JP2005217052A - Wiring board and method for manufacturing same - Google Patents

Wiring board and method for manufacturing same Download PDF

Info

Publication number
JP2005217052A
JP2005217052A JP2004020275A JP2004020275A JP2005217052A JP 2005217052 A JP2005217052 A JP 2005217052A JP 2004020275 A JP2004020275 A JP 2004020275A JP 2004020275 A JP2004020275 A JP 2004020275A JP 2005217052 A JP2005217052 A JP 2005217052A
Authority
JP
Japan
Prior art keywords
insulating layer
wiring board
main surface
wiring
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004020275A
Other languages
Japanese (ja)
Inventor
Isao Miyatani
勲 宮谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004020275A priority Critical patent/JP2005217052A/en
Publication of JP2005217052A publication Critical patent/JP2005217052A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that the etching time needs to be shortened in the semi-additive method, capable of processing the width of a wiring conductor or a gap between wiring conductors to be ≤20 μm, because the complete removal of a layer formed by electroless deposition on the grained bottom floor in an insulating resin is a time-consuming process wherein wiring conductor delamination occurs due to selective etching of the layer formed by electroless deposition for wiring conductor formation. <P>SOLUTION: The wiring board 17 comprises an insulating layer 9 which at least contains a resin, wiring conductors 15 formed on the main surfaces of the insulating layer 9, and a via 13 penetrating through the insulating layer 9 for connecting the wiring conductors 15 separated from each other by the insulating layer 9. The ridgeline of the insulating layer 9 in the vertical cross sectional view of the wiring board 17 consists of discontinuous linear sections 9a and irregular sections 9b. In each unit length of the main surface of the insulating layer 9, the total length of the linear sections 9a accounts for 20-70%. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、少なくとも樹脂を含有してなる絶縁層と、該絶縁層の主面に形成された配線導体と、前記絶縁層を貫通して、前記絶縁層に隔てられた配線導体を接続するビアとを具備してなる配線基板に関するものである。   The present invention provides an insulating layer containing at least a resin, a wiring conductor formed on a main surface of the insulating layer, and a via that penetrates the insulating layer and connects the wiring conductor separated by the insulating layer It is related with the wiring board which comprises these.

一般に、現在の電子機器は、移動体通信機器に代表されるように小型・薄型・軽量・高性能・高機能・高品質・高信頼性が要求されてきており、このような電子機器に搭載される電子装置も小型・高密度化が要求されるようになってきている。そのため、電子装置を構成する配線基板にも小型・薄型・多端子化が求められてきており、それを実現するために信号導体等の配線導体の幅を細くするとともにその間隔を狭くし、さらに配線導体の多層化により高密度配線化が図られている。   In general, current electronic devices are required to be small, thin, lightweight, high performance, high functionality, high quality, and high reliability, as represented by mobile communication devices. Electronic devices to be used are also required to be small and high density. Therefore, the wiring board constituting the electronic device is also required to be small, thin, and multi-terminal, and in order to realize it, the width of the wiring conductor such as the signal conductor is narrowed and the interval is narrowed. High-density wiring is achieved by increasing the number of wiring conductors.

このような配線導体を形成する方法としては、サブトラクティブ法、セミアディティブ法およびフルアクティブ法があるが、サブトラクティブ法は細密な配線導体の形成が難しいという問題点を、フルアディティブ法は無電解めっき層のみで配線導体の形成を行うために、その形成に長時間を要してしまうという問題点を有していた。そのため、配線導体を形成する方法としては、一般的には、セミアディティブ法が用いられている。   There are subtractive methods, semi-additive methods, and full-active methods as methods for forming such wiring conductors, but the subtractive method is difficult to form fine wiring conductors. Since the wiring conductor is formed only by the plating layer, there is a problem that it takes a long time to form the wiring conductor. Therefore, a semi-additive method is generally used as a method for forming the wiring conductor.

ビルドアップ基板におけるセミアディティブ法とは、プリント配線基板に絶縁樹脂をラミネートした後硬化する工程と、絶縁樹脂表面を過マンガン酸塩類水溶液等の粗化液に所定の時間浸漬し粗化する工程と、上面に無電解銅めっき用のパラジウム触媒を付着させる工程と、パラジウム触媒を付着させた絶縁樹脂の上面に無電解めっき層を被着させる工程と、無電解めっき層の上面にめっきレジスト層のフィルムをラミネートまたは塗布した後に、このフィルムを露光・現像して、めっきレジスト層に、無電解めっき層の上面に電解めっき層を被着させるための配線導体のパターン形状の開口部を形成する工程と、その開口部内の無電解めっき層の上面に10〜30μm程度の電解めっき層を被着させる工程と、無電解めっき層の上面からめっきレジスト層を剥離する工程と、硫酸系や塩素系水溶液のエッチング液を用いてめっきレジスト層を剥離したことにより露出した無電解めっき層およびパラジウム触媒を除去する工程とを順次行うことにより配線導体を形成する方法である。なお、この方法では、無電解めっき層およびパラジウム触媒を除去する際に、電解めっき層の上面や側面も同時にエッチングされる。   The semi-additive method in the build-up board is a process of laminating an insulating resin on a printed wiring board and then curing, and a process of immersing the surface of the insulating resin in a roughening solution such as a permanganate aqueous solution for a predetermined time and roughening. A step of attaching a palladium catalyst for electroless copper plating to the upper surface, a step of depositing an electroless plating layer on the upper surface of the insulating resin to which the palladium catalyst is attached, and a plating resist layer on the upper surface of the electroless plating layer. After laminating or coating the film, this film is exposed and developed to form an opening in the pattern shape of the wiring conductor for depositing the electrolytic plating layer on the upper surface of the electroless plating layer in the plating resist layer A step of depositing an electrolytic plating layer of about 10 to 30 μm on the upper surface of the electroless plating layer in the opening, and a step from the upper surface of the electroless plating layer. A wiring conductor by sequentially performing a step of stripping the resist layer and a step of removing the electroless plating layer and the palladium catalyst exposed by stripping the plating resist layer using an etching solution of sulfuric acid or chlorine based aqueous solution. It is a method of forming. In this method, when the electroless plating layer and the palladium catalyst are removed, the upper surface and the side surface of the electrolytic plating layer are simultaneously etched.

昨今の配線基板は配線導体の幅や配線導体間の間隔が20μm以下と狭くなってきているにもかかわらず、絶縁樹脂表面の粗化面が深いことから、絶縁樹脂表面の粗化面全体に付きまわり性が良く、充分な無電解めっき層を形成するために、無電解めっき層の厚みが1μm以上必要となり、厚みのばらつきも大きかった。しかしそのため粗化の深い位置に形成されている無電解めっき層の厚みを完全に除去するためにエッチング時間がより長くかかることから配線導体を構成する無電解めっき層と電解めっき層のうち、特に無電解めっき層が選択的にエッチングされてしまい、無電解めっき層エッチング工程及び洗浄工程において、無電解めっき層が選択的にエッチングされて生じた段差部分に、エッチング液や洗浄液が入り込み、配線導体が持ち上げられることによって、配線導体の剥がれが生じて断線してしまうという問題点を有していた。   Despite the fact that the width of wiring conductors and the spacing between wiring conductors have become narrower than 20 μm in recent wiring boards, the roughened surface of the insulating resin surface is deep, so the entire roughened surface of the insulating resin surface In order to form a sufficient electroless plating layer with good throwing power, the thickness of the electroless plating layer was required to be 1 μm or more, and the thickness variation was large. However, since it takes a longer etching time to completely remove the thickness of the electroless plating layer formed at a deeply roughened position, among the electroless plating layer and the electrolytic plating layer constituting the wiring conductor, The electroless plating layer is selectively etched, and in the electroless plating layer etching process and the cleaning process, the etching solution or the cleaning liquid enters the stepped portion generated by the selective etching of the electroless plating layer, and the wiring conductor When the wire is lifted, the wiring conductor is peeled off, resulting in a disconnection.

