority
KR
South Korea
Prior art keywords
partition
measurement
wafer
regions
exposure
Prior art date
Application number
KR1020067010388A
Other languages
English (en)
Other versions
KR20060107796A (ko
Inventor
마사하루 가와쿠보
유호 가나야
지아키 나카가와
다카히사 기쿠치
마사히코 아키두키
Original Assignee
가부시키가이샤 니콘
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 니콘 filed Critical 가부시키가이샤 니콘
Publication of KR20060107796A publication Critical patent/KR20060107796A/ko
Application granted granted Critical
Publication of KR101060982B1 publication Critical patent/KR101060982B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/705Modelling or simulating from physical phenomena up to complete wafer processes or whole workflow in wafer productions
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/70508Data handling in all parts of the microlithographic apparatus, e.g. handling pattern data for addressable masks or data transfer to or from different components within the exposure apparatus
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/70533Controlling abnormal operating mode, e.g. taking account of waiting time, decision to rework or rework flow
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/70633Overlay, i.e. relative alignment between patterns printed by separate exposures in different layers, or in the same layer in multiple exposures or stitching

Abstract

웨이퍼 상의 복수의 샘플 쇼트의 위치 정보의 실측값을 사용하여 통계 연산에 의해 웨이퍼 상의 각 쇼트의 위치 정보 (위치 어긋남량의 선형 성분이 보정된 추정값) 를 산출한다 (단계 488). 또한, 샘플 쇼트를 포함하는 복수의 계측 쇼트 각각에 관하여, 소정의 인터벌로, 위치 어긋남량의 비선형 성분의 변동량을 산출하고 (단계 496), 산출된 각 계측 쇼트의 비선형 성분의 변동량의 크기에 기초하여 보정 정보의 갱신 필요성의 유무를 판단한다 (단계 498). 이 때문에, 보정값을 갱신하기 위하여, 로트마다 적어도 1 회 웨이퍼 상의 전체 쇼트의 위치 정보의 실측값을 구하는 경우에 비교하여, 위치 정보의 계측 대상이 되는 쇼트 수 및 그 계측 시간을 확실하게 저감시킬 수 있다.
노광 장치, 위치 어긋남량, 그리드 오차, 리소그래피 시스템

