JP2011039496A - 画像形成装置および画像形成装置の制御方法 - Google Patents

画像形成装置および画像形成装置の制御方法 Download PDF

Info

Publication number
JP2011039496A
JP2011039496A JP2010130942A JP2010130942A JP2011039496A JP 2011039496 A JP2011039496 A JP 2011039496A JP 2010130942 A JP2010130942 A JP 2010130942A JP 2010130942 A JP2010130942 A JP 2010130942A JP 2011039496 A JP2011039496 A JP 2011039496A
Authority
JP
Japan
Prior art keywords
group
light beam
optical path
liquid crystal
light beams
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010130942A
Other languages
English (en)
Other versions
JP5521799B2 (ja
Inventor
Ryoichi Kuboki
亮一 窪木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2010130942A priority Critical patent/JP5521799B2/ja
Priority to US12/831,501 priority patent/US8446443B2/en
Publication of JP2011039496A publication Critical patent/JP2011039496A/ja
Application granted granted Critical
Publication of JP5521799B2 publication Critical patent/JP5521799B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/435Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material
    • B41J2/447Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using arrays of radiation sources
    • B41J2/45Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using arrays of radiation sources using light-emitting diode [LED] or laser arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/435Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material
    • B41J2/47Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using the combination of scanning and modulation of light
    • B41J2/471Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using the combination of scanning and modulation of light using dot sequential main scanning by means of a light deflector, e.g. a rotating polygonal mirror
    • B41J2/473Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using the combination of scanning and modulation of light using dot sequential main scanning by means of a light deflector, e.g. a rotating polygonal mirror using multiple light beams, wavelengths or colours
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/12Scanning systems using multifaceted mirrors
    • G02B26/123Multibeam scanners, e.g. using multiple light sources or beam splitters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/22Apparatus for electrographic processes using a charge pattern involving the combination of more than one step according to groups G03G13/02 - G03G13/20
    • G03G15/32Apparatus for electrographic processes using a charge pattern involving the combination of more than one step according to groups G03G13/02 - G03G13/20 in which the charge pattern is formed dotwise, e.g. by a thermal head
    • G03G15/326Apparatus for electrographic processes using a charge pattern involving the combination of more than one step according to groups G03G13/02 - G03G13/20 in which the charge pattern is formed dotwise, e.g. by a thermal head by application of light, e.g. using a LED array
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/04Apparatus for electrographic processes using a charge pattern for exposing, i.e. imagewise exposure by optically projecting the original image on a photoconductive recording material
    • G03G15/043Apparatus for electrographic processes using a charge pattern for exposing, i.e. imagewise exposure by optically projecting the original image on a photoconductive recording material with means for controlling illumination or exposure
    • G03G15/0435Apparatus for electrographic processes using a charge pattern for exposing, i.e. imagewise exposure by optically projecting the original image on a photoconductive recording material with means for controlling illumination or exposure by introducing an optical element in the optical path, e.g. a filter

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Liquid Crystal (AREA)
  • Facsimile Scanning Arrangements (AREA)
  • Laser Beam Printer (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

【課題】液晶偏向素子を用いて行うビームピッチの切り替えを、より単純な駆動方法および構成によって実現する。
【解決手段】副走査方向に等間隔で並ぶ3以上の光ビームを、副走査方向に隣接する光ビームを略同数ずつ含む2つのグループに分ける。そして、2のグループのうち一方のグループの光ビームに対して液晶偏向素子による偏向を纏めて作用させる。このとき、一方のグループの光ビームと他方のグループの光ビームとが、被走査面上の照射位置が交互且つ等間隔に並ぶように、偏向を制御する。
【選択図】図3

Description