逆に、エッチングが不十分な場合には、粗化面の深いところに形成された無電解めっき層やパラジウム触媒を完全に除去することができず、無電解めっき層が隣接する配線導体の方向にかけて裾をひいた形状に残ってしまい、その結果、隣接する配線導体間で電気的に短絡してしまうという問題点を有していた。   On the other hand, when etching is insufficient, the electroless plating layer or palladium catalyst formed in the deep surface of the roughened surface cannot be completely removed, and the direction of the wiring conductor adjacent to the electroless plating layer As a result, there is a problem that an electric short circuit occurs between adjacent wiring conductors.

このような問題の対策として、硫酸系や塩素系水溶液のエッチング液を用いて無電解めっき層およびパラジウム触媒を除去する際、配線導体を構成する電解めっき層と無電解めっき層のうち、無電解めっき層が選択的にエッチングされる前にエッチングをストップし、配線導体間に残存する無電解めっき層の残さやパラジウム触媒をクロム酸によって除去するという提案や(特許文献1参照)、絶縁基板の表層部分を一部除去することにより同時に配線導体間に残存する無電解めっき層の残さやパラジウム触媒を除去するという提案がなされている(特許文献2参照)。
特開2000−294926号公報 特開2000−208936号公報
As a countermeasure for such a problem, when removing the electroless plating layer and the palladium catalyst using an etching solution of sulfuric acid or chlorine aqueous solution, the electroless plating layer and the electroless plating layer constituting the wiring conductor are electroless. Etching is stopped before the plating layer is selectively etched, and the electroless plating layer residue and the palladium catalyst remaining between the wiring conductors are removed with chromic acid (see Patent Document 1), A proposal has been made to remove the residue of the electroless plating layer remaining between the wiring conductors and the palladium catalyst by removing part of the surface layer portion (see Patent Document 2).
JP 2000-294926 A JP 2000-208936 A

しかしながら、特許文献1の配線導体間に残存する無電解めっき層の残さやパラジウム触媒をクロム酸によって除去する方法では、無電解めっき層およびパラジウム触媒のエッチング量をコントロールすることが難しいことや、クロム酸の残さが残ることが問題となる。また、特許文献2の絶縁基板の表層部分を一部除去することにより同時に配線導体間に残存する無電解めっき層の残さやパラジウム触媒を除去する方法においては、絶縁基板が薄くなることによる層間絶縁信頼性の低下や、配線導体下部の絶縁基板の一部まで除去され、配線導体の剥がれが生じるという問題を有していた。そして配線導体に剥がれが生じないように配線導体のエッチング時間を調整すると配線導体間に残渣が除去しきれず、長期使用後の絶縁抵抗値が低下するという問題が生じていた。   However, in the method of removing the electroless plating layer residue and the palladium catalyst remaining between the wiring conductors of Patent Document 1, it is difficult to control the etching amount of the electroless plating layer and the palladium catalyst, The problem is that an acid residue remains. Further, in the method of removing a part of the surface layer of the insulating substrate of Patent Document 2 and simultaneously removing the electroless plating layer remaining between the wiring conductors and the palladium catalyst, interlayer insulation due to the thinning of the insulating substrate. There has been a problem that the reliability is reduced and a part of the insulating substrate under the wiring conductor is removed, and the wiring conductor is peeled off. If the etching time of the wiring conductor is adjusted so that the wiring conductor does not peel off, residues cannot be completely removed between the wiring conductors, resulting in a problem that the insulation resistance value after long-term use decreases.

本発明は、かかる従来技術の問題点に鑑み完成されたものであり、配線導体間の電気的絶縁性を維持するとともに、配線導体と絶縁基板の接合信頼性に優れた配線基板を提供することを目的とする。   The present invention has been completed in view of the problems of the prior art, and provides a wiring board that maintains electrical insulation between wiring conductors and is excellent in bonding reliability between the wiring conductor and the insulating board. With the goal.

本発明の配線基板は、少なくとも樹脂を含有してなる絶縁層と、該絶縁層の主面に形成された配線導体と、前記絶縁層を貫通して、前記絶縁層に隔てられた配線導体を接続するビアとを具備してなる配線基板であって、該配線基板を垂直に切断した際の切断面における絶縁層の稜線が、非連続の直線部と凹凸部で構成され、前記絶縁層主面の単位長さ当たりの前記直線部の長さの和が、20〜70%であることを特徴とする。   The wiring board of the present invention includes an insulating layer containing at least a resin, a wiring conductor formed on a main surface of the insulating layer, and a wiring conductor penetrating the insulating layer and separated by the insulating layer. A wiring board comprising vias to be connected, wherein a ridge line of the insulating layer at a cut surface when the wiring board is cut vertically is constituted by a discontinuous straight line portion and an uneven portion; The sum of the lengths of the straight portions per unit length of the surface is 20 to 70%.

また、本発明の配線基板は、絶縁層主面に形成された凹みの最大深さが3μm以下であることが望ましい。   In the wiring board of the present invention, it is desirable that the maximum depth of the recess formed in the main surface of the insulating layer is 3 μm or less.

また、本発明の配線基板は、絶縁層主面における一定単純面積に対する絶縁層粗化表面積の割合が1.1〜2.50であることが望ましい。   In the wiring board of the present invention, the ratio of the roughened surface area of the insulating layer to the fixed simple area on the main surface of the insulating layer is preferably 1.1 to 2.50.

また、本発明の配線基板は、絶縁層が少なくとも樹脂と無機フィラーあるいは樹脂フィラーからなることが望ましい。   In the wiring board of the present invention, the insulating layer is preferably made of at least a resin and an inorganic filler or a resin filler.

また、本発明の配線基板は、絶縁層主面に、無電解めっき層と、電解めっき層とが順次形成されて配線導体を構成してなるとともに、前記無電解めっき層の厚さが0.1〜2μmであり、前記電解めっき層の厚さが5〜30μmであることが望ましい。   In the wiring board of the present invention, an electroless plating layer and an electrolytic plating layer are sequentially formed on the main surface of the insulating layer to form a wiring conductor, and the thickness of the electroless plating layer is 0. It is desirable that the thickness is 1 to 2 μm, and the thickness of the electrolytic plating layer is 5 to 30 μm.

また、本発明の配線基板は、電解めっき層の表面粗さがRa=0.4μm以下であることが望ましい。   Moreover, as for the wiring board of this invention, it is desirable for the surface roughness of an electroplating layer to be Ra = 0.4 micrometer or less.

また、本発明の配線基板の製造方法は、少なくとも樹脂を含有してなる絶縁層の少なくとも一方の主面にプレス板を当接させ加熱加圧して、前記絶縁層主面を平坦化するプレス工程と、平坦化した前記絶縁層主面に、非連続の直線部と凹凸部を形成する粗化工程とを具備することを特徴とする。   Further, the method for manufacturing a wiring board according to the present invention includes a pressing step of flattening the insulating layer main surface by bringing a press plate into contact with at least one main surface of the insulating layer containing at least a resin and applying heat and pressure. And a roughening step of forming a discontinuous straight line portion and a concavo-convex portion on the planarized main surface of the insulating layer.

また、本発明の配線基板の製造方法は、粗化工程において、粗化液を用いて絶縁層主面を粗化することが望ましい。   In the method for manufacturing a wiring board according to the present invention, it is desirable that the main surface of the insulating layer is roughened using a roughening solution in the roughening step.

また、本発明の配線基板の製造方法は、プレス工程と粗化工程との間に、絶縁層に貫通孔を形成する貫通孔形成工程を設け、粗化工程後にめっき法により前記貫通孔に貫通導体を形成し、絶縁層主面に配線導体を形成する導体形成工程とを具備することが望ましい。   In the method for manufacturing a wiring board according to the present invention, a through hole forming step for forming a through hole in the insulating layer is provided between the pressing step and the roughening step, and the through hole is penetrated by a plating method after the roughening step. It is desirable to include a conductor forming step of forming a conductor and forming a wiring conductor on the main surface of the insulating layer.

また、本発明の配線基板の製造方法は、導体形成工程において絶縁層主面に無電解めっき層と電解めっき層を順次形成することが望ましい。   In the method for manufacturing a wiring board of the present invention, it is desirable to sequentially form an electroless plating layer and an electrolytic plating layer on the main surface of the insulating layer in the conductor forming step.