Description

노광 방법 및 디바이스 제조 방법, 노광 장치, 그리고 프로그램을 기록한 컴퓨터 판독가능 기록 매체{EXPOSURE METHOD, DEVICE MANUFACTURING METHOD, EXPOSURE DEVICE, AND COMPUTER READABLE RECORDING MEDIUM RECORDING PROGRAM}
기술분야
본 발명은 노광 방법 및 디바이스 제조 방법, 노광 장치, 그리고 프로그램에 관련되고, 더욱 자세하게는, 복수의 감광 물체 각각에 특정 공정의 노광 처리를 연속적 또는 단속 (斷續) 적으로 행하는 노광 방법 및 그 노광 방법을 이용하는 디바이스 제조 방법, 상기 노광 방법의 실시에 바람직한 노광 장치, 그리고 그 노광 장치의 제어용 컴퓨터에 상기 노광 방법을 실행시키는 데 바람직한 프로그램에 관한 것이다.
배경기술
반도체 소자 등의 마이크로 디바이스의 제조 라인에서는, 복수의 노광 장치 (호기; 號機) 사이에서의 중첩 노광이 종종 행해진다. 이러한 경우, 노광 장치 상호간의 스테이지의 그리드 오차 (각 노광 장치에 있어서의 웨이퍼의 이동 위치를 규정하는 스테이지 좌표계 상호간의 오차) 가 존재하기 때문에, 중첩 오차가 발생된다. 또한, 가령 노광 장치 상호간에서 스테이지의 그리드 오차가 없는 경우나, 동일 노광 장치에 있어서도, 에칭, CVD (Chemical Vapor Deposition), CMP (Chemical Mechanical Polishing) 등의 프로세스 처리 공정을 거친 각 층 사이에 있어서의 중첩에서는, 프로세스 공정이 쇼트 영역의 배열에 변형을 주기 때문에 중 첩 오차가 발생하는 경우가 있다.
이러한 경우에, 중첩 오차 (쇼트 영역의 배열 오차) 의 요인인 웨이퍼 상의 쇼트 영역의 배열 오차 변동이 선형적인 성분인 경우에는, 1 장의 웨이퍼에 있어서 미리 선택된 복수개 (3 개 이상 필요하고, 통상 7 ∼ 15 개 정도) 의 샘플 쇼트 영역 (얼라인먼트 쇼트 영역이라고도 불린다) 만의 위치 좌표를 계측하고, 이들 계측값로부터 통계 연산 처리 (최소자승법 등) 를 사용하여 웨이퍼 상의 전체 쇼트 영역의 위치 좌표 (쇼트 영역의 배열) 를 산출하는 EGA 방식의 웨이퍼 얼라인먼트에 의해 그 오차를 제거하는 것이 가능하다 (예를 들어 특허 문헌 1 참조). 그러나, 쇼트 영역의 배열 오차 변동이 비선형인 성분인 경우에는, EGA 방식의 웨이퍼 얼라인먼트에서는 이것을 제거하는 것이 곤란하다.
상기 기술한 EGA 방식의 웨이퍼 얼라인먼트의 결점을 개선하는 것으로서, 웨이퍼 상의 쇼트 영역의 배열 오차 변동이 비선형인 성분을 포함하는 경우라도, 중첩 정밀도를 양호하게 유지한 노광을 실현할 수 있는 노광 장치를 포함하는 리소그래피 시스템이 최근에 와서 제안되고 있다 (예를 들어 특허 문헌 2 참조).
그러나, 특허 문헌 2 에 기재된 리소그래피 시스템을 구성하는 노광 장치에서는, 주로 노광 장치 상호간의 스테이지의 그리드 오차의 보정을 목적으로 하여, 로트마다 로트 선두의 웨이퍼에 관하여 전체 쇼트 영역의 위치 정보를 실제로 계측하고, 그 계측에 의하여 얻은 위치 정보의 실측값을 사용하여, 웨이퍼 상의 쇼트 영역의 배열 어긋남의 선형 성분과 비선형 성분을 구하고, 그 비선형 성분을 보정값으로서 기억한다. 그리고, 동일 로트 내의 2 장째 이후의 웨이퍼에 관해서는, 통상적인 8 점 EGA 를 행하여 얻은 웨이퍼 상의 전체 쇼트 영역의 배열 좌표와, 상기 로트 선두의 웨이퍼에 관하여 얻은 비선형 성분 (보정값) 을 사용하여, 웨이퍼를 이동시키고 각 쇼트 영역에 대하여 중첩 노광하도록 되어 있다.
그런데, 웨이퍼 상의 각 쇼트 영역의 배열 어긋남은, 로트마다 변동하는 일은 거의 없는 것으로 사료되는 한편, 어느 정도의 간격으로 어느 정도 변동하는지는, 장치가 놓여지는 환경, 또는 노광 프로세스 또는 그 조합 등, 여러 요인으로 정해지는 것으로 사료되어, 그것을 예상하는 것은 곤란하다.
따라서, 특허 문헌 2 에 기재되는 바와 같이, 로트마다 로트 선두의 웨이퍼에 관하여 전체 쇼트 영역의 위치 정보를 실제로 계측하면, 전체 쇼트 영역의 위치 정보의 계측에 필요 이상의 시간을 들이는 결과가 되어, 스루풋을 필요 이상으로 저하시키고 있었다.
또한, 한 장의 웨이퍼에 관하여 생각해 보더라도, 웨이퍼 상의 장소에 따라 쇼트 영역의 배열 어긋남의 변동 상태는 상이하다는 것이 경험적으로 알려져 있다. 따라서, 로트 선두의 웨이퍼에 관하여 전체 쇼트 영역의 위치 정보를 실제로 계측하는 방법은, 효율적이라고는 하기 어렵다.
특허 문헌 1 : 미국 특허 제4,780,617호 명세서
특허 문헌 2 : 미국 특허출원공개 제2002/0042664호 명세서
발명의 개시
발명이 해결하고자 하는 과제
본 발명은, 상기 기술한 바와 같은 사정 하에서 이루어진 것으로, 그 제 1 목적은, 복수의 감광 물체 각각에 대하여 연속적 또는 단속적으로 노광을 행할 때에, 고 (高) 스루풋 처리를 행하는 것을 가능하게 하는 노광 방법 및 노광 장치, 그리고 프로그램을 제공하는 것에 있다.
본 발명의 제 2 목적은, 마이크로 디바이스의 생산성을 향상시킬 수 있는 디바이스 제조 방법을 제공하는 것에 있다.
과제를 해결하기 위한 수단
본 발명은 제 1 관점에서 보면, 복수의 감광 물체 각각에 특정 공정의 노광 처리를 행하는 노광 방법으로서, 감광 물체 상의 복수의 구획 영역에서 선택된 복수의 특정 구획 영역의 위치 정보의 실측값을 사용하여 통계 연산에 의해 상기 감광 물체 상의 복수의 구획 영역 각각의 소정 점과의 위치 맞춤에 사용되는 위치 정보의 추정값 (구획 영역 각각의 위치 어긋남량의 선형 성분이 보정된 값) 을 산출하는 제 1 공정과 ; 상기 복수의 특정 구획 영역을 적어도 포함하는 상기 감광 물체 상의 복수의 계측 구획 영역에 관하여, 소정의 인터벌로 각 계측 구획 영역의 위치 정보의 실측값과 상기 추정값에 기초하여 각 계측 구획 영역의 개별 기준 위치에 대한 위치 어긋남량 (이하, 적절히 「각 계측 구획 영역의 위치 어긋남량」 이라고 약술한다) 의 비선형 성분 (위치 정보의 실측값과 추정값의 차) 을 각각 산출하고, 그 산출된 각 계측 구획 영역의 위치 어긋남량의 비선형 성분 및 그 비선형 성분의 변동량 중 어느 하나의 크기에 기초하여 상기 감광 물체 상의 복수의 구획 영역 각각의 개별 기준 위치에 대한 위치 어긋남량 (이하, 적절히 「복수의 구획 영역 각각의 위치 어긋남량」 이라고 약술한다) 의 비선형 성분을 보정하기 위 한 보정 정보의 갱신 필요성의 유무를 판단하는 제 2 공정을 포함하는 제 1 노광 방법이다. 여기서, 위치 어긋남량의 비선형 성분의 변동량은, 전회 산출된 위치 어긋남량의 비선형 성분과 금회 산출된 위치 어긋남량의 비선형 성분에 기초하여 구해진다.
이와 같이, 본 발명의 제 1 노광 방법에서는, 소정의 인터벌로, 감광 물체 상의 복수의 구획 영역의 일부 구획 영역 (계측 구획 영역) 에 관한 위치 정보의 실측값과, 그 실측값의 전부 또는 일부에서 산출되는 계측 구획 영역의 위치 정보의 추정값에 기초하여 얻어지는 위치 어긋남량의 비선형 성분 및 그 비선형 성분의 변동량 중 어느 하나의 크기를 체크함으로써 보정 정보의 갱신 필요성의 유무를 판단하고 있다.
이 때문에, 복수의 구획 영역의 위치 어긋남량의 보정값을 갱신하기 위하여, 로트마다 적어도 1 회 감광 물체 상의 모든 구획 영역의 위치 정보의 실측값을 구하고, 그 실측값을 사용하여 복수의 구획 영역의 위치 어긋남량의 보정값을 산출하는 경우에 비교하여, 위치 정보의 계측 대상이 되는 구획 영역 수 및 그 계측 시간을 확실하게 저감시키는 것이 가능해진다.
따라서, 복수의 감광 물체 각각에 대하여 연속적 또는 단속적으로 노광할 때에, 스루풋의 향상을 도모하는 것이 가능해진다.
이 경우에 있어서, 상기 제 2 공정에서 갱신의 필요가 있다고 판단된 경우에, 상기 보정 정보를 갱신하는 갱신 처리를 행하는 제 3 공정과 ; 상기 복수의 구획 영역 각각의 상기 위치 정보의 추정값과 최신의 상기 보정 정보에 기초하여, 상기 감광 물체의 위치를 제어하여 노광을 행하는 제 4 공정을 추가로 포함하는 것으로 할 수 있다. 이러한 경우에는, 상기의 체크 결과, 보정 정보를 갱신할 필요가 있다고 판단된 경우에 보정 정보 갱신이 행해지기 때문에, 결과적으로 노광시의 감광 물체의 위치 제어성이 저하되는 일도 없다.
이 경우에 있어서, 상기 보정 정보의 갱신 처리에 있어서는, 상기 복수의 구획 영역 중, 상기 계측 구획 영역을 제외한 나머지 구획 영역의 적어도 일부 구획 영역을 새로운 계측 구획 영역으로 하고, 그 새로운 계측 구획 영역을 포함하는 모든 계측 구획 영역의 위치 정보의 실측값과 상기 추정값에 기초하여 산출되는 상기 복수의 구획 영역 각각의 상기 위치 어긋남량의 비선형 성분을 사용하여 상기 보정 정보를 갱신하는 것으로 할 수 있다.
이 경우에 있어서, 상기 새로운 계측 구획 영역은, 갱신 전의 상기 보정 정보에 포함되는 복수의 구획 영역 각각의 상기 위치 어긋남량의 비선형 성분의 평가 결과에 기초하여 결정되는 것으로 할 수도 있고, 또는 상기 새로운 계측 구획 영역은, 상기 제 2 공정에서 산출된 각 계측 구획 영역의 상기 위치 어긋남량의 비선형 성분 및 그 비선형 성분의 변동량 중 어느 하나의 평가 결과에 기초하여 결정되는 것으로 할 수도 있다.
본 발명은 제 2 관점에서 보면, 복수의 감광 물체 각각에 특정 공정의 노광 처리를 행하는 노광 방법으로서, 감광 물체 상의 복수의 구획 영역에서 선택된 복수의 특정 구획 영역의 위치 정보의 실측값을 사용하여 통계 연산에 의해 상기 감광 물체 상의 복수의 구획 영역 각각의 소정 점과의 위치 맞춤에 사용되는 위치 정보의 추정값 (구획 영역 각각의 위치 어긋남량의 선형 성분이 보정된 값) 을 산출하는 공정 ; 상기 복수의 특정 구획 영역을 적어도 포함하는 상기 감광 물체 상의 복수의 계측 구획 영역에 관하여, 각각의 위치 정보의 실측값과 상기 추정값으로부터 얻어지는 각 계측 구획 영역의 개별 기준 위치에 대한 위치 어긋남량의 비선형 성분 (위치 정보의 실측값과 추정값의 차) 을 소정의 인터벌로 평가하고, 그 평가 결과에 기초하여 추가해야 할 새로운 계측 구획 영역의 개수 및 배치 중 적어도 일방을 결정하는 공정 ; 상기 새로운 계측 구획 영역을 포함하는 모든 계측 구획 영역의 위치 정보의 실측값과 상기 추정값에 기초하여 산출되는 상기 감광 물체 상의 복수의 구획 영역 각각의 개별 기준 위치에 대한 위치 어긋남량의 비선형 성분을 사용하여, 상기 복수의 구획 영역 각각의 위치 어긋남량의 비선형 성분에 관한 보정 정보를 갱신하는 공정 ; 및 상기 복수의 구획 영역 각각의 상기 위치 정보의 추정값과 보정 후의 상기 보정 정보에 기초하여, 상기 감광 물체의 위치를 제어하여 노광을 행하는 공정을 포함하는 제 2 노광 방법이다.
이와 같이, 본 발명의 제 2 노광 방법에서는, 소정의 인터벌로 행해지는 각 계측 구획 영역의 위치 어긋남량의 비선형 성분의 평가 결과에 기초하여 추가해야 할 새로운 계측 구획 영역의 개수 및 배치 중 적어도 일방이 결정되기 때문에, 감광 물체 상의 복수의 구획 영역의 일부 (복수의 특정 구획 영역을 적어도 포함한다) 를 당초의 계측 구획 영역으로서 정할 수 있다. 또한, 상기 평가 결과가 양호한 경우 등에는, 추가해야 할 새로운 계측 구획 영역의 개수는 적어도 되는 경우가 있다. 이 때문에, 복수의 구획 영역의 위치 어긋남량의 보정값을 갱신하기 위하여, 로트마다 적어도 1 회 감광 물체 상의 모든 구획 영역의 위치 정보의 실측값을 구하고, 그 실측값을 사용하여 복수의 구획 영역의 위치 어긋남량의 보정값을 산출하는 경우에 비교하여, 위치 정보의 계측 대상이 되는 구획 영역 수 및 그 계측 시간을 저감시키는 것이 가능해진다.
또한, 소정의 인터벌로 행해지는 각 계측 구획 영역의 위치 어긋남량의 비선형 성분의 평가 결과에 기초하여 추가해야 할 새로운 계측 구획 영역의 개수 및 배치 중 적어도 일방이 결정되기 때문에, 그 평가 결과에 따라 효율적으로 계측 구획 영역의 배치를 정할 수 있다. 그리고, 그 효율적으로 배치된 새로운 계측 구획 영역을 포함하는 모든 계측 구획 영역의 위치 정보의 실측값과 상기 추정값에 기초하여 산출되는 감광 물체 상의 복수의 구획 영역 각각의 상기 위치 어긋남량의 비선형 성분을 사용하여, 상기 보정 정보가 갱신되기 때문에, 결과적으로 노광시의 감광 물체의 위치 제어성이 저하되는 일도 없다.
따라서, 복수의 감광 물체 각각에 대하여 연속적 또는 단속적으로 노광을 행할 때에, 고스루풋 또한 중첩 정밀도가 양호한 노광을 행하는 것이 가능해진다.
이 경우에 있어서, 상기 각 계측 구획 영역의 상기 위치 어긋남량의 비선형 성분의 평가는, 갱신 전의 상기 보정 정보 중의 각 계측 구획 영역의 상기 위치 어긋남량의 비선형 성분의 크기 및 편차의 정도 중 적어도 일방을 고려하여 행해지는 것으로 할 수도 있고, 또는 상기 각 계측 구획 영역의 상기 위치 어긋남량의 비선형 성분의 평가는, 소정의 평가 함수를 사용하여 행해지는 것으로 할 수도 있다. 이 밖에, 상기 감광 물체 상의 복수의 구획 영역이 미리 복수 블록으로 블록화되어 있는 경우, 상기 각 계측 구획 영역의 상기 위치 어긋남량의 비선형 성분의 평가는, 블록마다 행해지는 것으로 할 수 있다.
본 발명의 제 1, 제 2 노광 방법의 각각에서는, 상기 인터벌은 소정 수의 감광 물체마다 및 소정 시간마다 중 어느 하나인 것으로 할 수 있다. 여기서, 소정 수의 감광 물체마다는, 로트마다 또는 수 로드마다 등을 포함한다.
본 발명의 제 1, 제 2 노광 방법의 각각에서는, 상기 감광 물체 상의 복수의 계측 구획 영역으로서, 상기 복수의 특정 구획 영역만, 또는 상기 복수의 특정 구획 영역 및 나머지 구획 영역의 적어도 일부를 지정 가능한 것으로 할 수 있다.
본 발명의 제 1, 제 2 노광 방법의 각각에서는, 상기 보정 정보는 보정 맵 및 보정 함수 중 어느 하나인 것으로 할 수 있다.
본 발명은 제 3 관점에서 보면, 리소그래피 공정을 포함하는 디바이스 제조 방법으로서, 상기 리소그래피 공정에서는, 본 발명의 제 1, 제 2 노광 방법 중 어느 하나를 이용하여, 복수의 감광 물체 각각에 특정 공정의 노광 처리를 연속적 또는 단속적으로 행하는 것을 특징으로 하는 디바이스 제조 방법이다.
본 발명은 제 4 관점에서 보면, 복수의 감광 물체 각각에 특정 공정의 노광 처리를 행하는 노광 장치로서, 감광 물체를 유지하는 이동체 ; 상기 이동체 상에 유지된 감광 물체 상의 임의의 구획 영역의 위치 정보의 실측값을 검출하는 검출계 ; 상기 검출계에 의해 검출된, 상기 감광 물체 상의 복수의 구획 영역 중 복수의 특정 구획 영역의 위치 정보의 실측값을 사용하여 통계 연산에 의해 상기 복수의 구획 영역 각각의 소정 점과의 위치 맞춤에 사용되는 위치 정보의 추정값을 산출하는 연산 장치 ; 상기 특정 구획 영역을 적어도 포함하는 상기 감광 물체 상의 복수의 계측 구획 영역에 관하여, 소정의 인터벌로, 상기 검출계에 의해 검출된 각 계측 구획 영역의 위치 정보의 실측값과 상기 연산 장치에 의해 산출된 위치 정보의 추정값에 기초하여 각 계측 구획 영역의 개별 기준 위치에 대한 위치 어긋남량의 비선형 성분을 각각 산출하고, 그 산출된 각 계측 구획 영역의 상기 위치 어긋남량의 비선형 성분 및 그 비선형 성분의 변동량 중 어느 하나의 크기에 기초하여 상기 감광 물체 상의 복수의 구획 영역 각각의 개별 기준 위치에 대한 위치 어긋남량의 비선형 성분을 보정하기 위한 보정 정보의 갱신 필요성의 유무를 판단하는 판단 장치 ; 상기 판단 장치에 의해 갱신의 필요가 있다고 판단된 경우에, 상기 보정 정보를 갱신하는 처리를 행하는 갱신 장치 ; 및 상기 복수의 구획 영역 각각을 노광할 때에, 각 구획 영역의 상기 위치 정보의 추정값과 최신의 상기 보정 정보에 기초하여, 상기 이동체를 통해 상기 감광 물체의 위치를 제어하는 제어 장치를 구비하는 제 1 노광 장치이다.
이에 따르면, 판단 장치는, 소정의 인터벌로, 감광 물체 상의 복수의 구획 영역의 일부 구획 영역 (계측 구획 영역) 에 관한 위치 정보의 실측값과, 그 실측값의 전부 또는 일부에서 산출되는 계측 구획 영역의 추정값에 기초하여 얻어지는 위치 어긋남량의 비선형 성분 및 그 비선형 성분의 변동량 중 어느 하나의 크기를 체크함으로써 보정 정보의 갱신 필요성의 유무를 판단하고 있다. 이 때문에, 복수의 구획 영역의 위치 어긋남량의 보정값을 갱신하기 위하여, 로트마다 적어도 1 회 감광 물체 상의 모든 구획 영역의 위치 정보의 실측값을 구하고, 그 실측값을 사용하여 복수의 구획 영역의 위치 어긋남량의 보정값을 산출하는 경우에 비교하여, 위치 정보의 계측 대상이 되는 구획 영역 수 및 그 계측 시간을 확실하게 저감시키는 것이 가능해진다.
또한, 판단 장치에 의해 갱신의 필요가 있다고 판단된 경우에는, 갱신 장치는 상기 보정 정보를 갱신하는 처리를 행한다. 즉, 상기의 체크 결과, 보정 정보 갱신의 필요가 있다고 판단된 경우에는 보정 정보 갱신이 행해진다.
그리고, 제어 장치는 복수의 구획 영역 각각을 노광할 때에, 각 구획 영역의 상기 위치 정보의 추정값과 최신의 상기 보정 정보에 기초하여, 이동체를 통해 감광 물체의 위치를 제어한다. 이 결과, 노광시의 감광 물체 (이동체) 의 위치 제어가 양호한 정밀도로 행해진다.
따라서, 복수의 감광 물체 각각에 대하여 연속적 또는 단속적으로 노광을 행할 때에, 고스루풋 또한 중첩 정밀도가 양호한 노광을 행하는 것이 가능해진다.
이 경우에 있어서, 상기 갱신 장치는, 상기 감광 물체 상의 복수의 구획 영역 중, 상기 계측 구획 영역을 제외한 나머지 구획 영역의 적어도 일부 구획 영역을 새로운 계측 구획 영역으로서 결정하는 결정 장치와, 상기 검출계에 의해 검출된, 그 새로운 계측 구획 영역의 위치 정보의 실측값을 포함하는 모든 계측 구획 영역의 위치 정보의 실측값과 상기 추정값에 기초하여, 상기 감광 물체 상의 복수의 구획 영역 각각의 상기 위치 어긋남량의 비선형 성분을 새로운 보정 정보로서 산출하는 산출 장치를 갖는 것으로 할 수 있다.
이 경우에 있어서, 상기 결정 장치는, 상기 판단 장치에 의해 산출된 각 계 측 구획 영역의 상기 위치 어긋남량의 비선형 성분 및 그 비선형 성분의 변동량 중 어느 하나의 평가 결과에 기초하여 상기 새로운 계측 구획 영역을 결정하는 것으로 할 수 있다.
본 발명은 제 5 관점에서 보면, 복수의 감광 물체 각각에 특정 공정의 노광 처리를 행하는 노광 장치로서, 감광 물체를 유지하는 이동체 ; 상기 이동체 상에 유지된 감광 물체 상의 임의의 구획 영역의 위치 정보의 실측값을 검출하는 검출계 ; 상기 검출계에 의해 검출된, 상기 감광 물체 상의 복수의 구획 영역 중 복수의 특정 구획 영역의 위치 정보의 실측값을 사용하여 통계 연산에 의해 상기 복수의 구획 영역 각각의 소정 점과의 위치 맞춤에 사용되는 위치 정보의 추정값을 산출하는 연산 장치 ; 상기 복수의 특정 구획 영역을 적어도 포함하는 상기 감광 물체 상의 복수의 계측 구획 영역에 관하여, 소정의 인터벌로, 상기 검출계에 의해 검출된 각 계측 구획 영역의 위치 정보의 실측값과 상기 연산 장치에 의해 산출된 위치 정보의 추정값에 기초하여 각 계측 구획 영역의 개별 기준 위치에 대한 위치 어긋남량의 비선형 성분을 평가하고, 그 평가 결과에 기초하여 추가해야 할 새로운 계측 구획 영역의 개수 및 배치 중 적어도 일방을 결정하는 평가 장치 ; 상기 검출계에 의해 검출된, 그 새로운 계측 구획 영역의 위치 정보의 실측값을 포함하는 모든 계측 구획 영역의 위치 정보의 실측값과 상기 추정값에 기초하여 산출되는 상기 감광 물체 상의 복수의 구획 영역 각각의 개별 기준 위치에 대한 위치 어긋남량의 비선형 성분을 사용하여, 상기 복수의 구획 영역 각각의 상기 위치 어긋남량의 비선형 성분에 관한 보정 정보를 갱신하는 갱신 장치 ; 및 상기 복수의 구획 영역 각각을 노광할 때에, 상기 연산 장치에 의해 산출된 각 구획 영역의 상기 위치 정보의 추정값과 최신의 상기 보정 정보에 기초하여, 상기 이동체를 통해 상기 감광 물체의 위치를 제어하는 제어 장치를 구비하는 제 2 노광 장치이다.
이에 따르면, 평가 장치는, 감광 물체 상의 복수의 구획 영역의 일부 (복수의 특정 구획 영역을 적어도 포함한다) 를 당초의 계측 구획 영역으로서 정할 수 있다. 또한, 평가 장치는 상기 평가 결과가 양호한 경우 등에는, 추가해야 할 새로운 계측 구획 영역의 개수는 적게 설정한다. 이 때문에, 복수의 구획 영역의 위치 어긋남량의 보정값을 갱신하기 위하여, 로트마다 적어도 1 회 감광 물체 상의 모든 구획 영역의 위치 정보의 실측값을 구하고, 그 실측값을 사용하여 복수의 구획 영역의 위치 어긋남량의 보정값을 산출하는 경우에 비교하여, 위치 정보의 계측 대상이 되는 구획 영역 수 및 그 계측 시간을 저감시키는 것이 가능해진다. 또한, 평가 장치는 평가 결과에 따라 효율적으로 계측 구획 영역의 배치를 정할 수 있다.
그리고, 갱신 장치는, 검출계에 의해 검출된 그 새로운 계측 구획 영역 (효율적으로 배치된 계측 구획 영역) 의 위치 정보의 실측값을 포함하는 모든 계측 구획 영역의 위치 정보의 실측값과 상기 추정값에 기초하여 산출되는 상기 감광 물체 상의 복수의 구획 영역 각각의 위치 어긋남량의 비선형 성분을 사용하여, 상기 복수의 구획 영역 각각의 위치 어긋남량의 비선형 성분에 관한 보정 정보를 갱신한다.
그리고, 제어 장치는 복수의 구획 영역 각각을 노광할 때에, 산출 장치에 의해 산출된 각 구획 영역의 위치 정보의 추정값과 최신의 상기 보정 정보에 기초하여, 이동체를 통해 감광 물체의 위치를 제어한다. 이 결과, 노광시의 감광 물체 (이동체) 의 위치 제어가 양호한 정밀도로 행해진다.
따라서, 복수의 감광 물체 각각에 대하여 연속적 또는 단속적으로 노광을 행할 때에, 고스루풋 또한 중첩 정밀도가 양호한 노광을 행하는 것이 가능해진다.
이 경우에 있어서, 상기 감광 물체 상의 복수의 구획 영역이 미리 복수 블록으로 블록화되어 있는 경우, 상기 평가 장치는 상기 각 계측 구획 영역의 위치 어긋남량의 비선형 성분의 평가를 블록마다 행하는 것으로 할 수 있다.
본 발명의 제 1, 제 2 노광 장치의 각각에서는, 상기 인터벌은 소정 수의 상기 감광 물체마다 및 소정 시간마다 중 어느 하나인 것으로 할 수 있다.
본 발명의 제 1, 제 2 노광 장치의 각각에서는, 상기 감광 물체 상의 복수의 계측 구획 영역으로서 상기 복수의 특정 구획 영역만을 지정하는 제 1 모드와, 상기 감광 물체 상의 복수의 계측 구획 영역으로서 상기 복수의 특정 구획 영역 및 나머지 구획 영역의 적어도 일부를 지정하는 제 2 모드가 설정 가능하게 구성되어 있는 것으로 할 수 있다.
본 발명의 제 1, 제 2 노광 장치의 각각에서는, 상기 보정 정보는 보정 맵 및 보정 함수 중 어느 하나인 것으로 할 수 있다.
본 발명은 제 6 관점에서 보면, 복수의 감광 물체 각각에 특정 공정의 노광 처리를 행하는 노광 장치의 제어용 컴퓨터에 소정의 처리를 실행시키는 프로그램으로서, 감광 물체 상의 복수의 구획 영역에서 선택된 복수의 특정 구획 영역의 위치 정보의 실측값을 사용하여 통계 연산에 의해 상기 감광 물체 상의 상기 복수의 구획 영역 각각의 소정 점과의 위치 맞춤에 사용되는 위치 정보의 추정값을 산출하는 순서와 ; 상기 복수의 특정 구획 영역을 적어도 포함하는 상기 감광 물체 상의 복수의 계측 구획 영역에 관하여, 소정의 인터벌로 각 계측 구획 영역의 위치 정보의 실측값과 상기 추정값에 기초하여 각 계측 구획 영역의 개별 기준 위치에 대한 위치 어긋남량의 비선형 성분을 각각 산출하고, 그 산출된 각 계측 구획 영역의 상기 위치 어긋남량의 비선형 성분 및 그 비선형 성분의 변동량 중 어느 하나의 크기에 기초하여 상기 감광 물체 상의 복수의 구획 영역 각각의 개별 기준 위치에 대한 위치 어긋남량의 비선형 성분을 보정하기 위한 보정 정보의 갱신 필요성의 유무를 판단하는 순서를 상기 컴퓨터에 실행시키는 제 1 프로그램이다.
본 발명은 제 7 관점에서 보면, 복수의 감광 물체 각각에 특정 공정의 노광 처리를 행하는 노광 장치의 제어용 컴퓨터에 소정의 처리를 실행시키는 프로그램으로서, 감광 물체 상의 복수의 구획 영역에서 선택된 복수의 특정 구획 영역의 위치 정보의 실측값을 사용하여 통계 연산에 의해 상기 감광 물체 상의 복수의 구획 영역 각각의 소정 점과의 위치 맞춤에 사용되는 위치 정보의 추정값을 산출하는 순서 ; 상기 복수의 특정 구획 영역을 적어도 포함하는 상기 감광 물체 상의 복수의 계측 구획 영역에 관하여, 각각의 위치 정보의 실측값과 상기 추정값으로부터 얻어지는 각 계측 구획 영역의 개별 기준 위치에 대한 위치 어긋남량의 비선형 성분을 소정의 인터벌로 평가하고, 그 평가 결과에 기초하여 추가해야 할 새로운 계측 구획 영역의 개수 및 배치 중 적어도 일방을 결정하는 순서 ; 상기 새로운 계측 구획 영역을 포함하는 모든 계측 구획 영역의 위치 정보의 실측값과 상기 추정값에 기초하여 산출되는 상기 감광 물체 상의 복수의 구획 영역 각각의 개별 기준 위치에 대한 위치 어긋남량의 비선형 성분을 사용하여, 상기 복수의 구획 영역 각각의 상기 위치 어긋남량의 비선형 성분에 관한 보정 정보를 갱신하는 순서 ; 및 상기 복수의 구획 영역 각각의 상기 위치 정보의 추정값과 보정 후의 상기 보정 정보에 기초하여, 상기 감광 물체의 위치를 제어하여 노광을 행하는 순서를 상기 컴퓨터에 실행시키는 제 2 프로그램이다.
도면의 간단한 설명
도 1 은 본 발명의 일 실시형태에 관련된 리소그래피 시스템의 전체 구성을 개략적으로 나타내는 도면이다.
도 2 는 도 1 의 노광 장치 (1001) 의 개략 구성을 나타내는 도면이다.
도 3 은 노광 장치 (1001) 의 주제어계 (20) 를 구성하는 RAM 등의 메모리에 저장된 데이터 테이블을 나타내는 도면이다.
도 4 는 호스트 컴퓨터에 의한 웨이퍼의 노광 처리에 관한 처리 알고리즘을 개략적으로 나타내는 도면이다.
도 5 는 도 4 의 단계 208 에서 호스트 컴퓨터로부터 노광 지시를 받은 노광 장치의 주제어계의 처리 알고리즘을 개략적으로 나타내는 플로우 차트이다.
도 6 은 도 4 의 단계 210 에서 호스트 컴퓨터로부터 노광 지시를 받은 노광 장치 (1001) 의 주제어계 (20) 의 처리 알고리즘을 개략적으로 나타내는 플로우 차 트이다.
도 7 은 도 6 의 서브루틴 (406) 의 구체적인 처리 알고리즘을 나타내는 플로우 차트이다.
도 8 은 도 7 의 서브루틴 (418) 의 구체적인 처리 알고리즘을 나타내는 플로우 차트이다.
도 9 는 식 (3) 의 평가 함수의 의미 내용을 설명하기 위한 웨이퍼 (W) 의 평면도이다.
도 10 은 도 9 에 나타나는 웨이퍼에 대응하는 구체적인 평가 함수 W1(s) 의 일례를 나타내는 선도이다.
도 11 은 도 7 의 서브루틴 (422) 의 구체적인 처리 알고리즘을 나타내는 플로우 차트이다.
도 12 는 도 7 의 서브루틴 (424) 의 구체적인 처리 알고리즘을 나타내는 플로우 차트이다.
도 13 은 도 6 의 서브루틴 (408) 의 구체적인 처리 알고리즘을 나타내는 플로우 차트이다.
도 14 는 본 발명에 관련된 디바이스 제조 방법의 일 실시형태를 설명하기 위한 플로우 차트이다.
도 15 는 도 14 의 단계 704 의 상세한 처리의 일례를 나타내는 플로우 차트이다.
발명을 실시하기 위한 최선의 형태
도 1 에는 본 발명의 일 실시형태에 관련된 리소그래피 시스템 (110) 의 전체 구성이 개략적으로 나타나 있다.
이 리소그래피 시스템 (110) 은, N 대의 노광 장치 (1001, 1002, ……, 100N), 중첩 측정기 (120), 집중 정보 서버 (130), 터미널 서버 (140) 및 호스트 컴퓨터 (150) 등을 구비하고 있다. 노광 장치 (1001 ∼ 100N), 중첩 측정기 (120), 집중 정보 서버 (130) 및 터미널 서버 (140) 는, 로컬 에어리어 네트워크 (LAN ; 160) 를 통해 서로 접속되어 있다. 또한, 호스트 컴퓨터 (150) 는 터미널 서버 (140) 를 통해 LAN (160) 에 접속되어 있다. 즉, 하드웨어 구성상에서는, 노광 장치 (100i ; i = 1 ∼ N), 중첩 측정기 (120), 집중 정보 서버 (130), 터미널 서버 (140) 및 호스트 컴퓨터 (150) 의 상호간의 통신 경로가 확보되어 있다.
