JP2011058093A - Method for producing printed wiring board - Google Patents

Method for producing printed wiring board Download PDF

Info

Publication number
JP2011058093A
JP2011058093A JP2010196716A JP2010196716A JP2011058093A JP 2011058093 A JP2011058093 A JP 2011058093A JP 2010196716 A JP2010196716 A JP 2010196716A JP 2010196716 A JP2010196716 A JP 2010196716A JP 2011058093 A JP2011058093 A JP 2011058093A
Authority
JP
Japan
Prior art keywords
substrate
plating film
opening
wiring board
printed wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010196716A
Other languages
Japanese (ja)
Inventor
Satoru Kawai
悟 川合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Publication of JP2011058093A publication Critical patent/JP2011058093A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/42Plated through-holes or plated via connections
    • H05K3/425Plated through-holes or plated via connections characterised by the sequence of steps for plating the through-holes or via connections in relation to the conductive pattern
    • H05K3/427Plated through-holes or plated via connections characterised by the sequence of steps for plating the through-holes or via connections in relation to the conductive pattern initial plating of through-holes in metal-clad substrates
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/02Electroplating of selected surface areas
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/22Electroplating combined with mechanical treatment during the deposition
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/12Semiconductors
    • C25D7/123Semiconductors first coated with a seed layer or a conductive layer
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electroplating of a printed wiring board for plating-filling of non-through-holes and through-holes and for a film plating over the surface to be plated. <P>SOLUTION: In areas in contact with insulative bodies 20A and 20B, the growth of an electroplating film 36 is retarded. In other words, iron ions are forcibly fed into the plating interface by the insulative bodies 20A and 20B, and then a reduction reaction in which trivalent iron ions are converted into divalent iron ions takes place to suppress the deposition of copper. Within a through-hole 31a not in contact with the insulative bodies 20A and 20B, trivalent iron ions merely diffuse into the plating interface and not forcibly fed there, the reduction reaction of trivalent iron ions is slow, and the electroplating film 36 grows to fill a through-hole conductor 42 and to form a thin electroplating film 36 on the surface of a core substrate. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、開口を有する基板を鉄イオンを含む電解めっき液に浸漬することと開口内と基板表面に電解めっき膜を形成することとを有するプリント配線板の製造方法に関する。   The present invention relates to a method for manufacturing a printed wiring board including immersing a substrate having an opening in an electrolytic plating solution containing iron ions and forming an electrolytic plating film in the opening and on the surface of the substrate.

WO2006/033315A1は被めっき面に絶縁体を接触させながら貫通孔や非貫通孔を電解めっき膜で充填する方法を開示している。 WO 2006/033315 A1 discloses a method of filling through holes and non-through holes with an electrolytic plating film while bringing an insulator into contact with the surface to be plated.

WO2006/033315A1WO2006 / 033315A1

上述した従来技術では、基板表面に形成されるめっき膜の厚みの抑制が機械的に行われているので、膜厚が厚すぎる場合が発生すると考えられる。 In the above-described prior art, since the thickness of the plating film formed on the substrate surface is mechanically suppressed, it is considered that the case where the film thickness is too thick occurs.

本発明は、基板の開口を電解めっき膜で充填すると同時に基板表面に形成される電解めっき膜の膜厚を薄くすることができるプリント配線板の製造方法を提供することである。 An object of the present invention is to provide a method for manufacturing a printed wiring board capable of reducing the film thickness of an electrolytic plating film formed on the substrate surface at the same time as filling the opening of the substrate with the electrolytic plating film.

本願発明のプリント配線板の製造方法は、基板に開口を形成することと、
前記開口の内壁と前記基板の表面に電解めっき用のシード層を形成することと、
前記シード層を有する前記基板を電解めっき液に浸漬することと、
前記電解めっき液に絶縁体を浸漬することと、
前記基板と前記絶縁体を相対的に移動させながら前記基板に電解めっき膜を形成するとともに前記開口を該電解めっき膜で充填することと、
前記基板に導体回路を形成すること、とからなる。そして、前記電解めっき液は硫酸銅と硫酸と鉄イオンを含んでいる。
The method for manufacturing a printed wiring board of the present invention includes forming an opening in a substrate,
Forming a seed layer for electrolytic plating on the inner wall of the opening and the surface of the substrate;
Immersing the substrate having the seed layer in an electrolytic plating solution;
Immersing an insulator in the electrolytic plating solution;
Forming an electrolytic plating film on the substrate while relatively moving the substrate and the insulator, and filling the opening with the electrolytic plating film;
Forming a conductor circuit on the substrate. The electrolytic plating solution contains copper sulfate, sulfuric acid, and iron ions.

本発明の実施例1の多層プリント配線板を製造方法を示す工程図である。It is process drawing which shows the manufacturing method of the multilayer printed wiring board of Example 1 of this invention. 実施例1の多層プリント配線板を製造方法を示す工程図である。It is process drawing which shows the manufacturing method of the multilayer printed wiring board of Example 1. 実施例1の多層プリント配線板を製造方法を示す工程図である。It is process drawing which shows the manufacturing method of the multilayer printed wiring board of Example 1. 実施例1の多層プリント配線板を製造方法を示す工程図である。It is process drawing which shows the manufacturing method of the multilayer printed wiring board of Example 1. 実施例1の多層プリント配線板を製造方法を示す工程図である。It is process drawing which shows the manufacturing method of the multilayer printed wiring board of Example 1. 実施例1に係る多層プリント配線板の断面図である。1 is a cross-sectional view of a multilayer printed wiring board according to Example 1. FIG. 実施例1の改変例に係る多層プリント配線板の製造方法を示す工程図である。6 is a process diagram illustrating a method for manufacturing a multilayer printed wiring board according to a modification of Example 1. FIG. 実施例1の更に別改変例に係るプリント配線板の製造方法を示す工程図である。10 is a process diagram illustrating a method for manufacturing a printed wiring board according to still another modification of Example 1. FIG. 実施形態1で用いられるめっき装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the plating apparatus used in Embodiment 1. 実施例2でのめっき槽内の搬送機構の全体構成を示す説明図である。FIG. 6 is an explanatory diagram showing an overall configuration of a transport mechanism in a plating tank in Example 2. 実施例2でのめっき槽内の搬送機構の全体構成を示す説明図である。FIG. 6 is an explanatory diagram showing an overall configuration of a transport mechanism in a plating tank in Example 2. 実施例2の多層プリント配線板を製造方法を示す工程図である。It is process drawing which shows the manufacturing method of the multilayer printed wiring board of Example 2. 実施形態でのプリント配線板の製造方法を示す工程図である。It is process drawing which shows the manufacturing method of the printed wiring board in embodiment.

[実施形態]
図9を参照して本発明の実施形態に係るめっき装置の構成について説明する。
めっき装置10は、めっき液12を満たしためっき槽14と、めっき液12を循環させるための循環装置16と、プリント配線板30の表面側のめっき面(基板表面)に接触している多孔質樹脂(スポンジ)から成る絶縁体20Aと、裏面側のめっき面(基板裏面)に接触しているスポンジから成る絶縁体20Bと、絶縁体20A、20Bをプリント配線板30に沿って上下に移動させる昇降装置24とから成る。絶縁体20A、20Bは昇降装置24により上下移動する昇降バー22を介して移動する。プリント配線板20は、陰極側に接続されている。めっき槽内には、図示しない陽極が設けられ、陽極内には銅球が収容されている。めっき液12は、硫酸銅と硫酸と鉄イオンとを含んでいる。鉄イオン源としては硫酸鉄が好ましい。硫酸鉄としては、水和物が好ましく、硫酸鉄・七水和物(FeSO4・7H2O)が望ましい。空電解処理によりFe2+とFe3+の濃度を調整することができる。
[Embodiment]
With reference to FIG. 9, the structure of the plating apparatus which concerns on embodiment of this invention is demonstrated.
The plating apparatus 10 is porous in contact with a plating tank 14 filled with a plating solution 12, a circulation device 16 for circulating the plating solution 12, and a plating surface (substrate surface) on the surface side of the printed wiring board 30. The insulator 20A made of resin (sponge), the insulator 20B made of sponge in contact with the back side plating surface (back surface of the substrate), and the insulators 20A and 20B are moved up and down along the printed wiring board 30. And a lifting device 24. The insulators 20 </ b> A and 20 </ b> B are moved via a lifting bar 22 that moves up and down by a lifting device 24. The printed wiring board 20 is connected to the cathode side. An anode (not shown) is provided in the plating tank, and a copper ball is accommodated in the anode. The plating solution 12 contains copper sulfate, sulfuric acid, and iron ions. The iron ion source is preferably iron sulfate. As iron sulfate, a hydrate is preferable, and iron sulfate heptahydrate (FeSO 4 .7H 2 O) is desirable. The concentration of Fe 2+ and Fe 3+ can be adjusted by air electrolytic treatment.