このような配線基板及びその製造方法を用いることで、無電解めっき層の除去に要する時間を短縮できることから、無電解めっき層が選択的にエッチングされることによる配線導体の剥がれを防止することができ、配線導体間の残渣がないことから絶縁信頼性の低下も防止することができる。   By using such a wiring board and its manufacturing method, the time required for removing the electroless plating layer can be shortened, so that the peeling of the wiring conductor due to selective etching of the electroless plating layer can be prevented. In addition, since there is no residue between the wiring conductors, it is possible to prevent a decrease in insulation reliability.

本発明では該配線基板を垂直に切断した際の、切断面における絶縁層の稜線が、切断面における絶縁層の稜線が、非連続の直線部と凹凸部で構成され、前記絶縁層の主面の単位長さ当たりの前記直線部の長さの和を20〜70%としたことから、無電解めっき液の液当たりの良い直線部を起点として、つきまわりよく無電解めっき層が形成されるため、薄い無電解めっき層でも絶縁樹脂の粗化凹みの最深部においても十分に無電解めっき層を形成することができる。そして、無電解めっき層厚みをこれまでより薄くすることができるため、無電解めっき層の形成時間を短縮でき、また、無電解めっき層除去時のエッチング時間を短縮することができる。また、配線導体を形成する化学的耐久性に劣る無電解めっき層の厚みを減らすことができ、無電解めっき層が選択的にエッチングされて、配線導体が剥離することを抑制できる。   In the present invention, when the wiring board is cut vertically, the ridge line of the insulating layer at the cut surface is constituted by a discontinuous linear portion and an uneven portion, and the main surface of the insulating layer Since the sum of the lengths of the straight portions per unit length is set to 20 to 70%, the electroless plating layer is formed well around the starting point of the straight portions good per electroless plating solution. Therefore, the electroless plating layer can be sufficiently formed even in the deepest portion of the roughened dent of the insulating resin even with the thin electroless plating layer. And since the electroless-plating layer thickness can be made thinner than before, the formation time of an electroless-plating layer can be shortened and the etching time at the time of electroless-plating layer removal can be shortened. Moreover, the thickness of the electroless plating layer inferior in chemical durability for forming the wiring conductor can be reduced, and the electroless plating layer can be selectively etched and prevented from peeling off the wiring conductor.

また、絶縁層主面に形成された凹みの最大深さを3μm以下とすることで、無電解めっき層のエッチング時間をより均一にでき、余分なエッチング時間を見込む必要がなくなり無電解めっき層のエッチング時間をさらに短縮することができる。   In addition, by setting the maximum depth of the recess formed in the main surface of the insulating layer to 3 μm or less, the etching time of the electroless plating layer can be made more uniform, and there is no need to allow extra etching time. Etching time can be further shortened.

また、絶縁層主面における一定単純面積に対する絶縁層の表面積の割合を1.1〜2.50とすることで、絶縁層主面に形成された凹みの深さが3μm程度でも凹みの形状が、蛸壺形になり、無電解銅めっき層を除去するために時間がかかるという問題をなくし、エッチング時間を短縮することが出来る。   Moreover, by setting the ratio of the surface area of the insulating layer to the constant simple area on the main surface of the insulating layer to 1.1 to 2.50, the shape of the dent can be obtained even when the depth of the dent formed on the main surface of the insulating layer is about 3 μm. The problem that it takes a long time to remove the electroless copper plating layer can be eliminated and the etching time can be shortened.

また、本発明の配線基板は、絶縁層が少なくとも樹脂と無機フィラーあるいは樹脂フィラーとにより形成することで、絶縁層を粗化液により粗化処理する場合には、無機フィラーあるいは有機フィラーが脱粒して、良好な粗化面を形成することができる。さらには樹脂に含有する無機フィラーあるいは樹脂フィラーの粒径、体積%を適宜調整することで安定した粗化面を形成することができる。   In addition, the wiring board of the present invention is such that the insulating layer is formed of at least a resin and an inorganic filler or a resin filler, and when the insulating layer is roughened with a roughening liquid, the inorganic filler or the organic filler is separated. Thus, a good roughened surface can be formed. Furthermore, a stable roughened surface can be formed by appropriately adjusting the particle size and volume% of the inorganic filler or resin filler contained in the resin.

また、配線導体を構成する無電解めっき層の厚さを0.1〜2μm、前記電解めっき層の厚さを5〜30μmとすることで、化学的耐久性が低く、比較的、電気抵抗が高い無電解めっき層よりも、化学的耐久性が高く、比較的、電気抵抗が低い電解めっき層を厚くすることで、無電解めっき層の選択的エッチングを抑えることができるとともに、電解めっき層により安定した導通信頼性を確保することができる。   Further, by setting the thickness of the electroless plating layer constituting the wiring conductor to 0.1 to 2 μm and the thickness of the electrolytic plating layer to 5 to 30 μm, the chemical durability is low and the electrical resistance is relatively low. By thickening the electrolytic plating layer with higher chemical durability and relatively lower electrical resistance than the high electroless plating layer, selective etching of the electroless plating layer can be suppressed, and the electrolytic plating layer Stable conduction reliability can be ensured.

また、電解めっき層の表面粗さをRa=0.4μm以下とすることで、表皮効果による伝送損失を抑えることができるため、電気特性に優れた配線層を形成することができる。   In addition, by setting the surface roughness of the electrolytic plating layer to Ra = 0.4 μm or less, transmission loss due to the skin effect can be suppressed, so that a wiring layer having excellent electrical characteristics can be formed.

また、本発明の配線基板の製造方法では、絶縁層の少なくとも一方の主面にプレス板を当接させ加熱加圧して、前記絶縁層主面を平坦化するプレス工程と、平坦化した前記絶縁層主面に、非連続の直線部と凹凸部を形成する粗化工程を設けることで、絶縁層同士の密着性が低下することなく、絶縁層主面と略平行な平行部に対してエッチング液の液あたりが向上することから、無電解めっき層の厚みを薄くすることができ、無電解めっき層の形成時間を短縮することができるとともに、無電解めっき層のエッチング時間を短縮することができる。   Further, in the method for manufacturing a wiring board according to the present invention, a press plate is brought into contact with at least one main surface of the insulating layer and heated and pressed to flatten the insulating layer main surface, and the flattened insulation. Etching is performed on parallel parts substantially parallel to the main surface of the insulating layer without lowering the adhesion between the insulating layers by providing a roughening step for forming a discontinuous linear part and uneven part on the main surface of the layer. Since the liquid per area is improved, the thickness of the electroless plating layer can be reduced, the formation time of the electroless plating layer can be shortened, and the etching time of the electroless plating layer can be shortened. it can.

また、粗化工程において粗化液を用いて絶縁層主面を粗化することで、絶縁層に無機フィラーあるいは有機フィラーが含まれている場合には、無機フィラーあるいは有機フィラーを効率よく脱粒させることができ、絶縁層主面と配線導体間及び絶縁層間の密着性を高くすることができる。   Also, by roughening the main surface of the insulating layer using a roughening solution in the roughening step, when the inorganic filler or organic filler is contained in the insulating layer, the inorganic filler or organic filler is efficiently degrained. It is possible to increase the adhesion between the main surface of the insulating layer and the wiring conductor and between the insulating layers.

また、プレス工程と粗化工程との間に絶縁層に貫通孔を形成する貫通孔形成工程を設け、粗化工程後にめっき法により前記貫通孔に貫通導体を形成し、絶縁層主面に配線導体を形成する導体形成工程とを設けることで、貫通孔内壁も粗化することができ、貫通導体と貫通孔内壁の密着性を高くすることができる。   Also, a through hole forming step for forming a through hole in the insulating layer is provided between the pressing step and the roughening step, a through conductor is formed in the through hole by a plating method after the roughening step, and wiring is provided on the main surface of the insulating layer. By providing the conductor forming step for forming the conductor, the inner wall of the through hole can be roughened, and the adhesion between the through conductor and the inner wall of the through hole can be increased.

また、導体形成工程において絶縁層主面に無電解めっき層と電解めっき層を順次形成したことから、めっき層形成速度の遅い無電解めっき層のみで導体を形成せず、導体の大部分をめっき層形成速度の速い電解めっき層にて成形できるため導体加工時間を短縮できる。   In addition, since the electroless plating layer and the electrolytic plating layer were sequentially formed on the main surface of the insulating layer in the conductor formation process, the conductor was not formed only with the electroless plating layer with a slow plating layer formation rate, and most of the conductor was plated. Conductor processing time can be shortened because the electroplating layer can be formed with a high layer formation rate.