本発明は、マルチビーム発光源から発する光ビームを液晶偏向素子によって偏向し、ビームピッチを切り替え可能とした画像形成装置および画像形成装置の制御方法に関する。
従来から、いわゆる電子写真方式の画像形成装置の光書込み系に用いられる光走査装置において、光源部または光源部直後に電圧の印加にて駆動される液晶素子を配設し、この液晶素子により光ビームを駆動電圧に応じて偏向することで、被走査面上のビーム位置を調整する方法が既に知られている(特許文献1参照)。以下、このような、光ビームを偏向させる用途に用いる液晶素子を、「液晶偏向素子」と呼ぶ。
図22は、従来技術による、マルチビーム発光源から発する光ビームを液晶偏向素子により偏向する動作を概念的に示す。図22(a)および図22(b)は、それぞれ2ビーム走査および4ビーム走査の例を示す。マルチビーム発光源は、例えばレーザダイオード(LD)若しくはLDアレイにより構成される。
図22(a)は、マルチビーム発光源から出射される、ピッチが21.6μm(走査密度1200dpi(dot per inch)相当)で固定された2本のビームを、液晶偏向素子を通過させることで偏向し、被走査面上でのピッチを42.3μm(走査密度600dpi相当)〜10.6μm(走査密度2400dpi相当)に変更する例を示す。2本のビームを内側に向けて偏向させることでピッチを狭くし、外側に向けて偏向させることでピッチを広くすることができる。
図22(b)は、ピッチが走査密度600dpi相当で固定された4本のビームを、液晶偏向素子を通過させ、被走査面上でのピッチを21.2μm(走査密度1200dpi相当)に偏向する例を示す。この場合には、外側の2本のビームと内側の2本のビームとで偏向の角度を異ならせて、4本のビームを被走査面上に対して等間隔に照射させる。
このように、走査密度を変更する場合には、各ビームに作用する液晶偏向素子に対し、偏向量に応じた駆動電圧を印加することにより、所望の走査密度で被走査面を走査することが可能になる。
ここで、上述の図22を用いて説明した従来技術による方法では、2ビーム走査、4ビーム走査何れの場合でも、各ビームをそれぞれ独立に偏向するため、ビーム数Nに対し、N個の液晶偏向素子を配設する必要がある。あるいは、有効エリア毎に偏向を制御可能な単一の液晶偏向素子を用いる場合でも、N個の有効エリアを有する液晶偏向素子を配設する必要がある。
また、ビーム数Nのうち1ビームを固定として他のN−1本のビームを偏向させる場合も考えられる。しかしながら、この場合においても、必要とする液晶偏向素子あるいは有効エリアの数はN−1個であり、何れの方法でもビーム数と供に必要な液晶素子(有効エリア)の数が増えてしまう。
さらに、ビーム毎に偏向角度が異なるので、液晶偏向素子あるいは有効エリア毎に異なった駆動電圧を設定する必要があり、制御が複雑になってしまう。
本発明は、上記に鑑みてなされたもので、液晶偏向素子を用いて行うビームピッチの切り替えを、より単純な駆動方法および構成によって実現することを目的とする。
上述した課題を解決し、目的を達成するために、本発明は、副走査方向に所定ピッチで並ぶ複数の光ビームを、副走査方向に隣接する略同数の光ビームによる2のグループに分けたうち一方のグループの光ビームの光路を偏向させる光路偏向手段と、光路偏向手段で光路を偏向された一方のグループの光ビームと、光路偏向手段で光路を偏向されない、2のグループのうち他のグループの光ビームとで被走査面を主走査方向に走査させる走査手段と、光路偏向手段を制御して、一方のグループの光ビームの被走査面上の照射位置と、他のグループの被走査面上の照射位置とが交互且つ等間隔に並ぶように、一方のグループの光ビームの光路を偏向させる制御手段とを有することを特徴とする。
また、本発明は、光路偏向手段が、副走査方向に所定ピッチで並ぶ複数の光ビームを、副走査方向に隣接する略同数の光ビームによる2のグループに分けたうち一方のグループの光ビームの光路を偏向させる光路偏向ステップと、走査手段が、光路偏向ステップで光路を偏向された一方のグループの光ビームと、光路偏向手段で光路を偏向されない、2のグループのうち他のグループの光ビームとで被走査面を主走査方向に走査させる走査ステップと、制御手段が、光路偏向手段を制御して、一方のグループの光ビームの被走査面上の照射位置と、他のグループの被走査面上の照射位置とが交互且つ等間隔に並ぶように、一方のグループの光ビームの光路を偏向させる制御ステップとを有することを特徴とする。
本発明によれば、液晶偏向素子を用いて行うビームピッチの切り替えを、より単純な駆動方法および構成によって実現できるという効果を奏する。
図1は、各実施形態に適用可能な液晶偏向素子の一例の構成を示す略線図である。 図2は、液晶偏向素子が光ビームを偏向させる仕組みについて概略的に説明するための略線図である。 図3は、4本の光ビームを出射するマルチビーム発光源に本発明の第1の実施形態を適用させた例を示す略線図である。 図4は、8本の光ビームを出射するマルチビーム発光源に本発明の第1の実施形態を適用させた例を示す略線図である。 図5は、本発明の第1の実施形態による光ビームのピッチ切り替え処理を概念的に示す一例のフローチャートである。 図6は、光ビームを偏向させて走査密度を切り替えると副走査方向の主走査のライン間隔が均一にならない部分が生じてしまうことを説明するための略線図である。 図7は、4本の光ビームを出射するマルチビーム発光源に本発明の第2の実施形態を適用させた例を示す略線図である。 図8は、8本の光ビームを出射するマルチビーム発光源に本発明の第2の実施形態を適用させた例を示す略線図である。 図9は、本発明の第3の実施形態に適用可能な画像形成装置の一例の構成を示す略線図である。 図10は、搬送ベルト上に形成されたトナーのパッチ列の一例を示す略線図である。 図11は、画像形成装置における露光器を構成する光学ユニットの一例を示す略線図である。 図12は、本発明の第3の実施形態に適用可能な画像形成装置におけるレーザダイオードの駆動制御系の一例の構成を示すブロック図である。 図13は、画像データ制御部の一例の構成を示すブロック図である。 図14は、4個のLDから出射される光ビームを偏向させる液晶偏向素子の構成例を示す略線図である。 図15は、8個のLDから出射される光ビームを偏向させる液晶偏向素子の構成例を示す略線図である。 図16は、偏向の前後で画像データの順序を一致させるための画像データと光ビームのチャネルとの組み合わせの例を示す略線図である。 図17は、偏向の前後で画像データの順序を一致させるための画像データと光ビームのチャネルとの組み合わせの例を示す略線図である。 図18は、各解像度モードにおける各チャネルの光ビームに対する透過率の例を示す略線図である。 図19は、各解像度モードにおける各チャネルの光ビームに対する透過率の例を示す略線図である。 図20は、8ビーム構成に対応するパッチ列の例を示す略線図である。 図21は、本発明の第3の実施形態による光ビームのピッチ切り替え処理を示す一例のフローチャートである。 図22は、従来技術による、マルチビーム発光源から発する光ビームを液晶偏向素子により偏向する動作を概念的に示す略線図である。
以下に添付図面を参照して、本発明に係る光ビームのピッチ切り替え処理を行う画像形成装置の実施形態を詳細に説明する。本発明の各実施形態では、レーザダイオードなどの発光源から出射され、回転するポリゴンミラーで反射されて主走査方向に走査され、副走査方向に回転する被走査面(回転ドラム)に光書き込みを行うビーム光について、副走査方向に所定ピッチで並ぶ3以上の光ビームを、副走査方向に隣接する光ビームを略同数ずつ含む2のグループに分ける。そして、2のグループのうち一方のグループに含まれる複数の光ビームに対して纏めて光路偏向素子を作用させて他方のグループに向けて偏向させ、被走査面において、他方のグループの光ビームによるビーム列に対して一方のグループの光ビームによるビーム列を割り込ませる。このとき、一方のグループの光ビームと他方のグループの光ビームとが、被走査面上の照射位置が交互且つ等間隔に並ぶように、光ビームを偏向させる。これにより、光ビームのピッチの切り替えを行う。
<液晶偏向素子について>
本発明の各実施形態では、光路偏向素子として液晶偏向素子を用いる。先ず、本発明の各実施形態に共通して適用可能な液晶偏向素子について説明する。
本発明の各実施形態では、光ビームの光路を精度よく僅かに偏向させることを基礎としており、このための手段として液晶偏向素子を用いる。この液晶偏向素子は、ホモジニアス分子配列のネマティック液晶層を2枚のガラス基盤で挟んだ構造からなり、2枚のガラス基盤の対向する面には、それぞれ金属酸化物の透明電極が形成されている。一方の透明電極は、例えば接地電位とされる接地電極であり、他方の透明電極は、駆動電圧が印加される駆動電極である。
駆動電極に対して駆動電圧(例えば、数キロヘルツの矩形波)を印加すると、複屈折率(分子の長軸と短軸の屈折率差)を有するネマティック液晶分子は、電場に沿って傾く。すなわち、液晶分子の長軸の向きと平行な直線偏光を持った単色光にとって、液晶層は、電界分布に応じて局所的に異なった屈折率分布をもった媒質と等価になる。したがって、液晶層を通過した光の波面には、液晶層に対する印加電圧の面内分布に応じた空間的な波面変調あるいは位相変調が加わることになる。
電気光学特性の性状は、使用する液晶の弾性定数、誘電率異方性や電圧無印加時の液晶分子の初期配向角から決定される。小さな初期配向角(例えば5°以下)を有する液晶分子は、電気光学特性の低電圧領域で急峻な立下りが見られるが、電圧を増加するにつれて線形に近い応答を示し、その後一定値に飽和する特性を示す。一方、大きな初期配向角を有する液晶素子では上述の急峻な立下りは消失し、低電圧領域の曲線を二乗曲線で近似できる特性となる。