図13を参照して、該めっき装置10を用いて、開口を有する基板に電解めっき膜を形成する方法について説明する。まず、第1面30Aと第1面とは反対側の第2面30Bを有する基板30に開口31a、31bを形成する(図13(A))。開口はスルーホール導体用貫通孔(スルーホール導体用開口)とバイアホールを有し、開口31aは貫通孔であり、開口31bは非貫通孔(ビア導体用開口)である。続いて、基板30の第1面と第2面と開口の内壁にシード層34を形成する(図13(B))。シード層としては、無電解めっき膜やスパッタ膜、蒸着膜を例示することができる。また、PdやCなどの導電性粒子を貫通孔の内壁と基板表面に形成することで、直接基板表面と開口の内壁に電解めっき膜を形成することができる。この場合、導電性粒子がシード層として機能する。図13(B)のシード層34は無電解銅めっき膜である。シード層34を有する基板を以下のめっき液12に浸漬する。
(めっき液12の組成)
硫酸銅濃度:0.8±0.1mol/l
硫酸濃度:0.5±0.15mol/l
塩素イオン濃度:5〜100ppm
鉄イオン濃度:1g/l〜20g/l
*鉄イオン濃度は2価の鉄イオンと3価の鉄イオンのトータルの値
*2価の鉄イオン濃度:3価の鉄イオン濃度=1:2〜1:4
添加剤濃度:5±1mol/l
(めっき条件)
電流密度:0.5〜5A/dm2
With reference to FIG. 13, a method of forming an electrolytic plating film on a substrate having an opening using the plating apparatus 10 will be described. First, openings 31a and 31b are formed in the substrate 30 having the first surface 30A and the second surface 30B opposite to the first surface (FIG. 13A). The openings have through-hole conductor through holes (through-hole conductor openings) and via holes, the openings 31a are through-holes, and the openings 31b are non-through holes (via conductor openings). Subsequently, a seed layer 34 is formed on the first and second surfaces of the substrate 30 and the inner wall of the opening (FIG. 13B). Examples of the seed layer include an electroless plating film, a sputtered film, and a deposited film. In addition, by forming conductive particles such as Pd and C on the inner wall of the through hole and the substrate surface, an electrolytic plating film can be formed directly on the substrate surface and the inner wall of the opening. In this case, the conductive particles function as a seed layer. The seed layer 34 in FIG. 13B is an electroless copper plating film. The substrate having the seed layer 34 is immersed in the following plating solution 12.
(Composition of plating solution 12)
Copper sulfate concentration: 0.8 ± 0.1 mol / l
Sulfuric acid concentration: 0.5 ± 0.15 mol / l
Chlorine ion concentration: 5-100ppm
Iron ion concentration: 1g / l-20g / l
* Iron ion concentration is the total value of divalent iron ions and trivalent iron ions * Divalent iron ion concentration: Trivalent iron ion concentration = 1: 2 to 1: 4
Additive concentration: 5 ± 1 mol / l
(Plating conditions)
Current density: 0.5 to 5 A / dm 2

続いて、基板の第1面に絶縁体20Aを押し当てる。基板の第2面に絶縁体20Bを押し当てる(図13(C))。絶縁体を基板に接触させる時、絶縁体が基板の表面に接触後、さらに基板(被めっき面)の表面に対して、1.0〜15.0mm押し込むことが望ましい。押し込み量が1.0mm未満では、絶縁体を用いないめっき方法と同等な結果になりやすい。15.0mmを越える押し込み量では、めっき液の供給が阻害されるために、開口内のめっき膜の厚さにバラツキが発生しやすい。2〜8mmの押し込み量が最も望ましい。基板表面や開口内のめっき膜のバラツキが小さくなる。また、基板表面に形成される電解めっき膜の厚みが薄くなる。 Subsequently, the insulator 20A is pressed against the first surface of the substrate. The insulator 20B is pressed against the second surface of the substrate (FIG. 13C). When the insulator is brought into contact with the substrate, it is desirable that the insulator is further pressed into the surface of the substrate (surface to be plated) by 1.0 to 15.0 mm after contacting the surface of the substrate. If the indentation amount is less than 1.0 mm, the result is likely to be equivalent to a plating method that does not use an insulator. When the pressing amount exceeds 15.0 mm, the supply of the plating solution is hindered, so that the thickness of the plating film in the opening tends to vary. A pushing amount of 2 to 8 mm is most desirable. Variations in the surface of the substrate and the plating film in the opening are reduced. Moreover, the thickness of the electrolytic plating film formed on the substrate surface is reduced.

基板30に絶縁体20A、20Bを接触させながら基板と絶縁体を相対的に移動させる(図13(C))。基板に対する絶縁体の移動速度は、1.0〜16.0m/minであることが望ましい。この範囲であると、基板表面に鉄イオンを適正に供給できる。その結果、基板表面に形成される電解めっき膜の膜厚を薄くすることができる。その上、絶縁体により、開口内にめっき液を供給できるので、開口内をめっきで充填することができる。 The substrate and the insulator are relatively moved while the insulators 20A and 20B are in contact with the substrate 30 (FIG. 13C). The moving speed of the insulator with respect to the substrate is desirably 1.0 to 16.0 m / min. Within this range, iron ions can be properly supplied to the substrate surface. As a result, the thickness of the electrolytic plating film formed on the substrate surface can be reduced. Moreover, since the plating solution can be supplied into the opening by the insulator, the opening can be filled with plating.

本実施形態では、上述のめっき液12にシード層を有する基板(図13(B)参照)を浸漬する。そして、絶縁体が基板に押し当てられる。絶縁体が基板に押し当てられながら絶縁体と基板は相対的に移動させられる。その状態を保ちながら基板30表面と開口31a、31b内に電解めっき膜36が形成される(図13(C))。 In the present embodiment, a substrate having a seed layer (see FIG. 13B) is immersed in the plating solution 12 described above. Then, the insulator is pressed against the substrate. The insulator and the substrate are relatively moved while the insulator is pressed against the substrate. While maintaining this state, an electrolytic plating film 36 is formed on the surface of the substrate 30 and in the openings 31a and 31b (FIG. 13C).

実施形態では、鉄イオンを有する電解めっき液中で基板に絶縁体を接触させながら基板表面と基板の開口内に電解めっき膜が形成される。このため、3価の鉄イオンが基板表面の被めっき面に供給されやすい。そのため、めっき膜表面で以下の反応が起こるのではないかと推察される。
反応式(1):2Fe3++Cu⇒2Fe2++Cu2+
上述の反応が起こるとすると、絶縁体が接触している部分ではめっき膜の析出と溶解が起こると考えられる。基板表面のめっき膜の成長速度は遅くなると考えられる。それに対し、めっき開始時、開口内のめっき膜は絶縁体と接触しないので、鉄イオンにより、開口内の電解めっき膜の成長は抑制され難いと考えられる。開口内へは3価の鉄イオンが濃度勾配により拡散するので、3価の鉄イオン濃度は低いと考えられる。そのため、実施形態では開口(貫通孔や非貫通孔(バイアホール)が含まれる)をめっき膜で充填できると共に、基板表面のめっき膜の厚さが薄くなると考えられる。開口内の電解めっき膜36が徐々に厚くなると、絶縁体20A、20Bが、開口を充填するめっき膜の表面へ接触する。絶縁体に接触すると、開口を充填するめっき膜と基板表面のめっき膜の成長速度は同等になると考えられる。そのため、本実施形態により得られるめっき膜は均一で薄いめっき膜になると考えられる。
あるいは、以下の反応により、めっきの析出が抑制されるメカニズムも考えられる。
反応式(2):Fe3++Cu2++3e⇒Fe2++Cu
反応式(2)の場合、銅めっき膜を析出させるための電子が3価の鉄イオンを2価の鉄イオンに還元するために使われるのでめっき膜の成長が抑制されると考えられる。反応式(2)の場合も反応式(1)の場合と同様な理由で、開口内をめっきで充填することができると共に基板表面のめっき膜を薄くすることができると考えられる。
上述の反応(反応式(1)と反応式(2))は鉄イオン以外でも起こると考えられる。しかしながら、実施形態では絶縁体を用いて鉄イオンを強制的にめっき膜表面に供給していると考えられるので、めっき液に加えられる金属イオンとしては、鉄が適していると考えられる。その理由として、鉄と銅のイオン化傾向が近いからと考えられる。鉄イオンを含む電解めっき液中で基板に絶縁体を接触させながら基板表面と基板の開口にめっき膜を形成する方法は従来技術に比べ、例えば、微細配線を形成する点で優れている。開口を有する基板に本発明の実施形態と従来技術で電解めっき膜を形成すると、本発明の実施形態で得られる電解めっき膜の厚み(基板上に形成されるめっき膜の厚み)は従来技術の電解めっき膜の厚み(基板上に形成されるめっき膜の厚み)に比べ1/2〜1/3程度である。開口は本発明の実施形態と従来技術でほぼ同等にめっき膜で充填される。
実施形態のめっき方法を用いることにより、開口をめっきで充填できると共に、開口から露出するめっき膜の表面が平坦になりやすい(図13(D)、図13(E)参照)。さらに、開口から露出するめっき膜の上面と基板表面に形成されるめっき膜の上面が同一レベルに位置すると共に、基板表面の電解めっき膜36を薄く形成することができる。本実施形態のめっき方法によれば、深い開口をめっき膜で充填することと、基板表面に形成されるめっき膜の厚さを薄くすることを同時に達成できる。その後、基板表面の薄い電解めっき膜36とシード層34をパターニングすることで、ファインピッチな導体回路を形成することができる(図13(F))。同時に、スルーホール導体42とビア導体60、導体回路58が完成する。
In the embodiment, an electrolytic plating film is formed on the substrate surface and in the opening of the substrate while contacting an insulator with the substrate in an electrolytic plating solution containing iron ions. For this reason, trivalent iron ions are easily supplied to the surface to be plated of the substrate. Therefore, it is speculated that the following reaction may occur on the plating film surface.
Reaction formula (1): 2Fe 3+ + Cu⇒2Fe 2+ + Cu 2+
Assuming that the above reaction occurs, it is considered that the plating film is deposited and dissolved in the portion where the insulator is in contact. The growth rate of the plating film on the substrate surface is considered to be slow. On the other hand, since the plating film in the opening does not come into contact with the insulator at the start of plating, it is considered that the growth of the electrolytic plating film in the opening is hardly suppressed by iron ions. Since trivalent iron ions diffuse into the opening due to the concentration gradient, the trivalent iron ion concentration is considered to be low. Therefore, in the embodiment, it is considered that openings (including through holes and non-through holes (via holes)) can be filled with a plating film, and the thickness of the plating film on the substrate surface is reduced. When the electrolytic plating film 36 in the opening is gradually thickened, the insulators 20A and 20B come into contact with the surface of the plating film filling the opening. When in contact with the insulator, the growth rate of the plating film filling the opening and the plating film on the substrate surface is considered to be equal. Therefore, it is considered that the plating film obtained by the present embodiment is a uniform and thin plating film.
Or the mechanism by which precipitation of plating is suppressed by the following reaction is also considered.
Reaction formula (2): Fe 3+ + Cu 2+ + 3e → Fe 2+ + Cu
In the case of the reaction formula (2), it is considered that the growth of the plating film is suppressed because the electrons for depositing the copper plating film are used to reduce the trivalent iron ion to the divalent iron ion. In the case of reaction formula (2), it is considered that the opening can be filled with plating and the plating film on the substrate surface can be made thin for the same reason as in reaction formula (1).
The above reactions (reaction formula (1) and reaction formula (2)) are considered to occur even with iron ions. However, in the embodiment, it is considered that iron ions are forcibly supplied to the surface of the plating film using an insulator, and thus iron is considered suitable as a metal ion added to the plating solution. The reason is considered to be that the ionization tendency of iron and copper is close. The method of forming a plating film on the substrate surface and the opening of the substrate while bringing an insulator into contact with the substrate in an electrolytic plating solution containing iron ions is superior to the prior art in, for example, forming fine wiring. When an electrolytic plating film is formed on a substrate having an opening by the embodiment of the present invention and the conventional technique, the thickness of the electrolytic plating film obtained by the embodiment of the present invention (the thickness of the plating film formed on the substrate) is the conventional one. It is about 1/2 to 1/3 of the thickness of the electrolytic plating film (thickness of the plating film formed on the substrate). The opening is filled with a plating film substantially the same as in the embodiment of the present invention and the prior art.
By using the plating method of the embodiment, the opening can be filled with plating, and the surface of the plating film exposed from the opening is likely to be flat (see FIGS. 13D and 13E). Further, the upper surface of the plating film exposed from the opening and the upper surface of the plating film formed on the substrate surface are located at the same level, and the electrolytic plating film 36 on the substrate surface can be formed thin. According to the plating method of this embodiment, it is possible to simultaneously fill a deep opening with a plating film and reduce the thickness of the plating film formed on the substrate surface. After that, by patterning the thin electrolytic plating film 36 and the seed layer 34 on the substrate surface, a fine pitch conductor circuit can be formed (FIG. 13F). At the same time, the through-hole conductor 42, the via conductor 60, and the conductor circuit 58 are completed.