노광 장치 (1001 ∼ 100N) 각각은, 스텝·앤드·리피트 방식의 투영 노광 장치 (이른바 「스테퍼」) 이어도 되고, 스텝·앤드·스캔 방식의 투영 노광 장치 (이하, 「주사형 노광 장치」 라고 한다) 이어도 된다. 또, 이하의 설명에 있어서는, 노광 장치 (1001 ∼ 100N) 전부가, 투영 이미지의 변형 조정 능력을 갖는 주사형 노광 장치인 것으로 한다. 특히, 노광 장치 (1001) 는, 쇼트 영역 사이의 비선형 오차의 보정 기능 (이하, 「그리드 보정 기능」 이라고도 부른다) 을 갖는 주사형 노광 장치인 것으로 한다. 노광 장치 (1001 ∼ 100N) 의 구성 등에 관해서는 후술한다.
상기 중첩 측정기 (120) 는, 예를 들어 연속적으로 처리되는 다수 로트 (1 로트는 예를 들어 25 장) 의 웨이퍼에 관하여, 각 로트 선두의 수 장의 웨이퍼, 또는 파일럿 웨이퍼 (테스트 웨이퍼) 에 관하여 중첩 오차 측정을 실행한다.
즉, 상기의 파일럿 웨이퍼 등은, 프로세스에 따라서 소정의 노광 장치에 의해 노광이 행해지고, 이미 일 층 이상의 패턴이 형성된 상태에서, 다음 층 (레이어) 이후에서 사용될 가능성이 있는 노광 장치, 예를 들어 각 노광 장치 (100i) 에 투입되고, 그들 노광 장치에 의해 실제로 레티클의 패턴 (이 패턴에는 적어도 레지스트레이션 계측 마크 (중첩 오차 계측 마크) 가 포함된다) 이 전사되고, 그 후에 현상 등의 처리가 행해져, 중첩 측정기 (120) 에 투입된다. 그리고, 그 중첩 측정기 (120) 는 투입된 웨이퍼 상에 상이한 층의 노광시에 형성된 레지스트레이션 계측 마크 이미지 (예를 들어 레지스트 이미지) 끼리의 중첩 오차 (상대 위치 오차) 를 계측하고, 또한 소정의 연산을 행하여 중첩 오차 정보 (다음 층 (레이어) 이후에서 사용될 가능성이 있는 노광 장치의 중첩 오차 정보) 를 산출한다. 즉, 중첩 측정기 (120) 는 이와 같이 하여 각 파일럿 웨이퍼의 중첩 오차 정보를 측정한다.
중첩 측정기 (120) 의 제어계 (도시 생략) 는 LAN (160) 을 통해, 집중 정보 서버 (130) 와의 사이에서 통신을 행하여, 후술하는 중첩 오차 데이터 등의 소정의 데이터의 수수 (授受) 를 행한다. 또한, 이 중첩 측정기 (120) 는 LAN (160) 및 터미널 서버 (140) 를 통해, 호스트 컴퓨터 (150) 와의 사이에서 통신을 행한다. 또한, 중첩 측정기 (120) 는 LAN (160) 을 통해 노광 장치 (1001 ∼ 100N) 와의 사이에서 통신을 행하는 것도 가능하다.
상기 집중 정보 서버 (130) 는, 대용량 기억 장치와 프로세서로 구성된다. 대용량 기억 장치에는, 웨이퍼의 로트에 관한 노광 이력 데이터를 기억하고 있다. 노광 이력 데이터에는, 중첩 측정기 (120) 에서 사전에 각 로트의 웨이퍼에 대응하는 파일럿 웨이퍼 등에 관하여 계측된 각 노광 장치 (100i) 의 중첩 오차 정보 (이하, 「로트의 웨이퍼의 중첩 오차 정보」 라고 부른다) 외에, 각 층의 노광시에 있어서의 각 노광 장치 (100i) 의 결상 (結像) 특성의 조정 (보정) 파라미터 등이 포함되어 있다.
본 실시형태에서는, 각 로트의 웨이퍼에 관하여 특정한 층 사이의 노광시에 있어서의 중첩 오차 데이터는, 상기 기술과 같이 중첩 측정기 (120) 에 의해 파일럿 웨이퍼 (테스트 웨이퍼) 또는 각 로트 선두의 수 장의 웨이퍼에 관하여 계측된 중첩 오차 정보에 기초하여 중첩 측정기 (120) 의 제어계 (또는 그 밖의 컴퓨터) 에 의해 산출되어, 집중 정보 서버 (130) 의 대용량 기억 장치에 저장된다.
상기 터미널 서버 (140) 는, LAN (160) 에 있어서의 통신 프로토콜과 호스트 컴퓨터 (150) 의 통신 프로토콜의 상위 (相違) 를 흡수하기 위한 게이트웨이 프로세서로서 구성된다. 이 터미널 서버 (140) 의 기능에 의하여, 호스트 컴퓨터 (150) 와 LAN (160) 에 접속된 각 노광 장치 (1001 ∼ 100N) 및 중첩 측정기 (120) 사이의 통신이 가능해진다.
상기 호스트 컴퓨터 (150) 는 대형 컴퓨터로 구성되고, 본 실시형태에서는 적어도 리소그래피 공정을 포함하는 웨이퍼 처리 공정의 통괄 제어를 행하고 있다.
도 2 에는, 그리드 보정 기능을 갖는 주사형 노광 장치인 노광 장치 (1001) 의 개략 구성이 나타나 있다. 그리드 보정 기능이란, 웨이퍼 상에 이미 형성된 복수의 쇼트 영역 상호간의 위치 오차에 평행 이동 성분이고 또한 비선형인 오차 성분이 포함되어 있는 경우에, 이것을 보정하는 기능을 의미한다.
노광 장치 (1001) 는, 조명계 (10), 마스크로서의 레티클 (R) 을 유지하는 레티클 스테이지 (RST), 투영 광학계 (PL), 감광 물체로서의 웨이퍼 (W) 가 탑재되는 이동체로서의 웨이퍼 스테이지 (WST) 및 장치 전체를 통괄 제어하는 주제어계 (20) 등을 구비하고 있다.
상기 조명계 (10) 는, 예를 들어 일본 공개특허공보 2001-313250호 및 이에 대응하는 미국 특허출원공개 제2003/0025890호 등에 개시되는 바와 같이, 광원, 옵티컬 인테그레이터를 포함하는 조도 균일화 광학계, 릴레이 렌즈, 가변 ND 필터, 레티클 블라인드 (마스킹 블레이드라고도 불린다) 및 다이크로익 미러 등 (모두 도시 생략) 을 포함하여 구성되어 있다. 이 조명계 (10) 에서는, 회로 패턴 등이 그려진 레티클 (R) 상의 레티클 블라인드에서 규정된 슬릿 형상의 조명 영역을 조명광 (IL) 에 의해 거의 균일한 조도로 조명한다.
여기서, 조명광 (IL) 으로서는, KrF 엑시머 레이저광 (파장 248nm) 등의 원자외광, ArF 엑시머 레이저광 (파장 193nm), 또는 F2 레이저광 (파장 157nm) 등의 진공 자외광 등이 사용된다. 조명광 (IL) 으로서, 초고압 수은 램프로부터의 자외역의 휘선 (g 선, i 선 등) 을 사용하는 것도 가능하다. 또한, 옵티컬 인테그레이터로서는, 플라이 아이 렌즈, 로드 인테그레이터 (내면 반사형 인테그레이터) 또는 회절 광학 소자 등이 사용된다. 또, 조명계 (10) 로서 일본 공개특허공보 평6-349701호 및 이것에 대응하는 미국 특허 제5,534,970호 등에 개시되는 구성을 채용해도 된다. 본 국제 출원에서 지정한 지정국 (또는 선택한 선택국) 의 국내법령이 허용하는 한에 있어서, 상기 각 공보 및 대응하는 미국 특허 또는 미국 특허출원공개에 있어서의 개시를 원용하여 본 명세서의 기재의 일부로 한다.
상기 레티클 스테이지 (RST) 상에는, 레티클 (R) 이, 예를 들어 진공 흡착에 의해 고정되어 있다. 레티클 스테이지 (RST) 는, 예를 들어 리니어 모터 등을 포함하는 레티클 스테이지 구동부 (도시 생략) 에 의하여 조명계 (10) 의 광축 (후술하는 투영 광학계 (PL) 의 광축 (AX) 에 일치) 에 수직인 XY 평면 내에서 미소 구동 가능함과 함께, 소정의 주사 방향 (여기서는 도 1 에 있어서의 지면 내 좌우 방향인 Y 축 방향으로 한다) 으로 지정된 주사 속도로 구동 가능하게 되어 있다.
레티클 스테이지 (RST) 의 스테이지 이동면 내의 위치는, 레티클 레이저 간섭계 (이하, 「레티클 간섭계」 라고 한다 ; 16) 에 의하여, 이동경 (15) 을 통해, 예를 들어 0.5 ∼ 1nm 정도의 분해능으로 상시 검출된다. 레티클 간섭계 (16) 로부터의 레티클 스테이지 (RST) 의 위치 정보는 스테이지 제어계 (19) 및 이것을 통해 주제어계 (20) 에 공급된다. 스테이지 제어계 (19) 에서는, 주제어계 (20) 로부터의 지시에 따라, 레티클 스테이지 (RST) 의 위치 정보에 기초하여 레티클 스테이지 구동부 (도시 생략) 를 통해 레티클 스테이지 (RST) 를 구동 제어한다.
레티클 (R) 의 상방에는, 한 쌍의 레티클 얼라인먼트계 (22 ; 단, 도 1 에 있어서의 지면 내측의 레티클 얼라인먼트계는 도시 생략) 가 배치되어 있다. 이 한 쌍의 레티클 얼라인먼트계 (22) 는, 여기서는 도시가 생략되어 있지만, 조명광 (IL) 과 동일한 파장의 조명광으로 검출 대상의 마크를 조명하기 위한 낙사 (落射) 조명계와, 그 검출 대상의 마크의 이미지를 촬상하기 위한 얼라인먼트 현미경을 각각 포함하여 구성되어 있다. 얼라인먼트 현미경은 결상 광학계와 촬상 소자를 포함하고 있고, 얼라인먼트 현미경에 의한 촬상 결과는 주제어계 (20) 에 공급되고 있다. 이 경우, 레티클 (R) 로부터의 검출광을 레티클 얼라인먼트계 (22) 로 이끌기 위한 도시하지 않은 편향 미러가 자유롭게 이동할 수 있게 배치되어 있고, 노광 시퀀스가 개시되면, 주제어계 (20) 로부터의 지령에 의해, 도시하지 않은 구동 장치에 의해 편향 미러는 각각 레티클 얼라인먼트계 (22) 와 일체적으로 조명광 (IL) 의 광로 밖으로 퇴피된다.
상기 투영 광학계 (PL) 는, 레티클 스테이지 (RST) 의 도 1 에 있어서의 하방으로 배치되고, 그 광축 (AX) 의 방향이 Z 축 방향으로 되어 있다. 투영 광학계 (PL) 로서는, 예를 들어 양측 텔레센트릭한 축소계가 사용되고 있다. 이 투영 광학계 (PL) 의 투영 배율은 예를 들어 1/4, 1/5 또는 1/6 등이다. 이 때문에, 조명계 (10) 로부터의 조명광 (IL) 에 의하여 레티클 (R) 이 조명되면, 이 레티클 (R) 을 통과한 조명광 (IL) 에 의해, 투영 광학계 (PL) 를 통해 그 조명광 (IL) 의 조사 영역 (상기 기술한 조명 영역) 내의 레티클 (R) 의 회로 패턴의 축소 이미지 (부분 이미지) 가 표면에 레지스트 (감광제) 가 도포된 웨이퍼 (W) 상에 형성된다.
투영 광학계 (PL) 로서는, 도 2 에 6 장의 렌즈 소자 (13) 를 사용하여 대표적으로 나타나는 바와 같이, 복수장, 예를 들어 10 ∼ 20 장 정도의 굴절 광학 소자 (렌즈 소자 ; 13) 만으로 이루어지는 굴절계가 사용되고 있다. 이 투영 광학계 (PL) 를 구성하는 복수장의 렌즈 소자 (13) 중, 물체면측 (레티클 (R) 측) 의 복수장의 렌즈 소자는, 도시하지 않은 구동 소자, 예를 들어 피에조 소자 등에 의하여, Z 축 방향 (투영 광학계 (PL) 의 광축 방향) 으로 시프트 구동 및 XY 면에 대한 경사 방향 (즉, X 축 둘레의 회전 방향 (θx 방향) 및 Y 축 둘레의 회전 방향 (θy 방향)) 으로 구동 가능한 가동 렌즈로 되어 있다. 그리고, 결상 특성 보정 컨트롤러 (48) 가, 주제어계 (20) 로부터의 지시에 기초하여 각 구동 소자에 대한 인가 전압을 독립적으로 조정함으로써 각 가동 렌즈가 개별로 구동되고, 투영 광학계 (PL) 의 여러 결상 특성 (배율, 디스토션, 비점수차, 코마수차, 이미지면 만곡 등) 이 조정되도록 되어 있다. 또, 결상 특성 보정 컨트롤러 (48) 는, 광원을 제어하여 조명광 (IL) 의 중심 파장을 시프트시킬 수 있고, 가동 렌즈의 이동과 마찬가지로 중심 파장의 시프트에 의해 결상 특성을 조정 가능하게 되어 있다.
상기 웨이퍼 스테이지 (WST) 는 투영 광학계 (PL) 의 도 1 에 있어서의 하방에서, 도시하지 않은 베이스 상에 배치되고, 예를 들어 리니어 모터 등을 포함하는 웨이퍼 스테이지 구동부 (24) 에 의하여 Y 축 방향 및 이것에 직교하는 X 축 방향 (도 1 에 있어서의 지면 직교 방향) 으로 소정 스트로크로 구동됨과 함께, Z 축 방향, θx 방향, θy 방향 및 θz 방향 (Z 축 둘레의 회전 방향) 으로 미소 구동 가능한 구성으로 되어 있다. 이 웨이퍼 스테이지 (WST) 상에는, 웨이퍼 홀더 (25) 가 탑재되고, 이 웨이퍼 홀더 (25) 상에 웨이퍼 (W) 가 예를 들어 진공 흡착 등에 의하여 고정되어 있다.
웨이퍼 스테이지 (WST) 의 XY 평면 내에서의 위치는, 그 상면에 형성된 이동경 (17) 을 통해, 웨이퍼 간섭계 시스템 (18) 에 의하여, 예를 들어 0.5 ∼ 1nm 정도의 분해능으로 상시 검출되어 있다. 여기서, 실제로는 웨이퍼 스테이지 (WST) 상에는, 주사 방향 (Y 축 방향) 에 직교하는 반사면을 갖는 Y 이동경과 비주사 방향 (X 축 방향) 에 직교하는 반사면을 갖는 X 이동경이 형성되고, 이에 대응하여 웨이퍼 레이저 간섭계도 Y 이동경에 수직으로 간섭계 빔을 조사하는 Y 간섭계와, X 이동경에 수직으로 간섭계 빔을 조사하는 X 간섭계가 형성되어 있지만, 도 1 에서는 이들이 대표적으로 이동경 (17), 웨이퍼 레이저 간섭계 시스템 (18) 으로서 나타나 있다. 즉, 본 실시형태에서는, 웨이퍼 스테이지 (WST) 의 이동 위치를 규정하는 정지 좌표계 (직교 좌표계) 가, 웨이퍼 레이저 간섭계 시스템 (18) 의 Y 간섭계 및 X 간섭계의 측장축에 의하여 규정되어 있다. 이하에 있어서는, 이 정지 좌표계를 「스테이지 좌표계」 라고도 부른다. 또, 웨이퍼 스테이지 (WST) 의 단면을 경면 (鏡面) 가공하고, 상기 기술한 간섭계 빔의 반사면 (Y 이동경, X 이동경의 반사면에 상당) 을 형성해도 된다.
웨이퍼 스테이지 (WST) 의 스테이지 좌표계 상에 있어서의 위치 정보 (또는 속도 정보) 는 스테이지 제어계 (19) 및 이것을 통해 주제어계 (20) 에 공급된다. 스테이지 제어계 (19) 에서는, 주제어계 (20) 의 지시에 따라 웨이퍼 스테이지 (WST) 의 상기 위치 정보 (또는 속도 정보) 에 기초하여, 웨이퍼 스테이지 구동부 (24) 를 통해 웨이퍼 스테이지 (WST) 를 제어한다.
또한, 웨이퍼 스테이지 (WST) 상의 웨이퍼 (W) 의 근방에는, 기준 마크판 (FM) 이 고정되어 있다. 이 기준 마크판 (FM) 의 표면은, 웨이퍼 (W) 의 표면과 동일한 높이에 설정되고, 이 표면에는 얼라인먼트계의 베이스 라인 계측용의 기준 마크 및 레티클 얼라인먼트용의 기준 마크, 그 밖의 기준 마크가 형성되어 있다.
투영 광학계 (PL) 의 측면에는, 오프 액시스 방식의 얼라인먼트계 (AS) 가 형성되어 있다. 이 얼라인먼트계 (AS) 로서는, 여기서는, 예를 들어 일본 공개특허공보 평2-54103호 및 이것에 대응하는 미국 특허 제4,962,318호 등에 개시되어 있는 바와 같은 (Field Image Alignment (FIA) 계) 의 얼라인먼트 센서가 사용되고 있다. 이 얼라인먼트계 (AS) 는, 소정의 파장폭을 갖는 조명광 (예를 들어 백색광) 을 웨이퍼에 조사하고, 웨이퍼 상의 얼라인먼트 마크의 이미지와, 웨이퍼와 공액인 면 내에 배치된 지표판 상의 지표 마크의 이미지를, 대물 렌즈 등에 의하여 촬상 소자 (CCD 카메라 등) 의 수광면 상에 결상하여 검출하는 것이다. 얼라인먼트계 (AS) 는 얼라인먼트 마크 (및 기준 마크판 (FM) 상의 기준 마크) 의 촬상 결과를 주제어계 (20) 를 향하여 출력한다. 본 국제 출원에서 지정한 지정국 (또는 선택한 선택국) 의 국내법령이 허용하는 한에 있어서, 상기 공보 및 미국 특허에 있어서의 개시를 원용하여 본 명세서의 기재의 일부로 한다.
노광 장치 (1001) 에는, 또한, 투영 광학계 (PL) 의 최선 결상면을 향하여 복수의 슬릿 이미지를 형성하기 위한 결상 광속을 광축 (AX) 방향에 대하여 경사 방향으로부터 공급하는 도시하지 않은 조사 광학계와, 그 결상 광속의 웨이퍼 (W) 의 표면에서의 각 반사 광속을 각각 슬릿을 통해 수광하는 도시하지 않은 수광 광학계로 이루어지는 사입사 (斜入射) 방식의 다점 포커스 검출계가, 투영 광학계 (PL) 를 지탱하는 지지부 (도시 생략) 에 고정되어 있다. 이 다점 포커스 검출계로서는, 예를 들어 일본 공개특허공보 평6-283403호 및 이것에 대응하는 미국 특허 제5,448,332호 등에 개시되는 것과 동일한 구성인 것이 사용되고, 스테이지 제어계 (19) 는 이 다점 포커스 검출계로부터의 웨이퍼 위치 정보에 기초하여 웨이퍼 스테이지 (WST) 를, 웨이퍼 스테이지 구동부 (24) 를 통해 Z 축 방향 및 경사 방향 (θx 방향 및 θy 방향) 으로 미소 구동하여, 웨이퍼 (W) 의 포커스·레벨링 제어를 행한다. 본 국제 출원에서 지정한 지정국 (또는 선택한 선택국) 의 국내법령이 허용하는 한에 있어서, 상기 공보 및 미국 특허에 있어서의 개시를 원용하여 본 명세서의 기재의 일부로 한다.
주제어계 (20) 는, 마이크로 컴퓨터 또는 워크 스테이션을 포함하여 구성되고, 장치의 구성 각 부를 통괄하여 제어한다. 주제어계 (20) 는, 상기 기술한 LAN (160) 에 접속되어 있다. 또한, 본 실시형태에서는, 주제어계 (20) 가 구비하는 하드 디스크 등의 기억 장치에는, 노광 장치 (1001) 가 사용할 가능성이 있는 쇼트 맵 데이터와 샘플 쇼트 영역의 선택의 모든 조합에 관하여, 각 쇼트 영역의 개별 기준 위치 (예를 들어 설계 위치) 로부터의 위치 어긋남량의 비선형 성분을 보정하기 위한 보정 정보로 이루어지는 보정 맵이 데이터 베이스로서 저장되어 있다. 상기 보정 맵은, 후술하는 제 2 그리드 보정 기능에서 사용된다. 또한, 주제어계 (20) 를 구성하는 RAM 등의 메모리에는, 도 3 에 나타나는 바와 같은 데이터 테이블이 저장되어 있다. 이 데이터 테이블의 제 1 행은, 각각의 타이틀이 기억된 영역에서 데이터의 고쳐 쓰기가 행해지지 않는 영역이다. 제 2 행 이하는, 데이터가 저장되는 영역에서 데이터의 고쳐 쓰기가 행해지는 영역이다. 이 데이터 테이블의 제 1 열, 즉 공정명 n 의 영역은, 호스트 컴퓨터 (150) 로부터 주어지는 노광 조건의 설정 프로그램인 프로세스 프로그램에 대응하는 공정명 A, B, C, …… 이 저장되는 영역이다. 본 실시형태에서는, 이 공정명 n 의 영역에는, 일련의 노광 처리에서 지정될 가능성이 있는 공정명 A, B, C, …… 이 미리 저장되어 있는 것으로 한다. 이 데이터 테이블의 제 2 열은, 대상 로트가 공정명 n (A, B, C, ……) 의 처리가 행해지는 몇 번째의 로트인지를 나타내는 파라미터 (Mn) 의 값이 저장되는 영역으로, 초기 상태에서는 모두 1 이 설정되어 있다. 또한, 데이터 테이블의 제 3 열은, 후술하는 제 1 그리드 보정 기능에서 사용되는 보정 맵의 저장 영역으로, 초기 상태에서는 아무 것도 저장되어 있지 않다.
또, 상기의 데이터 베이스 (제 2 그리드 보정 기능에서 사용되는 복수 종류의 보정 맵으로 이루어진다) 의 작성은, 기준 웨이퍼의 작성 그리고 기준 웨이퍼 상의 마크의 계측 및 마크 계측 결과에 기초하는 데이터 베이스의 작성 순서로 행해지지만, 그 구체적인 방법에 관해서는 상기 기술한 미국 특허출원공개 제2002/0042664호 명세서에 상세하게 개시되어 있다. 본 국제 출원에서 지정한 지정국 (또는 선택한 선택국) 의 국내법령이 허용하는 한에 있어서, 상기 공보 및 미국 특허출원공개에 있어서의 개시를 원용하여 본 명세서의 기재의 일부로 한다.
그 밖의 노광 장치 (1002 ∼ 100N) 도, 주제어계의 알고리즘의 일부가 상이한 점, 그리고 하드 디스크 등의 기억 장치에 상기 데이터 베이스가 저장되어 있지 않은 점 및 RAM 등의 메모리에 데이터 테이블이 준비되어 있지 않은 점을 제외하고, 노광 장치 (1001) 와 동일하게 구성되어 있다.
다음으로, 본 실시형태의 리소그래피 시스템 (110) 에 의한 웨이퍼의 노광 처리에 관하여, 도 4 ∼ 도 13 에 기초하여 설명한다.
도 4 에는, 리소그래피 시스템 (110) 을 구성하는 호스트 컴퓨터 (150) 에 의한 웨이퍼의 노광 처리에 관한 처리 알고리즘이 개략적으로 나타나 있다.
또, 도 4 에 나타나는 노광 처리에 관한 알고리즘 실행의 전제로서, 노광 대상이 되는 웨이퍼 (W) 는, 이미 1 층 이상의 노광이 행해진 것이고, 또한 웨이퍼 (W) 의 노광 이력 데이터 등은 집중 정보 서버 (130) 에 기억되어 있는 것으로 한다. 또한, 집중 정보 서버 (130) 에는, 중첩 계측기 (120) 로 계측된 노광 대상 로트의 웨이퍼 (W) 와 동일한 프로세스를 거친 파일럿 웨이퍼의 중첩 오차 정보 도 저장되어 있는 것으로 한다.
우선, 단계 202 에 있어서, 호스트 컴퓨터 (150) 는 로트의 웨이퍼의 처리를 개시해야 할 상황이 되는 것을 기다린다. 그리고, 로트의 웨이퍼의 처리를 개시해야 할 상황이 되면, 호스트 컴퓨터 (150) 는, 다음 단계 204 로 진행하여 노광 대상 로트의 웨이퍼의 중첩 오차 정보를 터미널 서버 (140) 및 LAN (160) 을 통해 집중 정보 서버 (130) 로부터 판독, 해석한다.
다음 단계 206 에 있어서, 호스트 컴퓨터 (150) 는 상기의 해석 결과, 그 로트의 웨이퍼 (W) 에서는, 쇼트간 오차는 소정값을 초과하는 비선형 성분을 포함하는지의 여부를 판단한다.
여기서, 쇼트간 오차란, 웨이퍼 (W) 상에 이미 형성된 복수의 쇼트 영역 상호간의 위치 오차에 평행 이동 성분이 포함되는 것과 같은 경우를 의미한다. 따라서, 웨이퍼 (W) 상의 쇼트 영역 상호간의 위치 오차가, 웨이퍼 열팽창, 스테이지 그리드의 호기 사이 (노광 장치 사이) 차 및 프로세스에 기인하는 변형 성분의 어느 것도 거의 포함하지 않는 경우에만 쇼트간 오차를 무시할 수 있지만, 통상적으로는 상기 중 어느 하나의 변형 성분을 포함하기 때문에 쇼트간 오차는 무시할 수 없다.
그리고, 단계 206 에 있어서의 판단이 부정된 경우, 즉 쇼트간 오차는 있지만 선형 성분 (웨이퍼 배율 오차, 웨이퍼 직교도 오차, 웨이퍼 회전 오차 등) 만이 포함되는 경우에는, 단계 208 로 이행한다. 이 단계 208 에서는, 호스트 컴퓨 터 (150) 는, 노광 장치 (1001 ∼ 100N) 중에서 선택한 1 대의 노광 장치 (100j ; 여기서는, 설명을 간략화하기 위하여, 이 노광 장치 (100j) 는 미리 정해져 있는 것으로 한다) 의 주제어계에 EGA 방식의 웨이퍼 얼라인먼트 및 노광을 지시한다. 이 때, 호스트 컴퓨터 (150) 는, 노광 장치 (100j) 의 주제어계에 노광 지시를 행함과 함께 노광 조건의 설정 지시 정보에 대응하는 프로세스 프로그램 (노광 조건의 설정 파일) 명을 지정한다.
이 한편, 상기 단계 206 에 있어서의 판단이 긍정된 경우, 호스트 컴퓨터 (150) 는 단계 210 으로 이행하고, 그리드 보정 기능을 갖는 노광 장치 (본 실시형태에서는 노광 장치 (1001)) 를 선택하여 노광을 지시한다. 이 때, 호스트 컴퓨터 (150) 는 노광 조건의 설정의 지시도 더불어 행한다.
어느 쪽의 경우도, 그 후 단계 212 로 진행하여 로트의 웨이퍼의 노광 처리가 종료되는 것을 기다린다.
그리고, 상기 단계 208 또는 단계 210 에서 노광을 지시한 노광 장치로부터 노광 종료가 통지되면, 그 로트에 관한 처리가 종료된 것으로 판단하여, 단계 202 로 되돌아가고, 로트의 웨이퍼의 처리를 개시해야 할 상황이 되는 것을 기다린다.
그리고, 로트의 웨이퍼의 처리를 개시해야 할 상황이 되면, 상기 단계 204 이하의 처리를 반복한다.
즉, 이와 같이 하여, 호스트 컴퓨터 (150) 에서는 복수의 로트의 웨이퍼에 관한 처리를 반복한다.
그런데, 상기 단계 206 의 판단이 부정된 경우에, 상기 단계 208 에 있어서 호스트 컴퓨터 (150) 로부터 노광 지시를 받은 노광 장치 (100j) 의 주제어계에서는, 도 5 의 플로우 차트에 나타나는 처리 알고리즘에 따라서 처리를 행한다.
우선, 단계 302 에 있어서, 호스트 컴퓨터 (150) 로부터 상기 단계 208 에 있어서 지정된 프로세스 프로그램 파일을 선택하고, 이에 따라서 노광 조건을 설정한다.
다음 단계 304 에서는, 도시하지 않은 레티클 로더를 사용하여 레티클 스테이지 (RST) 상에 레티클 (R) 을 로드한다.
다음 단계 306 에서는, 기준 마크판 (FM) 을 사용하면서 레티클 얼라인먼트 및 얼라인먼트계 (AS) 의 베이스 라인 계측을 행한다. 또, 베이스 라인의 계측 수법에 관해서는, 예를 들어 일본 공개특허공보 평7-176468호 및 이것에 대응하는 미국 특허 5,646,413호 등에 개시되어 있다. 본 국제 출원에서 지정한 지정국 (또는 선택한 선택국) 의 국내법령이 허용하는 한에 있어서, 상기 공보 및 미국 특허에 있어서의 개시를 원용하여 본 명세서의 기재의 일부로 한다.
레티클 얼라인먼트 및 얼라인먼트계 (AS) 의 베이스 라인 계측이 종료되면, 단계 308 로 진행한다.
단계 308 에서는, 노광 대상의 웨이퍼 (W) 가 로트 (1 로트는 예를 들어 25 장) 내의 몇 장째인지를 나타내는 (로트 내의 웨이퍼 번호를 나타낸다) 도시하지 않은 카운터의 카운트값 (m) 을 「1」 로 초기화 (m ← 1) 한 후, 단계 310 으로 진행한다.
다음 단계 310 에서는, 도시하지 않은 웨이퍼 로더를 사용하여 도 2 의 웨이퍼 홀더 (25) 상의 노광 처리 완료된 웨이퍼 (편의상 「W'」 라고 부른다) 와 미노광의 웨이퍼 (W) 를 교환한다. 단, 웨이퍼 홀더 (25) 상에 웨이퍼 (W') 가 없는 경우에는, 미노광의 웨이퍼 (W) 를 웨이퍼 홀더 (25) 상에 단순히 로드한다.
다음 단계 312 에서는, 그 웨이퍼 홀더 (25) 상에 로드된 웨이퍼 (W) 의 서치 얼라인먼트를 행한다. 구체적으로는, 예를 들어, 웨이퍼 (W) 중심에 관하여 거의 대칭으로 주변부에 위치하는 적어도 2 개의 서치 얼라인먼트 마크 (이하, 「서치 마크」 라고 약술한다) 를 얼라인먼트계 (AS) 를 사용하여 검출한다. 이들 2 개의 서치 마크의 검출은, 각각의 서치 마크가 얼라인먼트계 (AS) 의 검출 시야 내에 위치하도록, 웨이퍼 스테이지 (WST) 를 순차 위치 결정하면서, 또한 얼라인먼트계 (AS) 의 배율을 저배율로 설정하여 행해진다. 그리고, 얼라인먼트계 (AS) 의 검출 결과 (얼라인먼트계 (AS) 의 지표 중심과 각 서치 마크의 상대 위치 관계) 와 각 서치 마크 검출시의 웨이퍼 간섭계 시스템 (18) 의 계측값에 기초하여 2 개의 서치 마크의 스테이지 좌표계 상의 위치 좌표를 구한다. 그리고 나서, 2 개의 마크의 위치 좌표로부터 웨이퍼 (W) 잔류 회전 오차를 산출하여, 이 잔류 회전 오차가 거의 영이 되도록 웨이퍼 홀더 (25) 를 미소 회전시킨다. 이로써, 웨이퍼 (W) 의 서치 얼라인먼트가 종료된다.
다음 단계 314 에서는, 통상적인 EGA (예를 들어 8 점 EGA) 에 의해, 웨이퍼 (W) 상의 전체 쇼트 영역의 위치 좌표 (위치 정보의 추정값) 를 산출한다. 보 다 구체적으로는, 상기 기술과 마찬가지로 얼라인먼트계 (AS) 를 사용하여 (단, 얼라인먼트계 (AS) 의 배율을 고배율로 설정하여), 웨이퍼 (W) 상의 미리 선택된 8 개의 쇼트 영역 (샘플 쇼트 영역) 에 부설된 웨이퍼 마크를 계측하고, 그들 샘플 쇼트 영역의 스테이지 좌표계 상에 있어서의 위치 좌표를 구한다. 그리고, 그 구한 샘플 쇼트 영역의 위치 좌표와 각각의 설계상의 위치 좌표에 기초하여 예를 들어 상기 기술한 미국 특허 제4,780,617호 명세서에 개시되는 바와 같은 최소자승법을 사용한 통계 연산 (후술하는 식 (2) 의 EGA 연산) 을 행하고, 후술하는 식 (1) 의 6 개의 파라미터 (a ∼ f ; 웨이퍼 상의 각 쇼트 영역의 배열에 관한 로테이션 (θ), X 축, Y 축 방향의 스케일링 (Sx, Sy), 직교도 (Ort) 및 X 축, Y 축 방향의 오프셋 (Ox, Oy) 의 6 개의 파라미터에 대응) 를 산출함과 함께, 이 산출 결과와 쇼트 영역의 설계상의 위치 좌표에 기초하여, 전체 쇼트 영역의 위치 좌표 (배열 좌표) 를 산출한다. 그리고, 그 산출 결과를 내부 메모리의 소정 영역에 기억한 후, 단계 316 으로 진행한다.
여기서, 전후에 설명하지만, EGA 방식으로 행해지고 있는 통계 처리 방법에 관하여 간단하게 설명한다. 웨이퍼 상의 h (h 는, h ≥ 3 인 정수, 예를 들어 h = 8) 개의 특정 쇼트 영역 (샘플 쇼트 영역) 의 설계상의 배열 좌표를 (Xn, Yn) (n = 1, 2, ……, h) 으로 하고, 설계상의 배열 좌표로부터의 어긋남 (ΔXn, ΔYn) 에 관하여 다음 식 (1) 로 나타나는 바와 같은 선형 모델을 가정한다.
Figure 112006037335540-pct00001
또한, h 개의 샘플 쇼트 영역 각각의 실제 배열 좌표의 설계상의 배열 좌표로부터의 어긋남 (계측값) 을 (ΔXn, ΔYn) 으로 하였을 때, 이 어긋남과 상기 선형 모델에서 가정된 설계상의 배열 좌표로부터의 어긋남의 나머지의 차의 제곱합 (E) 은 다음 식 (2) 로 표시된다.
Figure 112006037335540-pct00002
그래서, 이 식을 최소로 하는 파라미터 (a, b, c, d, e, f) 를 구하면 된다. EGA 방식에서는, 상기와 같이 하여 산출된 파라미터 (a ∼ f) 와 설계상의 배열 좌표에 기초하여, 웨이퍼 상의 전체 쇼트 영역의 배열 좌표 (추정값) 가 산출되게 된다.
다음 단계 316 에서는, 상기 기술한 내부 메모리 내의 소정 영역에 기억된 전체 쇼트 영역의 배열 좌표와, 미리 계측한 베이스 라인량에 기초하여, 웨이퍼 (W) 상의 각 쇼트 영역의 노광을 위한 가속 개시 위치 (주사 개시 위치) 에 웨이퍼 (W) 를 순차 스테핑시키는 동작과, 레티클 스테이지 (RST) 와 웨이퍼 스테이지 (WST) 를 주사 방향으로 동기 이동시키면서 레티클 패턴을 웨이퍼 상에 전사하는 동작을 반복하여, 스텝·앤드·스캔 방식에 의한 노광 동작을 행한다. 이로써, 로트 선두 (로트 내의 제 1 장째) 의 웨이퍼 (W) 에 대한 노광 처리가 종료된다. 이 때에, 웨이퍼 (W) 상에 이미 형성된 쇼트 영역 사이의 위치 오차 (선형 성분) 에 기인하는 중첩 오차가 보정된 고정밀도인 노광이 행해진다.