駆動電極の電極パターンとして、多数の細長い透明電極をストライプ状に配置し、これら透明電極の一本一本に所定の電圧を印加する構成が提案されている。この構成によれば、高速の応答、高い空間分解能および波面変調の自由度を実現できる特長を持っている。波面変調の自由度が高ければ、ビーム偏向やレンズの機能だけでなく、任意の複雑な波面変調を実現可能となる。
図1は、各実施形態に適用可能な液晶偏向素子70の一例の構成を示す。図1(a)は、液晶偏向素子70を正面すなわち光軸方向から見た図であり、図1(b)は、液晶偏向素子70の光軸方向の断面の例である。
図1(b)を参照し、一方のガラス基盤76Aに対して、駆動電極である透明電極75が形成され、透明電極75を覆うように配向膜77Aが積層される。透明電極75に対して端子71および72から駆動電圧が印加される。他方のガラス基盤76Bに対して、接地電極である一様な透明電極78が略全面に亘って形成され、透明電極78を覆うように配向膜77Bが積層される。配向膜77Aおよび77Bの間が液晶で満たされた液晶層とされる。
図1(a)を参照し、透明電極75は、ストライプ状の透明電極75、75、…として形成される。透明電極75、75、…は、この液晶偏向素子70の光ビーム照射領域に、露光技術の分解能(例えば略1μm)から決まる線幅と間隔とで形成される。透明電極75、75、…の光ビームの照射領域外において一方の端が抵抗部材73で接続され、抵抗部材73の端部に端子71が設けられる。透明電極75、75、…の他方の端も同様に、照射領域外において抵抗部材74で接続され、抵抗部材74において、端子71に対して反対側の端部に端子72が設けられる。
端子71および72に所定に駆動電圧を印加することで、液晶層の液晶分子が駆動電圧に応じて配向し、液晶偏向素子70に入射された光ビーム79が偏向されて出射される。
図2を用いて、液晶偏向素子70が光ビームを偏向させる仕組みについて、概略的に説明する。図2(a)は、上述した図1(b)に対応し、液晶偏向素子70の光軸方向の断面図の例を示す。端子71および端子72に対して電圧値の異なる駆動電圧E1およびE2をそれぞれ入力する。これにより、端子71および72の間に一定の電位差を生じさせ、透明電極75、75、…により、ΔE=E1−E2の電位差で、透明電極75、75、75、…の配列の方向に電位が傾斜する傾斜電位電極が構成される(図2(b)参照)。図2の例では、端子71に1V、端子72に1.5Vの駆動電圧が入力され、0.5Vの電位差が生じている。
この電位差の傾斜に伴い、図2(c)に例示されるように、液晶層の液晶分子の配向角が透明電極75、75、…の配列方向に向けて変化し、この配向角の変化に伴い、図2(d)に例示されるように液晶層の屈折率も変化する。液晶層の屈折率が変化するため、透明電極75、75、…の配列方向に直線偏光され液晶層に入射された光ビームは、図2(e)に例示されるように液晶層を通過する際に進行方向が曲げられ、偏向角θで偏向される。
このような液晶偏向素子70を、光ビームの光路に対して配置することで、光ビームの進行方向を、透明電極75、75、…の配列方向に対応する方向に偏向させることができる。また、偏向角θは、図2(b)〜図2(e)に示されるように、端子71および72にそれぞれ入力される駆動電圧E1およびE2の電位差に応じて変化する。したがって、駆動電圧E1およびE2の設定により、所定の範囲内で所望の偏向角θを得ることができる。
すなわち、束ねた細長い透明電極75、75、…の数(透明電極75、75、…がなす幅)は、その領域で必要となる最大のビーム偏向角度によって決定される。透明電極75、75、…の配列方向に伸びた傾斜電位電極の両端に、液晶の電気光学特性の線形領域から選んだ2種類の異なる駆動電圧を入力した場合、ブレーズ型の位相プロファイルが得られ、マイクロプリズムアレイと等価となる。傾斜電位電極に対する印加電圧制御によりブレーズ角を変化させることで、液晶層に垂直入射した光ビームの方向制御が可能となる。
<第1の実施形態>
次に、本発明の第1の実施形態によるマルチビームのピッチ切り替えの原理について説明する。本第1の実施形態では、先ず、副走査方向に等間隔で並ぶ3以上の光ビームからなるマルチビームを構成する複数の光ビームを、副走査方向に隣接する光ビームを略同数ずつ含む2つのグループに分ける。例えば、4本の光ビームであれば、2のグループはそれぞれ2本の光ビームを含む。また例えば5本の光ビームであれば、2のグループのうち一方のグループは2本の光ビームを含み、他方のグループは3本の光ビームを含む。そして、2のグループのうち一方のグループの光ビームに対して上述した液晶偏向素子70による偏向を纏めて作用させる。このとき、一方のグループの光ビームと他方のグループの光ビームとが、被走査面上の照射位置が交互且つ等間隔に並ぶように、偏向を制御する。
液晶偏向素子70による偏向を作用させる前の各光ビーム列は、被走査面において副走査方向に一定の間隔で並べられており、副走査方向に所定のピッチを有している。そのため、液晶偏向素子70に対して1の電位差ΔEを得るように1組の駆動電圧を入力し、元の複数の光ビームを2のグループに分けた一方のグループの各光ビームを同量だけ副走査方向に偏向させることにより、元のピッチに対して1/2のピッチを得ることができる。
なお、以下では、特に記載のない限り、液晶偏向素子70に入力される電位差ΔEを得るための駆動電圧E1およびE2を、適宜、1組の駆動電圧、または、単に駆動電圧と呼ぶ。
次に、本第1の実施形態によるマルチビームのピッチ切り替えについてより具体的に説明する。図3は、4本の光ビームを出射するマルチビーム発光源に本第1の実施形態を適用させた例を示す。ここでは、図3(a)に例示されるように、副走査方向に、走査密度600dpiに相当する42.3μmのピッチで出射される、チャネルch1〜チャネルch4にそれぞれ対応する4本の光ビーム801〜804により光ビーム列が形成されるものとする。
この光ビーム列を、それぞれ副走査方向に隣接する、光ビーム803および804からなる第1のグループと、光ビーム801および802からなる第2のグループとに分ける。そして、第1のグループの光ビーム803および804に対して単一の液晶偏向素子70を作用させる。すなわち、図3(b)に例示されるように、液晶偏向素子70に対して所定の駆動電圧を入力して、第1のグループの光ビーム803および804を、第2のグループの光ビーム801および802の方向に向けて偏向させる。
このとき、第2のグループの光ビーム801および802と、偏向後の第1のグループの光ビーム803および804とが、被走査面上の照射位置が交互且つ等間隔に並ぶように、液晶偏向素子70に入力する駆動電圧を決定する。例えば、第1のグループの光ビーム803が、第2のグループの光ビーム801および802の中間に照射されるように当該駆動電圧を決定する。第1のグループの光ビーム804は、液晶偏向素子70により光ビーム803と同じ量だけ偏向されるため、光ビーム801、光ビーム803 +、光ビーム802、光ビーム804 +の順に、偏向前の光ビーム列における間隔の1/2の間隔で等間隔に並んだ光ビーム列が形成される。図3(b)の例では、偏向後の各光ビームのピッチが、偏向前のピッチの1/2である、走査密度1200dpi相当の21.6μmとなっている。
なお、図3(b)および他の同様の図、ならびに、以下の説明において、偏向後の光ビームは、符号に「+」を付して示す。
ここで、図3(b)から分かるように、光ビームの順序が偏向前と後とで変わるため、偏向後の被走査面に光書き込みされる画像データの順番は、本来の順番とは異なったものとなってしまう。図3(b)の例では、偏向前はチャネルch1、ch2、ch3、ch4の順序であったものが、偏向後にはチャネルch1、ch3、ch2、ch4の順序となっている。そのため、被走査面に光書き込みする画像データの順序が偏向の前後で同一になるように、偏向後には画像データの各チャネルch1〜ch4に対する割り当てを変更する。
図4は、8本の光ビームを出射するマルチビーム発光源に本第1の実施形態を適用させた例を示す。ここでは、図4(a)に例示されるように、副走査方向に、走査密度600dpiに相当する42.3μmのピッチで出射される、チャネルch1〜チャネルch8にそれぞれ対応する8本の光ビーム811〜818により光ビーム列が形成されるものとする。
光ビームが8本の場合でも、図3を用いて説明した4本の光ビームの偏向の場合と同様である。すなわち、8本の光ビームからなる光ビーム列を、それぞれ副走査方向に隣接する、光ビーム815〜818からなる第1のグループと、光ビーム811〜814からなる第2のグループとに分ける。そして、第1のグループの光ビーム815〜818に対して単一の液晶偏向素子70を作用させる。すなわち、図4(b)に例示されるように、液晶偏向素子70に対して所定の駆動電圧を入力して、第1のグループの光ビーム815〜818を、第2のグループの光ビーム811〜814の方向に向けて偏向させる。
このとき、第2のグループの光ビーム811〜814と、偏向後の第1のグループの光ビーム815 +〜818 +とが、被走査面上の照射位置が交互且つ等間隔に並ぶように、液晶偏向素子70に入力する駆動電圧を決定する。例えば、第1のグループの光ビーム815が、第2のグループの光ビーム811および812の中間に照射されるように当該駆動電圧を決定する。第1のグループの他の光ビーム816〜818は、液晶偏向素子70により光ビーム815と同じ量だけ偏向されるため、偏向後の第1のグループの各光ビーム815 +〜818 +と、第2のグループの各光ビーム811〜814とが、偏向前の光ビーム列におけるピッチの1/2のピッチで等間隔に並んだ光ビーム列が形成される。