更に、絶縁体20として多孔質樹脂(スポンジ)やブラシからから成る絶縁体20A、20Bを用いると、3価の鉄イオンが被めっき面に供給されやすい。多孔質樹脂の孔やブラシの毛と毛の間の空間からめっき液が基板表面に供給されやすいからと考えられる。基板表面に形成されるめっき膜が薄くなりやすい。 Furthermore, when the insulators 20A and 20B made of a porous resin (sponge) or a brush are used as the insulator 20, trivalent iron ions are easily supplied to the surface to be plated. This is probably because the plating solution is easily supplied to the substrate surface from the pores of the porous resin or the space between the hairs of the brush. The plating film formed on the substrate surface tends to be thin.

本願の実施形態によれば、開口を電解めっき膜で充填できる上、基板表面に形成される電解めっき膜が薄くなる。そのため、本願の実施形態は、特に、電解めっき膜を基板全面に形成し、エッチングにより導体回路を形成する方法(サブトラクティブ法、テンティング法)において、電解めっき膜を形成するプロセスに適用されることが好ましい。本願の実施形態を適用することで、ファインピッチな導体回路を形成できるので、高密度化のために有利である。 According to the embodiment of the present application, the opening can be filled with the electrolytic plating film, and the electrolytic plating film formed on the substrate surface becomes thin. Therefore, the embodiment of the present application is particularly applied to a process of forming an electrolytic plating film in a method (subtractive method, tenting method) in which an electrolytic plating film is formed on the entire surface of a substrate and a conductor circuit is formed by etching. It is preferable. By applying the embodiment of the present application, a fine-pitch conductor circuit can be formed, which is advantageous for increasing the density.

[実施例1]
実施例1の多層プリント配線板の製造方法について、図1〜図6を参照して説明する。
図6は、実施例1の多層プリント配線板を示す断面図である。多層プリント配線板では、コア基板30の第1面と第2面に導体回路40が形成されていて、第1面と第2面の導体回路がスルーホール導体42により接続されている。更に、該コア基板30と該導体回路40の上にビア導体60及び導体回路58が形成されている層間樹脂絶縁層50と、ビア導体160及び導体回路158が形成されている層間樹脂絶縁層150とが形成されている。該ビア導体160及び導体回路158、層間樹脂絶縁層150の上には開口部71を有するソルダーレジスト層70が形成されている。該ソルダーレジスト層70の開口部71により露出するビア導体160及び導体回路158にバンプ76U、76Dが形成されている。
[Example 1]
The manufacturing method of the multilayer printed wiring board of Example 1 is demonstrated with reference to FIGS.
FIG. 6 is a cross-sectional view illustrating the multilayer printed wiring board according to the first embodiment. In the multilayer printed wiring board, conductor circuits 40 are formed on the first surface and the second surface of the core substrate 30, and the conductor circuits on the first surface and the second surface are connected by a through-hole conductor 42. Furthermore, the interlayer resin insulation layer 50 in which the via conductor 60 and the conductor circuit 58 are formed on the core substrate 30 and the conductor circuit 40, and the interlayer resin insulation layer 150 in which the via conductor 160 and the conductor circuit 158 are formed. And are formed. A solder resist layer 70 having an opening 71 is formed on the via conductor 160, the conductor circuit 158, and the interlayer resin insulating layer 150. Bumps 76U and 76D are formed on the via conductor 160 and the conductor circuit 158 exposed through the opening 71 of the solder resist layer 70.

以下、図6に示す多層プリント配線板の製造工程について説明する。
(1)厚さ0.8mmの両面銅張積層板を準備する(図1(A))。両面銅張積層板の絶縁層性基板(コア基板)30はガラスエポキシ樹脂またはBT(ビスマレイミドトリアジン)樹脂とガラスクロス等の心材とからなり、コア基板30の第1面とその第1面とは反対側の第2面に銅箔130A、130Bが積層されている。まず、ドリルまたはレーザで両面銅張積層板に、スルーホール導体用貫通孔32を形成する(図1(B))。
Hereinafter, the manufacturing process of the multilayer printed wiring board shown in FIG. 6 will be described.
(1) A double-sided copper-clad laminate having a thickness of 0.8 mm is prepared (FIG. 1A). An insulating layer substrate (core substrate) 30 of a double-sided copper-clad laminate is made of glass epoxy resin or BT (bismaleimide triazine) resin and a core material such as glass cloth, and the first surface of the core substrate 30 and the first surface thereof. Copper foils 130A and 130B are laminated on the second surface on the opposite side. First, the through-hole 32 for through-hole conductors is formed in a double-sided copper clad laminated board with a drill or a laser (FIG. 1 (B)).

(2)そして、両面銅張積層板の表面、スルーホール用貫通孔32の内壁面に触媒核を付着させる(図示せず)。次に、市販の無電解銅めっき水溶液(例えば、上村工業社製のTHRU−CUP)中に、触媒が付与されたコア基板を浸漬して、基板表面と貫通孔の内壁に厚さ0.3〜3.0μmの無電解銅めっき膜34を形成する(図1(C))。 (2) Then, catalyst nuclei are attached to the surface of the double-sided copper-clad laminate and the inner wall surface of the through-hole through hole 32 (not shown). Next, the core substrate provided with the catalyst is immersed in a commercially available electroless copper plating aqueous solution (for example, THRU-CUP manufactured by Uemura Kogyo Co., Ltd.), and a thickness of 0.3 is formed on the substrate surface and the inner wall of the through hole. An electroless copper plating film 34 having a thickness of ˜3.0 μm is formed (FIG. 1C).

(3)ついで、コア基板30を50℃の水で洗浄して脱脂し、25℃の水で水洗後、さらに硫酸で洗浄してから、以下の組成の電解銅めっき液12に浸漬する。その後、図9を参照して上述しためっき装置10を用いて、以下の条件で銅張積層板の両面と貫通孔内に電解めっき膜36を形成する(図1(D))。
〔電解めっき液〕
硫酸 0.5 mol/l
硫酸銅 0.8 mol/l
硫酸鉄・七水和物 5 g/l
レベリング剤 50 mg/l
光沢剤 50 mg/l
Fe2+:Fe3+ 1:2〜1:4
〔電解めっき条件〕
電流密度 1 A/dm2
時間 65 分
温度 22±2 ℃
(3) Next, the core substrate 30 is washed and degreased with water at 50 ° C., washed with water at 25 ° C. and further washed with sulfuric acid, and then immersed in the electrolytic copper plating solution 12 having the following composition. Thereafter, using the plating apparatus 10 described above with reference to FIG. 9, electrolytic plating films 36 are formed on both surfaces of the copper-clad laminate and in the through holes under the following conditions (FIG. 1D).
[Electrolytic plating solution]
Sulfuric acid 0.5 mol / l
Copper sulfate 0.8 mol / l
Iron sulfate heptahydrate 5 g / l
Leveling agent 50 mg / l
Brightener 50 mg / l
Fe 2+ : Fe 3+ 1: 2-1: 4
[Electrolytic plating conditions]
Current density 1 A / dm 2
Time 65 minutes Temperature 22 ± 2 ℃

このとき、図9を参照して上述したように絶縁体20A、20Bとして、多孔質樹脂を用いて、被めっき面を上下に移動させながら、貫通孔32をめっきで充填しながらコア基板上に電解銅めっき膜36を形成する。貫通孔は電解銅めっき膜36で充填される。このとき、絶縁体の移動速度は7m/min、コア基板に対する絶縁体の大きさは0.80、絶縁体の押し込み量は8mmである。 At this time, as described above with reference to FIG. 9, as the insulators 20 </ b> A and 20 </ b> B, using the porous resin, the surface to be plated is moved up and down, and the through holes 32 are filled on the core substrate while being plated. An electrolytic copper plating film 36 is formed. The through hole is filled with the electrolytic copper plating film 36. At this time, the moving speed of the insulator is 7 m / min, the size of the insulator with respect to the core substrate is 0.80, and the pushing amount of the insulator is 8 mm.

(4)電解めっき膜36上に所定パターンのエッチングレジスト38を形成する(図1(E))。 (4) An etching resist 38 having a predetermined pattern is formed on the electrolytic plating film 36 (FIG. 1E).