다음 단계 318 에서는, 상기 기술한 카운터의 카운트값 m > 24 가 성립하는지의 여부를 판단함으로써, 로트 내의 모든 웨이퍼의 노광이 종료되었는지의 여부를 판단한다. 여기서는, m = 1 이기 때문에 이 판단은 부정되고, 단계 320 으로 진행하여, 카운터의 카운트값 (m) 을 인크리먼트 (m ← m + 1) 한 후, 단계 310 으로 되돌아간다.
단계 310 에 있어서, 도시하지 않은 웨이퍼 로더를 사용하여 도 2 의 웨이퍼 홀더 (25) 상의 노광 처리 완료된 로트 선두의 웨이퍼와 로트 내의 제 2 장째의 웨이퍼 (W) 를 교환한다. 그 후, 상기 기술한 단계 312 ∼ 316 의 처리를 제 2 장째의 웨이퍼 (W) 에 대하여 반복한다.
상기와 같이 하여, 로트 내의 제 2 장째의 웨이퍼 (W) 의 노광이 종료되면, 단계 318 로 진행하여, 로트 내의 모든 웨이퍼의 노광이 종료하였는지의 여부를 판단하지만, 여기에 있어서의 판단은 부정되고, 단계 320 에서 카운터의 카운트값 (m) 을 인크리먼트 (m ← m + 1) 한 후, 이후 로트 내의 모든 웨이퍼의 노광이 종료될 때까지, 상기 단계 310 ∼ 단계 320 의 루프의 처리, 판단이 반복하여 행해진다.
그리고, 로트 내의 모든 웨이퍼의 노광이 종료되고, 단계 318 의 판단이 긍정되면, 단계 322 로 이행하고, LAN (160) 및 터미널 서버 (140) 를 통해 노광 종 료를 호스트 컴퓨터 (150) 에 통지한 후, 일련의 처리를 종료한다.
이 한편, 상기 기술한 도 4 의 단계 206 의 판단이 긍정된 경우에, 상기 단계 210 에 있어서 호스트 컴퓨터 (150) 로부터 노광 지시를 받은 노광 장치 (1001) 의 주제어계 (20) 에서는, 도 6 의 플로우 차트로 나타나는 처리 알고리즘에 따라서 처리를 행한다.
즉, 우선 단계 402 에 있어서, LAN (160) 을 통해 집중 정보 서버 (130) 에 그 노광 대상 로트를 중심으로 하는 전후의 복수 로트에 대한 자기 장치에 관한 로트의 웨이퍼의 중첩 오차 정보를 문의한다. 그리고, 다음 단계 404 에 있어서, 상기 문의의 회답으로서, 집중 정보 서버 (130) 로부터 입수한 복수 로트에 관한 중첩 오차 정보에 기초하여, 연속하는 로트간의 중첩 오차를 소정의 임계값과 비교하여 중첩 오차가 큰 지의 여부를 판단하고, 이 판단이 긍정된 경우에는, 제 1 그리드 보정 기능을 이용하여 중첩 오차를 보정하고, 노광을 행하는 서브루틴 (406) 으로 진행한다.
이 서브루틴 (406) 에서는, 우선 도 7 의 단계 412 에 있어서, 상기 기술한 단계 210 에 있어서, 호스트 컴퓨터 (150) 로부터 노광 지시와 함께 주어진 노광 조건의 설정 지시 정보에 대응하는 프로세스 프로그램 파일로부터 공정명 n 을 취득한다.
여기서, 공정명 n 은 상기 기술한 도 3 의 데이터 테이블 내에 저장되어 있는 일련의 노광 처리에서 지정될 가능성이 있는 공정명 A, B, C, …… 중 어느 하나가 된다. 여기서는, 공정명 n 으로서 공정명 A 를 취득한 것으로 한다.
다음 단계 414 에서는, 단계 412 에서 취득한 공정명 n (여기서는 공정명 A) 에 대응하는 데이터 테이블 내의 파라미터 (Mn) 의 값 (이 경우 「1」) 을, 로트의 순서를 나타내는 카운터의 카운트값 (M) 으로 설정한다 (M ← Mn (= 1)).
다음 단계 416 에서는 카운트값 (M) 이 1 인지의 여부, 즉 노광 대상의 로트가, 취득한 공정명 n (이 경우, 공정명 A) 의 처리가 행해지는 최초의 로트인지의 여부를 판단한다. 이 경우, M = 1 이기 때문에 여기서의 판단은 긍정되고, 단계 418 의 맵 작성이 있는 로트 처리의 서브루틴으로 이행한다.
이 서브루틴 (418) 에서는, 도 8 의 플로우 차트에 나타나는 처리가 행해진다. 전제로서, 로트 내의 웨이퍼 번호를 나타내는 도시하지 않은 카운터의 카운트값 (m) 은 「1」 로 초기화되어 있는 것으로 한다.
이 서브루틴 (418) 에서는, 우선 서브루틴 (432) 에 있어서 소정의 준비 작업을 행한다. 이 서브루틴 (432) 에서는, 도시는 생략되어 있지만, 상기 기술한 도 5 의 단계 302, 304, 306 과 동일하게 하여, 노광 조건의 설정, 레티클 (R) 의 로드, 그리고 레티클 얼라인먼트 및 얼라인먼트계 (AS) 의 베이스 라인 계측이 행해진다.
다음 단계 434 에서는, 도시하지 않은 웨이퍼 로더를 사용하여 도 1 의 웨이퍼 홀더 (25) 상의 노광 처리 완료된 웨이퍼 (편의상 「W'」 라고 부른다) 와 미노광의 웨이퍼 (W) 를 교환한다. 단, 웨이퍼 홀더 (25) 상에 웨이퍼 (W') 가 없는 경우에는, 미노광의 웨이퍼 (W) 를 웨이퍼 홀더 (25) 상에 단순히 로드한다.
다음 단계 436 에서는, 그 웨이퍼 홀더 (25) 상에 로드된 웨이퍼 (W) 의 서치 얼라인먼트를 상기 기술과 동일하게 하여 행한다.
다음 단계 438 에서는, 상기 기술한 카운터의 카운트값 (m) 이, 소정의 값 (g) 이상인지의 여부를 판단함으로써, 웨이퍼 홀더 (25 ; 웨이퍼 스테이지 (WST)) 상의 웨이퍼 (W) 가 로트 내의 제 g 장째 이후의 웨이퍼인지의 여부를 판단한다. 여기서는, 소정의 값 (g) 은 2 이상이고 25 이하인 임의의 정수로 미리 설정된다. 이하에 있어서는, 설명의 편의상으로부터 g = 2 인 것으로 하여 설명을 행한다. 이 경우, 웨이퍼 (W) 는 로트 선두 (제 1 장째) 의 웨이퍼이기 때문에, 초기 설정에 의해 m = 1 로 되어 있으므로, 단계 438 의 판단은 부정되고, 다음 단계 440 으로 진행한다.
단계 440 에서는, 상기 기술한 샘플 쇼트 영역의 위치 좌표의 계측과 동일하게 하여 웨이퍼 (W) 상의 전체 쇼트 영역의 스테이지 좌표계 상에 있어서의 위치 좌표를 계측한다.
다음 단계 442 에서는, 상기 단계 440 에서 계측한 쇼트 영역의 위치 좌표와 각각의 설계상의 위치 좌표에 기초하여 상기 기술한 식 (2) 의 EGA 연산을 행하고, 상기 기술한 식 (1) 의 6 개의 파라미터 (a ∼ f) 를 산출함과 함께, 이 산출 결과와 쇼트 영역의 설계상의 위치 좌표에 기초하여, 전체 쇼트 영역의 위치 좌표 (배열 좌표) 를 산출하고, 그 산출 결과, 즉 웨이퍼 (W) 상의 전체 쇼트 영역의 위치 좌표 (추정값) 를 내부 메모리의 소정 영역에 기억한다.
다음 단계 444 에서는, 웨이퍼 (W) 상의 전체 쇼트 영역에 관하여, 위치 어긋남량의 선형 성분과 비선형 성분을 분리한다. 구체적으로는, 상기 단계 442 에서 산출한 각 쇼트 영역의 위치 좌표 (위치 정보의 추정값) 와 각각의 설계상의 위치 좌표의 차를 위치 어긋남량의 선형 성분으로서 산출함과 함께, 상기 기술한 단계 440 에서 실제로 계측한 전체 쇼트 영역의 위치 좌표 (위치 정보의 실측값) 와 각각의 설계상의 위치 좌표의 차에서 상기 선형 성분을 뺀 나머지의 차를 비선형 성분으로서 산출한다.
다음 단계 446 에서는, 상기 단계 444 의 처리 중에 산출한, 전체 쇼트 영역의 개별 기준 위치 (설계상의 위치) 에 대한 위치 어긋남량 (실제로 계측된 각 쇼트 영역의 위치 좌표 (위치 정보의 실측값) 와 각각의 설계상의 위치 좌표의 차) 과, 소정의 평가 함수에 기초하여 웨이퍼 (W) 의 비선형 변형을 평가하고, 이 평가 결과에 기초하여 보완 함수 (위치 어긋남량 (배열 어긋남) 의 비선형 성분을 표현하는 함수) 를 결정한다.
이하, 이 단계 446 의 처리에 관하여, 도 9 및 도 10 을 참조하여 상술한다.
상기의 웨이퍼 (W) 의 비선형 변형, 즉 비선형 성분의 규칙성 및 그 정도를 평가하기 위한 평가 함수로는, 예를 들어 다음 식 (3) 으로 나타나는 평가 함수 W1(s) 가 사용된다.
Figure 112006037335540-pct00003
도 9 에는, 상기 식 (3) 의 평가 함수의 의미 내용을 설명하기 위한 웨이퍼 (W) 의 평면도가 나타나 있다. 도 9 에 있어서, 웨이퍼 (W) 상에는 복수의 구획 영역으로서의 쇼트 영역 (SA ; 총 쇼트 영역 수 N) 이 매트릭스 형상 배치로 형성되어 있다. 각 쇼트 영역 내에 화살표로 나타나는 벡터 (rk ; k = 1, 2, ……, i, ……N) 는, 각 쇼트 영역의 위치 어긋남량 (배열 어긋남) 을 나타내는 벡터이다.
상기 식 (3) 에 있어서, N 은 웨이퍼 (W) 내의 쇼트 영역의 총 수를 나타내고, k 는 각각의 쇼트 영역의 쇼트 번호를 나타낸다. 또한, s 는 도 9 에 나타나는 주목하는 쇼트 영역 (SAk) 의 중심을 중심으로 하는 원의 반경을 나타내고, i 는 주목하는 k 번째의 쇼트 영역으로부터 반경 (s) 의 원 내에 존재하는 쇼트 영역의 쇼트 번호를 나타낸다. 또한, 식 (3) 중의 i ∈ s 가 주어진 Σ 은, 주목하는 k 번째의 쇼트 영역 (SAk) 으로부터 반경 (s) 의 원 내에 존재하는 전체 쇼트 영역에 관한 총합을 취하는 것을 의미한다.
이제, 상기 식 (3) 의 우변의 괄호 내 부분의 함수를 다음 식 (4) 와 같이 정의한다.
Figure 112006037335540-pct00004
상기 식 (4) 의 함수 fk(s) 가 의미하는 바는, 주목하는 쇼트 영역의 위치 어긋남 벡터 (rk ; 제 1 벡터) 와, 그 주위 (반경 (s) 의 원 내) 의 쇼트 영역에 있어서의 위치 어긋남 벡터 (ri) 가 이루는 각도를 θik 로 한 경우의 cosθik 의 평균값이다. 따라서, 이 함수 fk(s) 의 값이 1 이면, 반경 (s) 의 원 내의 전체 쇼트 영역에 있어서의 위치 어긋남 벡터는, 모두 동일한 방향을 향하고 있게 된다. 0 이면, 반경 (s) 의 원 내의 전체 쇼트 영역에 있어서의 위치 어긋남 벡터는 서로 완전히 랜덤인 방향을 향하고 있다는 것이 된다. 즉, 함수 fk(s) 는 주목하는 쇼트 영역의 위치 어긋남 벡터 (rk) 와 그 주위의 복수의 쇼트 영역의 각 위치 어긋남 벡터 (ri) 의 방향에 관한 상관을 구하기 위한 함수이고, 이것은 웨이퍼 (W) 상의 부분 영역에 관하여 비선형 변형의 규칙성이나 정도를 평가하기 위한 평가 함수이다.
상기 식 (3) 의 평가 함수 W1(s) 는, 주목하는 쇼트 영역 (SAk) 을 쇼트 영역 SA1 에서 SAN 으로 순차 변경하였을 때의 함수 fk(s) 의 가산 평균과 같다.
도 10 에는, 도 9 에 나타나는 웨이퍼 (W) 에 대응하는 구체적인 평가 함수 W1(s) 의 일례가 나타나 있다. 이 도 10 으로부터 분명하듯이, 평가 함수 W1(s) 에 의하면, s 의 값에 따라 W1(s) 의 값이 변화하기 때문에, 경험칙에 의지하지 않고, 웨이퍼 (W) 의 비선형 변형의 규칙성이나 정도를 평가할 수 있어, 이 평가 결과를 사용함으로써 다음과 같이 하여 위치 어긋남량 (배열 어긋남) 의 비선형 성분을 표현하는 보완 함수를 결정할 수 있다.
우선 보완 함수로서, 예를 들어 다음 식 (5), (6) 으로 각각 나타나는 바와 같은 푸리에 급수 전개된 함수를 정의한다.
Figure 112006037335540-pct00005
Figure 112009042122442-pct00022
상기 식 (5) 에 있어서, Apq, Bpq, Cpq, Dpq 는 푸리에 급수 계수이고, 또한 δx(x, y) 는 좌표 (x, y) 의 쇼트 영역의 위치 어긋남량 (배열 어긋남) 의 비선형 성분의 X 성분 (보완값, 즉 보정값) 을 나타낸다. 또한, Δx(x, y) 는 상기 기술한 단계 444 에서 산출된 좌표 (x, y) 의 쇼트 영역의 위치 어긋남량 (배열 어긋남) 의 비선형 성분의 X 성분이다.
마찬가지로, 상기 식 (6) 에 있어서, Apq', Bpq', Cpq', Dpq' 는 푸리에 급수 계수이고, 또한 δy(x, y) 는 좌표 (x, y) 의 쇼트 영역의 위치 어긋남량 (배열 어긋남) 의 비선형 성분의 Y 성분 (보완값, 즉 보정값) 을 나타낸다. 또한, Δ y(x, y) 는 상기 기술한 단계 444 에서 산출된 좌표 (x, y) 의 쇼트 영역의 위치 어긋남량 (배열 어긋남) 의 비선형 성분의 Y 성분이다. 또한, 식 (5), (6) 에 있어서 D 는 웨이퍼 (W) 의 직경을 나타낸다.
상기 식 (5), (6) 의 함수에서는, 쇼트 영역의 위치 어긋남량 (배열 어긋남) 의 변동이 웨이퍼의 직경당 몇 주기 존재하는지를 결정하는 파라미터 (p, q) 의 최대값 (pmax = P, qmax = Q) 의 결정이 중요하다.
그 이유는, 다음과 같다. 즉, 지금 웨이퍼 (W) 의 전체 쇼트 영역에 관하여 얻어진 쇼트 영역의 배열 어긋남의 비선형 성분을 상기 식 (5), (6) 으로 전개하는 것을 생각한다. 이 경우에 있어서, 쇼트 영역의 위치 어긋남량 (배열 어긋남) 의 변동이 쇼트 영역마다 발생하고 있는 것으로서, 파라미터 (p, q) 의 최대값 (pmax = P, qmax = Q) 을 1 주기가 쇼트 피치가 되는 경우에 상당하는 최대값으로 한 경우에, 어느 하나의 쇼트 영역으로서, 얼라인먼트 오차가 다른 쇼트 영역에 비교하여 큰 이른바 「도약 쇼트」 가 포함되어 있는 경우를 생각한다. 이와 같은 도약 쇼트는, 웨이퍼 마크의 붕괴 등에 기인하는 계측 에러, 또는 웨이퍼 이면 (裏面) 의 이물 등에 기인하는 국소적인 비선형 변형에 의해 발생하는 것이다. 이러한 경우, 그 도약 쇼트의 계측 결과까지도 포함하여 보완 함수로 표현하게 된다. 이를 방지하기 위해서는, P, Q 를 1 주기가 쇼트 피치가 되는 경우에 상당하는 상기 기술한 최대값보다도 작은 값으로 할 필요가 있다. 즉, 도약 쇼트의 계측 결과 등에 기인하는 고주파 성분은 제거하고, 알맞은 저주파 성분만을 보완 함수로 표현하는 것이 바람직하다.
그래서, 본 실시형태에서는, 상기 기술한 식 (3) 의 평가 함수 W1(s) 를 사용하여, 파라미터 (p, q) 의 최대값 (pmax = P, qmax = Q) 을 결정하는 것으로 하였다. 이와 같이 하면, 가령 도약 쇼트가 존재하였다고 해도, 그 도약 쇼트와 주위의 쇼트 영역 사이에는 상관은 거의 없다. 따라서, 그 도약 쇼트의 계측 결과는, 식 (3) 으로 나타나는 W1(s) 의 값을 증가시키는 요인은 되지 않기 때문에, 결과적으로 식 (3) 을 사용함으로써 도약 쇼트의 영향을 저감 또는 제거하는 것이 가능해진다. 즉, 도 10 에 있어서, 예를 들어 W1(s) > 0.7 인 반경 (s) 내의 영역을 서로 상관이 있는 영역으로 간주하고, 그 영역을 하나의 보완값으로 표현하는 것을 생각하면, 도 10 으로부터 그와 같은 s 는 s = 3 이다. P, Q 는 이 값 s = 3, 및 웨이퍼의 직경 (D) 을 사용하여 다음과 같이 기재할 수 있다.
P = D/s = D/3, Q = D/s = D/3 …… (7)
이로써, 알맞은 P, Q 를 결정할 수 있고, 이로써 식 (5), (6) 의 보완 함수를 결정할 수 있다.
도 8 로 되돌아가서, 다음 단계 448 에서는 상기 기술한 바와 같이 하여 결정한 식 (5), (6) 의 보완 함수에, 단계 444 에서 산출된 좌표 (x, y) 의 쇼트 영역의 위치 어긋남량 (배열 어긋남) 의 비선형 성분의 X 성분 Δx(x, y), Y 성분 Δy(x, y) 를 각각 대입하고, 연산함으로써, 웨이퍼 (W) 상의 전체 쇼트 영역의 배열 어긋남의 비선형 성분의 X 성분 (보완값, 즉 보정값) 및 Y 성분 (보완값, 즉 보정값) 을 산출하고, 이들의 각 쇼트 영역의 배열 어긋남의 비선형 성분 (X 성분 및 Y 성분) 을 각 쇼트 영역의 보정값으로 하는, 보정 정보로서의 보정 맵을 작성한다. 그리고, 이 작성한 보정 맵을 상기 기술한 데이터 테이블의 단계 412 에서 취득한 공정명 n (이 경우 공정명 A) 에 대응하는 맵 저장 영역에 저장한 후, 단계 452 로 진행한다.
단계 452 에서는, 상기 기술한 내부 메모리 내의 소정 영역에 기억된 전체 쇼트 영역의 배열 좌표와, 데이터 테이블의 단계 412 에서 취득한 공정명 n (이 경우 공정명 A) 에 대응하는 맵 저장 영역에 저장된 보정 맵 내의 각각의 쇼트 영역의 위치 어긋남량의 비선형 성분의 보정값에 기초하여, 각 쇼트 영역에 관하여 위치 어긋남량 (선형 성분 및 비선형 성분) 이 보정된 중첩 보정 위치를 산출함과 함께, 그 중첩 보정 위치의 데이터와 미리 계측한 베이스 라인에 기초하여, 웨이퍼 (W) 상의 각 쇼트 영역의 노광을 위한 가속 개시 위치 (주사 개시 위치) 에 웨이퍼 (W) 를 순차 스테핑시키는 동작과, 레티클 스테이지 (RST) 와 웨이퍼 스테이지 (WST) 를 주사 방향으로 동기 이동시키면서 레티클 패턴을 웨이퍼 상에 전사하는 동작을 반복하여, 스텝·앤드·스캔 방식에 의한 노광 동작을 행한다. 이로써, 로트 선두 (로트 내의 제 1 장째) 의 웨이퍼 (W) 에 대한 노광 처리가 종료된다.
다음 단계 454 에서는, 상기 기술한 카운터의 카운트값 m > 24 가 성립하는지의 여부를 판단함으로써, 로트 내의 모든 웨이퍼의 노광이 종료되었는지의 여부를 판단한다. 여기서는, m = 1 이기 때문에 이 판단은 부정되고, 단계 456 으 로 진행하여, 카운터의 카운트값 (m) 을 인크리먼트 (m ← m + 1) 한 후, 단계 434 로 되돌아간다.
단계 434 에 있어서, 도시하지 않은 웨이퍼 로더를 사용하여 도 2 의 웨이퍼 홀더 (25) 상의 노광 처리 완료된 로트 선두의 웨이퍼와 로트 내의 제 2 장째의 웨이퍼를 교환한다.
다음 단계 436 에서는, 상기 기술과 동일하게 하여, 웨이퍼 홀더 (25) 상에 로드된 웨이퍼 (W ; 이 경우, 로트 내의 제 2 장째의 웨이퍼) 의 서치 얼라인먼트를 행한다.
다음 단계 438 에서는, 상기 기술한 카운터의 카운트값 (m) 이 소정의 값(g ; = 2) 이상인지의 여부를 판단함으로써, 웨이퍼 홀더 (25 ; 웨이퍼 스테이지 (WST)) 상의 웨이퍼 (W) 가 로트 내의 제 g (= 2) 장째 이후의 웨이퍼인지의 여부를 판단한다. 이 경우, 웨이퍼 (W) 는 로트 내의 제 2 장째의 웨이퍼이기 때문에 m = 2 로 되어 있으므로, 단계 438 의 판단은 긍정되고 단계 450 으로 이행한다.
단계 450 에서는, 통상적인 8 점 EGA 에 의해 웨이퍼 (W) 상의 전체 쇼트 영역의 위치 좌표를 산출한다. 보다 구체적으로는, 상기 기술과 마찬가지로 얼라인먼트계 (AS) 를 사용하여, 웨이퍼 (W) 상의 미리 선택된 8 개의 쇼트 영역 (샘플 쇼트 영역) 에 부설된 웨이퍼 마크를 계측하고, 그들 샘플 쇼트 영역의 스테이지 좌표계 상에 있어서의 위치 좌표를 구한다. 그리고, 그 구한 샘플 쇼트 영역의 위치 좌표와 각각의 설계상의 위치 좌표에 기초하여 상기 기술한 식 (2) 의 EGA 연 산을 행하고, 상기 기술한 식 (1) 의 6 개의 파라미터를 산출함과 함께, 이 산출 결과와 쇼트 영역의 설계상의 위치 좌표에 기초하여, 전체 쇼트 영역의 위치 좌표 (배열 좌표) 를 산출한다. 그리고, 그 산출 결과를 내부 메모리의 소정 영역에 기억한 후, 단계 452 로 진행한다.
단계 452 에서는, 상기 기술과 동일하게 하여, 스텝·앤드·스캔 방식에 의해, 로트 내의 제 2 장째의 웨이퍼 (W) 에 대한 노광 처리가 행해진다. 이 때, 각 쇼트 영역의 노광시의 주사 개시 위치 (가속 개시 위치) 에 대한 웨이퍼 (W) 의 스테핑시에는, 내부 메모리 내의 소정 영역에 기억된 전체 쇼트 영역의 배열 좌표와, 상기 기술한 데이터 테이블 내의 보정 맵에 있어서의 각 쇼트 영역의 위치 어긋남량의 비선형 성분의 보정값에 기초하여, 각 쇼트 영역에 관하여 위치 어긋남량 (선형 성분 및 비선형 성분) 이 보정된 중첩 보정 위치가 산출된다.
상기와 같이 하여, 로트 내의 제 2 장째의 웨이퍼 (W) 의 노광이 종료되면, 단계 454 로 진행하여, 로트 내의 모든 웨이퍼의 노광이 종료하였는지의 여부를 판단하지만, 여기에 있어서의 판단은 부정되고, 단계 456 에서 카운트값 (m) 을 인크리먼트한 후, 단계 434 로 되돌아가고, 이후 로트 내의 모든 웨이퍼의 노광이 종료될 때까지, 상기 단계 434 → 436 → 438 → 450 → 452 → 454 → 456 의 루프의 처리, 판단이 반복하여 행해진다.
그리고, 로트 내의 모든 웨이퍼의 노광이 종료되고, 단계 454 의 판단이 긍정되면, 도 8 의 서브루틴의 처리를 종료하여 도 7 의 서브루틴 (406) 에 있어서의 단계 428 로 리턴한다.
단계 428 에서는, 카운터의 카운트값 (M) 을 인크리먼트한 후, 단계 430 으로 진행하여, 단계 412 에서 취득한 공정명 n (여기서는 공정명 A) 에 대응하는, 데이터 테이블 내의 파라미터 (Mn) 에 카운트값 (M) 을 설정한다. 그 후, 서브루틴 (406) 의 처리를 종료하고 도 6 의 메인루틴의 단계 410 으로 되돌아간다.
단계 410 에서는, LAN (160) 및 터미널 서버 (140) 를 통해 호스트 컴퓨터 (150) 에 노광 종료를 통지한 후, 일련의 처리를 종료한다.
상기 기술한 노광 장치 (1001) 에 의한, 제 1 번째 로트의 웨이퍼에 대하여 공정명 A 의 경우의 단계 402, 단계 404, 단계 406 및 단계 410 의 처리가 행해지고 있는 사이, 호스트 컴퓨터 (150) 에서는, 상기 기술한 바와 같이 도 4 의 단계 212 에 있어서 노광 종료를 기다리고 있다.
그리고, 상기 단계 410 에 있어서의 노광 장치 (1001) 의 주제어계 (20) 로부터의 노광 종료의 통지를 받으면, 호스트 컴퓨터 (150) 에서는 단계 212 의 대기 상태가 해제되고, 다음 로트 이후의 웨이퍼에 대하여 단계 202 이하의 처리를 반복하여 행하게 된다.
상기 기술한 바와 같은 호스트 컴퓨터 (150) 에 의한 처리의 반복 과정에서, 소정 시간 후, 어떤 로트의 웨이퍼에 대하여 처리가 개시되어, 단계 202 → 204 → 206 → 210 의 루트로 처리가 진행되고, 이 때 단계 210 에서 노광 장치 (1001) 의 주제어계 (20) 에 대하여 노광 지시와 함께 공정명 A 에 대응하는 프로세스 프로그램이 지정된 것으로 한다.
상기의 노광 지시를 받으면, 노광 장치 (1001) 의 주제어계 (20) 에 의해 도 6 의 단계 402 이하의 처리가 개시된다. 이 때, 단계 404 의 판단이 긍정되면, 단계 406 의 서브루틴으로 이행한다.
이 서브루틴 (406) 에서는 도 7 의 단계 412 에 있어서, 상기 기술한 단계 210 에 있어서, 호스트 컴퓨터 (150) 로부터 노광 지시와 함께 주어진 노광 조건의 설정 지시 정보에 대응하는 프로세스 프로그램 파일로부터 공정명 A 를 취득한다.
다음 단계 414 에서는, 단계 412 에서 취득한 공정명 A 에 대응하는 데이터 테이블 내의 파라미터 (Mn) 의 값 (이 경우 「2」) 을, 로트의 순서를 나타내는 카운터의 카운트값 (M) 으로 설정한다 (M ← Mn (= 2)).
다음 단계 416 에서는 카운트값 (M) 이 1 인지의 여부, 즉 노광 대상의 로트가, 취득한 공정명 n (이 경우, 공정명 A) 의 처리가 행해지는 최초의 로트인지의 여부를 판단한다. 이 경우, M = 2 이기 때문에 여기서의 판단은 부정되고, 단계 420 으로 진행한다.
단계 420 에서는, 카운트값 (M) 이 K (K 는, 미리 정한 2 이상의 정수이고, 여기서는 일례로서 K = 4 인 것으로 한다) 인지의 여부를 판단한다. 이 경우, M = 2 이기 때문에, 여기서의 판단은 부정되고, 단계 422 의 맵 갱신이 없는 로트 처리의 서브루틴으로 이행한다.
이 서브루틴 (422) 에서는, 도 11 의 플로우 차트에 나타나는 처리가 행해진다.
이 서브루틴 (422) 에서는, 단계 462 ∼ 474 에 있어서, 상기 기술한 단계 302 ∼ 314 (도 5 참조) 와 동일한 처리가 행해진다. 이 결과, 단계 474 의 처리가 종료된 상태에서는, 로트 선두의 웨이퍼 (W) 의 전체 쇼트 영역의 배열 좌표 (위치 정보의 추정값) 가 산출되어 내부 메모리 내의 소정 영역에 기억된다.
다음 단계 476 에서는, 상기 기술한 내부 메모리 내의 소정 영역에 기억된 전체 쇼트 영역의 배열 좌표 (위치 정보의 추정값) 와, 그 시점에서 상기 기술한 데이터 테이블의 공정명 A 의 맵 저장 영역에 저장되어 있는 보정 맵과, 미리 계측한 베이스 라인에 기초하여, 웨이퍼 (W) 상의 각 쇼트 영역의 노광을 위한 가속 개시 위치 (주사 개시 위치) 에 웨이퍼 (W) 를 순차 스테핑시키는 동작과, 레티클 스테이지 (RST) 와 웨이퍼 스테이지 (WST) 를 주사 방향으로 동기 이동시키면서 레티클 패턴을 웨이퍼 상에 전사하는 동작을 반복하여, 스텝·앤드·스캔 방식에 의한 노광 동작을 행한다.
즉, 전체 쇼트 영역의 배열 좌표 (위치 정보의 추정값) 는, 상기 기술한 EGA 연산으로부터 분명하듯이 각 쇼트 영역의 위치 어긋남량의 선형 성분이 보정된 값이고, 이 추정값과 보정 맵으로부터 얻어지는 각 쇼트 영역의 위치 어긋남량의 비선형 성분의 보정값에 기초하여, 각 쇼트 영역의 위치 어긋남량의 선형 성분 및 비선형 성분이 보정된 각 쇼트 영역의 위치 좌표가 구해지고, 이 위치 좌표와 베이스 라인에 기초하여 각 쇼트 영역 중심의 스테이지 좌표계 상에 있어서의 위치 좌표를 구할 수 있고, 이 위치 좌표와 쇼트 영역의 주사 방향의 길이 및 기지 (旣知) 의 가속 개시 위치에서 가속 종료 위치까지의 거리에 기초하여, 웨이퍼 (W) 상의 각 쇼트 영역의 노광을 위한 가속 개시 위치가 산출된다.
따라서, 상기 기술한 로트 선두 (로트 내의 제 1 장째) 의 웨이퍼 (W) 에 대한 노광 처리시에, 웨이퍼 (W) 상에 이미 형성된 쇼트 영역 사이의 위치 오차 (선형 성분 및 비선형 성분) 에 기인하는 중첩 오차가 보정된 고정밀도인 노광이 행해진다.
다음 단계 478 에서는, 상기 기술한 카운터의 카운트값 m > 24 가 성립하는지의 여부를 판단함으로써, 로트 내의 모든 웨이퍼의 노광이 종료되었는지의 여부를 판단한다. 여기서는, m = 1 이기 때문에 이 판단은 부정되고, 단계 480 으로 진행하여, 카운터의 카운트값 (m) 을 인크리먼트 (m ← m + 1) 하고, 이후 로트 내의 모든 웨이퍼의 노광이 종료될 때까지, 상기 단계 470 ∼ 단계 480 의 루프의 처리, 판단이 반복하여 행해진다.
그리고, 로트 내의 모든 웨이퍼의 노광이 종료되고, 단계 478 의 판단이 긍정되면, 서브루틴 (422) 의 처리를 종료하고 도 7 의 단계 428 로 리턴한다.
단계 428 에서는, 카운터의 카운트값 (M) 을 인크리먼트한 후, 단계 430 으로 진행하고, 단계 412 에서 취득한 공정명 n (여기서는 공정명 A) 에 대응하는 데이터 테이블 내의 파라미터 (Mn) 에 카운트값 (M) 을 설정한다. 그 후, 서브루틴 (406) 의 처리를 종료하고 도 6 의 메인루틴의 단계 410 으로 되돌아간다.
단계 410 에서는, LAN (160) 및 터미널 서버 (140) 를 통해 호스트 컴퓨터 (150) 에 노광 종료를 통지한 후, 일련의 처리를 종료한다.
그런데, 노광 장치 (1001) 의 주제어계 (20) 에서는, 그 후, 상기 기술한 호스트 컴퓨터 (150) 에 의한 처리 (도 4 참조) 의 반복 과정에서, 어떤 로트의 웨이퍼에 대하여 단계 202 → 204 → 206 → 210 의 루트로 처리가 진행되고, 단계 210 에서 노광 장치 (1001) 의 주제어계 (20) 에 대하여 노광 지시와 함께 공정명 A 에 대응하는 프로세스 프로그램이 지정되고, 단계 404 에 있어서의 판단이 긍정될 때마다, 도 7 의 서브루틴 (406) 의 처리에 있어서, 단계 412 (공정명 A 의 취득), 단계 414, 단계 416 의 처리를 거쳐 단계 420 에서 M = K (= 4) 가 성립하는지의 여부를 판단한다.
그리고, 이 단계 420 에 있어서의 판단은, 공정명 A 의 처리가 행해지는 제 3 번째의 로트가 노광 대상의 로트가 되고, Mn = 3 이 단계 414 에서 카운트값 (M) 으로 설정되는 사이클에서는 부정되고, 그 후 서브루틴 (422) → 단계 428 → 단계 430 의 루트로 처리가 행해진다.
한편, 단계 420 에 있어서의 판단은, 공정명 A 의 처리가 행해지는 제 4 번째의 로트가 노광 대상의 로트가 되고, Mn = 4 가 단계 414 에서 카운트값 (M) 으로 설정되는 사이클에서는 긍정되어, 단계 424 의 맵 갱신이 있는 로트 처리의 서브루틴으로 이행한다.
이 서브루틴 (424) 에서는, 도 12 의 플로우 차트에 나타나는 처리가 행해진다. 전제로서, 로트 내의 웨이퍼 번호를 나타내는 도시하지 않은 카운터의 카운트값 (m) 은 「1」 로 초기화되어 있는 것으로 한다.