この場合においても、図4(b)から分かるように光ビームの順序が偏向前後で変化する。図4(b)の例では、偏向前はチャネルch1、ch2、ch3、ch4、ch5、ch6、ch7、ch8の順序であったものが、偏向後にはチャネルch1、ch5、ch2、ch6、ch3、ch7、ch4、ch8の順序となっている。そのため、被走査面に光書き込みされる画像データの順序が偏向の前後で同一になるように、偏向後には画像データの各チャネルch1〜ch8に対する割り当てを変更する。
図5は、本第1の実施形態による光ビームのピッチ切り替え処理を概念的に示す一例のフローチャートである。このフローチャートによる各処理は、例えば液晶偏向素子70が搭載される画像形成装置を制御する制御部により実行される。先ず、ステップS101で、光ビームの切り替えを行うか否かが判定される。例えば、指定された走査密度と、光ビームに対して液晶偏向素子70を駆動させないデフォルト状態での走査密度とを比較し、両者が異なる場合に、ビームピッチの切り替えを行うものと判定する。
若し、光ビームの切り替えを行わないと判定されたら、液晶偏向素子による光ビームの偏向は行わず(ステップS103)、処理がステップS104に移行され、光書き込み処理が開始される。すなわち、画像データに基づきレーザダイオードが駆動され、被走査面に対してレーザビーム光が照射される。
一方、ステップS101で、指定された走査密度と、光ビームのデフォルト状態での走査密度とが異なり、光ビームの切り替えを行うと判定されたら、処理はステップS102に移行される。ステップS102では、指定された走査密度に応じて、上述したようにして液晶偏向素子70により光ビームが偏向される。
例えば、指定された走査密度が光ビームのデフォルト状態での走査密度の2倍である場合に、上述したように、複数の光ビームを、副走査方向に隣接する略同数の光ビームからなる2のグループに分ける。そして、一方のグループの光ビームに対して液晶偏向素子70を作用させ、一方のグループの光ビームを、他方のグループの光ビームによるビーム列に向けて偏向させる。このとき、当該一方のグループの光ビームと他方のグループの光ビームとが、被走査面上の照射位置が交互且つ等間隔に並ぶように偏向を行い、偏向前のビーム列に対して走査密度が2倍のビーム列を得る。
ステップS102で光ビームが偏向されたら、処理はステップS104に移行され、偏向が行われた後の光ビーム列により、被走査面に対する光書き込み処理が行われる。
このように、本第1の実施形態によれば、複数の光ビームを副走査方向に隣接する光ビームによる2のグループに分け、一方のグループの光ビームに対して纏めて液晶偏向素子70による偏向を作用させてピッチ切り替えを行っているので、1組の駆動電圧で複数の光ビームのピッチを切り替えることができる。
なお、上述では、光ビームの数が4本または8本の例について説明したが、これはこの例に限定されない。すなわち、本第1の実施形態は、光ビームの数が4本以上であれば適用可能である。
ここで、本第1の実施形態において、液晶偏向素子70により光ビームを偏向させて走査密度を600dpiから1200dpiに切り替えると、副走査方向の主走査のライン間隔が均一にならない部分が生じてしまう。例えば、光ビームの偏向前は、図6(a)に例示されるように、副走査方向に対して等間隔で主走査がなされ、副走査方向の主走査のライン間隔が均一とされる。これに対し、液晶偏向素子70により例えばチャネルch3およびチャネルch4の光ビームを偏向させると、チャネルch3およびch4の光ビームがチャネルch1およびch2の光ビームの側に移動する。そのため、図6(b)に例示されるように、1回の主走査で走査される複数の光ビーム毎に、副走査方向に対して隙間が空くことになる。
副走査ピッチに合わせて被走査面(感光体ドラム)に対する主走査の線速を切り替える、または、ポリゴンミラーの回転速度を切り替えることで、副走査方向の主走査のライン間隔を均一とすることができる。例えば、走査密度を2倍(副走査ピッチを1/2)にするときは、ポリゴンミラーの回転速度を2倍にするか、若しくは、感光体ドラムに対する主走査の線速を1/2とする。これにより、副走査方向の主走査のライン間隔を均一とすることができる。
<第2の実施形態>
次に、本発明の第2の実施形態について説明する。上述した第1の実施形態では、液晶偏向素子による光ビームに対する偏向を1段階のみ行ったが、これはこの例に限定されない。本第2の実施形態では、液晶偏向素子による光ビームに対する偏向を、複数段階行う。これにより、光ビームに対して液晶偏向素子による偏向を行わないデフォルト状態の走査密度に対し、さらに高い走査密度を実現することができる。例えば、n個の液晶偏向素子を設け、n段階の偏向を行うことで、デフォルト状態の走査密度の2n倍の走査密度を得ることができる。この場合、駆動電圧は、最大でn種類あればよい。
図7は、4本の光ビームを出射するマルチビーム発光源に本第2の実施形態を適用させた例を示す。ここでは、図7(a)に例示されるように、副走査方向に走査密度600dpiに相当する42.3μmのピッチで出射される、チャネルch1〜チャネルch4にそれぞれ対応する4本の光ビーム801〜804により、被走査面上に光ビーム列が形成されるものとする。
本第2の実施形態においては、液晶偏向素子により一度偏向された光ビームを、他の液晶偏向素子によりさらに偏向させる処理を含む。先ず、図7(b)に例示されるように、液晶偏向素子701を用いて1段階目の偏向を行う。上述した第1の実施形態と同様にして、4本の光ビーム801〜804を、それぞれ副走査方向に隣接する、光ビーム803および804による第1のグループと、光ビーム801および802による第2のグループとに分ける。そして、図3(b)で説明したのと同様な処理により、第1のグループの光ビーム803および804に対して第1の液晶偏向素子701を作用させて偏向させ、図7(b)に例示されるように、走査密度がデフォルト状態の2倍のビーム列を得る。
次に、1段階目の偏向によるビーム列を、それぞれ副走査方向に隣接する光ビームからなる2のグループにさらに分ける。図7(b)の例では、光ビーム802および804 +を第3のグループとし、光ビーム801および803 +を第4のグループとする。
そして、液晶偏向素子702を用いて2段階目の偏向を行う。図7(c)に例示されるように、第3のグループの光ビーム802および804 +に対して第2の液晶偏向素子702を作用させて、第4のグループの光ビーム801および803 +と、偏向後の第3グループの光ビーム802 +および804 ++とが、被走査面上の照射位置が交互且つ等間隔に並ぶように、液晶偏向素子702に入力される駆動電圧を決定する。
例えば、第3のグループの各光ビームのうち第4のグループに近い光ビーム802が、第4のグループの光ビーム801および803 +の中間に照射されるように当該駆動電圧を決定する。第3のグループの他の光ビーム804 +は、光ビーム802と同じ量だけ偏向される。そのため、光ビーム801、光ビーム802 +、光ビーム803 +、光ビーム804 ++の順に、ピッチが1段階目の偏向直前の光ビーム列の1/2で等間隔に並んだ光ビーム列が形成される。図7(c)の例では、2段階目の偏向後の各光ビームのピッチが、デフォルト状態のピッチの1/4である、走査密度2400dpi相当の10.6μmとなっている。
この場合、図7(c)から分かるように、光ビームの順序が1段階目の直前と2段階目の偏向後とで一致するので、画像データの各チャネルch1〜ch4に対する割り当てを変更する必要は無い。
なお、図7(c)および他の同様の図、ならびに、以下の説明において、1段階の偏向を行った光ビームは、符号に「+」を付し、2段階の偏向を行った光ビームは、符号に「++」を付して示す。
図8は、8本の光ビームを出射するマルチビーム発光源に本第2の実施形態を適用させた例を示す。ここでは、図8(a)に例示されるように、副走査方向に走査密度600dpiに相当する42.3μmのピッチで出射される、チャネルch1〜チャネルch8にそれぞれ対応する8本の光ビーム811〜818により、被走査面上に光ビーム列が形成されるものとする。
光ビームが8本の場合でも、上述した光ビームが4本の場合の例と同様である。先ず、図8(b)に例示されるように、第1の液晶偏向素子701を用いて1段階目の偏向を行う。すなわち、8本の光ビーム811〜818を、それぞれ副走査方向に隣接する、光ビーム815〜818による第1のグループと、光ビーム811〜814による第2のグループに分ける。そして、図4(b)で説明したのと同様な処理により、第1のグループの光ビーム815〜818に対して第1の液晶偏向素子701を作用させて偏向させ、図8(b)に例示されるように、走査密度がデフォルト状態の2倍の、1段階目の偏向によるビーム列を得る。
次に、1段階目の偏向によるビーム列を、それぞれ副走査方向に隣接する光ビームからなる2つのグループにさらに分ける。図8(b)の例では、光ビーム813、817 +、814、818 +を第3のグループとし、光ビーム811、815 +、812、816 +を第4のグループとする。
そして、第2の液晶偏向素子702を用いて2段階目の偏向を行う。図8(c)に例示されるように、第3のグループの光ビーム813、814、817 +、818 +に対して第2の液晶偏向素子702を作用させて、第4のグループの光ビーム811、815 +、812、816 +と、偏向後の第3のグループの光ビーム813 +、817 ++、814 +、818 ++とが、被走査面の照射位置が交互且つ等間隔に並ぶように、液晶偏向素子702に入力される駆動電圧を決定する。