(5)エッチングレジストから露出する電解めっき膜36,無電解めっき膜34と銅箔130A、130Bをエッチングにより除去することで、スルーホール導体40、導体回路42が形成される(図2(A))。 (5) By removing the electrolytic plating film 36, the electroless plating film 34 and the copper foils 130A and 130B exposed from the etching resist by etching, the through-hole conductor 40 and the conductor circuit 42 are formed (FIG. 2A). ).

(6)次いで、導体回路40の全表面とスルーホール導体の上面に粗化面40αを形成する(図2(B))。 (6) Next, a roughened surface 40α is formed on the entire surface of the conductor circuit 40 and the upper surface of the through-hole conductor (FIG. 2B).

[ビルドアップ層の形成]
(7)コア基板30の両面に、層間樹脂絶縁層用樹脂フィルム(味の素社製:商品名;ABF−45SH)を積層する。その後、層間樹脂絶縁層用樹脂フィルムを硬化することでコア基板の両面に層間樹脂絶縁層50が形成される(図2(C))。
[Formation of build-up layer]
(7) A resin film for an interlayer resin insulation layer (manufactured by Ajinomoto Co., Inc .: trade name; ABF-45SH) is laminated on both surfaces of the core substrate 30. Thereafter, the interlayer resin insulation layer 50 is formed on both surfaces of the core substrate by curing the resin film for the interlayer resin insulation layer (FIG. 2C).

(8)次に、CO2 ガスレーザにて、層間樹脂絶縁層に、直径80μmのビア導体用開口50aを形成する(図2(D))。 (8) Next, via conductor openings 50a having a diameter of 80 μm are formed in the interlayer resin insulation layer with a CO 2 gas laser (FIG. 2D).

(9)バイアホール用開口50aを有する基板30を、60g/lの過マンガン酸を含む80℃の溶液に10分間浸漬し、ビア導体用開口50aの内壁を含む層間樹脂絶縁層50の表面に粗面50αを形成する(図2(E))。 (9) The substrate 30 having the via hole opening 50a is immersed in an 80 ° C. solution containing 60 g / l of permanganic acid for 10 minutes, and is formed on the surface of the interlayer resin insulating layer 50 including the inner wall of the via conductor opening 50a. A rough surface 50α is formed (FIG. 2E).

(10)次に、基板30を、中和溶液(シプレイ社製)に浸漬してから水洗いする。
さらに、層間樹脂絶縁層50の表面およびビア導体用開口50aの内壁面に触媒核を付着する(図示せず)。
(10) Next, the substrate 30 is immersed in a neutralizing solution (manufactured by Shipley Co., Ltd.) and then washed with water.
Further, catalyst nuclei are attached to the surface of the interlayer resin insulation layer 50 and the inner wall surface of the via conductor opening 50a (not shown).

(11)次に、市販の無電解銅めっき水溶液中に、触媒が付与された基板を浸漬して、層間樹脂絶縁層の表面とビア導体用開口の内壁に厚さ0.3〜3.0μmの無電解銅めっき膜52を形成する(図3(A))。 (11) Next, the substrate provided with the catalyst is immersed in a commercially available electroless copper plating aqueous solution, and a thickness of 0.3 to 3.0 μm is formed on the surface of the interlayer resin insulation layer and the inner wall of the via conductor opening. The electroless copper plating film 52 is formed (FIG. 3A).

(12)ついで、層間樹脂絶縁層を有する基板を50℃の水で洗浄して脱脂し、25℃の水で水洗後、さらに硫酸で洗浄してから、上述の(3)と同様の電解銅めっき液12に浸漬する。図9を参照して上述しためっき装置10を用いて、上述の(3)と同様の条件で層間樹脂絶縁層上とビア導体用開口内に電解銅めっき膜56を形成する(図3(B))。ビア導体用開口は電解銅めっき膜56で充填される。 (12) Next, the substrate having the interlayer resin insulation layer is washed and degreased with water at 50 ° C., washed with water at 25 ° C. and further washed with sulfuric acid, and then the electrolytic copper as in (3) above. Immerse in the plating solution 12. Using the plating apparatus 10 described above with reference to FIG. 9, an electrolytic copper plating film 56 is formed on the interlayer resin insulation layer and in the via conductor opening under the same conditions as in (3) above (FIG. 3B). )). The via conductor opening is filled with an electrolytic copper plating film 56.

このとき、図9を参照して上述したように絶縁体20A、20Bとして、多孔質樹脂を用いて、被めっき面を上下に移動させながら、開口50a内にめっきを充填すると共に、層間樹脂絶縁層50の表面に厚さ12μmの電解銅めっき膜56を形成する。このとき、絶縁体の移動速度は7m/min、コア基板に対する絶縁体の大きさは0.80、絶縁体の押し込み量は8mmである。 At this time, as described above with reference to FIG. 9, as the insulators 20 </ b> A and 20 </ b> B, the porous resin is used to fill the opening 50 a while moving the surface to be plated up and down, and the interlayer resin insulation An electrolytic copper plating film 56 having a thickness of 12 μm is formed on the surface of the layer 50. At this time, the moving speed of the insulator is 7 m / min, the size of the insulator with respect to the core substrate is 0.80, and the pushing amount of the insulator is 8 mm.

(13)電解銅めっき膜56上にエッチングレジスト54を形成する(図3(C))。 (13) An etching resist 54 is formed on the electrolytic copper plating film 56 (FIG. 3C).

(14)さらに、エッチングレジスト54から露出する電解めっき膜56及び無電解めっき膜52をエッチングで除去する。その後、エッチングレジスト54を除去することで、独立の上層導体回路58とフィルドビア60が形成される(図3(D))。 (14) Further, the electrolytic plating film 56 and the electroless plating film 52 exposed from the etching resist 54 are removed by etching. Thereafter, by removing the etching resist 54, an independent upper layer conductor circuit 58 and a filled via 60 are formed (FIG. 3D).

(15)ついで、上層導体回路58、フィルドビア60の表面に粗化面58α、60αを形成する(図4(A))。 (15) Next, roughened surfaces 58α and 60α are formed on the surface of the upper conductor circuit 58 and the filled via 60 (FIG. 4A).

(16)上記(6)〜(15)の工程を繰り返すことにより、さらに上層の層間絶縁層150、導体回路158、フィルドビア160を形成し、多層配線板300を得る(図4(B))。 (16) By repeating the steps (6) to (15), an upper interlayer insulating layer 150, a conductor circuit 158, and a filled via 160 are formed to obtain the multilayer wiring board 300 (FIG. 4B).

(17)
次に、多層配線基板300の両面に、市販のソルダーレジスト組成物(例えば日立化成工業社製のSR7200)70を20μmの厚さで塗布し(図4(C))、70℃で20分間、70℃で30分間の条件で乾燥処理を行う。その後、露光・現像処理により、ソルダーレジスト組成物に導体回路やフィルドビアを露出する開口71を形成する(図5(A))。
そして、さらに、80℃で1時間、100℃で1時間、120℃で1時間、150℃で3時間の条件でそれぞれ加熱処理を行ってソルダーレジスト組成物を硬化させ、導体回路やフィルドビアを露出する開口を有するソルダーレジスト層70が層間樹脂絶縁層上に形成される。ソルダーレジスト層の開口から露出している導体回路やフィルドビアの上面は電子部品やピンなどを実装するためのパッドとして機能する。
(17)
Next, a commercially available solder resist composition (for example, SR7200 manufactured by Hitachi Chemical Co., Ltd.) 70 is applied to both surfaces of the multilayer wiring board 300 in a thickness of 20 μm (FIG. 4C), and at 70 ° C. for 20 minutes. Drying is performed at 70 ° C. for 30 minutes. Then, the opening 71 which exposes a conductor circuit and a filled via is formed in a soldering resist composition by exposure and development processing (Drawing 5 (A)).
Further, the solder resist composition is cured by heating at 80 ° C. for 1 hour, 100 ° C. for 1 hour, 120 ° C. for 1 hour, and 150 ° C. for 3 hours to expose the conductor circuit and filled via. A solder resist layer 70 having an opening is formed on the interlayer resin insulation layer. The upper surface of the conductor circuit and filled via exposed from the opening of the solder resist layer functions as a pad for mounting electronic parts, pins, and the like.

(18)次に、ソルダーレジスト層70の開口から露出するパッド上にニッケル層、パラジウム層、金層をこの順で形成する。 (18) Next, a nickel layer, a palladium layer, and a gold layer are formed in this order on the pad exposed from the opening of the solder resist layer 70.

(19)この後、パッド上にはんだボールを供給し、リフローすることによりはんだバンプ(はんだ体)76U、76Dをパッド上に形成する。 (19) Thereafter, solder bumps (solder bodies) 76U and 76D are formed on the pads by supplying solder balls onto the pads and performing reflow.

はんだバンプ76U、76Dを有する多層プリント配線板10が完成する(図6)。 The multilayer printed wiring board 10 having the solder bumps 76U and 76D is completed (FIG. 6).

[実施例1の第1改変例]
引き続き、実施例1の改変例に係る製造工程について、図7を参照して説明する。
図3を参照して上述した実施例1の工程では、無電解めっき膜52の全面に電解めっき膜56が形成されている。これに対して、第1改変例では、図3(A)の状態の途中基板(図7(A))にめっきレジスト54を形成する(図7(B))。
[First Modification of Example 1]
Next, the manufacturing process according to the modified example of the first embodiment will be described with reference to FIG.
In the process of Example 1 described above with reference to FIG. 3, the electrolytic plating film 56 is formed on the entire surface of the electroless plating film 52. On the other hand, in the first modified example, the plating resist 54 is formed on the intermediate substrate (FIG. 7A) in the state of FIG. 3A (FIG. 7B).