本発明の配線基板は、例えば、図1(a)に示すように、ガラスクロスと樹脂とを含有してなるコア基板1と、コア基板1を貫通して形成されたスルーホール3と、スルーホール3内に形成されたスルーホール導体5と、コア基板1の両面に形成されたコア配線層7と、コア基板1の主面に形成された絶縁層9と、絶縁層9を貫通して形成された貫通孔11と、貫通孔11内に形成されたビア導体13と、絶縁層9の主面に形成された配線導体15とで構成されている。   As shown in FIG. 1A, for example, the wiring board of the present invention includes a core substrate 1 containing glass cloth and a resin, a through hole 3 formed through the core substrate 1, and a through-hole. A through-hole conductor 5 formed in the hole 3, a core wiring layer 7 formed on both surfaces of the core substrate 1, an insulating layer 9 formed on the main surface of the core substrate 1, and the insulating layer 9 are penetrated. The formed through hole 11, the via conductor 13 formed in the through hole 11, and the wiring conductor 15 formed on the main surface of the insulating layer 9 are configured.

このような配線基板において、コア基板1、絶縁層9は、それぞれを挟持するように配置されたコア配線層7、配線導体15並びに、それぞれを貫通して設けられたスルーホール導体5、ビア導体13とを支持し、電気的に絶縁する機能を有している。   In such a wiring substrate, the core substrate 1 and the insulating layer 9 are composed of the core wiring layer 7 and the wiring conductor 15 arranged so as to sandwich each of the core substrate 1 and the insulating layer 9, and the through-hole conductor 5 and the via conductor provided so as to penetrate each of them. 13 and has a function of electrically insulating.

そして、コア配線層7、配線導体15、スルーホール導体5、ビア導体13は、それぞれが任意に接続され、配線回路を形成している。   The core wiring layer 7, the wiring conductor 15, the through-hole conductor 5, and the via conductor 13 are arbitrarily connected to each other to form a wiring circuit.

配線基板17は、図1(a)の例では、板状の芯体を有するコア基板1と、この表面に被着した絶縁層9とから形成されている。コア基板1の芯体は、配線基板17のそりを防止する機能を有し、厚みが0.3〜1.5mm程度であり、ガラス繊維を縦横に織り込んだガラスクロスにエポキシ樹脂やビスマレイミドトリアジン樹脂等の熱硬化性樹脂を含浸させてなり、また、絶縁層9は、配線導体15の支持体としての機能を有し、厚みが10〜80μmであり、エポキシ樹脂や変性ポリフェニレンエーテル樹脂等の熱硬化性樹脂からなる。   In the example of FIG. 1A, the wiring substrate 17 is formed of a core substrate 1 having a plate-like core body and an insulating layer 9 deposited on the surface. The core body of the core substrate 1 has a function of preventing the wiring substrate 17 from warping, has a thickness of about 0.3 to 1.5 mm, and an epoxy resin or bismaleimide triazine on a glass cloth in which glass fibers are woven vertically and horizontally. The insulating layer 9 is impregnated with a thermosetting resin such as a resin, has a function as a support for the wiring conductor 15, has a thickness of 10 to 80 μm, and is made of an epoxy resin or a modified polyphenylene ether resin. It consists of a thermosetting resin.

また、絶縁層9の表面には配線導体15が形成されている。この配線導体15は、図1(b)に示すように、めっき法により形成され、厚みが2μm以下でかつ0.1μm以上、最適には厚みが1μm以下でかつ0.1μm以上の無電解めっき層15aと厚みが5μm以上、最適には15μm以上の電解めっき層15bとから形成されることが望ましい。この配線導体15は、配線基板17に搭載される半導体素子等の電子部品の各電極を外部電気回路(図示せず)に電気的に接続する導電路としての機能を有する。   A wiring conductor 15 is formed on the surface of the insulating layer 9. As shown in FIG. 1B, the wiring conductor 15 is formed by plating, and has an electroless plating thickness of 2 μm or less and 0.1 μm or more, optimally a thickness of 1 μm or less and 0.1 μm or more. It is desirable to form the layer 15a and the electrolytic plating layer 15b having a thickness of 5 μm or more, and optimally 15 μm or more. The wiring conductor 15 has a function as a conductive path that electrically connects each electrode of an electronic component such as a semiconductor element mounted on the wiring board 17 to an external electric circuit (not shown).

本発明の配線基板17においては、絶縁層9の断面と絶縁層9の主面とが形成する稜線が、非連続の直線部9aと、凹凸部9bとからなり、絶縁層9の主面の単位長さ当たりの直線部9aの長さの和が、20〜70%であることが重要である。   In the wiring board 17 of the present invention, the ridge line formed by the cross section of the insulating layer 9 and the main surface of the insulating layer 9 is composed of the non-continuous linear portion 9a and the uneven portion 9b. It is important that the sum of the lengths of the straight portions 9a per unit length is 20 to 70%.

本発明の配線基板17によれば、絶縁層9を、上記構成としたことから、無電解めっき液の液当たりの良い絶縁層9の直線部9aを起点として、つきまわりよく無電解めっき層15aが形成されるため、比較的薄く無電解めっき層15aを形成したとしても、凹凸部9bの最深部においても十分に無電解めっき層15aが形成されている。このことから無電解めっき層15a厚みをこれまでより薄くすることができるため、配線導体15のうち、電気抵抗の小さい電解めっき層15bの割合が大きくなり、低抵抗の配線導体15を形成できるとともに、化学的耐久性に劣る無電解めっき層15aの厚みが薄くなるため、配線基板17の信頼性を向上させることができる。また、製造工程においては、電解めっき層15bに比べ、形成速度の遅い無電解めっき層15aの厚みを薄くできるため、配線導体15の形成時間を短縮することができ、また、無電解めっき層15a除去の際もエッチング時間を短縮することができる。   According to the wiring board 17 of the present invention, since the insulating layer 9 has the above-described configuration, the electroless plating layer 15a is well-rounded starting from the straight portion 9a of the insulating layer 9 that is good per solution of the electroless plating solution. Therefore, even if the electroless plating layer 15a is formed relatively thin, the electroless plating layer 15a is sufficiently formed even in the deepest portion of the uneven portion 9b. Therefore, the thickness of the electroless plating layer 15a can be made thinner than before, so that the proportion of the electrolytic plating layer 15b having a low electric resistance in the wiring conductor 15 is increased, and the low-resistance wiring conductor 15 can be formed. Further, since the thickness of the electroless plating layer 15a inferior in chemical durability is reduced, the reliability of the wiring board 17 can be improved. Further, in the manufacturing process, since the thickness of the electroless plating layer 15a having a lower formation speed than the electrolytic plating layer 15b can be reduced, the formation time of the wiring conductor 15 can be shortened, and the electroless plating layer 15a. The etching time can be shortened also at the time of removal.

本発明の配線基板17においては、上記のように、絶縁層9の断面と絶縁層9の主面とが形成する稜線において、絶縁層9主面の直線部9aと、凹凸部9bとを形成し、絶縁層9の主面の単位長さ当たりの直線部9aの長さの和を20〜70%とすることが重要なのであるが、このような構造の配線基板17の製造方法について、従来工法と比較して説明する。   In the wiring board 17 of the present invention, as described above, the straight portion 9a and the uneven portion 9b of the main surface of the insulating layer 9 are formed on the ridgeline formed by the cross section of the insulating layer 9 and the main surface of the insulating layer 9. Although it is important that the sum of the lengths of the straight portions 9a per unit length of the main surface of the insulating layer 9 is 20 to 70%, a method for manufacturing the wiring board 17 having such a structure is conventionally known. This will be explained in comparison with the construction method.

従来工法では、図6(a)に示すように、板状のコア基板21にBステージ状態の絶縁樹脂をラミネートしたのち硬化して絶縁層29を形成する。   In the conventional method, as shown in FIG. 6A, an insulating layer 29 is formed by laminating a B-stage insulating resin on a plate-like core substrate 21 and then curing.