例えば、上述の4本のビームの場合と同様に、第3のグループの各光ビームのうち第4のグループに最も近い光ビーム813が、第4のグループの各光ビームのうち第3のグループに最も遠い1組の光ビーム811および815 +の中間に照射されるように当該駆動電圧を決定する。第3のグループの他の光ビーム817 +、814、818 +は、光ビーム813 +と同じ量だけ偏向される。そのため、光ビーム811、813 +、815 +、817 ++、812、814 +、818 ++、816 +の順に、ピッチが1段階目の光ビーム列の1/2、すなわち、デフォルト状態のピッチの1/4で等間隔に並んだ光ビーム列が形成される(図8(c)参照)。
この場合、図8(c)から分かるように、光ビームの順序がデフォルトの状態と2段階目の偏向後とで異なるので、画像データの各チャネルch1〜ch8に対する割り当てを変更する必要がある。
このように、本第2の実施形態によれば、複数の光ビームを副走査方向に隣接する光ビームによる2のグループに分け、一方のグループの光ビームに対して纏めて第1の液晶偏向素子701を作用させ、1段階目の偏向を行う。そして、1段階目の偏向を行った後の各光ビームを副走査方向に隣接する光ビームによる2のグループに分け、一方のグループの光ビームに対して纏めて第2の液晶偏向素子702をさらに作用させ、2段階目の偏向を行う。そのため、2の駆動電圧で、複数の光ビームのピッチをデフォルト状態のピッチの1/4に切り替えることができる。
なお、本第2の実施形態による光ビームのピッチ切り替え処理は、上述した第1の実施形態による図5のフローチャートによる処理を適用することができる。すなわち、指定された走査密度とデフォルト状態での走査密度とを比較し、ビームピッチの切り替えを行うか否かを判定する(ステップS101)。若し、両者が一致すると判定されたら、ビームピッチの切り替えを行わないとされ、処理をステップS103に移行させ、液晶偏向素子701および702による光ビームの偏向を行わずにステップS104で光書き込み処理を開始する。
一方、ステップS101で、指定された走査密度とデフォルト状態の走査密度とが異なると判定されると、処理はステップS102に移行される。ステップS102では、指定された走査密度に応じて、液晶偏向素子701、若しくは、液晶偏向素子701および液晶偏向素子702を駆動して光ビームを偏向させる。そして、ステップS104で、偏向後の光ビームによる光書き込みを行う。
また、上述では、光ビームの数が4本または8本の例について説明したが、これはこの例に限定されない。すなわち、上述の第1の実施形態と同様に、本第2の実施形態は、光ビームが4本以上であれば適用可能である。
さらに、本第2の実施形態においても、液晶偏向素子701および702により光ビームを偏向させて画素密度を600dpiから2400dpiに切り替えると、副走査方向の主走査のライン間隔が均一にならない部分が生じてしまう。従って、本第2の実施形態でも、副走査ピッチに合わせて被走査面(感光体ドラム)に対する主走査の線速、または、ポリゴンミラーの回転速度を切り替えて、副走査方向の主走査のライン間隔を均一にする。本第2の実施形態では、画素密度が4倍(副走査ピッチが1/4)になるので、ポリゴンミラーの回転速度を4倍にするか、若しくは、感光体ドラム線速を1/4とする。これにより、副走査方向の主走査のライン間隔を均一とすることができる。
<第3の実施形態>
次に、本発明の第3の実施形態について説明する。本第3の実施形態は、上述した第1または第2の実施形態を画像形成装置に適用した例である。図9は、本第3の実施形態に適用可能な画像形成装置20の一例の構成を示す。この画像形成装置20は、イエロー(Y)、マゼンタ(M)、シアン(C)およびブラック(K)の各色を用いてカラー画像の形成を行うことができる、タンデムタイプのカラー画像形成装置である。
画像形成装置20は、YMCK各色の画像を形成する画像形成部Aが、転写紙1を搬送する搬送ベルト2に沿って一列に配置されている。搬送ベルト2は、その一方が駆動回転する駆動ローラと他方が従動回転する従動ローラである搬送ローラ3、4によって架設されており、搬送ローラ3、4の回転により図示の矢印方向に回転駆動される。
搬送ベルト2の下部には、転写紙1が収納された給紙トレイ5が備えられている。給紙トレイ5に収納された転写紙1のうち最上位置にある転写紙は、画像形成時には給紙され、途中レジストセンサ14により画像の書込みを行う光学ユニットの動作とのタイミングが取られ、静電吸着によって搬送ベルト2上に吸着される。
吸着された転写紙1は、イエローの画像を形成するための第1の画像形成部に搬送され、ここでイエローの画像形成が行われる。第1の画像形成部は、感光体ドラム6Yとこの感光体ドラムの周囲に配置された帯電器7Y、露光器8、現像器9Y、感光体クリーナ10Yなどを構成要素として有する。感光体ドラム6Yの表面は、帯電器7Yで一様に帯電された後、露光器8によりイエローの画像に対応したレーザ光11Yで露光され、静電潜像が形成される。
なお、静電潜像は、主・副走査方式の光ビーム書き込みで形成され、露光器8からのビーム走査を主走査、主走査に直交する感光体ドラムの回転を副走査とすることでドラム感光面へ2次元像の光ビーム書込みが行われる。
感光体ドラム6Yの表面に形成された静電潜像は、現像器9Yで現像され、感光体ドラム6Y上にトナー像が形成される。このトナー像は、感光体ドラム6Yと搬送ベルト2上の転写紙1と接する位置(転写位置)で転写器12Yによって転写され、転写紙上にイエロー単色の画像を形成する。転写が終わった感光体ドラム6Yは、ドラム表面に残った不要なトナーを感光体クリーナ10Yによってクリーニングされ、次の画像形成に備える。
このように、第1の画像形成部でイエロー単色を転写された転写紙1は、搬送ベルト2によってマゼンタの画像形成を行うための第2の画像形成部に搬送される。ここでも、上述の第1の画像形成部と同様にマゼンタのトナー像が感光体ドラム6M上に形成され、転写紙1上に既に形成されているイエローの画像に対して重ねて転写される。転写紙1は、さらにシアンの画像形成を行うための第3の画像形成部、続いてブラックの画像形成を行うための第4の画像形成部に搬送され、上述のイエロー、マゼンタの場合と同様に形成されたシアン、ブラックのトナー像が、直前に形成された画像に対して重ねて転写される。YMCK各色の転写が完了すると、カラー画像が形成されることになる。
第4の画像形成部を通過してカラー画像が形成された転写紙1は、搬送ベルト2から剥離され、定着器13にて定着された後、排紙される。
反射型の検出センサ素子15および16が、搬送ベルト2の主走査方向の両端に対応して取り付け距離Lを以て設けられている。画像形成装置20は、転写紙1へのカラー画像の形成を行う前に、搬送ベルト2上に各色のトナーのパッチ列およびトナーマーク列を形成する。そして、形成したパッチ列を、検出センサ素子15および16により検出し、検出電圧値の変化に基づき画像の濃度制御を行う。また、形成したトナーマーク列を検出センサ素子15および16により検出し、検出電圧値の変化からトナーマーク列の位置を判定して、各色の位置合わせを行う。
なお、図示は省略するが、検出センサ素子15および16が設けられる位置に対して搬送ベルト2の進行方向の後部の所定位置に、パッチ列およびトナーマーク列を形成するトナー像をクリーニングするクリーナが設けられている。
図10は、上述の搬送ベルト2上に形成されたトナーのパッチ列17の一例を示す。なお、図10では、ブラックのパッチ列17のみが示されている。パッチ列17は、K、C、M、Yの各色で複数の階調により、搬送ベルト2上の、検出センサ素子15および16のうち一方(検出センサ素子15とする)に対応する位置にのみ形成される。
検出センサ素子15によりこれらのパッチ列を検出することによって、画像濃度を適切に制御することができる。この濃度の制御は、例えばレーザ光11の強度や現像器9のバイアス値を設定することで行う。濃度値の算出および補正の実行命令は、図示されないCPU(Central Processing Unit)により行われる。この濃度およびバイアス値の補正により、レーザ光11を射出するレーザダイオードの特性の非直線性や、現像バイアスと濃度との間の関係の非直線性の補正が行われる。上述のYMCK各色毎のトナーのパッチ列の形成、検出、濃度制御のための設定は、YMCK各色毎に時系列的に行われる。
図11は、図9に示した画像形成装置20における露光器8を構成する光学ユニットの一例を示す。なお、図11は、図9の構造を上方から見た図に相当する。LDユニットK31は、LD制御基板53が設けられ、このLD制御基板53に対してレーザダイオード(LD)が搭載される。同様に、LDユニットY32、LDユニットC42およびLDユニットM43中にそれぞれ設けたLD制御基板54、LD制御基板52およびLD制御基板55毎に、レーザダイオードが搭載される。これらLDユニット毎のレーザダイオードにより、各色の感光体ドラムの感光面を露光するために必要となるそれぞれの光ビームが出射される。
本実施形態では、1つのLDユニットは、例えばLDアレイなどにより複数のレーザダイオードを搭載し、複数の光ビームを同時に出射させることができるマルチビーム構成となっている。各LDユニットK31、LDユニットY32、LDユニットC42およびLDユニットM43それぞれに対して、各LDユニットから出射されるマルチビームのビームピッチを調整するための液晶偏向素子56、57、58および59を光路上に配置する。液晶偏向素子によるビームピッチの調整の詳細については、後述する。