ついで、基板30を50℃の水で洗浄して脱脂し、25℃の水で水洗後、さらに硫酸で洗浄してから、実施例1の(3)と同様の電解銅めっき液12に浸漬する。実施例1の(3)と同様の条件で層間樹脂絶縁層上とビア導体用開口内に電解銅めっき膜56を形成する(図7(C))。ビア導体用開口は電解銅めっき膜56で充填される(図7(C))。 Next, the substrate 30 is washed and degreased with water at 50 ° C., washed with water at 25 ° C. and further washed with sulfuric acid, and then immersed in the electrolytic copper plating solution 12 similar to (3) of Example 1. . An electrolytic copper plating film 56 is formed on the interlayer resin insulation layer and in the via conductor opening under the same conditions as in (1) of Example 1 (FIG. 7C). The via conductor opening is filled with an electrolytic copper plating film 56 (FIG. 7C).

このとき、図9を参照して上述したように絶縁体20A、20Bとして、多孔質樹脂を用いて、被めっき面を上下に移動させながら、層間樹脂絶縁層上とビア導体用開口内に電解銅めっき膜56を形成する。ビア導体用開口は電解銅めっき膜56で充填される。このとき、絶縁体の移動速度は7m/min、コア基板に対する絶縁体の大きさ0.80、絶縁体の押し込み量は8mmである。 At this time, as described above with reference to FIG. 9, as the insulators 20 </ b> A and 20 </ b> B, using a porous resin, the surface to be plated is moved up and down, and electrolysis is performed on the interlayer resin insulating layer and in the via conductor opening. A copper plating film 56 is formed. The via conductor opening is filled with an electrolytic copper plating film 56. At this time, the moving speed of the insulator is 7 m / min, the size of the insulator with respect to the core substrate is 0.80, and the pushing amount of the insulator is 8 mm.

さらに、めっきレジスト54を5%KOHで剥離除去する。その後、電解めっき膜から露出する無電解めっき膜52を除去することで、独立の上層導体回路58とフィルドビア60が形成される(図7(D))。以降の工程は実施例1と同じであるので、説明を省略する。 Further, the plating resist 54 is stripped and removed with 5% KOH. Thereafter, by removing the electroless plating film 52 exposed from the electrolytic plating film, an independent upper layer conductor circuit 58 and a filled via 60 are formed (FIG. 7D). Since the subsequent steps are the same as those in the first embodiment, the description thereof is omitted.

[実施例1の第2改変例]
引き続き、実施例1の第2改変例に係る製造工程について、図8を参照して説明する。
第2改変例は、砂時計状のスルーホール導体を有するプリント配線板を製造する方法に関する例である。ここで、砂時計状のスルーホール導体とはコア基板30の第1面から第2面に向かってテーパーしている第1開口と第2面から第1面に向かってテーパーしている第2開口とからなる貫通孔をめっきで充填しているスルーホール導体のことである。
[Second Modification of Example 1]
Next, a manufacturing process according to the second modification of Example 1 will be described with reference to FIG.
The second modification is an example relating to a method of manufacturing a printed wiring board having an hourglass-like through-hole conductor. Here, the hourglass-shaped through-hole conductors are a first opening tapered from the first surface of the core substrate 30 toward the second surface and a second opening tapered from the second surface toward the first surface. Is a through-hole conductor in which a through-hole consisting of

(1)先ず、コア基板30とコア基板の両面に銅箔130A、130Bが貼り付けられている両面銅張積層板30Cを準備する。コア基板は第1と第1面とは反対側の第2面とを有している。銅箔130Aがコア基板の第1面に形成されおり、銅箔130Bがコア基板の第2面に形成されている(図8(A))。 (1) First, a double-sided copper-clad laminate 30C in which copper foils 130A and 130B are attached to both sides of the core substrate 30 and the core substrate is prepared. The core substrate has a first surface and a second surface opposite to the first surface. Copper foil 130A is formed on the first surface of the core substrate, and copper foil 130B is formed on the second surface of the core substrate (FIG. 8A).

(2)次に、コア基板の第1面側からCO2レーザを照射する。銅箔130Aを貫通し、コア基板の第1面から第2面に向かってテーパーしている第1の開口136Aを形成する(図8(B))。第1面から第2面に向かってテーパーしていることは、第1の開口の径が第1面から第2面に向かって徐々に小さくなっていることを含んでいる。ここで、第1の開口の径について補足する。第1面に平行な面で第1の開口を切断することで得られる切断面が円の場合、第1の開口の径は直径であり、楕円の場合は長径である。 (2) Next, a CO2 laser is irradiated from the first surface side of the core substrate. A first opening 136A that penetrates through the copper foil 130A and is tapered from the first surface to the second surface of the core substrate is formed (FIG. 8B). The taper from the first surface toward the second surface includes that the diameter of the first opening gradually decreases from the first surface toward the second surface. Here, it supplements about the diameter of the 1st opening. When the cut surface obtained by cutting the first opening at a plane parallel to the first surface is a circle, the diameter of the first opening is a diameter, and when the cut surface is an ellipse, the diameter is a long diameter.

(3)その後、コア基板の第2面側からCO2レーザを照射する。レーザを照射する位置は第1の開口と対向する位置である。銅箔130Bを貫通し、コア基板の第2面から第1面に向かってテーパーしている第2の開口136Bを形成する。第2の開口を形成することで、第1の開口と第2の開口がコア基板内で繋がり、コア基板に第1の開口と第2の開口とからなる貫通孔136が形成される(図8(C))。第2面から第1面に向かってテーパーしていることは、第2の開口の径が第2面から第1面に向かって徐々に小さくなっていることを含んでいる。ここで、第2の開口の径について補足する。第1面に平行な面で第2の開口を切断することで得られる切断面が円の場合、第2の開口の径は直径であり、楕円の場合は長径である。 (3) Thereafter, the CO2 laser is irradiated from the second surface side of the core substrate. The position where the laser is irradiated is a position facing the first opening. A second opening 136B that penetrates through the copper foil 130B and is tapered from the second surface of the core substrate toward the first surface is formed. By forming the second opening, the first opening and the second opening are connected in the core substrate, and a through-hole 136 including the first opening and the second opening is formed in the core substrate (FIG. 8 (C)). The taper from the second surface toward the first surface includes that the diameter of the second opening gradually decreases from the second surface toward the first surface. Here, it supplements about the diameter of the 2nd opening. When the cut surface obtained by cutting the second opening in a plane parallel to the first surface is a circle, the diameter of the second opening is a diameter, and when the cut surface is an ellipse, the diameter is a long diameter.

(4)銅箔の表面と貫通孔の内壁にスパッタ膜からなるシード層137を形成する(図8(D))。シード層は銅である。第1と第2の開口がテーパー形状なので、スパッタでシード層を形成しやすい。なお、無電解めっきでシード層を形成することができる。 (4) A seed layer 137 made of a sputtered film is formed on the surface of the copper foil and the inner wall of the through hole (FIG. 8D). The seed layer is copper. Since the first and second openings are tapered, it is easy to form a seed layer by sputtering. Note that the seed layer can be formed by electroless plating.

(5)実施例1の(3)と同様なめっき装置、めっき液、めっき方法、めっき条件でコア基板の第1面と第2面上に電解銅めっき膜134を形成する。このとき、貫通孔136は電解銅めっき膜134で充填される(図8(E))。
実施例1の貫通孔は略ストレート形状であるのに対し、実施例1の第2改変例の貫通孔は砂時計形状である。同じコア基板に同じ径の貫通孔(コア基板の表裏における径)を形成する場合、砂時計形状の貫通孔の体積はストレート形状の貫通孔の体積より小さくなる。この違いにより、実施例1の第2改変例のコア基板上の電解めっき膜の厚さは実施例1のコア基板上の電解めっき膜の厚さより薄くなりやすい。つまり、実施例1の第2改変例ではファインな導体回路を形成することができる。
(5) An electrolytic copper plating film 134 is formed on the first surface and the second surface of the core substrate with the same plating apparatus, plating solution, plating method, and plating conditions as in (1) of Example 1. At this time, the through hole 136 is filled with the electrolytic copper plating film 134 (FIG. 8E).
The through hole of Example 1 has a substantially straight shape, whereas the through hole of the second modified example of Example 1 has an hourglass shape. When through holes having the same diameter (diameters on the front and back surfaces of the core substrate) are formed in the same core substrate, the volume of the hourglass-shaped through hole is smaller than the volume of the straight through hole. Due to this difference, the thickness of the electrolytic plating film on the core substrate of the second modified example of Example 1 tends to be thinner than the thickness of the electrolytic plating film on the core substrate of Example 1. That is, a fine conductor circuit can be formed in the second modification of the first embodiment.

(6)実施例1と同様に、電解銅めっき膜134上にエッチングレジストを形成する。その後、エッチングレジストから露出する電解めっき膜134、スパッタ膜137と銅箔130A、130Bを溶解除去し、独立の導体回路134Aとスルーホール導体142を形成する(図8(E))。
その後、実施例1と同様にコア基板上にビルドアップ層を形成することができる。
(6) An etching resist is formed on the electrolytic copper plating film 134 as in the first embodiment. Thereafter, the electrolytic plating film 134, the sputtered film 137 and the copper foils 130A and 130B exposed from the etching resist are dissolved and removed to form independent conductor circuits 134A and through-hole conductors 142 (FIG. 8E).
Thereafter, a build-up layer can be formed on the core substrate as in the first embodiment.