次に、図6(b)に示すように、炭酸ガスレーザまたはYAGレーザにより絶縁層29に貫通孔33を形成する。   Next, as shown in FIG. 6B, through holes 33 are formed in the insulating layer 29 by a carbon dioxide laser or a YAG laser.

次に、図6(c)に示すように、絶縁層29表面を過マンガン酸塩類水溶液等で粗化し、さらに、絶縁層29の主面に順次、無電解めっき層、電解めっき層を形成する。   Next, as shown in FIG. 6C, the surface of the insulating layer 29 is roughened with an aqueous solution of a permanganate solution, and an electroless plating layer and an electrolytic plating layer are sequentially formed on the main surface of the insulating layer 29. .

このような従来の製造方法では、絶縁層29の主面には絶縁層29の主面と非平行な非平行部29bのみが形成されていた。   In such a conventional manufacturing method, only the non-parallel portion 29 b that is non-parallel to the main surface of the insulating layer 29 is formed on the main surface of the insulating layer 29.

一方、本発明においては、図2(a)に示すように、ガラスクロス繊維を縦横に織り込んだガラスクロスにエポキシ樹脂やビスマレイドトリアジン樹脂などの熱硬化性樹脂を含浸させたシートを積層した後、熱硬化することにより作製した厚みが0.3〜1.5mmの板状のコア基板1にBステージ状態のエポキシ樹脂や変性ポリフェニレンエーテル樹脂等の熱硬化性からなる厚みが20〜60μmの絶縁樹脂をラミネートしたのち、図2(b)に示すように、主面が平坦な金型35を用いて、50℃〜170℃、10〜180秒、0.3〜1MPaの条件でプレス加工を行ない、硬化する。このとき、絶縁層9の金型35と接していた側の主面は、従来の製造方法では、荒い面であったのが、本発明の製造方法によれば、プレスによる加圧工程を設けたことで、絶縁層9の主面が平坦化され、絶縁基板を垂直に切断した際の、切断面における絶縁層の稜線に直線部9aと凹凸部9bとを形成することができるのである。   On the other hand, in the present invention, as shown in FIG. 2A, after laminating a sheet of glass cloth in which glass cloth fibers are woven vertically and horizontally, impregnated with a thermosetting resin such as epoxy resin or bismaleidotriazine resin. Insulation having a thickness of 20 to 60 μm made of thermosetting properties such as a B-stage epoxy resin or a modified polyphenylene ether resin on a plate-like core substrate 1 having a thickness of 0.3 to 1.5 mm produced by thermosetting After laminating the resin, as shown in FIG. 2 (b), pressing is performed under the conditions of 50 to 170 ° C., 10 to 180 seconds, and 0.3 to 1 MPa using a mold 35 having a flat main surface. Do and cure. At this time, the main surface of the insulating layer 9 on the side in contact with the mold 35 is a rough surface in the conventional manufacturing method, but according to the manufacturing method of the present invention, a pressurizing step by a press is provided. As a result, the main surface of the insulating layer 9 is flattened, and when the insulating substrate is cut vertically, the straight portion 9a and the concavo-convex portion 9b can be formed on the ridgeline of the insulating layer on the cut surface.

さらに、図2(c)に示すように、炭酸ガスレーザまたはYAGレーザにより絶縁層9に貫通孔13を形成し、図3(d)に示すように、絶縁層9の表面を40〜60℃の過マンガン酸塩類水溶液等の粗化液に5〜15分間浸漬し、表面の粗化凹みが最大深さで3μm以下の粗さとなるように粗化することで、絶縁層9の主面に、直線部9aと凹凸部9bとが形成される。   Further, as shown in FIG. 2 (c), through holes 13 are formed in the insulating layer 9 by a carbon dioxide laser or YAG laser, and the surface of the insulating layer 9 is heated to 40 to 60 ° C. as shown in FIG. 3 (d). By immersing in a roughening solution such as an aqueous solution of permanganate for 5 to 15 minutes and roughening so that the roughening recess on the surface has a maximum depth of 3 μm or less, the main surface of the insulating layer 9 is A straight line portion 9a and an uneven portion 9b are formed.

次に、20〜40℃の無電解めっき用のパラジウム触媒の水溶液中に1〜10分間浸漬することで絶縁層9の表面にパラジウム触媒を形成する。なお、煩雑であるため、パラジウム触媒Aは図示しない。   Next, a palladium catalyst is formed on the surface of the insulating layer 9 by being immersed in an aqueous solution of a palladium catalyst for electroless plating at 20 to 40 ° C. for 1 to 10 minutes. In addition, since it is complicated, the palladium catalyst A is not illustrated.

次に、図3(e)に示すように、パラジウム触媒を形成したコア基板1と絶縁層9の積層体を硫酸銅・ロッセル塩・ホルマリン・EDTAナトリウム塩・安定剤等からなる55〜65℃の無電解めっき液に約10〜30分間浸漬して、絶縁層9の表面に0.3〜1.0μm程度の無電解めっき層15aを析出させ、その後、図3(f)に示すように、無電解めっき層15a上にめっきレジスト層16を形成する。めっきレジスト層16は、厚みが15〜50μmであり、例えば材料が感光性樹脂からなり、ラミネートすることにより被着形成される。   Next, as shown in FIG. 3 (e), the laminated body of the core substrate 1 and the insulating layer 9 on which the palladium catalyst is formed is 55 to 65 ° C. made of copper sulfate, rossel salt, formalin, EDTA sodium salt, stabilizer, and the like. Is immersed in the electroless plating solution for about 10 to 30 minutes to deposit an electroless plating layer 15a of about 0.3 to 1.0 μm on the surface of the insulating layer 9, and then as shown in FIG. The plating resist layer 16 is formed on the electroless plating layer 15a. The plating resist layer 16 has a thickness of 15 to 50 μm. For example, the material is made of a photosensitive resin, and is deposited by laminating.

その後、図4(g)に示すように、露光と現像により開口部18を形成する。   Thereafter, as shown in FIG. 4G, an opening 18 is formed by exposure and development.

しかる後、図4(h)に示すように、硫酸・硫酸銅5水和物・塩素・光沢剤等からなる電解銅めっき液に3〜5A/dmの電流を印加しながら1〜3時間浸漬することにより開口部18に電解めっき層15bを形成する。 Thereafter, as shown in FIG. 4 (h), while applying an electric current of 3 to 5 A / dm 2 to the electrolytic copper plating solution composed of sulfuric acid, copper sulfate pentahydrate, chlorine, brightener, etc., for 1 to 3 hours. The electrolytic plating layer 15b is formed in the opening 18 by dipping.

その後、図5(i)に示すように、45〜50℃の水酸化ナトリウム水溶液でめっきレジスト層16を除去し、さらに、図5(j)に示すように、めっきレジスト層16を剥離したことにより露出した無電解めっき層15aを25〜30℃の硫酸・過酸化水素水あるいは硫酸銅等の硫酸系水溶液によりエッチングして除去する。   Thereafter, as shown in FIG. 5 (i), the plating resist layer 16 was removed with a sodium hydroxide aqueous solution at 45 to 50 ° C., and the plating resist layer 16 was peeled off as shown in FIG. 5 (j). The electroless plating layer 15a exposed by etching is removed by etching with a sulfuric acid aqueous solution such as sulfuric acid / hydrogen peroxide solution or copper sulfate at 25 to 30 ° C.

次に、無電解めっき層15aを除去したことにより露出するパラジウム触媒A(図示せず)を25〜30℃程度のシアン化ニッケルカリウムやシアン化カリウム水溶液等のシアン系水溶液に10〜30分間程度浸漬でエッチング除去するとともに、蟻酸等を主たる成分とする粗化剤で配線導体15の表面を粗化する(図示せず)。   Next, the palladium catalyst A (not shown) exposed by removing the electroless plating layer 15a is immersed in a cyanic aqueous solution such as nickel potassium cyanide or potassium cyanide aqueous solution at about 25 to 30 ° C. for about 10 to 30 minutes. Etching is removed, and the surface of the wiring conductor 15 is roughened with a roughening agent mainly composed of formic acid or the like (not shown).