LDユニットK31から出射された光ビームは、液晶偏向素子56およびシリンダレンズCYL_K33を通り、さらに反射ミラーK35によって反射されて、一定速度で回転されるポリゴンミラー37の下方面に入射する。同様に、LDユニットY32から出射された光ビームは、液晶偏向素子57およびシリンダレンズCYL_Y34を通り、さらに反射ミラーY36によって反射されてポリゴンミラー37の下方面に入射する。LDユニットK31およびLDユニットY32から出射されポリゴンミラー37に入射した光ビームは、それぞれ、ポリゴンミラー37の回転に連れて偏向され、fθレンズKC38およびfθレンズYM39を通り、第1ミラーK40および第1ミラーY41によって折り返され、それぞれ被走査面を走査(主走査)する。
また、LDユニットC42から出射された光ビームは、液晶偏向素子58およびシリンダレンズCYL_C44を通り、ポリゴンミラー37の上方面に入射する。同様に、LDユニットM43から出射された光ビームは、液晶偏向素子59およびシリンダレンズCYL_M45を通り、ポリゴンミラー37の上方面に入射する。LDユニットC42およびLDユニットM43から出射されポリゴンミラー37に入射した光ビームは、それぞれ、ポリゴンミラー37の回転に連れて偏向され、fθレンズKC38およびfθレンズYM39を通り、第1ミラーC46および第1ミラーM47によって折り返され、それぞれ被走査面を、KおよびY色の光ビームの走査方向に対して逆方向に走査(主走査)する。KおよびC色の光ビームによる走査方向と、YおよびM色の光ビームによる走査方向とを、それぞれ図11中に矢印で示す。
主走査方向の書き出し位置Cに対して走査方向で上流側にシリンダミラーCYM_KC48を設け、KおよびC色の光ビームがシリンダミラーCYM_KC48で反射された光路上に、センサKC50を設ける。同様に、主走査方向の書き出し位置Bに対して走査方向で上流側にシリンダミラーCYM_YM49を設け、YおよびM色の光ビームがシリンダミラーCYM_YM49で反射された光路上に、センサYM51を設ける。
fθレンズKC38およびfθレンズYM39を通った光ビームが、シリンダミラーCYM_KC48およびCYM_YM49によってそれぞれ反射集光されて、センサKC50およびセンサYM51に入射する。これらのセンサKC50およびYM51は、周期走査される光ビームを定位置で受光することで、主走査方向の同期を取るための同期基準信号を検出する同期検知センサとして働く。
また、この例では、LDユニットK31およびLDユニットC42からの光ビームに対して、共通のシリンダミラーCYM_KC48およびセンサKC50を使用している。LDユニットY32およびLDユニットM43についても同様に、共通のシリンダミラーCYM_YM49およびセンサYM51を使用している。このように、同じ同期検知センサに2色分の光ビームが入射することになる。そのため、各色の光ビームのポリゴンミラー37への入射角を異なるようにすることでそれぞれの光ビームが同期検知センサに入射するタイミングを変え、同期検知センサの出力が時系列的にパルス列として出力されるようにし、それぞれの光ビームを識別できるようにしている。
図12は、本第3の実施形態に適用可能な画像形成装置20におけるレーザダイオードの駆動制御系の一例の構成を示す。図12は、チャネルch1〜ch4の4本の光ビームを同時に出射することができる、4ビームのマルチビーム構成の例である。CPU(Central Processing Unit)112は、例えばこの駆動制御系が搭載される画像形成装置20の全体の動作を、ROM(Read Only Memory)112Aなどに記憶されたプログラムに従い制御する。
画像データ制御部110は、図示されない画像処理部から、4チャネル(4ライン)分の画像データが供給されると共に、画像転送クロックおよび主・副ゲート信号が供給される。主・副ゲート信号は、主走査および副走査に対するゲート信号である。
画像データ制御部110は、画像処理部から供給された4チャネル分の画像データを、図示されない内部のラインメモリに記憶する。画像データ制御部110は、ラインメモリから、ポリゴンミラー37の回転タイミングに合わせて4チャネル分の画像データをそれぞれ読み出し、パルス幅変調(PWM)部111A、111B、111Cおよび111Dに供給する。基準REFCLKは、画像データ制御部110の動作の基準として用いられるクロックである。
より具体的には、画像データ制御部110は、図11におけるセンサKC50またはYM51に対応する同期検知センサ114から同期検知信号DETPが供給されるタイミングを基準として、画像処理部から供給される画像転送クロックに同期してラインメモリから4チャネル分の画像データをそれぞれ読み出し、PWM部111A〜111Dに供給する。また、画像データ制御部110は、画像データの転送タイミングを画像処理部に対して通知する画像データ転送基準信号を生成し、画像処理部に供給する。
PWM部111A〜111Dは、画像データ制御部110から供給された画像データに基づきパルス幅変調を行う。画像データがパルス幅変調されたチャネルch1〜ch4の変調信号は、LD駆動ユニット100のLDD101A〜101Dにそれぞれ供給される。
LD駆動ユニット100は、図11のLDユニットK31、LDユニットY32、LDユニットC42またはLDユニットM43に対応する。LD駆動ユニット100は、レーザダイオードドライバ(LDD)101A、101B、101Cおよび101Dと、レーザダイオード(LD)102A、102B、102Cおよび102D、ならびに、フォトダイオード(PD)103を有するLDアレイ104とを有する。LDD101A〜101Dは、それぞれ、PWM部111A〜111Dから供給された変調信号に従いLD102A〜102Dを変調駆動する。LD102A〜102Dは、この変調駆動に応じて、それぞれ(光ビーム)レーザビームを出射する。PD103は、LD102A〜102Dから出射された光ビームを受光して、受光強度に応じた受光信号を出力する。LDD101A〜101Dは、PD103から出力された受光信号に基づき、LD102A〜102Dの変調駆動に対するフィードバック制御を行う。
なお、図12の例では、LDアレイ104を用いてマルチビームを得ているが、これはこの例に限定されず、それぞれ独立した4のレーザダイオードを用いてマルチビームを得るようにしてもよい。
図13は、画像データ制御部110の一例の構成を示す。画像データ制御部110は、PLL制御部120、分周器121、同期クロック生成部122およびタイミング制御部123を有すると共に、画像データのチャネル数分のFIFO部124A、124B、124Cおよび124Dを有する。
PLL(Phase Locked Loop)制御部120は、内部にVCO(Voltage Controlled Oscillator)を有し、図示されない画像処理部から供給される基準クロックREFCLKをVCOを用いて逓倍して発振クロックPLLCLKを生成する。生成された発振クロックPLLCLKは、分周器121および同期クロック生成部122に供給される。分周器121は、供給された発振クロックPLLCLKを1/Xに分周して分周クロックCLKAを生成する。分周クロックCLKAは、同期クロック生成部122に供給される。同期クロック生成部122には、さらに、同期検知信号DEPTも供給される。また、分周クロックCLKAは、タイミング制御部123、ならびに、FIFO部124A〜124Dにも供給される。
同期クロック生成部122は、発振クロックPLLCLKおよび分周クロックCLKAに基づき、LDアレイ104における各LD102A〜102Dによる光書き込みのタイミングを制御するための書き込みクロックWCLKa、WCLKb、WCLKcおよびWCLKdを生成する。生成された書き込みクロックWCLKa、WCLKb、WCLKcおよびWCLKdは、それぞれPWM部111A〜111Dに供給される。それと共に、書き込みクロックWCLKa、WCLKb、WCLKcおよびWCLKdは、それぞれFIFO部124a〜124Dにも供給される。
タイミング制御部123に対して、上述の分周クロックCLKAが供給されると共に、図示されない画像処理部から画像データと、主走査および副走査を制御するための主・副ゲート制御信号とが供給される。タイミング制御部123は、供給された画像データを、チャネルch1〜ch4の画像データWDATA#1、WDATA#2、WDATA#3およびWDATA#4に分離し、少なくとも4チャネル(4ライン)分の画像データが格納可能なラインメモリ(図示しない)に格納する。
また、タイミング制御部123は、分周クロックCLKAおよび主・副ゲート制御信号に基づき、各チャネルch1〜ch4の画像データWDATA#1〜WDATA#4をFIFO部124a〜124dそれぞれに書き込むタイミングを指示するライトイネーブル信号WE#1、WE#2、WE#3およびWE#4を生成する。それと共に、タイミング制御部123は、分周クロックCLKAおよび主・副ゲート制御信号に基づき、FIFO部124a〜124dから画像データWDATA#1〜WDATA#4をそれぞれ読み出すタイミングを指示するリードイネーブル信号RE#1、RE#2、RE#3およびRE#4を生成する。
タイミング制御部123は、画像データWDATA#1〜WDATA#4を、それぞれライトイネーブル信号WE#1〜WE#4が示すタイミングでFIFO部124a〜124dに書き込む。これら画像データWDATA#1〜WDATA#4は、リードイネーブル信号RE#1〜RE#4が示すタイミングで、書き込みクロックWCLKa〜WCLKdに同期してFIFO部124a〜124dから読み出され、書き込みデータData#1、Data#2、Data#3およびData#4としてPWM部111A〜111Dにそれぞれ供給される。