[実施形態2]
図10〜図11を参照して本発明の実施形態2に係るめっき装置の構成について説明する。
図11は、実施形態2のめっき装置の全体構成を示す説明図である。図10は、めっき槽内の片側の搬送機構の構成を示す説明図である。
めっき装置210は、フレキシブルプリント配線板用の帯状基板にめっきを施すための装置である。この装置では、幅180mm長さ120mの帯状基板が巻き取られたリール298Aから引き出される帯状基板230Aの片面に電解めっきを施し、帯状基板が巻き取りリール298Bに巻き取られる。めっき装置210は、帯状基板230Aのめっき面側に接触している絶縁性筒状の接触体220と、接触体(絶縁体)220により帯状基板230Aが撓むのを防ぐ背板228と、陽極204とを有している。陽極204内には、めっき液に銅分を補給する銅球206が収容されている。図11中に示すようにめっき槽212は、全体で20mである。なお、絶縁性の接触体の代わりに、半導体の接触体を用いることもできる。実施例2の接触体は実施形態や実施例1の絶縁体20A、20Bと同様な役割を有している。
[Embodiment 2]
The configuration of the plating apparatus according to the second embodiment of the present invention will be described with reference to FIGS.
FIG. 11 is an explanatory diagram showing the overall configuration of the plating apparatus of the second embodiment. FIG. 10 is an explanatory diagram showing the configuration of the conveyance mechanism on one side in the plating tank.
The plating apparatus 210 is an apparatus for plating a belt-like substrate for a flexible printed wiring board. In this apparatus, electrolytic plating is performed on one surface of the belt-like substrate 230A drawn from the reel 298A on which the belt-like substrate having a width of 180 mm and a length of 120 m is wound, and the belt-like substrate is wound on the take-up reel 298B. The plating apparatus 210 includes an insulating cylindrical contact body 220 that is in contact with the plating surface side of the strip substrate 230A, a back plate 228 that prevents the strip substrate 230A from being bent by the contact body (insulator) 220, an anode 204. In the anode 204, a copper ball 206 for supplying copper to the plating solution is accommodated. As shown in FIG. 11, the plating tank 212 is 20 m in total. A semiconductor contact body may be used instead of the insulating contact body. The contact body of Example 2 has the same role as the insulators 20A and 20B of Embodiment and Example 1.

接触体220は、高さ200mm、直径100mmのPVC(塩化ビニール)製の筒状のブラシからなる。該接触体220では、ブラシの先端がプリント配線板側に接触すると共に屈曲する。接触体220は、ステンレス製の支持バー220Aに支持され、図示しないギアを介して回動される。 The contact body 220 is made of a tubular brush made of PVC (vinyl chloride) having a height of 200 mm and a diameter of 100 mm. In the contact body 220, the tip of the brush comes into contact with the printed wiring board side and bends. The contact body 220 is supported by a support bar 220A made of stainless steel, and is rotated via a gear (not shown).

図12を参照して、該めっき装置210によるフィルドビア及び導体回路の形成について説明する。図12(A)は、両面銅張フレキシブル基板である。この基板の片面に市販のドライフィルムを貼りつけ、周知の写真法でビア導体用開口37形成位置の銅箔33Uをエッチングにより除去する。銅箔33Uをマスクとして炭酸ガスレーザでビア導体用開口37を形成する(図12(B)参照)。次いで、銅箔33U上及びビア導体用開口37の内壁に無電解めっき膜34を形成し(図12(C))、その後、図10に示すめっき装置210により電解めっき膜36を形成する(図12(D))。この場合、接触体の一部はプリント配線板の表面の少なくとも一部に接触しながらめっき膜が形成されている。電気めっき開始時においては、接触体220はプリント配線板の無電解めっき膜34に接触していて、電解めっき膜が形成されると、該電解めっき膜に接する。 With reference to FIG. 12, formation of filled vias and conductor circuits by the plating apparatus 210 will be described. FIG. 12A shows a double-sided copper-clad flexible substrate. A commercially available dry film is attached to one side of the substrate, and the copper foil 33U at the position where the via conductor opening 37 is formed is removed by etching using a well-known photographic method. Via conductor opening 37 is formed with a carbon dioxide laser using copper foil 33U as a mask (see FIG. 12B). Next, the electroless plating film 34 is formed on the copper foil 33U and the inner wall of the via conductor opening 37 (FIG. 12C), and then the electrolytic plating film 36 is formed by the plating apparatus 210 shown in FIG. 12 (D)). In this case, a plating film is formed while a part of the contact body is in contact with at least a part of the surface of the printed wiring board. At the start of electroplating, the contact body 220 is in contact with the electroless plating film 34 of the printed wiring board. When the electrolytic plating film is formed, the contact body 220 contacts the electrolytic plating film.

実施例1と同様に、実施例2では、めっき液は、硫酸銅と硫酸と鉄イオンを含んでいる。めっき液が3価の鉄イオンを含んでいるので、3価の鉄イオンを高濃度に含まないめっき液に比べ、基板表面に形成される電解めっき膜の厚みが薄くなる。また、接触体を用いてめっき膜を形成しているので、ビア導体用開口を電解めっき膜で充填しやすい。 Similar to Example 1, in Example 2, the plating solution contains copper sulfate, sulfuric acid, and iron ions. Since the plating solution contains trivalent iron ions, the thickness of the electrolytic plating film formed on the substrate surface is reduced compared to a plating solution that does not contain high concentrations of trivalent iron ions. Further, since the plating film is formed using the contact body, the via conductor opening is easily filled with the electrolytic plating film.

接触体の大きさは、帯状基板内のめっきされる部分と同等以上あることが望ましい。接触体の押し込み量(接触体の先端がプリント配線板の表面に接触した時点からさらに押し込む量)は、プリント配線板表面に対して、1.0〜15.0mm押し込むことが望ましい。1.0mm未満では、接触体を用いないめっき方法と同様の結果になることがある。15.0mmを越える押し込み量では、基板表面に3価の鉄イオンを供給し難いと考えられる。また、ビア導体用開口内やスルーホール導体用開口内に接触体が入り込み易くなり、開口内の3価の鉄イオン濃度が高くなると考えられる。2〜8mmの押し込み量が最も望ましい。めっき膜のバラツキが起こしにくいからである。 It is desirable that the size of the contact body is equal to or greater than the portion to be plated in the strip substrate. The pushing amount of the contact body (the amount pushed further from the time when the tip of the contact body contacts the surface of the printed wiring board) is desirably pushed into the printed wiring board surface by 1.0 to 15.0 mm. If the thickness is less than 1.0 mm, the result may be the same as the plating method without using the contact body. When the indentation exceeds 15.0 mm, it is considered difficult to supply trivalent iron ions to the substrate surface. Further, it is considered that the contact body easily enters the via conductor opening or the through-hole conductor opening, and the trivalent iron ion concentration in the opening increases. A pushing amount of 2 to 8 mm is most desirable. This is because the plating film is less likely to vary.

接触体は、可撓性を備えるブラシ、ヘラのいずれかで選ばれるものを用いることが望ましい。可撓性を備えることで、基板の凹凸に追従し、凹凸面に均一な厚みでめっき膜を形成することができる。 As the contact body, it is desirable to use one selected from a flexible brush and a spatula. By providing flexibility, it is possible to follow the unevenness of the substrate and form a plating film with a uniform thickness on the uneven surface.

接触体として樹脂ブラシを用いることができる。この場合、毛先を被めっき面に接触させる。ここで、毛の直径は、開口の径よりも大きいことが望ましい。これは、開口内に毛先が入り込まず、穴内にめっき膜を適正に充填できるからである。樹脂ブラシとしては、耐めっき薬液性のあるPP、PVC(塩化ビニール)、PTFE(四弗化エチレン)等を用いることができる。また、樹脂、ゴムを用いてもよい。更に、毛先として塩化ビニール織布、不織布等の樹脂繊維を用いることも可能である。 A resin brush can be used as the contact body. In this case, the hair tip is brought into contact with the surface to be plated. Here, the diameter of the hair is preferably larger than the diameter of the opening. This is because the tip of the hair does not enter the opening, and the plating film can be appropriately filled in the hole. As the resin brush, PP, PVC (vinyl chloride), PTFE (tetrafluoroethylene), etc. having resistance to plating chemicals can be used. Resin and rubber may be used. Furthermore, it is also possible to use resin fibers, such as a vinyl chloride woven fabric and a nonwoven fabric, as a hair tip.

[実施例2]
実施例2のめっき装置を用いるプリント配線板の製造(サブトラクティブ法、テンティング法)について、図12を参照して説明する。
厚さ25μmのポリイミド帯状基板230の表面(第1面)に9μmの銅箔33Uが、裏面(第2面)に12μmの銅箔33Dがラミネートされている積層帯状基板230Aを出発材料とする(図12(A))。まず、第2面の銅箔はレジストで覆われる。次に、ライトエッチングにより表面の9μmの銅箔33Uの厚みを7μmに調整する。その後、第1面の銅箔にブラックオキサイド処理を施す。第1面側からレーザにより、銅箔33U及びポリイミド帯状基板30を貫通し、銅箔33Dの裏面に至るビア導体用開口37を形成する(図12(B))。そして、帯状基板230Aの表面にパラジウム触媒を付与する(図示せず)。
[Example 2]
Production of a printed wiring board (subtractive method, tenting method) using the plating apparatus of Example 2 will be described with reference to FIG.
A laminated strip substrate 230A in which a 9 μm copper foil 33U is laminated on the surface (first surface) of a polyimide strip substrate 230 having a thickness of 25 μm and a 12 μm copper foil 33D is laminated on the back surface (second surface) is used as a starting material ( FIG. 12 (A)). First, the copper foil on the second surface is covered with a resist. Next, the thickness of the 9 μm-thick copper foil 33U on the surface is adjusted to 7 μm by light etching. Thereafter, a black oxide treatment is applied to the copper foil on the first surface. A via conductor opening 37 is formed by laser from the first surface side, penetrating through the copper foil 33U and the polyimide strip substrate 30 and reaching the back surface of the copper foil 33D (FIG. 12B). Then, a palladium catalyst is applied to the surface of the strip substrate 230A (not shown).

次に、上村工業製の無電解めっき液(スルカップ)中に、触媒が付与された基板を浸漬して、帯状基板230Aの第1面上に厚さ1.0μmの無電解めっき膜(シード層)34を形成する(図12(C))。 Next, the substrate provided with the catalyst is immersed in an electroless plating solution (sulfur cup) manufactured by Uemura Kogyo Co., Ltd., and an electroless plating film (seed layer) having a thickness of 1.0 μm is formed on the first surface of the belt-like substrate 230A. ) 34 is formed (FIG. 12C).