さらに必要に応じて、絶縁層9と配線導体15の主面に他の絶縁層9並びに他の配線導体15を設けることで本発明の配線基板17を作製することができる。   Furthermore, if necessary, the wiring board 17 of the present invention can be manufactured by providing another insulating layer 9 and another wiring conductor 15 on the main surfaces of the insulating layer 9 and the wiring conductor 15.

なお、絶縁層の稜線が直線的な直線部9aと、凹凸部9bの測定は、超深度形状測定顕微鏡(キーエンスVK−8500等)のレーザ測定機を使用して、モニタ上3000倍のレンズにより一定長さ(少なくとも1mm)の表面粗さ測定を行い、そのデータを画像処理にすることにより直線部と粗化されて深くなっている部分との比率を算出するという方法で行った。直線部9aは、図7に示す画像処理後のプロファイルのうち、直線部分を直線で結んだ際、その直線の上下0.5μmの範囲内に含まれる部分を直線部9aと規定し、測定範囲中それ以外の部分を凹凸部9bと規定している。   In addition, the measurement of the linear part 9a where the ridgeline of an insulating layer is linear, and the uneven | corrugated | grooved part 9b is carried out with the lens of 3000 times on a monitor using the laser measuring machine of an ultra-deep shape measuring microscope (Keyence VK-8500 etc.). The surface roughness of a certain length (at least 1 mm) was measured, and the data was subjected to image processing to calculate the ratio between the straight line portion and the roughened and deepened portion. In the profile after image processing shown in FIG. 7, the straight line portion 9 a defines a portion included within a range of 0.5 μm above and below the straight line as a straight line portion 9 a when the straight line portions are connected by a straight line. The other portion is defined as the uneven portion 9b.

なお、上記の装置を用いない場合には、たとえば、走査型電子顕微鏡(SEM)を用いて、3000倍に拡大し、SEM写真を撮影し、同様の解析を行ってもよい。   When the above apparatus is not used, the same analysis may be performed by enlarging the image to 3000 times using a scanning electron microscope (SEM), taking an SEM photograph, and the like.

そして、本発明においては、凹凸部9bの深さは、3μm以下とすることが望ましく、それによりエッチング液が凹みに滞留することを少なくすることができるとともに、エッチング時間の変動を少なくすることができる。   In the present invention, the depth of the concavo-convex portion 9b is preferably 3 μm or less, so that it is possible to reduce the retention of the etching solution in the recess and to reduce the fluctuation of the etching time. it can.

また、絶縁層9の主面における一定単純面積に対する絶縁層9の表面積の割合を1.1〜2.50の範囲とすることで、凹凸部9bの形状が、開口部よりも内部において径が大きい蛸壺形になり無電解銅めっき層15aを除去するために時間がかかるという問題をなくし、エッチング時間を短縮することが出来る。   In addition, by setting the ratio of the surface area of the insulating layer 9 to the constant simple area on the main surface of the insulating layer 9 in the range of 1.1 to 2.50, the shape of the uneven portion 9b has a diameter inside than the opening. The problem that it takes a long time to remove the electroless copper plating layer 15a due to the large bowl shape can be eliminated, and the etching time can be shortened.

また、配線導体15は、めっき法により形成され、厚みが0.1μm以上でかつ2μm以下、最適には厚みが0.3μm以上でかつ1μm以下の無電解めっき層15aと厚みが5μm以上、最適には15μm以上の電解めっき層15bとから形成されることが望ましい。さらに、配線導体15を形成する電解めっき層15bの表面粗さがRa=0.4μm以下であり、最適にはRa=0.2μm以下であることが望ましい。   Further, the wiring conductor 15 is formed by a plating method and has an electroless plating layer 15a having a thickness of 0.1 μm or more and 2 μm or less, optimally 0.3 μm or more and 1 μm or less, and an optimal thickness of 5 μm or more. Is preferably formed from an electroplating layer 15b of 15 μm or more. Furthermore, the surface roughness of the electrolytic plating layer 15b forming the wiring conductor 15 is preferably Ra = 0.4 μm or less, and most preferably Ra = 0.2 μm or less.

なお、本発明の配線基板17並びに本発明の配線基板17の製造方法は上述の実施例に限定されるものではなく、本要旨を逸脱しない範囲であれば種々の変更は可能であり、例えば、上述の例では絶縁層9をコア基板1の上面に積層し、この絶縁層9上に配線導体15を形成したが、絶縁層9をコア基板1の上下両面に積層し、この両面に配線導体15を形成してもよい。また、両面に形成した配線導体15間を絶縁基板1の内部に形成した貫通導体で電気的に接続してもよい。さらに、上述の例では、絶縁基板1をコア基板1に絶縁層9を積層してなるものとしたが、絶縁基板1をコア基板1のみで構成してもよい。また、コア基板1の主面にも同様の製造方法で、絶縁層の稜線が直線部9aと凹凸部9bとを形成できることは言うまでもない
また、本発明の配線基板17の製造方法も、上述の実施の形態の一例に限定されるものではなく、本発明の要旨を逸脱しない範囲であれば、種々の変更・改良を施すことは何ら差し支えない。
The wiring board 17 of the present invention and the manufacturing method of the wiring board 17 of the present invention are not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the present invention. In the above-described example, the insulating layer 9 is laminated on the upper surface of the core substrate 1 and the wiring conductor 15 is formed on the insulating layer 9. However, the insulating layer 9 is laminated on both upper and lower surfaces of the core substrate 1, and the wiring conductor is formed on both surfaces. 15 may be formed. Further, the wiring conductors 15 formed on both surfaces may be electrically connected by through conductors formed inside the insulating substrate 1. Furthermore, in the above-described example, the insulating substrate 1 is formed by laminating the insulating layer 9 on the core substrate 1, but the insulating substrate 1 may be configured by only the core substrate 1. Further, it goes without saying that the ridge line of the insulating layer can also form the straight portion 9a and the concavo-convex portion 9b on the main surface of the core substrate 1 by the same manufacturing method. Also, the manufacturing method of the wiring substrate 17 of the present invention is also described above. The present invention is not limited to an exemplary embodiment, and various modifications and improvements can be made without departing from the scope of the present invention.

本発明の配線基板及び配線基板の製造方法を評価するために、サンプルを作製し、次の評価を行なった。   In order to evaluate the wiring board and the manufacturing method of the wiring board of the present invention, samples were prepared and the following evaluation was performed.

(配線基板の作製)
(1)ガラス繊維を縦横に織り込んだガラスクロスに対してビスマレイミドトリアジン樹脂を50体積%の割合で含浸させた厚さ200μmのプリプレグを4枚積層し、5MPaの圧力で圧着し、200℃で2時間加熱して完全硬化させてコア基板を作製した。
(Production of wiring board)
(1) Four 200 μm-thick prepregs impregnated with 50% by volume of bismaleimide triazine resin are laminated on a glass cloth in which glass fibers are woven vertically and horizontally, and bonded with a pressure of 5 MPa at 200 ° C. The core substrate was produced by heating for 2 hours to complete curing.

(2)そして、コア基板表面に従来周知のドクターブレード法を採用して形成したエポキシ樹脂からなるシートを積層するとともに仮硬化し、コア基板の主面に絶縁層を設けた。
(3)続いてコア基板と絶縁層との積層体をホットプレス機により100℃、30秒、そして表1に示す圧力で両面から加熱加圧し、さらには、これを170℃で2時間加熱し熱硬化することで絶縁基板1を作製した。
(2) Then, a sheet made of an epoxy resin formed by employing a conventionally known doctor blade method was laminated on the surface of the core substrate and temporarily cured, and an insulating layer was provided on the main surface of the core substrate.
(3) Subsequently, the laminated body of the core substrate and the insulating layer was heated and pressed from both sides with a hot press machine at 100 ° C. for 30 seconds and the pressure shown in Table 1, and further heated at 170 ° C. for 2 hours. The insulating substrate 1 was produced by thermosetting.

(4)さらに、炭酸ガスレーザにより絶縁層に貫通孔を形成したのち、絶縁基板を過マンガン酸塩類水溶液等の粗化液に所定の時間浸漬し表面を表1に示す粗さまで粗化した後、30℃の無電解銅めっき用のパラジウム触媒の水溶液中に5分間浸漬し、表面にパラジウム触媒を付着させた。   (4) Further, after forming a through hole in the insulating layer with a carbon dioxide gas laser, the insulating substrate is immersed in a roughening solution such as a permanganate aqueous solution for a predetermined time to roughen the surface to the roughness shown in Table 1, It was immersed in an aqueous solution of a palladium catalyst for electroless copper plating at 30 ° C. for 5 minutes to adhere the palladium catalyst to the surface.