이 서브루틴 (424) 에서는, 우선 서브루틴 (482) 에 있어서 소정의 준비 작업을 행한다. 이 서브루틴 (482) 에서는, 도시는 생략되어 있지만, 상기 기술한 도 5 의 단계 302, 304, 306 과 동일하게 하여, 노광 조건의 설정, 레티클 (R) 의 로드, 그리고 레티클 얼라인먼트 및 얼라인먼트계 (AS) 의 베이스 라인 계측이 행해진다.
다음 단계 484 에서는, 도시하지 않은 웨이퍼 로더를 사용하여 도 1 의 웨이퍼 홀더 (25) 상의 노광 처리 완료된 웨이퍼 (편의상 「W'」 라고 부른다) 와 미노광의 웨이퍼 (W) 를 교환한다. 단, 웨이퍼 홀더 (25) 상에 웨이퍼 (W') 가 없는 경우에는, 미노광의 웨이퍼 (W) 를 웨이퍼 홀더 (25) 상에 단순히 로드한다.
다음 단계 486 에서는, 그 웨이퍼 홀더 (25) 상에 로드된 웨이퍼 (W) 의 서치 얼라인먼트를 상기 기술과 동일하게 하여 행한다.
다음 단계 487 에서는, 상기 기술과 마찬가지로 얼라인먼트계 (AS) 를 사용하여, 웨이퍼 (W) 상의 미리 선택된 8 개의 쇼트 영역 (샘플 쇼트 영역) 에 부설된 웨이퍼 마크를 계측하고, 그들 샘플 쇼트 영역의 스테이지 좌표계 상에 있어서의 위치 좌표를 구한다.
다음 단계 488 에서는, 그 구한 샘플 쇼트 영역의 위치 좌표와 각각의 설계상의 위치 좌표에 기초하여 상기 기술한 식 (2) 의 EGA 연산을 행하고, 상기 기술한 식 (1) 의 6 개의 파라미터를 산출함과 함께, 이 산출 결과와 쇼트 영역의 설계상의 위치 좌표에 기초하여, 전체 쇼트 영역의 위치 좌표 (배열 좌표) 를 산출한다. 그리고, 그 산출 결과를 내부 메모리의 소정 영역에 기억한 후, 단계 490 으로 진행한다.
단계 490 에서는, 상기 기술한 카운터의 카운트값 (m) 이, 소정의 값 (u) 이상인지의 여부를 판단함으로써, 웨이퍼 홀더 (25 ; 웨이퍼 스테이지 (WST)) 상의 웨이퍼 (W) 가 로트 내의 제 u 장째 이후의 웨이퍼인지의 여부를 판단한다. 여기서, 소정의 값 (u) 은 2 이상이고 25 이하인 임의의 정수로 미리 설정된다. 이하에 있어서는, 설명의 편의상 u = 2 인 것으로 하여 설명한다. 이 경우, 웨이퍼 (W) 는 로트 선두 (제 1 장째) 의 웨이퍼이기 때문에, 초기 설정에 의해 m = 1 로 되어 있으므로, 단계 490 의 판단은 부정되고, 다음 단계 492 로 진행한다.
단계 492 에서는, 보정 맵의 갱신의 간이 체크 모드가 제 1 모드로 설정되어 있는지의 여부를 판단한다.
본 실시형태에서는, 보정 맵의 갱신의 간이 체크 모드로서, 제 1 모드와 제 2 모드가, 오퍼레이터에 의한 도시하지 않은 입출력 장치를 통한 입력에 의해 선택적으로 설정할 수 있도록 되어 있고, 오퍼레이터에 의해 어느 하나의 모드가 설정되어 있는 것으로 한다.
여기서, 제 1 모드란, 보정 맵의 갱신 필요성에 관한 간이 체크를, EGA 방식의 웨이퍼 얼라인먼트에 있어서의 샘플 쇼트 영역을 그대로 계측 쇼트 영역으로서 행하는 모드이고, 제 2 모드란, 상기의 간이 체크를, 샘플 쇼트 영역 외에 적어도 하나의 쇼트 영역을 계측 쇼트 영역으로서 추가하여 행하는 모드이다. 여기서는, 계측 쇼트 영역으로서 추가되는 쇼트 영역으로서는, 웨이퍼 상의 주변 쇼트 영역 중에서 선택된 샘플 쇼트 영역 이외의 1 또는 2 이상의 쇼트 영역이 미리 정해 져 있는 것으로 한다.
그리고, 단계 492 에 있어서의 판단이 부정된 경우, 즉 제 2 모드가 설정되어 있던 경우에는, 단계 494 로 진행하고, 그 샘플 쇼트 영역 이외의 미리 정한 계측 쇼트 영역의 위치 정보 (실측값) 를, 상기 기술한 샘플 쇼트 영역의 위치 좌표의 계측과 동일하게 하여 계측한 후, 단계 496 으로 이행한다.
이 한편, 상기 단계 492 에 있어서의 판단이 긍정된 경우, 즉 제 1 모드가 설정되어 있던 경우에는 즉시 단계 496 으로 이행한다.
단계 496 에서는, 각 계측 쇼트 영역에 관하여, 위치 어긋남량 및 그 비선형 성분 그리고 그 비선형 성분의 변동량을 산출한다. 구체적으로는, 상기 기술한 단계 487 (및 단계 494) 에서 실제로 계측한 각 계측 쇼트 영역의 위치 좌표 (실측값) 와 그 설계값의 차를 각 계측 쇼트 영역의 위치 어긋남량 (개별 기준 위치로부터의 위치 어긋남량) 으로서 산출한다. 또한, 상기의 각 계측 쇼트 영역의 위치 좌표 (실측값) 와 상기 단계 488 에서 산출한 위치 좌표 (추정값) 의 차를, 각 계측 쇼트 영역의 위치 어긋남량의 비선형 성분으로서 산출한다. 또한, 그 산출한 각 계측 쇼트 영역의 위치 어긋남량의 비선형 성분과 상기 기술한 데이터 테이블 내의 보정 맵에 포함되는 각 계측 쇼트 영역의 위치 어긋남량의 비선형 성분의 보정값 (또는 보정 맵의 작성시에 상기 기술한 단계 444 의 처리에 의해 얻어진 각 계측 쇼트 영역의 위치 어긋남량의 비선형 성분의 값) 의 차를, 위치 어긋남량의 비선형 성분의 변동량으로서 산출한다.
다음 단계 498 에서는, 상기 단계 496 에서 산출된 각 계측 쇼트 영역의 위 치 어긋남량의 비선형 성분의 변동량을 소정의 임계값와 비교함으로써, 위치 어긋남량의 비선형 성분의 변동량이 모든 계측 쇼트 영역에서 임계값 내인지의 여부를 판단한다. 또, 이 단계 498 에서는, 상기 처리 대신에, 보정 맵의 작성시에 상기 기술한 단계 444 의 처리의 과정에서 얻어진 각 계측 쇼트 영역의 위치 어긋남량과, 상기 단계 496 에서 산출한 각 계측 쇼트 영역의 위치 어긋남량의 차를 각 계측 쇼트 영역의 위치 어긋남량의 변동량으로서 산출하여, 그 변동량을 소정의 임계값과 비교해도 된다.
그리고, 상기 단계 498 에 있어서의 판단이 긍정된 경우에는, 보정 맵의 갱신은 불필요하다고 판단할 수 있기 때문에, 단계 506 으로 이행한다. 이 경우에 있어서, 후술의 단계 506 에서 사용되는 보정 맵은, Mn = 3 까지 사용되고 있던 보정 맵 (공정명 n 의 처리가 행해지는 제 1 번째 로트시에 산출된 보정 맵) 이라는 것이 된다.
이 한편, 상기 단계 498 에 있어서의 판단이 부정된 경우에는, 단계 500, 단계 502 및 단계 504 의 처리를 순차 행함으로써, 보정 맵을 갱신한 후 단계 506 으로 이행한다.
즉, 단계 500 에서는, 각 계측 쇼트 영역에 관하여 상기 단계 496 에서 산출된 위치 어긋남량의 비선형 성분 (또는 그 변동량) 을 소정의 방법으로 평가하고, 그 평가 결과에 기초하여 추가해야 할 계측 쇼트 영역을 결정한다.
여기서, 이 단계 500 에 있어서의 평가 방법으로는, 여러 수법을 채용할 수 있다.
a. 예를 들어, 상기 단계 498 의 비교 결과, 각 계측 쇼트 영역의 위치 어긋남량의 비선형 성분의 변동량이 임계값을 초과하였는지의 여부를 평가 기준으로 하고, 그 평가 결과, 임계값을 초과한 계측 쇼트 영역을 중심으로 하는 복수의 쇼트 영역을 추가해야 할 새로운 계측 쇼트 영역으로서 결정한다. 또는, 상기 단계 496 에서 산출된 각 계측 쇼트 영역의 위치 어긋남량 또는 그 비선형 성분이 임계값을 초과하였는지의 여부를 평가 기준으로 하고, 그 평가 결과, 임계값을 초과한 계측 쇼트 영역을 중심으로 하는 복수의 쇼트 영역을 추가해야 할 새로운 계측 쇼트 영역으로서 결정한다. 또는, 각 계측 쇼트 영역을 주목하는 쇼트 영역으로 하고, 그 위치 어긋남량 또는 그 비선형 성분 (혹은 그들의 변동량) 의 벡터를 rk 로 하고, 인접하는 복수의 계측 쇼트 영역의 위치 어긋남량 또는 그 비선형 성분 (혹은 그들의 변동량) 의 벡터를 ri 로 하였을 때에, 상기 기술한 식 (4) 의 함수 fk(s) 를 사용하여 산출한 벡터 rk 와 벡터 ri 의 방향에 관한 상관값이 어떤 값보다 작아지는, 계측 쇼트 영역을 중심으로 하는 복수의 쇼트 영역을 추가해야 할 새로운 계측 쇼트 영역으로서 결정한다. 이들 경우에, 추가해야 할 새로운 계측 쇼트 영역의 범위를, 상기 기술한 평가 함수를 사용하여 계산해도 된다.
b. 이 밖에, 웨이퍼 (W) 상의 복수의 쇼트 영역을, 웨이퍼의 중심을 원점으로 하는 직교 이축 (X 축에 거의 평행한 α 축과 Y 축에 거의 평행한 β 축) 에 의해 제 1 상한에서 제 4 상한에 속하는 4 개의 블록으로 미리 블록화해 두고, 상기 단계 498 에 있어서의 비교 결과, 위치 어긋남량의 비선형 성분의 변동량 (또는 위치 어긋남량의 변동량) 의 크기가 임계값을 초과하는 계측 쇼트 영역이 속하는 블록에 관해서만, 그 블록에 속하는 계측 쇼트 영역 이외의 쇼트 영역을 새로운 계측 쇼트 영역으로서 결정하는 것으로 할 수도 있다.
c. 이 밖에, 웨이퍼 (W) 의 비선형 변형은, 웨이퍼 주변일수록 커진다는 경험적 사실을 감안하여, 갱신 전의 보정 맵 중의 웨이퍼 (W) 상의 각 쇼트 영역의 위치 어긋남량의 비선형 성분의 보정값을 사용하고, 웨이퍼 중심의 쇼트 영역을 주목하는 쇼트 영역으로서 상기 기술한 식 (4) 의 평가 함수 fk(s) 에 기초하여, 웨이퍼 중심으로부터의 거리 (s) 가 변화하는 방향에 관하여, 웨이퍼 (W) 상의 복수의 쇼트 영역을 복수 블록으로 블록화하고, 각 계측 구획 영역의 비선형 성분 (또는 그 변동량) 의 크기가 임계값을 초과하는 계측 쇼트 영역이 속하는 블록에 관해서만, 그 블록에 속하는 계측 쇼트 영역 이외의 쇼트 영역을 새로운 계측 쇼트 영역으로서 결정하는 것으로 할 수도 있다.
d. 물론, 상기 a. ∼ c. 의 방법에 한정하지 않고, 산출된 각 계측 구획 영역의 상기 위치 어긋남량 또는 그 비선형 성분 (또는 그들의 변동량) 의 소정의 기준에 기초하는 평가 결과, 또는 갱신 전의 보정 맵에 포함되는 각 쇼트 영역의 상기 위치 어긋남량 또는 그 비선형 성분 (또는 그들의 변동량) 의 소정의 기준에 기초하는 평가 결과 등에 기초하여, 복수의 쇼트 영역을 추가해야 할 새로운 계측 쇼트 영역으로서 결정하는 것으로 하면 된다.
어느 쪽이든, 다음 단계 502 에서는, 상기 단계 500 에서 결정한 추가해야 할 새로운 계측 쇼트 영역 각각의 위치 정보 (스테이지 좌표계 상에 있어서의 위치 좌표) 를, 상기 기술한 샘플 쇼트 영역의 위치 좌표의 계측과 동일하게 하여 계측한다.
다음 단계 504 에서는, 상기 기술한 데이터 테이블 내의 공정명 A 의 맵 저장 영역에 저장되어 있는 보정 맵을 갱신한다. 구체적으로는, 상기 단계 502 에서 계측한 새로운 계측 쇼트 영역 각각의 위치 좌표 (위치 정보의 실측값) 와 각각의 설계값의 차 (새로운 계측 쇼트 영역 각각의 개별 기준 위치에 대한 위치 어긋남량) 와 상기 단계 488 에서 산출한 각 계측 쇼트 영역의 위치 좌표 (위치 정보의 추정값) 의 차를, 새로운 계측 쇼트 영역 각각의 위치 어긋남량의 비선형 성분 (X 성분 및 Y 성분) 으로서 산출한다. 그리고, 여기서 산출한 새로운 계측 쇼트 영역 각각의 위치 어긋남량의 비선형 성분 (X 성분 및 Y 성분) 의 값 및 상기 단계 496 에서 산출한 각 계측 쇼트 영역의 위치 어긋남량의 비선형 성분 (X 성분 및 Y 성분) 의 값을, 상기 기술한 단계 446 에서 결정된 보완 함수에 대입하여, 각 계측 쇼트 영역에 관하여, 배열 어긋남의 비선형 성분 (보정값) 을 산출한다.
또한, 산출된 각 계측 쇼트 영역의 배열 어긋남의 비선형 성분 (보정값) 을 사용하여, 보간 연산에 의해, 웨이퍼 (W) 상의 계측 쇼트 영역 이외의 쇼트 영역의 배열 어긋남의 비선형 성분 (보정값) 을 산출한다. 이 보간 연산으로서는, 각 쇼트 영역의 중심 위치마다, 그 주위에 존재하는 복수의 계측 쇼트 영역에 관한 배열 어긋남의 비선형 성분 (보정값) 에 기초하여, 상기 기술한 미국 특허출원공개 제2002/0042664호 명세서 등에 개시되는 가우스 분포를 가정한 가중 평균 연산에 의해, 각 쇼트 영역의 중심 위치의 보정값을 산출하는 방법을 채용할 수 있다. 이 때, 그 가중 평균 연산의 대상이 되는 주위에 존재하는 복수의 계측 쇼트 영역의 범위를, 상기 기술한 평가 함수를 사용하여 계산해도 된다. 또는, 각 쇼트 영역의 중심 위치마다, 평가 함수를 사용하여 계산한 범위 내의 계측 쇼트 영역의 보정값의 단순 평균을 사용해도 된다.
그리고, 상기 기술한 바와 같이 하여 산출된 웨이퍼 (W) 상의 전체 쇼트 영역에 관한 보정값을 사용하여, 상기 기술한 데이터 테이블의 공정명 A 의 맵 저장 영역에 저장되어 있는 보정 맵 내의 각 쇼트 영역의 보정값을 표제함으로써, 그 보정 맵을 갱신한다.
단계 506 에서는, 상기 기술한 단계 476 과 마찬가지로, 상기 기술한 내부 메모리 내의 소정 영역에 기억된 전체 쇼트 영역의 배열 좌표 (추정값) 와, 그 시점에서 상기 기술한 데이터 테이블의 공정명 A 의 맵 저장 영역에 저장되어 있는 보정 맵 (보정 맵의 갱신이 행해지고 있는 경우에는, 최신의 갱신 후의 보정 맵) 과, 미리 계측한 베이스 라인에 기초하여, 웨이퍼 (W) 상의 각 쇼트 영역의 노광을 위한 가속 개시 위치 (주사 개시 위치) 에 웨이퍼 (W) 를 순차 스테핑시키는 동작과, 레티클 스테이지 (RST) 와 웨이퍼 스테이지 (WST) 를 주사 방향으로 동기 이동시키면서 레티클 패턴을 웨이퍼 상에 전사하는 동작을 반복하여, 스텝·앤드·스캔 방식에 의한 노광 동작을 행한다. 이 경우, 로트 내의 제 m 장째 (이 경우, 제 1 장째) 의 웨이퍼 (W) 에 대하여, 웨이퍼 (W) 상에 이미 형성된 쇼트 영역 사이의 위치 오차 (선형 성분 및 비선형 성분) 에 기인하는 중첩 오차가 보정된 고정밀도인 노광이 행해진다.
다음 단계 508 에서는, 상기 기술한 카운터의 카운트값 m > 24 가 성립하는지의 여부를 판단함으로써, 로트 내의 모든 웨이퍼의 노광이 종료되었는지의 여부를 판단한다. 여기서는, m = 1 이기 때문에 이 판단은 부정되고, 단계 510 으로 진행하여, 카운터의 카운트값 (m) 을 인크리먼트 (m ← m + 1) 한 후, 단계 484 로 되돌아간다.
단계 484 에 있어서, 도시하지 않은 웨이퍼 로더를 사용하여 도 2 의 웨이퍼 홀더 (25) 상의 노광 처리 완료된 로트 선두의 웨이퍼와 로트 내의 제 2 장째의 웨이퍼 (W) 를 교환한다.
다음 단계 486 에서는, 상기 기술과 동일하게 하여, 웨이퍼 홀더 (25) 상에 로드된 웨이퍼 (W ; 이 경우, 로트 내의 제 2 장째의 웨이퍼) 의 서치 얼라인먼트를 행한다.
다음 단계 487, 488 에서는, 상기 기술과 마찬가지로, 통상적인 8 점 EGA 에 의해 웨이퍼 (W) 상의 전체 쇼트 영역의 위치 좌표를 산출하고, 그 산출 결과를 내부 메모리의 소정 영역에 기억한다.
다음 단계 490 에서는, 상기 기술한 카운터의 카운트값 (m) 이, 소정의 값 (u ; = 2) 이상인지의 여부를 판단함으로써, 웨이퍼 홀더 (25 ; 웨이퍼 스테이지 (WST)) 상의 웨이퍼 (W) 가 로트 내의 제 u (= 2) 장째 이후의 웨이퍼인지의 여부를 판단한다. 이 경우, 웨이퍼 (W) 는 로트 내의 제 2 장째의 웨이퍼이기 때문에, m = 2 로 되어 있으므로, 단계 490 의 판단은 긍정되고, 단계 506 으로 점프한다.
다음 단계 506 에서는, 로트 내의 제 m 장째 (이 경우, 제 2 장째) 의 웨이퍼 (W) 에 대하여, 상기 기술과 동일하게 하여, 스텝·앤드·스캔 방식에 의한 노광 동작이 행해지고, 웨이퍼 (W) 상에 이미 형성된 쇼트 영역 사이의 위치 오차 (선형 성분 및 비선형 성분) 에 기인하는 중첩 오차가 보정된 고정밀도인 노광이 행해진다.
상기와 같이 하여, 로트 내의 제 2 장째의 웨이퍼 (W) 의 노광이 종료되면, 단계 508 로 진행하여, 로트 내의 모든 웨이퍼의 노광이 종료되었는지의 여부를 판단하지만, 여기에 있어서의 판단은 부정되어, 단계 510 에서 카운트값 (m) 을 인크리먼트한 후, 단계 484 로 되돌아가고, 이후 로트 내의 모든 웨이퍼의 노광이 종료될 때까지, 상기 단계 484 → 486 → 487 → 488 → 490 → 506 → 508 → 510 의 루프의 처리, 판단이 반복하여 행해진다.
그리고, 로트 내의 모든 웨이퍼의 노광이 종료되고, 단계 508 의 판단이 긍정되면, 도 12 의 서브루틴의 처리를 종료하여 도 7 의 서브루틴 (406) 에 있어서의 단계 426 으로 리턴한다.
단계 426 에서는, 카운터의 카운트값 (M) 을 1 로 초기화한 후 (M ← 1), 단계 428 로 진행한다.
단계 428 에서는, 카운터의 카운트값 (M) 을 인크리먼트한 후, 단계 430 으로 진행하여, 단계 412 에서 취득한 공정명 n (여기서는 공정명 A) 에 대응하는, 데이터 테이블 내의 파라미터 (Mn) 에 카운트값 (M) 을 설정한다. 그 후, 서브루틴 (406) 의 처리를 종료하여 도 6 의 메인루틴의 단계 410 으로 되돌아간다.
지금까지의 설명으로부터 알 수 있듯이, 이후 호스트 컴퓨터 (150) 로부터 공정 A 의 노광 처리가 지시되고, 단계 406 의 처리가 실행되는 각 로트에 관하여, (K - 1) = 3 로트에 1 회, 단계 424 의 맵 갱신이 있는 로트 처리의 서브루틴이 실행되고, 그 이외의 로트 (단계 424 의 서브루틴이 실행되는 로트 사이의 (K - 2) = 2 로트) 에 관해서는, 단계 422 의 맵 갱신이 없는 로트 처리의 서브루틴이 실행된다.
또, K = 2 인 경우에는, 호스트 컴퓨터 (150) 로부터 공정 A 의 노광 처리가 지시되고, 단계 406 의 처리가 실행되는 각 로트에 관해서는, 제 1 번째의 로트에 관하여 단계 418 의 맵 작성이 있는 로트 처리의 서브루틴이 실행된 후, 제 2 번째 이후의 모든 로트에 관하여 단계 424 의 맵 갱신이 있는 로트 처리의 서브루틴이 반복하여 실행된다. 이 경우, 단계 422 의 서브루틴이 실행되는 일은 없다.
이 한편, 상기 기술한 단계 404 (도 6 참조) 에 있어서의 판단이 부정된 경우, 즉 연속하는 로트간의 중첩 오차를 소정의 임계값과 비교하여 중첩 오차가 큰지의 여부를 판단한 결과, 이 판단이 부정된 경우에는, 제 2 그리드 보정 기능을 사용하여 중첩 오차를 보정하고, 노광을 행하는 서브루틴 (408) 으로 이행한다.
이 서브루틴 (408) 에서는, 노광 장치 (1001) 의 주제어계 (20) 에 의해, 노광 대상 로트의 웨이퍼 (W) 에 대하여 도 13 의 플로우 차트로 나타나는 처리 알고 리즘에 따라서 처리가 행해진다.
이 서브루틴 408 에서는, 우선 서브루틴 602 에 있어서, 상기 기술한 서브루틴 (432) 과 동일하게 하여 소정의 준비 작업을 행한다. 즉, 이 서브루틴 (602) 에서는, 상기 기술한 도 5 의 단계 302, 304, 306 과 동일하게 하여, 노광 조건의 설정, 레티클 (R) 의 로드, 그리고 레티클 얼라인먼트 및 얼라인먼트계 (AS) 의 베이스 라인 계측이 행해진다.
다음 단계 604 에서는, 상기 단계 210 (도 4 참조) 에 있어서 호스트 컴퓨터 (150) 로부터 노광 지시와 함께 주어진 노광 조건의 설정 지시 정보에 기초하여, 상기의 소정의 준비 작업 중에 선택한 프로세스 프로그램 파일 내에 포함되는 쇼트 맵 데이터 및 샘플 쇼트 영역의 선택 정보 등의 쇼트 데이터에 대응하는 보정 맵을 기억 장치 내의 데이터 베이스로부터 선택적으로 판독하여 내부 메모리에 일시적으로 기억한다.
다음 단계 608 에서는, 도시하지 않은 웨이퍼 로더를 사용하여 도 1 의 웨이퍼 홀더 (25) 상의 노광 처리 완료된 웨이퍼 (편의상 「W'」 라고 부른다) 와 미노광의 웨이퍼 (W) 를 교환한다. 단, 웨이퍼 홀더 (25) 상에 웨이퍼 (W') 가 없는 경우에는, 미노광의 웨이퍼 (W) 를 웨이퍼 홀더 (25) 상에 단순히 로드한다.
다음 단계 610 에서는, 그 웨이퍼 홀더 (25) 상에 로드된 웨이퍼 (W) 의 서치 얼라인먼트를 상기 기술과 동일한 순서로 행한다.
다음 단계 612 에서는, 쇼트 맵 데이터 및 샘플 쇼트 영역의 선택 정보 등의 쇼트 데이터에 따라서, EGA 방식의 웨이퍼 얼라인먼트를 상기 기술과 동일하게 하 여 행하고, 웨이퍼 (W) 상의 전체 쇼트 영역의 위치 좌표를 산출하여, 내부 메모리의 소정 영역에 기억한다.
다음 단계 614 에서는, 상기 기술한 내부 메모리 내의 소정 영역에 기억된 전체 쇼트 영역의 배열 좌표와, 내부 메모리 내에 일시적으로 저장된 보정 맵 내의 각각의 쇼트 영역에 관한 위치 어긋남량의 비선형 성분의 보정값 (보정 정보) 에 기초하여, 각 쇼트 영역에 관하여 위치 어긋남량 (선형 성분 및 비선형 성분) 이 보정된 중첩 보정 위치를 산출함과 함께, 그 중첩 보정 위치의 데이터와, 미리 계측한 베이스 라인량에 기초하여, 웨이퍼 (W) 상의 각 쇼트 영역에 대한 노광을 위한 주사 개시 위치 (가속 개시 위치) 에 웨이퍼 스테이지 (WST ; 웨이퍼 (W)) 를 순차 스테핑시키는 동작과, 레티클 스테이지 (RST) 와 웨이퍼 스테이지 (WST) 를 주사 방향으로 동기 이동시키면서 레티클 패턴을 웨이퍼 상에 전사하는 동작을 반복하여 스텝·앤드·스캔 방식에 의한 노광 동작을 행한다. 이로써, 로트 선두 (로트 내의 제 1 장째) 의 웨이퍼 (W) 에 대한 노광 처리가 종료된다.
다음 단계 616 에서는, 예정 장수 (예를 들어 25 장) 의 웨이퍼에 대한 노광이 종료되었는지의 여부를 판단하여, 이 판단이 부정된 경우에는 단계 608 로 되돌아가고, 이후 상기 처리, 판단을 반복하여 행한다.
이와 같이 하여, 예정 장수의 웨이퍼 (W) 에 대하여 노광이 종료되면, 단계 616 에 있어서의 판단이 긍정되고, 도 13 의 서브루틴 (408) 의 처리를 종료하고, 도 6 의 메인루틴의 단계 410 으로 리턴하여, LAN (160) 및 터미널 서버 (140) 를 통해 호스트 컴퓨터 (150) 에 노광 종료를 통지한 후, 일련의 처리를 종료한다.
지금까지의 설명으로부터 분명하듯이, 노광 장치 (1001) 에서는, 얼라인먼트계 (AS) 와, 웨이퍼 스테이지 (WST) 의 위치를 계측하는 웨이퍼 간섭계 시스템 (18) 과, 이들 얼라인먼트계 (AS) 의 계측 결과와 그 계측시의 웨이퍼 레이저 간섭계 시스템 (18) 의 계측값에 기초하여 웨이퍼 상의 각 쇼트 영역에 부설된 얼라인먼트 마크의 스테이지 좌표계에 있어서의 위치 좌표를 산출하는 주제어계 (20) 에 의하여, 웨이퍼 스테이지 (WST) 상에 유지된 웨이퍼 상의 임의의 쇼트 영역의 구획 영역의 위치 정보의 실측값을 검출하는 검출계가 구성되어 있다.
또한, 주제어계 (20 ; 보다 구체적으로는 CPU) 와 소프트웨어 프로그램에 의하여, 연산 장치, 판단 장치, 갱신 장치, 제어 장치, 결정 장치, 산출 장치 및 평가 장치가 실현되어 있다. 즉, 주제어계 (20) 가 행하는 단계 488 의 처리에 의하여 상기 검출계에 의해 검출된, 웨이퍼 상의 복수의 샘플 쇼트 영역의 위치 정보의 실측값을 사용하여 통계 연산에 의해 웨이퍼 상의 각 쇼트 영역 곳곳의 소정 점과의 위치 맞춤에 사용되는 위치 정보의 추정값을 산출하는 연산 장치가 실현되어 있다. 또한, 주제어계 (20) 가 행하는 단계 496, 498 의 처리에 의해, 웨이퍼 상의 복수의 쇼트 영역 중의 샘플 쇼트 영역을 적어도 포함하는 복수의 계측 쇼트 영역에 관하여, 소정의 인터벌 (예를 들어 (K - 1) 로트 (K 는 2 이상의 정수) 에 1 회의 비율) 로, 상기 검출계에 의해 검출된 각 계측 쇼트 영역의 위치 정보의 실측값과 상기 연산 장치에 의해 산출된 위치 정보의 추정값에 기초하여 각 계측 쇼트 영역의 개별 기준 위치 (설계상의 위치) 에 대한 위치 어긋남량의 비선형 성분의 변동량을 각각 산출하고, 그 산출된 각 계측 쇼트 영역의 위치 어긋남량의 비선형 성분의 변동량의 크기에 기초하여 웨이퍼 상의 복수의 쇼트 영역 각각의 개별 기준 위치 (설계상의 위치) 에 대한 위치 어긋남량의 비선형 성분을 보정하기 위한 보정 정보의 갱신 필요성의 유무를 판단하는 판단 장치가 실현되어 있다.
또한, 주제어계 (20) 가 행하는 단계 500, 502 및 504 의 처리에 의해, 판단 장치에 의해 갱신의 필요가 있다고 판단된 경우에, 상기 보정 정보를 갱신하는 처리를 행하는 갱신 장치가 실현되어 있다. 이 중 특히 단계 500 의 처리에 의해 웨이퍼 상의 복수의 쇼트 영역 중, 상기 계측 쇼트 영역을 제외한 나머지 쇼트 영역의 적어도 일부의 쇼트 영역을 새로운 계측 쇼트 영역으로서 결정하는 결정 장치가 실현되고, 단계 502, 504 의 처리에 의해, 상기 검출계에 의해 검출된, 그 새로운 계측 쇼트 영역의 위치 정보의 실측값을 포함하는 모든 계측 쇼트 영역의 위치 정보의 실측값에 기초하여 웨이퍼 상의 복수의 쇼트 영역 각각의 상기 위치 어긋남량의 비선형 성분을, 새로운 보정 정보로서 산출하는 산출 장치가 실현되어 있다. 또한, 주제어계 (20) 가 행하는 단계 490 ∼ 단계 500 의 처리에 의해, 웨이퍼 상의 복수의 쇼트 영역 중 샘플 쇼트 영역을 적어도 포함하는 복수의 계측 쇼트 영역에 관하여, 소정의 인터벌 (예를 들어 (K - 1) 로트 (K 는 2 이상의 정수) 에 1 회의 비율) 로, 상기 기술한 검출계에 의해 검출된 각 쇼트 영역의 위치 정보의 실측값과 상기 연산 장치에 의해 산출된 위치 정보의 추정값에 기초하여 각 계측 쇼트 영역의 개별 기준 위치에 대한 위치 어긋남량의 비선형 성분을 평가하고, 그 평가 결과에 기초하여 추가해야 할 새로운 계측 쇼트 영역의 개수 및 배치 중 적어도 일방이나, 보정 맵을 갱신해야 하는지의 여부를 결정하는 평가 장치가 실현되어 있다.
또한, 주제어계 (20) 가 행하는 단계 506 의 처리에 의해 각 쇼트 영역을 노광할 때에, 각 쇼트 영역의 상기 위치 정보의 추정값과 최신의 보정 정보에 기초하여, 웨이퍼 스테이지 (WST) 를 통해 웨이퍼 (W) 의 위치를 제어하는 제어 장치가 실현되어 있다.
그러나, 본 발명의 노광 장치가 이것에 한정되는 것이 아님은 물론이다. 즉, 상기 실시형태는 일례에 불과하고, 상기의 주제어계 (20 ; 보다 정확하게는 CPU) 에 의한 소프트웨어 프로그램에 따르는 처리에 의하여 실현한 구성 각 부의 적어도 일부를 하드웨어에 의하여 구성하는 것으로 해도 된다.
이상 상세하게 설명한 바와 같이, 본 실시형태에 관련된 리소그래피 시스템 (110) 에 의하면, 호스트 컴퓨터 (150) 에 의해, 파일럿 웨이퍼 등의 중첩 오차 정보의 해석 결과, 쇼트간 오차가 비선형 성분을 많이 포함하여, EGA 방식의 웨이퍼 얼라인먼트만으로 중첩 오차의 보정이 곤란하다고 판단된 경우에, 노광 장치 (1001) 에 노광 조건을 지정하여 노광이 지시된다 (도 4 의 단계 204, 206, 210).
그리고, 노광 장치 (1001) 의 주제어계 (20) 가 로트간의 중첩 오차가 크다고 판단한 경우에는, 도 6 의 서브루틴 (406) 의 처리가 실행된다.
이 서브루틴 (406) 은, 각 로트의 웨이퍼에 대하여, 호스트 컴퓨터 (150) 로부터 노광 장치 (1001) 에 노광 조건을 지정하여 노광이 지시되고, 노광 장치 (1001) 의 주제어계 (20) 가, 로트간의 중첩 오차가 크다고 판단할 때마다 실행된다.
그리고, 이 서브루틴 (406) 에서는, 도 7 의 플로우 차트로 나타나는 바와 같이, 동일 공정명 (상기의 설명 중에서는 공정명 A) 의 처리에 관하여, 최초 로트의 웨이퍼에 관해서는 서브루틴 (418) 의 처리가 실행되고, 제 2 번째 ∼ K 번째 로트의 웨이퍼에 관해서는, 서브루틴 (422) 의 처리가 (K - 2) 회 연속하여 실행된 후, 서브루틴 (424) 의 처리가 실행된다. 그 후의 로트의 웨이퍼에 관해서도, 서브루틴 (422) 의 처리가 (K - 2) 회 연속하여 실행된 후, 서브루틴 (424) 의 처리가 실행된다. 여기서, K 는 2 이상의 정수이고, K = 2 인 경우에는 제 2 번째 이후의 로트에 관해서는, 각 로트에 관하여 서브루틴 (424) 의 처리가 실행된다.
서브루틴 (418) 의 처리에 있어서, 상기 기술한 바와 같은 평가 함수의 도입에 의하여, 경험칙에 의지하지 않고, 명확한 근거에 기초하여 웨이퍼 (W) 의 비선형 변형을 평가할 수 있다. 그리고, 그 평가 결과에 기초하여 웨이퍼 (W) 상의 각 쇼트 영역의 위치 어긋남량 (배열 어긋남) 의 비선형 성분의 보정값으로 이루어지는 보정 맵을 작성할 수 있고, 이 보정 맵 내의 보정값과 EGA 에 의해 구한 쇼트 영역의 배열 좌표에 기초하여, 각 쇼트 영역의 배열 어긋남 (선형 성분뿐만 아니라 비선형 성분도) 이 보정된 중첩 보정 위치를 정확하게 구할 수 있다 (도 8 의 단계 440 ∼ 단계 452). 따라서, 상기 각 쇼트 영역의 중첩 보정 위치에 기초하여, 웨이퍼 (W) 상의 각 쇼트 영역의 노광을 위한 가속 개시 위치 (주사 개시 위치) 에 웨이퍼 (W) 를 순차 스테핑시키면서, 레티클 패턴을 웨이퍼 (W) 상의 각 쇼트 영역에 전사함으로써, 웨이퍼 (W) 상의 각 쇼트 영역에 레티클 패턴을 매우 고정밀도로 중첩할 수 있다.