ついで、帯状基板230Aを50℃の水で洗浄して脱脂し、25℃の水で水洗後、さらに硫酸で洗浄してから、以下の組成の電解銅めっき液を有するめっき槽に浸漬する。図10を参照して上述しためっき装置210を用いて、以下の条件でシード層上に電解めっき膜36を形成する(図12(D))。
〔電解めっき液〕
硫酸 0.5 mol/l
硫酸銅 0.8 mol/l
硫酸鉄・七水和物 100 g/l
レベリング剤 50 mg/l
光沢剤 50 mg/l
Fe2+:Fe3+ 1:2〜1:4
〔電解めっき条件〕
電流密度 5.0〜30 mA/cm2
時間 10〜90 分
温度 22±2 ℃
ここで、電流密度は、5.0〜30mA/cm2、特に、10mA/cm2以上が望ましい。
Next, the strip-shaped substrate 230A is washed with 50 ° C. water for degreasing, washed with 25 ° C. water, further washed with sulfuric acid, and then immersed in a plating bath having an electrolytic copper plating solution having the following composition. Using the plating apparatus 210 described above with reference to FIG. 10, an electrolytic plating film 36 is formed on the seed layer under the following conditions (FIG. 12D).
[Electrolytic plating solution]
Sulfuric acid 0.5 mol / l
Copper sulfate 0.8 mol / l
Iron sulfate heptahydrate 100 g / l
Leveling agent 50 mg / l
Brightener 50 mg / l
Fe 2+ : Fe 3+ 1: 2-1: 4
[Electrolytic plating conditions]
Current density 5.0-30 mA / cm 2
Time 10-90 minutes Temperature 22 ± 2 ℃
Here, the current density, 5.0~30mA / cm 2, in particular, 10 mA / cm 2 or more.

そして、所定パターンのレジストを帯状基板の両面に形成し、エッチングを行うことにより、導体回路42U及び導体回路42Dを形成する(図12(E))。いわゆるサブトラクティブ法、テンティング法である。 Then, a resist having a predetermined pattern is formed on both surfaces of the belt-like substrate, and etching is performed to form the conductor circuit 42U and the conductor circuit 42D (FIG. 12E). This is a so-called subtractive method or tenting method.

[実施例3]
実施例1の第2改変例において、電解めっき液の組成が以下の組成に変更されている。それ以外は実施例1の第2改変例と同様である。
〔電解めっき液〕
硫酸 0.5 mol/l
硫酸銅 0.8 mol/l
硫酸鉄・七水和物 50 g/l
レベリング剤 50 mg/l
光沢剤 50 mg/l
Fe2+:Fe3+ 1:2〜1:4
[Example 3]
In the second modified example of Example 1, the composition of the electrolytic plating solution is changed to the following composition. The rest is the same as the second modification of the first embodiment.
[Electrolytic plating solution]
Sulfuric acid 0.5 mol / l
Copper sulfate 0.8 mol / l
Iron sulfate heptahydrate 50 g / l
Leveling agent 50 mg / l
Brightener 50 mg / l
Fe 2+ : Fe 3+ 1: 2-1: 4

[実施例4]
実施例1の第2改変例において、電解めっき液の組成が以下の組成に変更されている。それ以外は実施例1の第2改変例と同様である。
〔電解めっき液〕
硫酸 0.5 mol/l
硫酸銅 0.8 mol/l
硫酸鉄・七水和物 100 g/l
レベリング剤 50 mg/l
光沢剤 50 mg/l
Fe2+:Fe3+ 1:2〜1:4
実施例3と実施例4とを比較すると、実施例4では開口から露出するめっき膜が凹になりやすい。実施例4では3価の鉄イオンが多いため開口内のめっき成長が遅いからと推察している。鉄イオン濃度として、1g/L〜10g/Lであると、開口から露出するめっき膜の平坦性が高くなるので、その上に層間樹脂絶縁層を形成しやすい。
めっき液中の鉄イオンは、二価鉄イオンと、三価鉄イオンからなり、電解めっき液中で二価の鉄イオン濃度と三価の鉄イオン濃度の比が1:2〜1:4の範囲であると、基板表面のめっき膜の析出が効果的に抑制される。開口内の充填と基板表面のめっき膜の薄膜化が両立しやすい。
硫酸鉄・七水和物が、電解めっき液1000mL中に5〜100gの範囲で添加されることが望ましい。鉄イオン濃度が、1g/L〜20g/Lであると、開口をめっきで充填することができる上、基板表面のめっき膜を薄くすることができる。
[Example 4]
In the second modified example of Example 1, the composition of the electrolytic plating solution is changed to the following composition. The rest is the same as the second modification of the first embodiment.
[Electrolytic plating solution]
Sulfuric acid 0.5 mol / l
Copper sulfate 0.8 mol / l
Iron sulfate heptahydrate 100 g / l
Leveling agent 50 mg / l
Brightener 50 mg / l
Fe 2+ : Fe 3+ 1: 2-1: 4
When Example 3 and Example 4 are compared, in Example 4, the plating film exposed from the opening tends to be concave. In Example 4, it is presumed that the plating growth in the opening is slow because there are many trivalent iron ions. If the iron ion concentration is 1 g / L to 10 g / L, the flatness of the plating film exposed from the opening becomes high, so that an interlayer resin insulating layer can be easily formed thereon.
The iron ions in the plating solution are composed of divalent iron ions and trivalent iron ions, and the ratio of the divalent iron ion concentration to the trivalent iron ion concentration in the electrolytic plating solution is 1: 2 to 1: 4. When it is within the range, precipitation of the plating film on the substrate surface is effectively suppressed. It is easy to satisfy both filling in the opening and thinning of the plating film on the substrate surface.
It is desirable that iron sulfate heptahydrate is added in an amount of 5 to 100 g in 1000 mL of the electroplating solution. When the iron ion concentration is 1 g / L to 20 g / L, the opening can be filled with plating, and the plating film on the substrate surface can be made thin.

[実施例5]
実施例1の第2改変例において、電解めっき液の組成が以下の組成に変更されている。それ以外は実施例1の第2改変例と同様である。
〔電解めっき液〕
硫酸 0.65 mol/l
硫酸銅 0.7 mol/l
硫酸鉄・七水和物 50 g/l
レベリング剤 50 mg/l
光沢剤 50 mg/l
Fe2+:Fe3+ 1:2〜1:4
[Example 5]
In the second modified example of Example 1, the composition of the electrolytic plating solution is changed to the following composition. The rest is the same as the second modification of the first embodiment.
[Electrolytic plating solution]
Sulfuric acid 0.65 mol / l
Copper sulfate 0.7 mol / l
Iron sulfate heptahydrate 50 g / l
Leveling agent 50 mg / l
Brightener 50 mg / l
Fe 2+ : Fe 3+ 1: 2-1: 4

[実施例6]
実施例1の第2改変例において、電解めっき液の組成が以下の組成に変更されている。それ以外は実施例1の第2改変例と同様である。
〔電解めっき液〕
硫酸 0.35 mol/l
硫酸銅 0.9 mol/l
硫酸鉄・七水和物 50 g/l
レベリング剤 50 mg/l
光沢剤 50 mg/l
Fe2+:Fe3+ 1:2〜1:4
[Example 6]
In the second modified example of Example 1, the composition of the electrolytic plating solution is changed to the following composition. The rest is the same as the second modification of the first embodiment.
[Electrolytic plating solution]
Sulfuric acid 0.35 mol / l
Copper sulfate 0.9 mol / l
Iron sulfate heptahydrate 50 g / l
Leveling agent 50 mg / l
Brightener 50 mg / l
Fe 2+ : Fe 3+ 1: 2-1: 4

本発明の実施形態と実施例では、被めっき面に絶縁体を接触させ、絶縁体を被めっき面に対して相対的に移動させながら電解めっきを行っている。絶縁体が、接触している被めっき面では、めっき膜の成長が遅くなる。絶縁体により鉄イオンが被めっき面に強制的に供給されることで、被めっき面で鉄イオンの還元反応が起こり、電解めっき膜の成長が抑えられると考えられる。それに反して、絶縁体が接触しない部分では、被めっき面に鉄イオンが濃度勾配により拡散するため、被めっき面で鉄イオンの還元反応が少なく、電解めっき膜の成長速度が速いと考えられる。そのため、ビア導体用やスルーホール導体用の開口内では電解めっき膜は早く成長するが、開口以外の被めっき面上のめっき膜は、厚くなりすぎない。つまり、ビア導体用やスルーホール導体用の開口は電解めっき膜で確実に充填されるが、被めっき面(基板表面)では、開口内に形成される電解めっき膜の厚みに比べて、また、従来技術での導体回路の膜厚と比べて相対的に厚みが薄いめっき膜を形成できる。本発明の実施形態や実施例では、薄いめっき膜をパターニングするので、従来よりも微細な導体回路を形成し易い。 In the embodiments and examples of the present invention, an electroplating is performed while bringing an insulator into contact with the surface to be plated and moving the insulator relative to the surface to be plated. On the surface to be plated in contact with the insulator, the growth of the plating film is delayed. It is considered that iron ions are forcibly supplied to the surface to be plated by the insulator, so that a reduction reaction of iron ions occurs on the surface to be plated, and the growth of the electrolytic plating film is suppressed. On the other hand, in a portion where the insulator is not in contact, iron ions diffuse on the surface to be plated due to the concentration gradient, so that the reduction reaction of iron ions on the surface to be plated is small and the growth rate of the electrolytic plating film is considered to be fast. Therefore, the electrolytic plating film grows quickly in the opening for the via conductor or the through-hole conductor, but the plating film on the surface to be plated other than the opening does not become too thick. In other words, the openings for via conductors and through-hole conductors are reliably filled with the electrolytic plating film, but on the surface to be plated (substrate surface), compared to the thickness of the electrolytic plating film formed in the opening, A plating film having a relatively small thickness can be formed as compared with the film thickness of the conductor circuit in the prior art. In the embodiments and examples of the present invention, since a thin plating film is patterned, it is easier to form a finer conductor circuit than in the past.