図14は、4個のLD102A〜102Dから出射される光ビームを偏向させる液晶偏向素子の構成例を示す。なお、図14において、上述した図11および図12と共通する部分には同一の符号を付し、詳細な説明を省略する。
本第3の実施形態では、上述の第2の実施形態で説明した2段階の偏向を行うため、LD駆動ユニット100とシリンダレンズ140との間に、第1の液晶偏向素子701および第2の液晶偏向素子702が配置される。シリンダレンズ140は、例えばLD駆動ユニット100が図11におけるLDユニットK31に対応する場合、シリンダレンズ33に対応する。
なお、図14において、液晶偏向素子701および液晶偏向素子702は、それぞれ光ビームの光軸方向から見た例を示している。また、液晶偏向素子701において斜線を付した部分は、透明電極75、75、…が形成される光ビーム照射領域150である。
同様に、液晶偏向素子702において斜線を付して示した部分は、透明電極75、75、…が形成される光ビーム照射領域152および153である。光ビーム照射領域152および153は、電気的に接続されると共に、特性が略同一とされる。一方、液晶偏向素子702において、非照射領域151は、例えば電極が形成されないガラス基盤のみからなる領域である。非照射領域151の透過率は、略100%であるものとする。
すなわち、液晶偏向素子701および702に対して所定の駆動電圧を入力した場合、光ビーム照射領域150、ならびに、光ビーム照射領域152および153に入射される光ビームが駆動電圧に応じて偏向され、非照射領域151に入射される光ビームは、略そのまま透過される。
LD駆動ユニット100の直後に液晶偏向素子701が配置され、その後に第2の液晶偏向素子702が配置される。図14の例では、1段階目の偏向を行う液晶偏向素子701は、それぞれLD102Cおよび101Dから出射された光ビームが光ビーム照射領域150に入射されるように構成される。
一方、2段階目の偏向を行う液晶偏向素子702は、LD102Dから出射され液晶偏向素子701を通過した光ビームが光ビーム照射領域153に入射され、LD102Cから出射され液晶偏向素子701を通過した光ビームが非照射領域151に入射されるように構成される。さらに、液晶偏向素子702は、LD102Bから出射された光ビームが光ビーム照射領域152に入射されるように構成される。
すなわち、LD102Dから出射された光ビームが、液晶偏向素子701の光ビーム照射領域150と、液晶偏向素子702の光ビーム照射領域153とを通過してシリンダレンズ140に入射される。LD102Cから出射された光ビームが、液晶偏向素子701の光ビーム照射領域150と、液晶偏向素子702の非照射領域151とを通過してシリンダレンズ140に入射される。LD102Bから出射された光ビームが、液晶偏向素子702の光ビーム照射領域152を通過してシリンダレンズ140に入射される。また、LD102Aから出射された光ビームは、直接的にシリンダレンズ140に入射される。シリンダレンズ140に入射された各光ビームは、図示されない反射ミラーに向けて射出される。
液晶駆動部130は、例えばCPU112から供給される液晶ON/OFF制御信号#1および液晶ON/OFF制御信号#2にそれぞれ従い、液晶駆動信号#1および液晶駆動信号#2を出力する。液晶偏向素子701702は、それぞれ液晶駆動信号#1および液晶駆動信号#2により駆動のON/OFFを制御される。液晶偏向素子701および702は、駆動がONとされ駆動電圧が入力されると、入射された光ビームを偏向し、駆動がOFFとされると駆動電圧が入力されず、入射された光ビームを偏向しない。
ここで、上述した第2の実施形態における図6および図7では、液晶偏向素子702に対して、液晶偏向素子701で偏向され、所定の位置を走査するように移動された状態の光ビームが入射されるように示した。実際には、偏向された光ビームが所定位置を走査するのはシリンダレンズ140を透過した先の被走査面上である。したがって、シリンダレンズ140の手前では、偏向による光ビームの光路の変化は僅かであり、図14に例示されるように、液晶偏向素子701で偏向された光ビームは、偏向前と略同一の光路を取るものと考えてよい。
なお、第1の実施形態のように、1段階の偏向しか行わない場合は、液晶偏向素子702を設けず、液晶駆動部130も、液晶駆動信号#1のみを出力する。
図15は、8個のLD102E〜102Lから出射される光ビームを偏向させる液晶偏向素子の構成例を示す。なお、図15において、上述した図14と共通する部分には同一の符号を付し、詳細な説明を省略する。この場合、LD駆動ユニット100’は、8のLDD101E、101F、101G、101H、101I、101J、101KおよびLDD101Lと、これらLDD101A〜101Lにそれぞれ対応するLD102E、102F、102G、102H、102I、102J、102Kおよび102Lを有する。
図15の例では、LD102Kおよび102Lから出射された光ビームが、それぞれ液晶偏向素子701の光ビーム照射領域150と、液晶偏向素子702の光ビーム照射領域153とを通過してシリンダレンズ140に入射される。LD102Iおよび102Jから出射された光ビームが、それぞれ液晶偏向素子701の光ビーム照射領域150と、液晶偏向素子702の非照射領域151とを通過してシリンダレンズ140に入射される。LD102Gおよび102Hから出射された光ビームが、それぞれ液晶偏向素子702の光ビーム照射領域152を通過してシリンダレンズ140に入射される。また、LD102EおよびLD102Fから出射された光ビームは、直接的にシリンダレンズ140に入射される。シリンダレンズ140に入射された各光ビームは、図示されない反射ミラーに向けて射出される。
<偏向時の画像データ制御について>
ここで、上述の第1および第2の実施形態で説明したように、例えば図14の4ビームの場合において、LD102A〜102Dから出射される光ビームを副走査方向に隣接する複数の光ビームからなる2のグループに分け、一方のグループの光ビームに対して液晶偏向素子を作用させて偏向させ、一方のグループの光ビームと他方のグループの光ビームとが、被走査面上で交互且つ等間隔に並ぶようにした場合、光ビームの副走査方向における順序が、偏向の前後で変化する。すなわち、画像データの順序がライン単位で入れ替わることになる。そのため、偏向の前後で画像データの順序を一致させるために、偏向の際に、画像データと光ビームのチャネルとの組み合わせを変更する必要がある。
図16は、偏向の前後で画像データの順序を一致させるための、4ビームの場合における、画像データと光ビームのチャネルとの組み合わせの例を示す。なお、図13におけるFIFO部124A〜124Dから読み出されるライン毎の画像データが変調されて、各LD102A〜102Dからチャネルch1〜ch4の光ビームとして出射される。したがって、ライン毎の画像データとFIFO部124A〜124Dとの組み合わせを変更することで、画像データと光ビームのチャネルとの組み合わせを変更できる。なお、図16では、FIFO部124A〜124DをそれぞれFIFO#1〜FIFO#4として示す。
液晶偏向素子701および702による偏向を行わないデフォルト状態の走査密度を600dpiとする。この場合、各画像データは、FIFO#1〜FIFO#4の順序に一致して、画像データWDATA#1、WDATA#2、WDATA#3、WDATA#4の順に並ぶ。したがって、タイミング制御部123は、ラインメモリから読み出した画像データWDATA#1〜WDATA#4と、ライトイネーブル信号WE#1〜WE#4、リードイネーブル信号RE#1〜RE#4とを、それぞれFIFO#1〜FIFO#4に供給する。
また、液晶偏向素子701および702を共に駆動し、1段階目および2段階目の偏向を行った場合、図7(c)を用いて説明したように、偏向の前後で画像データWDATA#1〜WDATA#4の順序は変わらない。したがって、タイミング制御部123は、ラインメモリから読み出した画像データWDATA#1〜WDATA#4、ライトイネーブル信号WE#1〜WE#4、ならびに、リードイネーブル信号RE#1〜RE#4を、上述の走査密度が600dpiの場合と同様に、それぞれFIFO#1〜FIFO#4に供給する。
これに対し、第1の液晶偏向素子701のみを駆動させて走査密度を1200dpiとする場合、図3(b)を用いて説明したように、偏向前はチャネルch1、ch2、ch3、ch4の順序であったものが、偏向後にはチャネルch1、ch3、ch2、ch4の順序となり、チャネルch2とチャネルch3とが偏向前後で入れ替わっている。
したがって、タイミング制御部123は、ラインメモリから読み出した画像データWDATA#3と、ライトイネーブル信号WE#3およびリードイネーブル信号RE#3とをFIFO#2に供給し、画像データWDATA#3と、ライトイネーブル信号WE#3およびリードイネーブル信号RE#3とをFIFO#2に供給する。画像データWDATA#1およびWDATA#4、ライトイネーブル信号WE#1およびWE#4、リードイネーブル信号RE#1およびRE#4は、偏向前と変わらない。
図17は、偏向の前後で画像データの順序を一致させるための、8ビームの場合における、画像データと光ビームのチャネルとの組み合わせの例を示す。図17において、例えば図15におけるLD102E〜102Lに対して画像データを供給するためのFIFOを、それぞれFIFO#1、FIFO#2、FIFO#3、FIFO#4、FIFO#5、FIFO#6、FIFO#7およびFIFO#8として示す。