또한, 이 서브루틴 (418) 에서는, 노광 장치 (1001) 의 주제어계 (20) 가, 로트 내의 제 g 장째 (제 2 장째) 이후의 웨이퍼 (W) 의 노광에 있어서는, 통상적인 8 점 EGA 에 의한 계측 결과에 기초하여 웨이퍼 상의 쇼트 영역의 배열 어긋남의 선형 성분을 보정함과 함께, 쇼트 영역의 배열 어긋남의 비선형 성분에 관해서는, 그 시점의 보정 맵 (그 로트의 선두 웨이퍼의 노광에 앞서 갱신한 보정 맵 또는 그 이전에 작성 또는 갱신된 보정 맵) 을 그대로 사용한다 (도 8 의 단계 450, 452).
이것은, 동일 로트 내의 웨이퍼에 관해서는, 쇼트 영역의 배열 어긋남 (위치 어긋남량) 은 거의 변화하지 않는 것으로 사료되기 때문에, 이와 같이 하여도 노광시의 중첩 정밀도의 저하는 거의 발생하지 않는 반면, 스루풋의 향상을 도모할 수 있기 때문이다.
또한, 서브루틴 (424) 에 있어서, 도 12 에 나타나는 바와 같이, 노광 장치 (1001) 의 주제어계 (20) 에 의해 웨이퍼 스테이지 (WST) 를 순차 위치 결정하면서, 얼라인먼트계 (AS) 및 웨이퍼 레이저 간섭계 시스템 (18) 을 사용하여, 웨이퍼 스테이지 (WST) 상에 유지된 웨이퍼 (W) 상의 복수의 샘플 쇼트 영역의 위치 좌표 (위치 정보의 실측값) 가 검출된다 (단계 487). 또한, 주제어계 (20) 에 의해, 검출된 샘플 쇼트 영역의 위치 좌표를 사용하여 EGA 연산에 의해 웨이퍼 (W) 상의 각 쇼트 영역 곳곳의 소정 점 (예를 들어, 레티클 패턴의 투영 중심) 과의 위치 맞춤에 사용되는 위치 좌표 (위치 정보의 추정값) 가 산출된다 (단계 488).
또한, 주제어계 (20) 는, 웨이퍼 (W) 상의 복수의 계측 쇼트 영역에 관하여, (K - 1) 로트에 1 회의 비율로, 계측한 각 계측 쇼트 영역의 위치 정보의 실측값과 산출한 위치 정보의 추정값에 기초하여 각 계측 쇼트 영역의 위치 어긋남량 및 그 비선형 성분 그리고 비선형 성분의 변동량을 각각 산출하고 (단계 496), 그 산출된 각 계측 쇼트 영역의 상기 위치 어긋남량의 비선형 성분 (또는 그 변동량) 의 크기에 기초하여 웨이퍼 (W) 상의 복수의 쇼트 영역 각각의 상기 위치 어긋남량의 비선형 성분을 보정하기 위한 보정 맵 (보정 정보) 의 갱신 필요성의 유무를 판단한다 (단계 498).
즉, 주제어계 (20 ; 판단 장치) 는 (K - 1) 로트에 1 회의 비율로, 웨이퍼 (W) 상의 복수의 쇼트 영역의 일부의 쇼트 영역 (계측 쇼트 영역) 에 관한 위치 정보의 실측값과, 그 실측값의 전부 또는 일부에서 산출되는 계측 쇼트 영역의 위치 정보의 추정값에 기초하여 얻어지는 위치 어긋남량의 비선형 성분 (또는 그 변동량) 을 체크함으로써 보정 맵의 갱신 필요성의 유무를 판단하고 있다. 이 때문에, 복수의 쇼트 영역의 위치 어긋남량의 보정값을 갱신하기 위하여, 로트마다 적어도 1 회 웨이퍼 상의 전체 쇼트 영역의 위치 정보의 실측값을 구하고, 그 실측값을 사용하여 복수의 쇼트 영역의 위치 어긋남량의 보정값을 산출하고 있던 종래 기술에 비교하여, 위치 정보의 계측 대상이 되는 쇼트 영역 수 및 그 계측 시간을 확실하게 저감시키는 것이 가능해진다.
또한, 갱신의 필요가 있다고 판단한 경우에는, 주제어계 (20 ; 갱신 장치) 는 보정 정보를 갱신하는 처리를 행한다. 즉, 상기의 체크 결과, 주제어계 (20) 에 의해 보정 맵 갱신의 필요가 있다고 판단된 경우에는, 보정 정보의 갱신이 행해진다 (단계 500 ∼ 506).
또한, 주제어계 (20 ; 평가 장치) 는, 웨이퍼 (W) 상의 복수의 계측 쇼트 영역에 관하여, (K - 1) 로트에 1 회의 비율로, 검출한 각 계측 쇼트 영역의 위치 정보의 실측값과 산출한 위치 정보의 추정값에 기초하여 각 계측 쇼트 영역의 위치 어긋남량의 비선형 성분을 평가하고, 그 평가 결과에 기초하여 추가해야 할 새로운 계측 쇼트 영역의 개수 및 배치를 결정한다 (단계 500). 즉, 계측 쇼트 영역의 수가 충분하지 않은 경우, 각 계측 쇼트 영역의 위치 어긋남량의 비선형 성분의 평가 결과에 기초하여 계측 쇼트 영역이 추가되기 때문에, 웨이퍼 상의 복수의 쇼트 영역의 일부 (복수의 샘플 쇼트 영역을 포함하고 있으면 충분하다) 를 당초의 계측 쇼트 영역으로서 정할 수 있다. 따라서, 이 점에 있어서도, 상기 기술한 종래 기술에 비교하여 위치 정보의 계측 대상이 되는 쇼트 영역 수 및 그 계측 시간을 확실하게 저감시키는 것이 가능해진다.
또한, 주제어계 (20 ; 평가 장치) 는, 예를 들어 상기 위치 어긋남량의 비선형 성분이 큰 계측 쇼트 영역의 주변에는, 새로운 계측 쇼트 영역을 많이 배치하고, 상기 위치 어긋남량의 비선형 성분이 작은 계측 쇼트 영역의 주변에는, 새로운 계측 쇼트 영역을 배치하지 않는 등, 평가 결과에 따라 효율적으로 계측 쇼트 영역의 배치를 정할 수 있다.
그리고, 주제어계 (20 ; 갱신 장치) 는, 검출한 그 새로운 계측 쇼트 영역 (효율적으로 배치된 계측 쇼트 영역) 의 위치 정보의 실측값을 포함하는 모든 계측 쇼트 영역의 위치 정보의 실측값에 기초하여 보완 연산에 의해 얻어지는 웨이퍼 (W) 상의 복수의 쇼트 영역 각각의 개별 기준 위치에 대한 위치 어긋남량의 비선형 성분을 사용하여, 복수의 쇼트 영역 각각의 상기 위치 어긋남량의 비선형 성분에 관한 보정 맵을 갱신한다 (단계 504).
그리고, 주제어계 (20 ; 제어 장치) 는 웨이퍼 (W) 상의 각 쇼트 영역을 노광할 때에, 각 쇼트 영역의 상기 위치 정보의 추정값과 최신의 보정 맵에 기초하여, 웨이퍼 (W) 상의 각 쇼트 영역의 위치 어긋남량 (선형 성분 및 비선형 성분) 을 보정한 중첩 보정 위치를 산출하고, 그 산출 결과에 기초하여 웨이퍼 스테이지 (WST) 를 통해 웨이퍼 (W) 의 위치를 제어한다. 이 결과, 노광시의 웨이퍼 스테이지 (WST) 의 위치 제어가 양호한 정밀도로 행해진다.
따라서, 복수 로트 (1 로트는, 예를 들어 25 장) 의 웨이퍼 각각에 대하여 연속적 또는 단속적으로 노광을 행할 때에, 고스루풋 또한 중첩 정밀도가 양호한 노광을 행하는 것이 가능해진다.
또한, 서브루틴 (424) 에서는, 주제어계 (20) 가 로트 내의 제 u 장째 (제 2 장째) 이후의 웨이퍼 (W) 의 노광시에는, 보정 맵의 갱신 및 그 필요성의 유무의 판단을 행하지 않고, 통상적인 8 점 EGA 에서의 계측 결과에 기초하여 웨이퍼 상의 쇼트 영역의 배열 어긋남의 선형 성분을 보정함과 함께, 쇼트 영역의 배열 어긋남의 비선형 성분에 관해서는, 그 시점의 보정 맵 (그 로트의 선두 웨이퍼의 노광에 앞서 갱신한 보정 맵 또는 그 이전에 작성 또는 갱신된 보정 맵) 을 그대로 사용한다 (단계 506).
이것은, 상기 기술과 마찬가지로, 동일 로트 내의 웨이퍼에 관해서는 쇼트 영역의 배열 어긋남 (위치 어긋남량) 은 거의 변화하지 않는다고 사료되기 때문에, 이와 같이 하여도 노광시의 중첩 정밀도의 저하는 거의 발생하지 않는 반면, 스루풋의 향상을 도모할 수 있기 때문이다.
또한, 서브루틴 (422) 에서는, 주제어계 (20) 가 로트 내의 모든 웨이퍼 (W) 의 노광시에는, 통상적인 8 점 EGA 에서의 계측 결과에 기초하여 웨이퍼 상의 쇼트 영역의 배열 어긋남의 선형 성분을 보정함과 함께, 쇼트 영역의 배열 어긋남의 비선형 성분에 관해서는, 그 시점의 보정 맵 (그 이전에 작성 또는 갱신된 보정 맵) 을 그대로 사용한다 (단계 476).
이 한편, 노광 장치 (1001) 의 주제어계 (20) 가, 로트간의 중첩 오차가 작다고 판단한 경우에는, 도 6 의 서브루틴 (408) 의 처리가 실행된다. 이 서브루틴 (408) 에서는, 주제어계 (20) 가 노광 조건의 하나로서 지정된 쇼트 맵 데이터 및 샘플 쇼트 영역에 대응하는 보정 맵을 선택한다 (도 13 의 단계 604). 또한, 주제어계 (20) 는, 웨이퍼 상의 복수의 샘플 쇼트 영역 (노광 조건의 하나로서 지정된 특정한 적어도 3 개의 쇼트 영역) 각각에 대응하여 형성된 복수의 웨이퍼 마크를 검출하여 얻어지는 각 샘플 쇼트 영역의 실측 위치 정보에 기초하여 통계 연산 (EGA 연산) 에 의해 각 쇼트 영역의 레티클 패턴의 투영 위치와의 위치 맞춤에 사용되는 위치 정보를 구하고, 그 위치 정보와 선택된 보정 맵에 기초하여, 웨이퍼 상의 각 쇼트 영역을 노광을 위한 가속 개시 위치 (노광 기준 위치) 로 이동시킨 후, 당해 각 쇼트 영역을 주사 노광한다 (단계 612, 614).
즉, 서브루틴 (408) 에서는, 상기의 통계 연산에 의해 얻어지는 각 쇼트 영역의 개별 기준 위치 (설계값) 로부터의 위치 어긋남량의 선형 성분을 보정한 각 쇼트 영역의 레티클 패턴의 투영 위치와의 위치 맞춤에 사용되는 위치 정보를, 선택한 보정 맵에 포함되는 대응하는 보정 정보로 보정한 위치 정보 (즉, 각 쇼트 영역의 개별 기준 위치 (설계값) 로부터의 위치 어긋남량의 선형 성분 및 비선형 성분의 양자를 보정한 위치 정보) 에 기초하여 웨이퍼 상의 각 쇼트 영역이 노광을 위한 가속 개시 위치에 이동된 후, 당해 각 쇼트 영역의 노광이 행해진다. 따라서, 웨이퍼 상의 각 쇼트 영역은, 위치 어긋남량의 선형 성분뿐만 아니라 비선형 성분도 보정한 위치에 정확하게 이동된 후 노광이 행해지기 때문에, 중첩 오차가 거의 없는 고정밀도인 노광이 가능해진다.
이와 같이, 노광 장치 (1001) 및 그 노광 방법에 의하면, 복수 로트의 웨이퍼 각각에 대하여 연속적 또는 단속적으로 노광을 행할 때에, 고스루풋과 동시에 중첩 정밀도를 양호하게 유지한 노광을 행하는 것이 가능해진다.
지금까지의 설명으로부터 분명하듯이, 본 실시형태의 리소그래피 시스템 (110) 에 의하면, 노광 장치 상호간의 스테이지의 그리드 오차 등에 기인하는 중첩 오차를 매우 작게 하는 것이 가능해진다. 특히, 서브루틴 (406) 의 처리에 의한 경우에는, 로트마다 변동하는 쇼트간 오차를 양호한 정밀도로 보정할 수 있고, 또한, 서브루틴 (408) 의 처리에 의한 경우에는, 쇼트 맵의 변경이나 샘플 쇼트 영역의 변경마다 변동하는 쇼트간 오차를 양호한 정밀도로 보정할 수 있다.
또, 상기 실시형태에서는, 복수 로트의 웨이퍼 각각에 대하여 연속적 또는 단속적으로 노광을 행할 때에, 노광 장치 (1001) 의 주제어계 (20) 가 (K - 1) = 3 로트, 즉 3 × 25 = 75 장의 웨이퍼마다 보정 맵의 갱신 필요성의 유무를 판단하고, 그 판단 결과, 갱신이 필요한 경우에 보정 맵을 갱신하는 경우에 관하여 설명하였지만, 본 발명이 이것에 한정되는 것은 아니고, 소정 시간 (소정 일수) 마다, 보정 맵의 갱신 필요성의 유무의 판단 등을 행해도 된다.
또한, 상기 실시형태에서는, 노광 장치 (1001) 가 웨이퍼 (W) 상의 복수의 계측 쇼트 영역으로서 복수의 샘플 쇼트 영역만을 지정하는 제 1 모드와, 웨이퍼 (W) 상의 복수의 계측 쇼트 영역으로서 복수의 샘플 쇼트 영역 및 나머지 쇼트 영역의 적어도 일부를 지정하는 제 2 모드가 설정 가능하게 구성되어 있는 것으로 하였다. 그러나, 본 발명의 노광 장치가 이것에 한정되는 것은 아니고, 모드의 선택은 가능하지 않고, 실질적으로 상기 실시형태의 제 1 모드와 제 2 모드의 일방만이 설정되어 있어도 된다. 즉, 상기 기술한 단계 490 → 494 → 496, 또는 단계 490 → 496 의 처리의 흐름만이 설정되어 있어도 된다.
또는, 상기 단계 492 에 있어서의 판단이 부정된 경우에, 상기 단계 496 의 처리에 앞서, 단계 494 의 처리 대신에, 각 샘플 쇼트 영역의 위치 어긋남량 또는 그 비선형 성분의 크기 등에 기초하여, 상기 실시형태의 단계 500 과 동일하게 하여 새로운 계측 쇼트 영역을 결정하고, 그 새로운 계측 쇼트 영역의 위치 정보를 계측하도록 하는 것도 가능하다.
또, 상기 실시형태에서는, 주제어계 (20) 가 서브루틴 (424) 의 단계 500 에 있어서, 각 계측 쇼트 영역에 관하여 위치 어긋남량의 비선형 성분 (또는 그 변동량) 을 평가하고, 그 평가 결과에 기초하여 새로운 (추가해야 할) 계측 쇼트 영역을 결정하는 것으로 하였지만, 이것에 한정하지 않고, 갱신 전의 보정 맵에 포함되는 각 구획 영역의 상기 위치 어긋남량의 비선형 성분의 평가 결과에 기초하여 새로운 계측 쇼트 영역을 결정하도록 해도 된다.
또한, 상기 실시형태에서는, 보정 정보는 보정 맵의 형식으로 RAM 등의 메모리 내의 데이터 테이블에 저장되어 있는 것으로 하였지만, 이것에 한정하지 않고, 보정 정보는 보정 함수의 형식으로 메모리 내에 기억되어 있어도 된다.
또, 상기 실시형태에서는, 예를 들어 서브루틴 (418) 에 있어서, 로트 내의 제 2 장째 이후에 관해서는 8 점 EGA 를 행하는 것으로 하였지만, EGA 의 계측점 수 (얼라인먼트 마크수 (통상적으로는 샘플 쇼트 영역 수에 대응) 는, 통계 연산으로 구하는 미지 파라미터 (상기 실시형태에서는 6 개) 의 수보다 크다면, 몇 개라도 되는 것은 물론이다.
또, 상기 실시형태의 서브루틴 (418) 에서는, 로트 선두의 웨이퍼의 노광에 있어서, 전체 쇼트 영역의 웨이퍼 마크의 계측 결과를 사용하여 EGA 연산에 의해 산출한 쇼트 배열 좌표와 보완 함수에 기초하여 산출한 배열 좌표의 비선형 성분에 기초하여, 각 쇼트 영역을 주사 개시 위치로 위치 결정하는 것으로 하였지만, 이것에 한정하지 않고, 단계 440 에서 계측한 각 쇼트 영역의 위치 어긋남량의 실측값에 기초하여, EGA 연산을 행하지 않고, 각 쇼트 영역을 주사 개시 위치로 위치 결정하는 것으로 해도 된다.
또한, 상기 실시형태에 있어서, g 가 3 이상의 정수로 설정되어 있는 경우에는, 로트 내의 최초의 (g - 1) 장 (복수장) 의 웨이퍼에 관해서는, 단계 440 에서 단계 448 까지의 처리가 반복하여 행해지게 되는데, 이 때, 단계 448 에서는 제 2 장째에서 (g - 1) 장째까지의 웨이퍼에 관해서는, 전체 쇼트 영역의 배열 어긋남의 비선형 성분 (보정값) 을, 예를 들어 그때까지의 각 회의 연산 결과의 평균값에 기초하여 구하는 것으로 하면 된다. 물론, 제 g 장째 (g ≥ 3) 이후의 웨이퍼에서도, 제 (g - 1) 장째까지의 적어도 2 장의 웨이퍼에서 각각 산출되는 비선형 성분 (보정값) 의 평균값을 사용하도록 해도 된다.
또한, 도 8 의 단계 444 에서는, 단계 440 에서 계측한 위치 좌표와 설계상의 위치 좌표와 단계 442 에서 산출한 위치 좌표 (추정값) 를 사용하여 각 쇼트 영역의 위치 어긋남량의 선형 성분과 비선형 성분을 분리하였지만, 선형 성분과 비선형 성분을 분리하지 않고, 비선형 성분만을 구해도 된다. 이 경우에는, 단계 440 에서 계측한 위치 좌표와 단계 442 에서 산출한 위치 좌표의 차를 비선형 성분으로 하면 된다. 또한, 도 5 의 단계 312, 도 8 의 단계 436, 도 11 의 단계 472, 도 12 의 단계 486 및 도 13 의 단계 610 의 서치 얼라인먼트는, 웨이퍼 (W) 의 회전 오차가 허용 범위 내일 때 등은 행하지 않아도 된다.
또한, 상기 실시형태에서는, 그리드 보정 기능을 갖는 노광 장치 (1001) 가, 상기 기술한 제 1 그리드 보정 기능 및 제 2 그리드 보정 기능의 양자를 갖는 경우에 관하여 설명하였지만, 이것에 한정하지 않고, 노광 장치는 제 1 그리드 보정 기능만을 갖고 있어도 된다.
또, 상기 실시형태에서는, 서브루틴 (418) 에 있어서의 로트 선두의 웨이퍼의 위치 어긋남량의 선형 성분의 보정 데이터를, 전체 쇼트 영역을 샘플 쇼트 영역으로 한 EGA 연산에 의해 구하는 것으로 하였지만, 이것에 한정하지 않고, 로트 내의 2 장째 이후의 웨이퍼와 동일하게 지정된 샘플 쇼트 영역의 마크의 검출 결과를 사용한 EGA 연산에 의해 구하는 것으로 해도 된다.
또한, 상기 실시형태에서는, EGA 방식의 웨이퍼 얼라인먼트를 행함에 있어서, 샘플 쇼트 영역 (전체 쇼트 영역 또는 그 중 특정한 복수의 쇼트 영역이 샘플 쇼트 영역으로서 선택되어 있는 경우에는, 그 선택된 특정한 쇼트 영역) 의 얼라인먼트 마크의 좌표값을 사용하는 것으로 하였지만, 예를 들어 샘플 쇼트 영역마다 그 설계상의 좌표값에 따라서 웨이퍼 (W) 를 이동하여 레티클 (R) 상의 마크, 또는 얼라인먼트계 (AS) 의 지표 마크와의 위치 어긋남량을 검출하고, 이 위치 어긋남량을 사용하여 통계 연산에 의하여 쇼트 영역마다 설계상의 좌표값으로부터의 위치 어긋남량을 산출해도 되고, 또는 쇼트 영역 사이의 스텝 피치의 보정량을 산출해도 된다.
또한, 상기 실시형태에서는 EGA 방식을 전제로 설명을 행하였지만, EGA 방식 대신에 가중 EGA 방식을 사용해도 되고, 또는 쇼트 내 다점 EGA 방식 등을 이용해도 된다. 또, 가중 EGA 방식의 웨이퍼 얼라인먼트에 관해서는, 예를 들어 일본 공개특허공보 평5-304077호 및 이것에 대응하는 미국 특허 제5,525,808호 등에 상세하게 개시되어 있다.
즉, 이 가중 EGA 방식에서는, 웨이퍼 상의 복수의 쇼트 영역 (구획 영역) 중, 미리 선택된 적어도 3 개의 샘플 쇼트 영역의 정지 좌표계 상에 있어서의 위치 좌표를 계측한다. 이어서, 웨이퍼 상의 쇼트 영역마다에, 당해 각각의 쇼트 영역 (그 중심점) 과 샘플 쇼트 영역 (그 중심점) 사이의 거리에 따라, 또는 쇼트 영역과 웨이퍼 상에서 미리 규정된 소정의 착안점 사이의 거리 (제 1 정보) 와, 당해 착안점과 샘플 쇼트 영역의 각각 사이의 거리 (제 2 정보) 에 따라, 샘플 쇼트 영역의 정지 좌표계 상에 있어서의 위치 좌표의 각각에 가중을 부여하고, 또한 이 가중된 복수의 위치 좌표를 사용하여 통계 연산 (최소자승법, 또는 단순한 평균화 처리 등) 을 행함으로써, 웨이퍼 상의 복수의 쇼트 영역 각각의 정지 좌표계 상에 있어서의 위치 좌표를 결정한다. 그리고, 결정된 위치 좌표에 기초하여, 웨이퍼 상에 배열된 복수의 쇼트 영역 각각을, 정지 좌표계 내의 소정의 기준 위치 (예를 들어, 레티클 패턴의 전사 위치) 에 대하여 위치 맞춤한다.
이러한 가중 EGA 방식에 따르면, 국소적인 배열 오차 (비선형인 변형) 가 존재하는 웨이퍼라도, 샘플 쇼트 영역 수가 비교적 적어도 되고, 또한 계산량을 억제하면서, 소정의 기준 위치에 대하여 전체 쇼트 영역을 고정밀도, 고속으로 얼라인먼트하는 것이 가능하다.
또한, 쇼트 내 다점 EGA 방식은, 예를 들어 일본 공개특허공보 평6-349705호 및 이것에 대응하는 미국 특허 제6,278,957호 등에 개시되어 있고, 샘플 쇼트 영역마다 복수의 얼라인먼트 마크를 검출하여 X, Y 좌표를 각각 복수개씩 얻도록 하고, EGA 방식에서 사용되는 웨이퍼의 신축, 회전 등에 대응하는 웨이퍼 파라미터 외에, 쇼트 영역의 회전 오차, 직교도 및 스케일링에 대응하는 쇼트 파라미터 (칩 파라미터) 중 적어도 하나를 파라미터로서 포함하는 모델 함수를 사용하여 각 쇼트 영역의 위치 정보, 예를 들어 좌표값을 산출하는 것이다.
이것을 더욱 상세히 기술하면, 이 쇼트 내 다점 EGA 방식은, 기판 상에 배열된 각 쇼트 영역 내의 기준 위치에 대하여 각각 설계상 일정한 상대 위치 관계로 배치된 복수개의 얼라인먼트 마크 (1 차원 마크, 2 차원 마크 중 어느 것이라도 된다) 가 각각 형성되고, 이들 기판 상에 존재하는 얼라인먼트 마크 중에서 소정 수의 얼라인먼트 마크로서, X 위치 정보의 수와 Y 위치 정보의 수의 합이 상기 모델 함수에 포함되는 웨이퍼 파라미터 및 쇼트 파라미터의 총 수보다 많고, 또한 적어도 동일한 샘플 쇼트 영역에 관하여 동일 방향으로 복수의 위치 정보가 얻어지는 소정 수의 얼라인먼트 마크의 위치 정보를 계측한다. 그리고, 이들 위치 정보를, 상기 모델 함수에 대입하고 최소자승법 등을 사용하여 통계 처리함으로써, 그 모델 함수에 포함되는 파라미터를 산출하고, 이 파라미터와 각 쇼트 영역 내의 기준 위치의 설계상의 위치 정보 및 기준 위치에 대한 얼라인먼트 마크의 설계상의 상대 위치 정보로부터, 각 쇼트 영역의 위치 정보를 산출하는 것이다.
이들 경우도, 위치 정보로서 얼라인먼트 마크의 좌표값을 사용해도 되지만, 얼라인먼트 마크에 관한 위치 정보로서 통계 처리에 적절한 정보라면, 어떠한 정보를 사용하여 통계 연산을 행해도 된다. 본 국제 출원에서 지정한 지정국 (또는 선택한 선택국) 의 국내법령이 허용하는 한, 상기 미국 특허 제5,525,808호, 미국 특허 제6,278,957호에 있어서의 개시를 원용하여 본 명세서의 기재의 일부로 한다.
이 밖에, 상기의 평가 함수를 사용한 평가 결과에 의해 얻어지는 반경 (s) 에 기초하여, EGA 방식, 또는 가중 EGA 방식, 또는 쇼트 내 다점 EGA 방식에 있어서의 EGA 계측점 수를 적절히 결정할 수도 있다.
또, 상기 실시형태에서는, 마크 검출계로서, 오프 액시스 방식의 FIA 계 (결상식의 얼라인먼트 센서) 를 사용하는 경우에 관하여 설명하였지만, 이것에 한정하지 않고 어떠한 방식의 마크 검출계를 사용해도 상관없다. 즉, TTR (Through The Reticle) 방식, TTL (Through The Lens) 방식, 또한 오프 액시스 방식 중 어느 방식이라도 되고, 나아가서는 검출 방식이 FIA 계 등에서 채용되는 결상 방식 (화상 처리 방식) 이외에, 예를 들어 회절광 또는 산란광을 검출하는 방식 등이라도 상관없다. 예를 들어, 웨이퍼 상의 얼라인먼트 마크에 코히어런트빔을 거의 수직으로 조사하고, 당해 마크로부터 발생하는 동일 차수의 회절광 (±1 차, ±2 차, ……, ±n 차 회절광) 을 간섭시켜 검출하는 얼라인먼트계이어도 된다. 이 경우, 차수마다 회절광을 독립적으로 검출하고, 적어도 하나의 차수에서의 검출 결과를 사용하도록 해도 되고, 파장이 상이한 복수의 코히어런트빔을 얼라인먼트 마크에 조사하여, 파장마다 각 차수의 회절광을 간섭시켜 검출해도 된다.
또한, 본 발명은 상기 실시형태와 같이, 스텝·앤드·스캔 방식의 노광 장치에 한정하지 않고, 스텝·앤드·리피트 방식, 또는 프록시미티 방식의 노광 장치 (X 선 노광 장치 등) 를 비롯한 각종 방식의 노광 장치에도 완전히 동일하게 적용이 가능하다.
상기 실시형태에서는, 광원으로서 KrF 엑시머레이저, ArF 엑시머레이저 등의 원자외 광원이나 F2 레이저 등의 진공 자외 광원, 자외역의 휘선 (g 선, i 선 등) 을 발하는 초고압 수은 램프 등을 사용할 수 있다. 이 밖에, 진공 자외역의 광을 노광용 조명광으로서 사용하는 경우에, 상기 각 광원으로부터 출력되는 레이저광에 한정하지 않고, DFB 반도체 레이저 또는 화이버 레이저로부터 발진되는 적외역, 또는 가시역의 단일 파장 레이저광을, 예를 들어 에르븀 (Er) (또는 에르븀과 이테르븀 (Yb) 의 양방) 이 도프된 화이버 앰프로 증폭하고, 비선형 광학 결정을 사용하여 자외광으로 파장 변환한 고조파를 사용해도 된다.
또한, 노광용 조명광으로서 EUV 광, X 선, 또는 전자선이나 이온 빔 등의 하전 입자선을 사용하는 노광 장치에 본 발명을 적용해도 된다. 이 밖에, 예를 들어 국제공개 WO99/49504호 등에 개시되는 투영 광학계 (PL) 와 웨이퍼 사이에 액체가 채워지는 액침형 노광 장치 등에도 본 발명을 적용해도 된다.
또, 본 발명은 반도체 제조용의 노광 장치에 한정하지 않고, 액정 표시 소자 등을 포함하는 디스플레이의 제조에 사용되는, 디바이스 패턴을 유리 플레이트 상 에 전사하는 노광 장치, 박막 자기 헤드의 제조에 사용되는 디바이스 패턴을 세라믹 웨이퍼 상에 전사하는 노광 장치 및 촬상 소자 (CCD 등), 마이크로 머신, 유기 EL, DNA 칩 등의 제조에 사용되는 노광 장치 등에도 적용할 수 있다. 또한, 반도체 소자 등의 마이크로 디바이스뿐만 아니라, 광 노광 장치, EUV 노광 장치, X 선 노광 장치 및 전자선 노광 장치 등에서 사용되는 레티클 또는 마스크를 제조하기 위하여, 유리 기판 또는 규소 웨이퍼 등에 회로 패턴을 전사하는 노광 장치에도 본 발명을 적용할 수 있다. 여기서, DUV (원자외) 광이나 VUV (진공 자외) 광 등을 사용하는 노광 장치에서는 일반적으로 투과형 레티클이 사용되고, 레티클 기판으로서는 석영 유리, 불소가 도프된 석영 유리, 형석, 불화마그네슘 또는 수정 등이 사용된다. 또한, 프록시미티 방식의 X 선 노광 장치, 또는 전자선 노광 장치 등에서는 투과형 마스크 (스텐실 마스크, 멤브레인 마스크) 가 사용되고, 마스크 기판으로서는 규소 웨이퍼 등이 사용된다.
《디바이스 제조 방법》
다음으로, 상기 기술한 실시형태에 관련된 리소그래피 시스템 및 그 노광 방법을 리소그래피 공정에서 사용한 디바이스의 제조 방법의 실시형태에 관하여 설명한다.
도 14 에는, 디바이스 (IC 나 LSI 등의 반도체칩, 액정 패널, CCD, 박막 자기 헤드, 마이크로 머신 등) 의 제조예의 플로우 차트가 나타나 있다. 도 14 에 나타나는 바와 같이, 우선 단계 701 (설계 단계) 에 있어서, 디바이스의 기능·성능 설계 (예를 들어, 반도체 디바이스의 회로 설계 등) 를 행하고, 그 기능을 실현하기 위한 패턴 설계를 행한다. 계속해서, 단계 702 (마스크 제작 단계) 에 있어서, 설계한 회로 패턴을 형성한 마스크를 제작한다. 한편, 단계 703 (웨이퍼 제조 단계) 에 있어서, 규소 등의 재료를 사용하여 웨이퍼를 제조한다.
다음으로, 단계 704 (웨이퍼 처리 단계) 에 있어서, 단계 701 ∼ 단계 703 에서 준비한 마스크와 웨이퍼를 사용하여, 후술하는 바와 같이, 리소그래피 기술 등에 의하여 웨이퍼 상에 실제의 회로 등을 형성한다. 이어서, 단계 705 (디바이스 조립 단계) 에 있어서, 단계 704 에서 처리된 웨이퍼를 사용하여 디바이스 조립을 행한다. 이 단계 705 에는, 다이싱 공정, 본딩 공정 및 패키징 공정 (칩 봉입) 등의 공정이 필요에 따라 포함된다.
마지막으로, 단계 706 (검사 단계) 에 있어서, 단계 705 에서 제작된 디바이스의 동작 확인 테스트, 내구성 테스트 등의 검사를 행한다. 이러한 공정을 거친 후에 디바이스가 완성되고, 이것이 출하된다.
도 15 에는, 반도체 디바이스의 경우에 있어서의, 상기 단계 704 의 상세한 플로우예가 나타나 있다. 도 15 에 있어서, 단계 711 (산화 단계) 에 있어서는 웨이퍼의 표면을 산화시킨다. 단계 712 (CVD 단계) 에 있어서는 웨이퍼 표면에 절연막을 형성한다. 단계 713 (전극 형성 단계) 에 있어서는 웨이퍼 상에 전극을 증착에 의하여 형성한다. 단계 714 (이온 주입 단계) 에 있어서는 웨이퍼에 이온을 주입한다. 이상의 단계 711 ∼ 단계 714 각각은, 웨이퍼 처리의 각 단계의 전(前)처리 공정을 구성하고 있고, 각 단계에 있어서 필요한 처리에 따라 선택되어 실행된다.
웨이퍼 프로세스의 각 단계에 있어서, 상기 기술한 전처리 공정이 종료되면, 이하와 같이 하여 후처리 공정이 실행된다. 이 후처리 공정에서는, 우선, 단계 715 (레지스트 형성 단계) 에 있어서 웨이퍼에 감광제를 도포한다. 계속해서, 단계 716 (노광 단계) 에 있어서, 위에서 설명한 노광 장치 및 노광 방법에 의하여 마스크의 회로 패턴을 웨이퍼에 전사한다. 다음으로, 단계 717 (현상 단계) 에 있어서는 노광된 웨이퍼를 현상하고, 단계 718 (에칭 단계) 에 있어서, 레지스트가 잔존하고 있는 부분 이외의 부분의 노출 부재를 에칭에 의해 제거한다. 그리고, 단계 719 (레지스트 제거 단계) 에 있어서, 에칭이 완료되어 불필요해진 레지스트를 제거한다.
이들 전처리 공정과 후처리 공정을 반복하여 행함으로써, 웨이퍼 상에 다중으로 회로 패턴이 형성된다.
이상 설명한 본 실시형태의 디바이스 제조 방법을 이용하면, 노광 공정 (단계 716) 에 있어서, 로트마다의 웨이퍼의 노광 처리에 있어서, 상기 실시형태에 관련된 리소그래피 시스템 및 그 노광 방법이 이용되기 때문에, 스루풋을 최대한 저하시키지 않고, 레티클 패턴과 웨이퍼 상의 쇼트 영역의 중첩 정밀도의 향상을 도모한 고정밀도인 노광이 가능해진다. 이 결과, 스루풋을 저하시키지 않고, 보다 미세한 회로 패턴을 양호한 중첩 정밀도로 웨이퍼 상에 전사하는 것이 가능해지고, 고집적도의 마이크로 디바이스의 생산성 (수율을 포함한다) 을 향상시킬 수 있다. 특히, 광원에 F2 레이저 광원 등의 진공 자외 광원을 사용하는 경우에는, 투영 광학계의 해상력의 향상과 더불어, 예를 들어 최소 선폭이 0.1㎛ 정도이어도 그 생산성의 향상이 가능하다.
산업상이용가능성
본 발명의 노광 방법 및 노광 장치는, 복수의 감광 물체 각각에 대하여 연속적 또는 단속적으로 노광하는 데 적합하다. 또한, 본 발명의 디바이스 제조 방법은 마이크로 디바이스의 생산에 적합하다. 또한, 본 발명의 프로그램은, 노광 장치의 제어용 컴퓨터에, 복수의 감광 물체 각각에 대하여 연속적 또는 단속적으로 노광하게 하는 데 적합하다.