(5)次に、絶縁基板表面に、硫酸銅・ロッセル塩・ホルマリン・EDTAナトリウム塩・安定剤等からなる60℃の無電解銅めっき液に浸漬し、浸漬時間を調整することで表1に示す初期無電解銅めっき層厚みとした。   (5) Next, the surface of the insulating substrate is immersed in an electroless copper plating solution at 60 ° C. made of copper sulfate, Rossell salt, formalin, EDTA sodium salt, stabilizer, etc., and the immersion time is adjusted as shown in Table 1. The initial electroless copper plating layer thickness shown was used.

(6)そして、無電解銅めっき層上に耐めっき樹脂層となる、アクリル樹脂を主たる成分としてなるフォトレジストを被着し露光・現像により、電解銅めっき層を被着するための幅15μmの導体パターン形成のための開口部を形成した。   (6) A 15 μm width for depositing an electrolytic copper plating layer on the electroless copper plating layer by applying a photoresist which is an anti-plating resin layer, mainly composed of an acrylic resin, by exposure and development An opening for forming a conductor pattern was formed.

(7)さらに、無電解銅めっき層の一部を30℃の硫酸加水水溶液でエッチング速度を調整し除去した。   (7) Furthermore, a part of the electroless copper plating layer was removed by adjusting the etching rate with a 30 ° C. aqueous sulfuric acid solution.

(8)次に、硫酸・硫酸銅5水和物・塩素・光沢剤等からなる電解銅めっき液に3A/dmの電流を印加しながら所定の時間浸漬することにより、開口部に電解銅めっき層を所定の厚みで形成した。 (8) Next, by immersing in an electrolytic copper plating solution composed of sulfuric acid, copper sulfate pentahydrate, chlorine, brightener, etc. while applying a current of 3 A / dm 2 for a predetermined time, electrolytic copper is formed in the opening. The plating layer was formed with a predetermined thickness.

(9)その後、耐めっき樹脂層を水酸化ナトリウムで除去し、露出した無電解銅めっき層を硫酸加水水溶液により、エッチング速度を調整して除去する。   (9) Thereafter, the plating-resistant resin layer is removed with sodium hydroxide, and the exposed electroless copper plating layer is removed with an aqueous sulfuric acid solution by adjusting the etching rate.

(10)そして、表面に絶縁抵抗・導通抵抗測定のための開口部を有する20μm厚のアクリル変性エポキシ樹脂からなるソルダーレジスト層を形成し配線基板とした。

Figure 2005217052
(10) Then, a solder resist layer made of an acrylic-modified epoxy resin having a thickness of 20 μm and having openings for measuring insulation resistance and conduction resistance on the surface was formed to obtain a wiring board.
Figure 2005217052

表1より、
本発明の範囲外である配線基板を垂直に切断した際の切断面における絶縁層の稜線が、直線部と凹凸部で構成され、絶縁層の主面の単位長さ当たりの直線部の長さの和が20%未満であり、一定単純面積に対する絶縁層粗化表面積の割合が2.5より大きい試料No.1は、不飽和PCT放置後の絶縁抵抗値が10以下となり、配線間の絶縁性が保てず、さらに粗化形状は蛸壺形となっていた。また絶縁層の主面の単位長さ当たりの直線部の長さの和が70%を超え、72%であり、一定単純面積に対する絶縁層粗化表面積の割合が1.1より小さい試料No.5は、半田耐熱260℃ディッピング繰り返しテストにおいて3回目で層間剥がれによる密着不良が生じ、それぞれ配線基板としての機能をなさなかった。
From Table 1,
The ridgeline of the insulating layer at the cut surface when the wiring board that is outside the scope of the present invention is cut vertically is composed of a straight portion and an uneven portion, and the length of the straight portion per unit length of the main surface of the insulating layer Sample No. 5 is less than 20%, and the ratio of the roughened surface area of the insulating layer to the fixed simple area is larger than 2.5. 1, the insulation resistance value after standing unsaturated PCT becomes 10 5 or less, without insulation between wires maintained, further roughened shape had become Takotsubogata. The sum of the lengths of the straight portions per unit length of the main surface of the insulating layer is more than 70% and 72%, and the ratio of the roughened surface area of the insulating layer to a certain simple area is smaller than 1.1. No. 5 had a poor adhesion due to delamination at the third time in the solder heat resistance 260 ° C. dipping repeated test, and did not function as a wiring board.

一方、本発明の絶縁層の断面と絶縁層の主面とが形成する稜線が、直線部と凹凸部とからなり、絶縁層の主面の単位長さ当たりの直線部の長さの和が、20〜70%である試料No.2〜4では、絶縁抵抗も10Ω以上であり、半田耐熱260℃ディッピング繰り返しテスト10回以上においても層間剥がれがみられず、良好な特性を示すことがわかる。 On the other hand, the ridgeline formed by the cross section of the insulating layer of the present invention and the main surface of the insulating layer is composed of a straight portion and an uneven portion, and the sum of the lengths of the straight portions per unit length of the main surface of the insulating layer is Sample No. 20-70%. 2 to 4, the insulation resistance is 10 8 Ω or more, and it can be seen that even when the solder heat resistance 260 ° C. dipping test is repeated 10 times or more, no delamination is observed and good characteristics are exhibited.

ただし、絶縁層主面に形成された凹みの最大深さが3μmより大きい試料No.6では不飽和PCT後の絶縁抵抗値が10と若干高くなった。 However, the sample No. No. 2 in which the maximum depth of the recess formed in the main surface of the insulating layer is larger than 3 μm. Insulation resistance value after unsaturated PCT in 6 becomes slightly high as 10 6.

(a)は、本発明の配線基板を示す断面図であり、(b)は、本発明の配線基板の要部拡大図である。(A) is sectional drawing which shows the wiring board of this invention, (b) is a principal part enlarged view of the wiring board of this invention. 本発明の配線基板の製造方法を説明する工程図である。It is process drawing explaining the manufacturing method of the wiring board of this invention. 本発明の配線基板の製造方法を説明する工程図である。It is process drawing explaining the manufacturing method of the wiring board of this invention. 本発明の配線基板の製造方法を説明する工程図である。It is process drawing explaining the manufacturing method of the wiring board of this invention. 本発明の配線基板の製造方法を説明する工程図である。It is process drawing explaining the manufacturing method of the wiring board of this invention. 従来の配線基板の製造方法を説明する工程図である。It is process drawing explaining the manufacturing method of the conventional wiring board. 本発明の配線基板の絶縁層の稜線を超深度形状測定顕微鏡を使用して測定したプロファイルの一例である。It is an example of the profile which measured the ridgeline of the insulating layer of the wiring board of this invention using the ultra-deep shape measuring microscope.