10 めっき装置
20A、20B 絶縁体
30 基板
32 スルーホール用開口
34 無電解めっき膜
36 電解めっき膜
40 スルーホール導体
42 導体回路
58 導体回路
60 ビア導体
DESCRIPTION OF SYMBOLS 10 Plating apparatus 20A, 20B Insulator 30 Substrate 32 Through-hole opening 34 Electroless plating film 36 Electrolytic plating film 40 Through-hole conductor 42 Conductor circuit 58 Conductor circuit 60 Via conductor

Claims (9)

基板に開口を形成することと、
前記開口の内壁と前記基板の表面に電解めっき用のシード層を形成することと、
前記シード層を有する前記基板を電解めっき液に浸漬することと、
前記電解めっき液に絶縁体を浸漬することと、
前記基板と前記絶縁体を相対的に移動させながら前記基板に電解めっき膜を形成するとともに前記開口を該電解めっき膜で充填することと、
前記基板に導体回路を形成すること、とからなるプリント配線板の製法方法において、
前記電解めっき液は硫酸銅と硫酸と鉄イオンを含んでいる。
Forming an opening in the substrate;
Forming a seed layer for electrolytic plating on the inner wall of the opening and the surface of the substrate;
Immersing the substrate having the seed layer in an electrolytic plating solution;
Immersing an insulator in the electrolytic plating solution;
Forming an electrolytic plating film on the substrate while relatively moving the substrate and the insulator, and filling the opening with the electrolytic plating film;
In the method for producing a printed wiring board, comprising forming a conductor circuit on the substrate,
The electrolytic plating solution contains copper sulfate, sulfuric acid, and iron ions.
請求項1に記載のプリント配線板の製造方法において、
前記鉄イオン源は硫酸鉄からなる。
In the manufacturing method of the printed wiring board of Claim 1,
The iron ion source is made of iron sulfate.
請求項1に記載のプリント配線板の製造方法において、前記鉄イオンは、二価鉄イオンと、三価鉄イオンからなり、前記電解めっき液中の二価鉄イオンと三価鉄イオンの比が1:2〜1:4の範囲である。 The method for manufacturing a printed wiring board according to claim 1, wherein the iron ions are composed of divalent iron ions and trivalent iron ions, and a ratio of divalent iron ions to trivalent iron ions in the electrolytic plating solution is set. The range is 1: 2 to 1: 4. 請求項2に記載のプリント配線板の製造方法において、前記硫酸鉄は硫酸鉄・七水和物であり、該硫酸鉄・七水和物の濃度は5〜100g/Lである。 3. The method for manufacturing a printed wiring board according to claim 2, wherein the iron sulfate is iron sulfate heptahydrate, and the concentration of the iron sulfate heptahydrate is 5 to 100 g / L. 請求項1に記載のプリント配線板の製造方法において、前記絶縁体は長繊維、多孔質、繊維状の樹脂、ゴムの中から選択される1つである。 2. The method of manufacturing a printed wiring board according to claim 1, wherein the insulator is one selected from a long fiber, a porous material, a fibrous resin, and rubber. 請求項1に記載のプリント配線板の製造方法において、前記絶縁体は多孔質セラミック又は多孔質樹脂からなる。 2. The method for manufacturing a printed wiring board according to claim 1, wherein the insulator is made of a porous ceramic or a porous resin. 請求項1に記載のプリント配線板の製造方法において、前記絶縁体はブラシからなり、該ブラシの毛は樹脂製である。 2. The method of manufacturing a printed wiring board according to claim 1, wherein the insulator is a brush, and the bristles of the brush are made of resin. 請求項1に記載のプリント配線板の製造方法において、前記絶縁体は樹脂製の繊維からなる。 2. The printed wiring board manufacturing method according to claim 1, wherein the insulator is made of resin fiber. 請求項1に記載のプリント配線板の製造方法において、前記鉄イオンの濃度は1g/L〜20g/Lである。 In the manufacturing method of the printed wiring board of Claim 1, the density | concentration of the said iron ion is 1g / L-20g / L.
JP2010196716A 2009-09-04 2010-09-02 Method for producing printed wiring board Pending JP2011058093A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US23999509P 2009-09-04 2009-09-04
US12/862,331 US20110056838A1 (en) 2009-09-04 2010-08-24 Method of manufacturing printed wiring board

Publications (1)

Publication Number Publication Date
JP2011058093A true JP2011058093A (en) 2011-03-24

Family

ID=43646852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010196716A Pending JP2011058093A (en) 2009-09-04 2010-09-02 Method for producing printed wiring board

Country Status (5)

Country Link
US (1) US20110056838A1 (en)
JP (1) JP2011058093A (en)
KR (1) KR20110025612A (en)
CN (1) CN102014589A (en)
TW (1) TW201132263A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014513211A (en) * 2011-04-26 2014-05-29 アトーテヒ ドイッチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング Aqueous acid bath for electrolytic deposition of copper
WO2021245766A1 (en) * 2020-06-02 2021-12-09 奥野製薬工業株式会社 Intermittent electroplating method

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8686300B2 (en) 2008-12-24 2014-04-01 Ibiden Co., Ltd. Printed wiring board and method for manufacturing the same
US8188380B2 (en) 2008-12-29 2012-05-29 Ibiden Co., Ltd. Printed wiring board and method for manufacturing printed wiring board
US20120031656A1 (en) * 2009-04-24 2012-02-09 Yoshio Oka Substrate for printed wiring board, printed wiring board, and methods for producing same
TW201349976A (en) 2012-05-31 2013-12-01 Zhen Ding Technology Co Ltd Method for manufacturing multilayer printed circuit board
CN103517583B (en) 2012-06-27 2016-09-28 富葵精密组件(深圳)有限公司 Multilayer circuit board and preparation method thereof
JP6329027B2 (en) * 2014-08-04 2018-05-23 ミネベアミツミ株式会社 Flexible printed circuit board
CN108754555B (en) * 2018-08-29 2020-04-28 广东天承科技有限公司 Electroplating solution and electroplating method thereof
CN110430674A (en) * 2019-07-10 2019-11-08 广东工业大学 A kind of preparation method of electroplating deposition circuit board

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1059982C (en) * 1997-08-28 2000-12-27 华通电脑股份有限公司 Method for automatically welding package of ball array integrated circuit by coil belt
CA2359473A1 (en) * 1999-01-21 2000-07-27 Atotech Deutschland Gmbh Method for electrolytically forming conductor structures from highly pure copper when producing integrated circuits
TW511408B (en) * 2000-09-18 2002-11-21 Nippon Denkai Kk Method of producing copper foil for fine wiring
JP3807312B2 (en) * 2002-01-18 2006-08-09 富士通株式会社 Printed circuit board and manufacturing method thereof
JP2004311919A (en) * 2003-02-21 2004-11-04 Shinko Electric Ind Co Ltd Through-hole filling method
JP3964822B2 (en) * 2003-05-07 2007-08-22 日東電工株式会社 Method for manufacturing suspension board with circuit
JP4992428B2 (en) * 2004-09-24 2012-08-08 イビデン株式会社 Plating method and plating apparatus
US7262444B2 (en) * 2005-08-17 2007-08-28 General Electric Company Power semiconductor packaging method and structure
JP4878866B2 (en) * 2006-02-22 2012-02-15 イビデン株式会社 Plating apparatus and plating method
ATE484943T1 (en) * 2006-03-30 2010-10-15 Atotech Deutschland Gmbh ELECTROLYTIC PROCESS FOR FILLING HOLES AND RECESSES WITH METALS
CN101030033A (en) * 2007-03-30 2007-09-05 华东师范大学 Production of MEMS suspending structure by laminated photoetching glue victim layer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014513211A (en) * 2011-04-26 2014-05-29 アトーテヒ ドイッチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング Aqueous acid bath for electrolytic deposition of copper
WO2021245766A1 (en) * 2020-06-02 2021-12-09 奥野製薬工業株式会社 Intermittent electroplating method
WO2021246133A1 (en) * 2020-06-02 2021-12-09 奥野製薬工業株式会社 Intermittent electroplating method
KR20230018406A (en) 2020-06-02 2023-02-07 오꾸노 케미칼 인더스트리즈 컴파니,리미티드 Intermittent electroplating method

Also Published As

Publication number Publication date
TW201132263A (en) 2011-09-16
CN102014589A (en) 2011-04-13
KR20110025612A (en) 2011-03-10
US20110056838A1 (en) 2011-03-10

Similar Documents

Publication Publication Date Title
JP2011058093A (en) Method for producing printed wiring board
JP4878866B2 (en) Plating apparatus and plating method
TW201136474A (en) Printed wiring board and process for producing the same
TW200913835A (en) Wiring substrate manufacturing method
KR20220047373A (en) Fabrication sequence of high-density interconnect printed circuit board and high-density interconnect printed circuit board
JP3986743B2 (en) WIRING BOARD, MANUFACTURING METHOD THEREOF, AND ELECTROLESS COPPER PLATING LIQUID USED FOR THE SAME
JP4032712B2 (en) Method for manufacturing printed wiring board
JP2005019577A (en) Method for manufacturing tape carrier for semiconductor device
JP2007109706A (en) Process for producing multilayer printed wiring board
JP4155434B2 (en) Manufacturing method of semiconductor package substrate having pads subjected to partial electrolytic plating treatment
JP4129665B2 (en) Manufacturing method of substrate for semiconductor package
JP2013093359A (en) Semiconductor chip mounting substrate and manufacturing method therefor
JP2009272571A (en) Printed circuit board and method of manufacturing the same
KR20120123237A (en) Method for manufacturing printed wiring board
JP2000151096A (en) Manufacture of printed wiring board
JP2022545091A (en) Method for manufacturing high density interconnect printed circuit board containing copper-filled microvias
JP2013093360A (en) Semiconductor chip mounting substrate and manufacturing method of the same
JP2005217052A (en) Wiring board and method for manufacturing same
TW200938048A (en) Method for manufacturing wire substrate
JP2006339483A (en) Wiring board and manufacturing method thereof
JP2008218540A (en) Manufacturing method for wiring board
JP2004319994A (en) Method for manufacturing printed wiring board
JP4094143B2 (en) Manufacturing method of multilayer printed wiring board
JP6098118B2 (en) Multilayer printed wiring board and manufacturing method thereof
JP2005251894A (en) Method of manufacturing printed circuit board