Claims (30)

  1. 복수의 감광 물체 각각에 특정 공정의 노광 처리를 행하는 노광 방법으로서,
    감광 물체 상의 복수의 구획 영역에서 선택된 복수의 특정 구획 영역의 위치 정보의 실측값을 사용하여 통계 연산에 의해 상기 감광 물체 상의 상기 복수의 구획 영역 각각과 소정 점과의 위치 맞춤에 사용되는 위치 정보의 추정값을 산출하는 제 1 공정과 ;
    상기 복수의 특정 구획 영역을 적어도 포함하는 상기 감광 물체 상의 복수의 계측 구획 영역에 관하여, 소정의 인터벌로 각 계측 구획 영역의 위치 정보의 실측값과 상기 추정값에 기초하여 각 계측 구획 영역의 개별 기준 위치에 대한 위치 어긋남량의 비선형 성분을 각각 산출하고, 그 산출된 각 계측 구획 영역의 상기 위치 어긋남량의 비선형 성분 및 상기 비선형 성분의 변동량 중 어느 하나의 크기에 기초하여 상기 감광 물체 상의 복수의 구획 영역 각각의 개별 기준 위치에 대한 위치 어긋남량의 비선형 성분을 보정하기 위한 보정 정보의 갱신 필요성의 유무를 판단하는 제 2 공정을 포함하는 노광 방법.
  2. 제 1 항에 있어서,
    상기 제 2 공정에서 갱신의 필요가 있다고 판단된 경우에, 상기 보정 정보를 갱신하는 갱신 처리를 행하는 제 3 공정과 ;
    상기 복수의 구획 영역 각각의 상기 위치 정보의 추정값과 최신의 상기 보정 정보에 기초하여, 상기 감광 물체의 위치를 제어하여 노광을 행하는 제 4 공정을 추가로 포함하는 노광 방법.
  3. 제 2 항에 있어서,
    상기 제 3 공정에서는, 상기 보정 정보의 갱신 처리에 있어서, 상기 복수의 구획 영역 중, 상기 계측 구획 영역을 제외한 나머지 구획 영역의 적어도 일부 구획 영역을 새로운 계측 구획 영역으로 하고, 그 새로운 계측 구획 영역을 포함하는 모든 계측 구획 영역의 위치 정보의 실측값과 상기 추정값에 기초하여 산출되는 상기 복수의 구획 영역 각각의 상기 위치 어긋남량의 비선형 성분을 사용하여 상기 보정 정보를 갱신하는 것을 특징으로 하는 노광 방법.
  4. 제 3 항에 있어서,
    상기 새로운 계측 구획 영역은, 갱신 전의 상기 보정 정보에 포함되는 복수의 구획 영역 각각의 상기 위치 어긋남량의 비선형 성분의 평가 결과에 기초하여 결정되는 것을 특징으로 하는 노광 방법.
  5. 제 3 항에 있어서,
    상기 새로운 계측 구획 영역은, 상기 제 2 공정에서 산출된 각 계측 구획 영역의 상기 위치 어긋남량의 비선형 성분 및 상기 비선형 성분의 변동량 중 어느 하나의 평가 결과에 기초하여 결정되는 것을 특징으로 하는 노광 방법.
  6. 제 1 항에 있어서,
    상기 인터벌은, 소정 수의 상기 감광 물체마다 및 소정 시간마다 중 어느 하나인 것을 특징으로 하는 노광 방법.
  7. 제 1 항에 있어서,
    상기 감광 물체 상의 복수의 계측 구획 영역으로서, 상기 복수의 특정 구획 영역만을 지정 가능한 것을 특징으로 하는 노광 방법.
  8. 제 1 항에 있어서,
    상기 감광 물체 상의 복수의 계측 구획 영역으로서, 상기 복수의 특정 구획 영역에 더하여 나머지 구획 영역의 적어도 일부를 지정 가능한 것을 특징으로 하는 노광 방법.
  9. 제 1 항에 있어서,
    상기 보정 정보는, 보정 맵 및 보정 함수 중 어느 하나인 것을 특징으로 하는 노광 방법.
  10. 복수의 감광 물체 각각에 특정 공정의 노광 처리를 행하는 노광 방법으로서,
    감광 물체 상의 복수의 구획 영역에서 선택된 복수의 특정 구획 영역의 위치 정보의 실측값을 사용하여 통계 연산에 의해 상기 감광 물체 상의 복수의 구획 영역 각각과 소정 점과의 위치 맞춤에 사용되는 위치 정보의 추정값을 산출하는 공정 ;
    상기 복수의 특정 구획 영역을 적어도 포함하는 상기 감광 물체 상의 복수의 계측 구획 영역에 관하여, 각각의 위치 정보의 실측값과 상기 추정값으로부터 얻어지는 각 계측 구획 영역의 개별 기준 위치에 대한 위치 어긋남량의 비선형 성분을 소정의 인터벌로 평가하고, 상기 평가 결과에 기초하여 추가해야 할 새로운 계측 구획 영역의 개수 및 배치 중 적어도 일방을 결정하는 공정 ;
    상기 새로운 계측 구획 영역을 포함하는 모든 계측 구획 영역의 위치 정보의 실측값과 상기 추정값에 기초하여 산출되는 상기 감광 물체 상의 복수의 구획 영역 각각의 개별 기준 위치에 대한 위치 어긋남량의 비선형 성분을 사용하여, 상기 복수의 구획 영역 각각의 상기 위치 어긋남량의 비선형 성분에 관한 보정 정보를 갱신하는 공정 ; 및
    상기 복수의 구획 영역 각각의 상기 위치 정보의 추정값과 보정 후의 상기 보정 정보에 기초하여, 상기 감광 물체의 위치를 제어하여 노광을 행하는 공정을 포함하는 노광 방법.
  11. 제 10 항에 있어서,
    상기 각 계측 구획 영역의 상기 위치 어긋남량의 비선형 성분의 평가는, 갱신 전의 상기 보정 정보 중의 각 계측 구획 영역의 상기 위치 어긋남량의 비선형 성분의 크기 및 편차의 정도 중 적어도 일방을 고려하여 행해지는 것을 특징으로 하는 노광 방법.
  12. 제 10 항에 있어서,
    상기 각 계측 구획 영역의 상기 위치 어긋남량의 비선형 성분의 평가는, 소정의 평가 함수를 사용하여 행해지는 것을 특징으로 하는 노광 방법.
  13. 제 10 항에 있어서,
    상기 감광 물체 상의 복수의 구획 영역은, 미리 복수 블록으로 블록화되고, 상기 각 계측 구획 영역의 상기 위치 어긋남량의 비선형 성분의 평가는, 블록마다 행해지는 것을 특징으로 하는 노광 방법.
  14. 제 10 항에 있어서,
    상기 인터벌은, 소정 수의 상기 감광 물체마다 및 소정 시간마다 중 어느 하나인 것을 특징으로 하는 노광 방법.
  15. 제 10 항에 있어서,
    상기 감광 물체 상의 복수의 계측 구획 영역으로서, 상기 복수의 특정 구획 영역만을 지정 가능한 것을 특징으로 하는 노광 방법.
  16. 제 10 항에 있어서,
    상기 감광 물체 상의 복수의 계측 구획 영역으로서, 상기 복수의 특정 구획 영역에 더하여 나머지 구획 영역의 적어도 일부를 지정 가능한 것을 특징으로 하는 노광 방법.
  17. 제 10 항에 있어서,
    상기 보정 정보는, 보정 맵 및 보정 함수 중 어느 하나인 것을 특징으로 하는 노광 방법.
  18. 리소그래피 공정을 포함하는 디바이스 제조 방법으로서,
    상기 리소그래피 공정에서는, 제 1 항 내지 제 17 항 중 어느 한 항에 기재된 노광 방법을 이용하여, 복수의 감광 물체 각각에 특정 공정의 노광 처리를 연속적 또는 단속적으로 행하는 것을 특징으로 하는 디바이스 제조 방법.
  19. 복수의 감광 물체 각각에 특정 공정의 노광 처리를 행하는 노광 장치로서,
    감광 물체를 유지하는 이동체 ;
    상기 이동체 상에 유지된 감광 물체 상의 복수의 구획 영역 중 임의의 구획 영역의 위치 정보의 실측값을 검출하는 검출계 ;
    상기 검출계에 의해 검출된, 상기 감광 물체 상의 복수의 구획 영역 중 복수의 특정 구획 영역의 위치 정보의 실측값을 사용하여 통계 연산에 의해 상기 복수의 구획 영역 각각과 소정 점과의 위치 맞춤에 사용되는 위치 정보의 추정값을 산출하는 연산 장치 ;
    상기 특정 구획 영역을 적어도 포함하는 상기 감광 물체 상의 복수의 계측 구획 영역에 관하여, 소정의 인터벌로, 상기 검출계에 의해 검출된 각 계측 구획 영역의 위치 정보의 실측값과 상기 연산 장치에 의해 산출된 위치 정보의 추정값에 기초하여 각 계측 구획 영역의 개별 기준 위치에 대한 위치 어긋남량의 비선형 성분을 각각 산출하고, 그 산출된 각 계측 구획 영역의 상기 위치 어긋남량의 비선형 성분 및 상기 비선형 성분의 변동량 중 어느 하나의 크기에 기초하여 상기 감광 물체 상의 복수의 구획 영역 각각의 개별 기준 위치에 대한 위치 어긋남량의 비선형 성분을 보정하기 위한 보정 정보의 갱신 필요성의 유무를 판단하는 판단 장치 ;
    상기 판단 장치에 의해 갱신의 필요가 있다고 판단된 경우에, 상기 보정 정보를 갱신하는 처리를 행하는 갱신 장치 ; 및
    상기 복수의 구획 영역 각각을 노광할 때에, 각 구획 영역의 상기 위치 정보의 추정값과 최신의 상기 보정 정보에 기초하여, 상기 이동체를 통해 상기 감광 물체의 위치를 제어하는 제어 장치를 구비하는 노광 장치.
  20. 제 19 항에 있어서,
    상기 갱신 장치는, 상기 감광 물체 상의 복수의 구획 영역 중, 상기 계측 구획 영역을 제외한 나머지 구획 영역의 적어도 일부 구획 영역을 새로운 계측 구획 영역으로서 결정하는 결정 장치와, 상기 검출계에 의해 검출된, 그 새로운 계측 구 획 영역의 위치 정보의 실측값을 포함하는 모든 계측 구획 영역의 위치 정보의 실측값과 상기 추정값에 기초하여, 상기 감광 물체 상의 복수의 구획 영역 각각의 상기 위치 어긋남량의 비선형 성분을 새로운 보정 정보로서 산출하는 산출 장치를 갖는 것을 특징으로 하는 노광 장치.
  21. 제 20 항에 있어서,
    상기 결정 장치는, 상기 판단 장치에 의해 산출된 각 계측 구획 영역의 상기 위치 어긋남량의 비선형 성분 및 상기 비선형 성분의 변동량 중 어느 하나의 평가 결과에 기초하여 상기 새로운 계측 구획 영역을 결정하는 것을 특징으로 하는 노광 장치.
  22. 제 19 항에 있어서,
    상기 인터벌은, 소정 수의 상기 감광 물체마다 및 소정 시간마다 중 어느 하나인 것을 특징으로 하는 노광 장치.
  23. 제 19 항에 있어서,
    상기 감광 물체 상의 복수의 계측 구획 영역으로서 상기 복수의 특정 구획 영역만을 지정하는 제 1 모드와, 상기 감광 물체 상의 복수의 계측 구획 영역으로서 상기 복수의 특정 구획 영역 및 나머지 구획 영역의 적어도 일부를 지정하는 제 2 모드가 설정 가능하게 구성되어 있는 것을 특징으로 하는 노광 장치.
  24. 복수의 감광 물체 각각에 특정 공정의 노광 처리를 행하는 노광 장치로서,
    감광 물체를 유지하는 이동체 ;
    상기 이동체 상에 유지된 감광 물체 상의 임의의 구획 영역의 위치 정보의 실측값을 검출하는 검출계 ;
    상기 검출계에 의해 검출된, 상기 감광 물체 상의 복수의 구획 영역 중 복수의 특정 구획 영역의 위치 정보의 실측값을 사용하여 통계 연산에 의해 상기 복수의 구획 영역 각각과 소정 점과의 위치 맞춤에 사용되는 위치 정보의 추정값을 산출하는 연산 장치 ;
    상기 특정 구획 영역을 적어도 포함하는 상기 감광 물체 상의 복수의 계측 구획 영역에 관하여, 소정의 인터벌로, 상기 검출계에 의해 검출된 각 계측 구획 영역의 위치 정보의 실측값과 상기 연산 장치에 의해 산출된 위치 정보의 추정값에 기초하여 각 계측 구획 영역의 개별 기준 위치에 대한 위치 어긋남량의 비선형 성분을 평가하고, 그 평가 결과에 기초하여 추가해야 할 새로운 계측 구획 영역의 개수 및 배치 중 적어도 일방을 결정하는 평가 장치 ;
    상기 검출계에 의해 검출된 그 새로운 계측 구획 영역의 위치 정보의 실측값을 포함하는 모든 계측 구획 영역의 위치 정보의 실측값과 상기 추정값에 기초하여 산출되는 상기 감광 물체 상의 복수의 구획 영역 각각의 개별 기준 위치에 대한 위치 어긋남량의 비선형 성분을 사용하여, 상기 복수의 구획 영역 각각의 상기 위치 어긋남량의 비선형 성분에 관한 보정 정보를 갱신하는 갱신 장치 ; 및
    상기 각 구획 영역을 노광할 때에, 상기 연산 장치에 의해 산출된 각 구획 영역의 상기 위치 정보의 추정값과 최신의 상기 보정 정보에 기초하여, 상기 이동체를 통해 상기 감광 물체의 위치를 제어하는 제어 장치를 구비하는 노광 장치.
  25. 제 24 항에 있어서,
    상기 감광 물체 상의 복수의 구획 영역은, 미리 복수 블록으로 블록화되고,
    상기 평가 장치는, 상기 각 계측 구획 영역의 위치 어긋남량의 비선형 성분의 평가를 블록마다 행하는 것을 특징으로 하는 노광 장치.
  26. 제 25 항에 있어서,
    상기 인터벌은, 소정 수의 상기 감광 물체마다 및 소정 시간마다 중 어느 하나인 것을 특징으로 하는 노광 장치.
  27. 제 25 항에 있어서,
    상기 감광 물체 상의 복수의 계측 구획 영역으로서 상기 복수의 특정 구획 영역만을 지정하는 제 1 모드와, 상기 감광 물체 상의 복수의 계측 구획 영역으로서 상기 복수의 특정 구획 영역 및 나머지 구획 영역의 적어도 일부를 지정하는 제 2 모드가 설정 가능하게 구성되어 있는 것을 특징으로 하는 노광 장치.
  28. 제 19 항 내지 제 27 항 중 어느 한 항에 있어서,
    상기 보정 정보는, 보정 맵 및 보정 함수 중 어느 하나인 것을 특징으로 하는 노광 장치.
  29. 복수의 감광 물체 각각에 특정 공정의 노광 처리를 행하는 노광 장치의 제어용 컴퓨터에 소정의 처리를 실행시키는 프로그램을 기록한 컴퓨터 판독가능 기록 매체로서,
    감광 물체 상의 복수의 구획 영역에서 선택된 복수의 특정 구획 영역의 위치 정보의 실측값을 사용하여 통계 연산에 의해 상기 감광 물체 상의 상기 복수의 구획 영역 각각과 소정 점과의 위치 맞춤에 사용되는 위치 정보의 추정값을 산출하는 순서와 ;
    상기 복수의 특정 구획 영역을 적어도 포함하는 상기 감광 물체 상의 복수의 계측 구획 영역에 관하여, 소정의 인터벌로 각 계측 구획 영역의 위치 정보의 실측값과 상기 추정값에 기초하여 각 계측 구획 영역의 개별 기준 위치에 대한 위치 어긋남량의 비선형 성분을 각각 산출하고, 그 산출된 각 계측 구획 영역의 상기 위치 어긋남량의 비선형 성분 및 상기 비선형 성분의 변동량 중 어느 하나의 크기에 기초하여 상기 감광 물체 상의 복수의 구획 영역 각각의 개별 기준 위치에 대한 위치 어긋남량의 비선형 성분을 보정하기 위한 보정 정보의 갱신 필요성의 유무를 판단하는 순서를 상기 컴퓨터에 실행시키는 프로그램을 기록한 컴퓨터 판독가능 기록 매체.
  30. 복수의 감광 물체 각각에 특정 공정의 노광 처리를 행하는 노광 장치의 제어용 컴퓨터에 소정의 처리를 실행시키는 프로그램을 기록한 컴퓨터 판독가능 기록 매체로서,
    감광 물체 상의 복수의 구획 영역에서 선택된 복수의 특정 구획 영역의 위치 정보의 실측값을 사용하여 통계 연산에 의해 상기 감광 물체 상의 복수의 구획 영역 각각과 소정 점과의 위치 맞춤에 사용되는 위치 정보의 추정값을 산출하는 순서 ;
    상기 복수의 특정 구획 영역을 적어도 포함하는 상기 감광 물체 상의 복수의 계측 구획 영역에 관하여, 각각의 위치 정보의 실측값과 상기 추정값으로부터 얻어지는 각 계측 구획 영역의 개별 기준 위치에 대한 위치 어긋남량의 비선형 성분을 소정의 인터벌로 평가하고, 상기 평가 결과에 기초하여 추가해야 할 새로운 계측 구획 영역의 개수 및 배치 중 적어도 일방을 결정하는 순서 ;
    상기 새로운 계측 구획 영역을 포함하는 모든 계측 구획 영역의 위치 정보의 실측값과 상기 추정값에 기초하여 산출되는 상기 감광 물체 상의 복수의 구획 영역 각각의 개별 기준 위치에 대한 위치 어긋남량의 비선형 성분을 사용하여, 상기 복수의 구획 영역 각각의 상기 위치 어긋남량의 비선형 성분에 관한 보정 정보를 갱신하는 순서 ; 및
    상기 복수의 구획 영역 각각의 상기 위치 정보의 추정값과 보정 후의 상기 보정 정보에 기초하여, 상기 감광 물체의 위치를 제어하여 노광을 행하는 순서를 상기 컴퓨터에 실행시키는 프로그램을 기록한 컴퓨터 판독가능 기록 매체.
KR1020067010388A 2003-11-28 2004-11-25 노광 방법 및 디바이스 제조 방법, 노광 장치, 그리고 프로그램을 기록한 컴퓨터 판독가능 기록 매체 KR101060982B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003400210 2003-11-28
JPJP-P-2003-00400210 2003-11-28
PCT/JP2004/017447 WO2005053007A1 (ja) 2003-11-28 2004-11-25 露光方法及びデバイス製造方法、露光装置、並びにプログラム