符号の説明Explanation of symbols

1・・・・・・絶縁基板
9・・・・・絶縁層
9a・・・・・直線部
9b・・・・・凹凸部
15・・・・・・配線導体
15a・・・・・無電解めっき層
15b・・・・・電解めっき層
DESCRIPTION OF SYMBOLS 1 .... Insulating substrate 9 ... Insulating layer 9a ... Straight line part 9b ... Uneven part 15 ...... Wiring conductor 15a ... Electroless Plating layer 15b ... Electrolytic plating layer

Claims (10)

少なくとも樹脂を含有してなる絶縁層と、該絶縁層の主面に形成された配線導体と、前記絶縁層を貫通して、前記絶縁層に隔てられた配線導体を接続するビアとを具備してなる配線基板であって、該配線基板を垂直に切断した際の切断面における絶縁層の稜線が、非連続の直線部と凹凸部で構成され、前記絶縁層主面の単位長さ当たりの前記直線部の長さの和が、20〜70%であることを特徴とする配線基板。 An insulating layer containing at least a resin; a wiring conductor formed on a main surface of the insulating layer; and a via that penetrates the insulating layer and connects the wiring conductor separated by the insulating layer. The ridge line of the insulating layer at the cut surface when the wiring substrate is cut vertically is composed of a discontinuous linear portion and an uneven portion, and the unit length per unit length of the insulating layer main surface. The wiring board, wherein the sum of the lengths of the straight portions is 20 to 70%. 絶縁層主面に形成された凹みの最大深さが3μm以下であることを特徴とする請求項1記載の配線基板。 The wiring board according to claim 1, wherein the maximum depth of the recess formed in the main surface of the insulating layer is 3 μm or less. 絶縁層主面における一定単純面積に対する絶縁層粗化表面積の割合が1.1〜2.50であることを特徴とする請求項1又は2のうちいずれかに記載の配線基板。 The wiring board according to claim 1, wherein the ratio of the roughened surface area of the insulating layer to the fixed simple area on the main surface of the insulating layer is 1.1 to 2.50. 絶縁層が少なくとも樹脂と、無機フィラーあるいは樹脂フィラーからなることを特徴とする請求項1乃至3のうちいずれかに記載の配線基板。 The wiring board according to claim 1, wherein the insulating layer comprises at least a resin and an inorganic filler or a resin filler. 絶縁層主面に、無電解めっき層と、電解めっき層とが順次形成されて配線導体を構成してなるとともに、前記無電解めっき層の厚さが0.1〜2μmであり、前記電解めっき層の厚さが5〜30μmであることを特徴とする請求項1乃至4のうちいずれかに記載の配線基板。 An electroless plating layer and an electroplating layer are sequentially formed on the main surface of the insulating layer to form a wiring conductor, and the electroless plating layer has a thickness of 0.1 to 2 μm. The wiring board according to claim 1, wherein the layer has a thickness of 5 to 30 μm. 電解めっき層の表面粗さがRa=0.4μm以下であることを特徴とする請求項5に記載の配線基板。 The wiring board according to claim 5, wherein the surface roughness of the electrolytic plating layer is Ra = 0.4 μm or less. 少なくとも樹脂を含有してなる絶縁層の少なくとも一方の主面にプレス板を当接させ加熱加圧して、前記絶縁層主面を平坦化するプレス工程と、平坦化した前記絶縁層主面に、非連続の直線部と、凹凸部とを形成する粗化工程とを具備することを特徴とする配線基板の製造方法。 At least one main surface of the insulating layer containing a resin is brought into contact with a press plate and heated and pressed to flatten the insulating layer main surface, and to the flattened insulating layer main surface, A method of manufacturing a wiring board, comprising: a roughening step of forming a discontinuous straight line part and an uneven part. 粗化工程において、粗化液を用いて絶縁層主面を粗化することを特徴とする請求項7に記載の配線基板の製造方法。 The method for manufacturing a wiring board according to claim 7, wherein in the roughening step, the main surface of the insulating layer is roughened using a roughening solution. プレス工程と粗化工程との間に、絶縁層に貫通孔を形成する貫通孔形成工程を設け、粗化工程後にめっき法により前記貫通孔に貫通導体を形成し、絶縁層主面に配線導体を形成する導体形成工程とを具備することを特徴とする請求項7又は8のうちいずれかに記載の配線基板の製造方法。 A through hole forming step for forming a through hole in the insulating layer is provided between the pressing step and the roughening step, a through conductor is formed in the through hole by a plating method after the roughening step, and a wiring conductor is formed on the main surface of the insulating layer. A method of manufacturing a wiring board according to claim 7, further comprising: a conductor forming step of forming a conductor. 導体形成工程において絶縁層主面に無電解めっき層と電解めっき層を順次形成することを特徴とする請求項7乃至9のうちいずれかに記載の配線基板の製造方法。 10. The method for manufacturing a wiring board according to claim 7, wherein an electroless plating layer and an electrolytic plating layer are sequentially formed on the main surface of the insulating layer in the conductor forming step.
JP2004020275A 2004-01-28 2004-01-28 Wiring board and method for manufacturing same Pending JP2005217052A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004020275A JP2005217052A (en) 2004-01-28 2004-01-28 Wiring board and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004020275A JP2005217052A (en) 2004-01-28 2004-01-28 Wiring board and method for manufacturing same

Publications (1)

Publication Number Publication Date
JP2005217052A true JP2005217052A (en) 2005-08-11

Family

ID=34904234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004020275A Pending JP2005217052A (en) 2004-01-28 2004-01-28 Wiring board and method for manufacturing same

Country Status (1)

Country Link
JP (1) JP2005217052A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015043419A (en) * 2013-07-24 2015-03-05 Jx日鉱日石金属株式会社 Resin substrate, copper clad laminate, printed wiring board, electronic equipment, and method for manufacturing printed wiring board
KR101871029B1 (en) * 2010-09-27 2018-06-25 제이엑스금속주식회사 Copper foil for printed wiring board, method for producing said copper foil, resin substrate for printed wiring board, and printed wiring board
US10070511B2 (en) 2016-08-22 2018-09-04 Ibiden Co., Ltd. Wiring board and method for manufacturing the same
JP2018207132A (en) * 2018-10-04 2018-12-27 味の素株式会社 Adhesive film, method for manufacturing cured body, cured body, wiring board, and semiconductor device
US10257938B2 (en) 2013-07-24 2019-04-09 Jx Nippon Mining & Metals Corporation Surface-treated copper foil, copper foil with carrier, substrate, resin substrate, printed wiring board, copper clad laminate and method for producing printed wiring board

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101871029B1 (en) * 2010-09-27 2018-06-25 제이엑스금속주식회사 Copper foil for printed wiring board, method for producing said copper foil, resin substrate for printed wiring board, and printed wiring board
JP2015043419A (en) * 2013-07-24 2015-03-05 Jx日鉱日石金属株式会社 Resin substrate, copper clad laminate, printed wiring board, electronic equipment, and method for manufacturing printed wiring board
US10257938B2 (en) 2013-07-24 2019-04-09 Jx Nippon Mining & Metals Corporation Surface-treated copper foil, copper foil with carrier, substrate, resin substrate, printed wiring board, copper clad laminate and method for producing printed wiring board
US10070511B2 (en) 2016-08-22 2018-09-04 Ibiden Co., Ltd. Wiring board and method for manufacturing the same
JP2018207132A (en) * 2018-10-04 2018-12-27 味の素株式会社 Adhesive film, method for manufacturing cured body, cured body, wiring board, and semiconductor device

Similar Documents

Publication Publication Date Title
US8215011B2 (en) Method of manufacturing a printed circuit board
KR20100029858A (en) Printed wiring board and process for producing the same
JP2006237619A (en) Printed circuit board, flip chip ball grid array substrate and method of manufacturing the same
TW200913835A (en) Wiring substrate manufacturing method
JP2009124098A (en) Electric member and method for manufacturing printed circuit board using it
JP2011058093A (en) Method for producing printed wiring board
TW200939927A (en) Wiring substrate and its manufacturing process
JP4032712B2 (en) Method for manufacturing printed wiring board
JP2009252952A (en) Copper charge plating method and printed circuit board manufactured by the method
KR100752017B1 (en) Manufacturing Method of Printed Circuit Board
JP2005217052A (en) Wiring board and method for manufacturing same
JP2004047836A (en) Printed board and its manufacturing method
JP4328196B2 (en) WIRING BOARD, MANUFACTURING METHOD THEREOF, AND ELECTRIC DEVICE
JP4328195B2 (en) WIRING BOARD, MANUFACTURING METHOD THEREOF, AND ELECTRIC DEVICE
TW200938048A (en) Method for manufacturing wire substrate
JP2009146926A (en) Multilayer wiring board and its manufacturing method
JP2008218540A (en) Manufacturing method for wiring board
JP2004319994A (en) Method for manufacturing printed wiring board
JP6098118B2 (en) Multilayer printed wiring board and manufacturing method thereof
JP2005159043A (en) Wiring board and its manufacturing method
TWI299971B (en) Process for manufacturing a wiring substrate
JP2011060969A (en) Manufacturing method for wiring substrate
JP2005191080A (en) Laminate plate and multilayer printed circuit board using it and these manufacturing method
JP4051923B2 (en) Manufacturing method of build-up multilayer printed wiring board
JPH1168291A (en) Printed wiring board and production thereof