Publications (2)

Publication Number Publication Date
KR20060107796A KR20060107796A (ko) 2006-10-16
KR101060982B1 true KR101060982B1 (ko) 2011-08-31

Family

ID=34631634

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020067010388A KR101060982B1 (ko) 2003-11-28 2004-11-25 노광 방법 및 디바이스 제조 방법, 노광 장치, 그리고 프로그램을 기록한 컴퓨터 판독가능 기록 매체

Country Status (4)

Country Link
US (1) US7817242B2 (ko)
JP (1) JP4400745B2 (ko)
KR (1) KR101060982B1 (ko)
WO (1) WO2005053007A1 (ko)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006030727A1 (ja) * 2004-09-14 2006-03-23 Nikon Corporation 補正方法及び露光装置
WO2007007626A1 (ja) * 2005-07-08 2007-01-18 Nikon Corporation 露光方法及び露光装置、並びにデバイス製造方法
JP4840684B2 (ja) * 2005-11-04 2011-12-21 株式会社ニコン 露光方法
EP2003526A1 (en) * 2007-06-13 2008-12-17 Carl Zeiss SMT Limited Method and device for controlling and monitoring a position of a holding element
JP5279299B2 (ja) * 2008-02-29 2013-09-04 キヤノン株式会社 反復学習制御回路を備える位置制御装置、露光装置及びデバイス製造方法
US8001495B2 (en) * 2008-04-17 2011-08-16 International Business Machines Corporation System and method of predicting problematic areas for lithography in a circuit design
JP2010040732A (ja) * 2008-08-05 2010-02-18 Nuflare Technology Inc 描画装置及び描画方法
JP5264406B2 (ja) * 2008-10-22 2013-08-14 キヤノン株式会社 露光装置、露光方法およびデバイスの製造方法
US9565966B2 (en) * 2010-10-28 2017-02-14 Voice Systems Technology, Inc. Coffee filter qualification apparatus and methodology
US9658360B2 (en) * 2010-12-03 2017-05-23 Schlumberger Technology Corporation High resolution LWD imaging
NL2009345A (en) * 2011-09-28 2013-04-02 Asml Netherlands Bv Method of applying a pattern to a substrate, device manufacturing method and lithographic apparatus for use in such methods.
US9543223B2 (en) 2013-01-25 2017-01-10 Qoniac Gmbh Method and apparatus for fabricating wafer by calculating process correction parameters
JP6381197B2 (ja) 2013-10-31 2018-08-29 キヤノン株式会社 計測装置、計測方法、リソグラフィ装置、及び物品製造方法
CA2934972C (en) * 2014-07-22 2022-03-22 Intelligent Virus Imaging Inc. Method for automatic correction of astigmatism
US9928989B2 (en) 2014-07-22 2018-03-27 Intelligent Virus Imaging Inc. Method for automatic correction of astigmatism
KR20230130161A (ko) 2015-02-23 2023-09-11 가부시키가이샤 니콘 계측 장치, 리소그래피 시스템 및 노광 장치, 그리고 관리 방법, 중첩 계측 방법 및 디바이스 제조 방법
CN111948912A (zh) 2015-02-23 2020-11-17 株式会社尼康 基板处理系统及基板处理方法、以及组件制造方法
TWI749514B (zh) * 2015-02-23 2021-12-11 日商尼康股份有限公司 測量裝置、微影系統、以及元件製造方法
US10056224B2 (en) * 2015-08-10 2018-08-21 Kla-Tencor Corporation Method and system for edge-of-wafer inspection and review
SG11201810017VA (en) * 2016-06-02 2018-12-28 Universal Instruments Corp Semiconductor die offset compensation variation
US10770327B2 (en) * 2017-07-28 2020-09-08 Taiwan Semiconductor Manufacturing Co., Ltd. System and method for correcting non-ideal wafer topography
JP2022054250A (ja) * 2020-09-25 2022-04-06 キヤノン株式会社 サンプルショット領域のセットを決定する方法、計測値を得る方法、情報処理装置、リソグラフィ装置、プログラム、および物品製造方法
JP7359899B1 (ja) 2022-04-27 2023-10-11 華邦電子股▲ふん▼有限公司 半導体製造装置及びその半導体製造方法
CN116152283B (zh) * 2023-04-18 2023-07-28 天津宜科自动化股份有限公司 一种多台线激光传感器分组曝光的处理方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001196294A (ja) 2000-01-14 2001-07-19 Mitsubishi Electric Corp 半導体装置の露光処理方法
JP2001345243A (ja) 2000-05-31 2001-12-14 Nikon Corp 評価方法、位置検出方法、露光方法及びデバイス製造方法
JP2002353121A (ja) 2001-05-28 2002-12-06 Nikon Corp 露光方法及びデバイス製造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2661015B2 (ja) * 1986-06-11 1997-10-08 株式会社ニコン 位置合わせ方法
US5525808A (en) * 1992-01-23 1996-06-11 Nikon Corporaton Alignment method and alignment apparatus with a statistic calculation using a plurality of weighted coordinate positions
US6198527B1 (en) * 1992-09-14 2001-03-06 Nikon Corporation Projection exposure apparatus and exposure method
US5596204A (en) * 1993-04-06 1997-01-21 Nikon Corporation Method for aligning processing areas on a substrate with a predetermined position in a static coordinate system
US5808910A (en) * 1993-04-06 1998-09-15 Nikon Corporation Alignment method
US5654553A (en) * 1993-06-10 1997-08-05 Nikon Corporation Projection exposure apparatus having an alignment sensor for aligning a mask image with a substrate
JPH0737785A (ja) * 1993-07-21 1995-02-07 Canon Inc 露光装置およびそのアライメント方法
KR100377887B1 (ko) * 1994-02-10 2003-06-18 가부시키가이샤 니콘 정렬방법
JPH07335524A (ja) * 1994-06-06 1995-12-22 Canon Inc 位置合わせ方法
JP3991165B2 (ja) * 1995-06-20 2007-10-17 株式会社ニコン 位置合わせ方法及び露光方法
US6312859B1 (en) * 1996-06-20 2001-11-06 Nikon Corporation Projection exposure method with corrections for image displacement
JP2000353657A (ja) * 1999-06-14 2000-12-19 Mitsubishi Electric Corp 露光方法、露光装置およびその露光装置を用いて製造された半導体装置
US6856848B2 (en) * 2000-04-24 2005-02-15 Matsushita Electric Industrial Co., Ltd. Method and apparatus for controlling progress of product processing
KR20010109212A (ko) * 2000-05-31 2001-12-08 시마무라 테루오 평가방법, 위치검출방법, 노광방법 및 디바이스 제조방법,및 노광장치
JP4022374B2 (ja) * 2001-01-26 2007-12-19 株式会社ルネサステクノロジ 半導体デバイスの製造方法およびそのシステム
JP2003324055A (ja) * 2002-04-30 2003-11-14 Canon Inc 管理システム及び装置及び方法並びに露光装置及びその制御方法
JP2004265957A (ja) * 2003-02-26 2004-09-24 Nikon Corp 最適位置検出式の検出方法、位置合わせ方法、露光方法、デバイス製造方法及びデバイス

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001196294A (ja) 2000-01-14 2001-07-19 Mitsubishi Electric Corp 半導体装置の露光処理方法
JP2001345243A (ja) 2000-05-31 2001-12-14 Nikon Corp 評価方法、位置検出方法、露光方法及びデバイス製造方法
JP2002353121A (ja) 2001-05-28 2002-12-06 Nikon Corp 露光方法及びデバイス製造方法

Also Published As

Publication number Publication date
JPWO2005053007A1 (ja) 2007-06-21
KR20060107796A (ko) 2006-10-16
WO2005053007A1 (ja) 2005-06-09
JP4400745B2 (ja) 2010-01-20
US20070109524A1 (en) 2007-05-17
US7817242B2 (en) 2010-10-19

Similar Documents

Publication Publication Date Title
KR101060982B1 (ko) 노광 방법 및 디바이스 제조 방법, 노광 장치, 그리고 프로그램을 기록한 컴퓨터 판독가능 기록 매체
KR101133490B1 (ko) 보정 방법 및 노광 장치
US7791718B2 (en) Measurement method, exposure method, and device manufacturing method
US6538721B2 (en) Scanning exposure apparatus
US7965387B2 (en) Image plane measurement method, exposure method, device manufacturing method, and exposure apparatus
JP4770833B2 (ja) ショット形状の計測方法、マスク
US20040070740A1 (en) Exposure method and exposure apparatus
KR20010109212A (ko) 평가방법, 위치검출방법, 노광방법 및 디바이스 제조방법,및 노광장치
JP2010186918A (ja) アライメント方法、露光方法及び露光装置、デバイス製造方法、並びに露光システム
JP4905617B2 (ja) 露光方法及びデバイス製造方法
US8384900B2 (en) Exposure apparatus
JP5428671B2 (ja) 露光方法、デバイス製造方法、及び露光システム
WO2005036620A1 (ja) 露光方法及び露光装置、並びにデバイス製造方法
JP2013247258A (ja) アライメント方法、露光方法、及びデバイス製造方法、並びにデバイス製造システム
JP2001345243A (ja) 評価方法、位置検出方法、露光方法及びデバイス製造方法
JP3530692B2 (ja) 走査型露光装置及びそれを用いたデバイスの製造方法
KR20050118309A (ko) 선출 방법, 노광 방법, 선출 장치, 노광 장치 및 디바이스제조 방법
JP5045927B2 (ja) 露光方法及び露光装置、並びにデバイス製造方法
JP5105135B2 (ja) 推定方法、露光方法、デバイス製造方法、検査方法、デバイス製造装置、及びプログラム
JP2006148013A (ja) 位置合わせ方法及び露光方法
KR101019389B1 (ko) 노광 장치
JP2001135559A (ja) 位置計測方法及び露光方法
JP4251295B2 (ja) 露光装置、露光方法及びデバイス製造方法
US20020021433A1 (en) scanning exposure apparatus
JP2005166951A (ja) 露光方法、露光装置及びリソグラフィシステム

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140808

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20150730

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20160727

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20170804

Year of fee payment: 7