液晶偏向素子701および702による偏向を行わないデフォルト状態の走査密度を600dpiとする。この場合、各画像データは、FIFO#1〜FIFO#8の順序に一致して、画像データWDATA#1〜WDATA#8の順に並ぶ。したがって、タイミング制御部123は、ラインメモリから読み出した画像データWDATA#1〜WDATA#8と、ライトイネーブル信号WE#1〜WE#8、リードイネーブル信号RE#1〜RE#8とを、それぞれFIFO#1〜FIFO#8に供給する。
液晶偏向素子701のみを駆動させて走査密度を1200dpiとする場合、図4(b)を用いて説明したように、偏向前はチャネルch1、ch2、ch3、ch4、ch5、ch6、ch7、ch8の順序であったものが、偏向後にはチャネルch1、ch5、ch2、ch6、ch3、ch7、ch4、ch8の順序となっている。
したがって、タイミング制御部123は、ラインメモリから読み出した画像データWDATA#3と、ライトイネーブル信号WE#3およびリードイネーブル信号RE#3とをFIFO#2に供給する。以下同様に、画像データWDATA#5と、ライトイネーブル信号WE#5およびリードイネーブル信号RE#5とをFIFO#3に供給する。画像データWDATA#7と、ライトイネーブル信号WE#7およびリードイネーブル信号RE#7とをFIFO#4に供給する。画像データWDATA#2と、ライトイネーブル信号WE#2およびリードイネーブル信号RE#2とをFIFO#5に供給する。画像データWDATA#4と、ライトイネーブル信号WE#4およびリードイネーブル信号RE#4とをFIFO#6に供給する。また、画像データWDATA#6と、ライトイネーブル信号WE#6およびリードイネーブル信号RE#6とをFIFO#7に供給する。画像データWDATA#1およびWDATA#8、ライトイネーブル信号WE#1およびWE#8、リードイネーブル信号RE#1およびRE#8は、偏向前と変わらない。
液晶偏向素子701および702を共に駆動し、1段階目および2段階目の偏向を行った場合、図8(c)に示したように、偏向前はチャネルch1、ch2、ch3、ch4、ch5、ch6、ch7、ch8の順序であったものが、偏向後にはチャネルch1、ch3、ch5、ch7、ch2、ch4、ch6、ch8の順序となっている。
したがって、タイミング制御部123は、ラインメモリから読み出した画像データWDATA#5と、ライトイネーブル信号WE#5およびリードイネーブル信号RE#5とをFIFO#2に供給する。以下同様に、画像データWDATA#2と、ライトイネーブル信号WE#2およびリードイネーブル信号RE#2とをFIFO#3に供給する。画像データWDATA#6と、ライトイネーブル信号WE#6およびリードイネーブル信号RE#6とをFIFO#4に供給する。画像データWDATA#3と、ライトイネーブル信号WE#3およびリードイネーブル信号RE#3とをFIFO#5に供給する。画像データWDATA#7と、ライトイネーブル信号WE#7およびリードイネーブル信号RE#7とをFIFO#6に供給する。また、画像データWDATA#4と、ライトイネーブル信号WE#4およびリードイネーブル信号RE#4とをFIFO#7に供給する。画像データWDATA#1およびWDATA#8、ライトイネーブル信号WE#1およびWE#8、リードイネーブル信号RE#1およびRE#8は、偏向前と変わらない。
例えば、上述した図16や図17のような、画像データと光ビームのチャネルとの、走査密度に応じた組み合わせを、予めテーブルとして用意しておく。このテーブルは、CPU112が動作するプログラムが記憶されるROM112Aに予め記憶しておいてもよいし、タイミング制御部123にROM(図示しない)を設け、このROMに予め記憶させておいてもよい。走査密度が指定された際に、ROMなどに記憶されたこのテーブルをCPU112またはタイミング制御部123が読み込んで参照し、タイミング制御部123内のラインメモリに格納された各ラインの画像データWDATAや、ライトイネーブル信号WE、リードイネーブル信号REを供給するFIFOを決定する。
<露光量の調整について>
上述した図14および図15から分かるように、液晶偏向素子を用いて光ビームを偏向させる場合、マルチビームを構成する光ビーム毎に通過する液晶偏向素子の数が異なる。液晶偏向素子を通過することで、光ビームの光量が低下する。また、液晶偏向素子の透過率自体も、液晶駆動時(偏向時)と非駆動時で異なる。
図18および図19は、各解像度モード(走査密度が600dpi、1200dpiおよび2400dpi)における各チャネルch1〜ch4の光ビームに対する透過率の例を示す。図18は、上述の図14に示す4ビーム構成の場合の例を示し、図19は、上述の図15に示す8ビーム構成の場合の例を示す。
なお、図18および図19において、透過率Tは、光ビームが液晶偏向素子を透過しない場合の透過率を示す。すなわち、透過率Tは、LD102A〜102Dの何れかから出射された光ビームが液晶偏向素子701および702を通過せずに被走査面に照射された場合の、光学系全体の透過率を示す。また、透過率Tonは、駆動時(偏向時)の液晶偏向素子701および702それぞれの透過率を示し、透過率Toffは、非駆動時の液晶偏向素子701および702それぞれの透過率を示す。
図18の4ビーム構成の場合について説明する。上述した図14の例では、LD102Aから出射された光ビームは、液晶偏向素子701および702を通過しないでシリンダレンズ140に入射される。したがって、LD102A(チャネルch1)から出射される光ビームに対する透過率は、解像度モードに関わらず、常に透過率Tとなる。
一方、LD102BおよびLD102Cから出射された光ビームは、1つの液晶偏向素子701を通過してシリンダレンズ140に入射される。さらに、LD102Dから出射された光ビームは、2つの液晶偏向素子701および702を通過してシリンダレンズ140に入射される。
解像度モードが600dpiの場合、液晶偏向素子701および702の何れも駆動されない(OFF)。したがって、LD102B(チャネルch2)およびLD102C(チャネルch3)から出射される光ビームに対する透過率は、透過率T×Toffとなる。また、LD102D(チャネルch4)から出射される光ビームに対する透過率は、透過率T×Toff×Toffとなる。
解像度モードが1200dpiの場合、液晶偏向素子701のみが駆動され(ON)、液晶偏向素子702は駆動されない(OFF)。したがって、チャネルch2の光ビームに対する透過率は、透過率T×Toff、チャネルch3の光ビームに対する透過率は、透過率T×Tonとなる。また、チャネルch4の光ビームに対する透過率は、透過率T×Ton×Toffとなる。
また、解像度モードが2400dpiの場合、液晶偏向素子701および702が共に駆動される(ON)。したがって、チャネルch2の光ビームに対する透過率は、透過率T×Ton、チャネルch3の光ビームに対する透過率は、透過率T×Tonとなる。また、チャネルch4の光ビームに対する透過率は、透過率T×Ton×Tonとなる。
このように、チャネルch1〜ch4それぞれの光ビームに対する透過率が、解像度モードに応じて異なることが分かる。
図19の8ビーム構成の場合について説明する。上述した図15の例では、LD102EおよびLD102Fから出射された光ビームは、液晶偏向素子701および702を通過しないでシリンダレンズ140に入射される。したがって、LD102E(チャネルch1)およびLD102F(チャネルch2)から出射される光ビームに対する透過率は、解像度モードに関わらず、常に透過率Tとなる。
LD102GおよびLD102Hから出射された光ビームは、1つの液晶偏向素子702を通過してシリンダレンズ140に入射される。LD102IおよびLD102Jから出射された光ビームは、1つの液晶偏向素子701を通過してシリンダレンズ140に入射される。さらに、LD102KおよびLD102Lから出射された光ビームは、2つの液晶偏向素子701および702を通過してシリンダレンズ140に入射される。
解像度モードが600dpiの場合、液晶偏向素子701および702の何れも駆動されない(OFF)。したがって、LD102G〜LD102J(チャネルch3〜ch6)から出射される光ビームに対する透過率は、透過率T×Toffとなる。また、LD102K(チャネルch7)およびLD102L(チャネルch8)から出射される光ビームに対する透過率は、透過率T×Toff×Toffとなる。
解像度モードが1200dpiの場合、液晶偏向素子701のみが駆動され(ON)、液晶偏向素子702は駆動されない(OFF)。したがって、チャネルch3およびチャネルch4の光ビームに対する透過率は、透過率T×Toffとなり、チャネルch5およびチャネルch6の光ビームに対する透過率は、透過率T×Tonとなる。また、チャネルch7およびチャネルch8の光ビームに対する透過率は、透過率T×Ton×Toffとなる。
また、解像度モードが2400dpiの場合、液晶偏向素子701および702が共に駆動される(ON)。したがって、チャネルch3〜チャネルch6の光ビームに対する透過率は、透過率T×Tonとなる。また、チャネルch7およびチャネルch8の光ビームに対する透過率は、透過率T×Ton×Tonとなる。
このように、チャネルch1〜ch8それぞれの光ビームに対する透過率が、解像度モードに応じて異なることが分かる。この8ビーム構成の場合、2チャネルを1組として、透過率が異なっている。より具体的には、チャネルch1およびch2、チャネルch3およびch4、チャネルch5およびチャネルch6、ならびに、チャネルch7およびch8をそれぞれ組として、組毎に透過率が異なっている。
このように、液晶偏向素子を用いて光ビームを偏向させて、光ビームのピッチの切り替えを行う場合、解像度モードに応じて各光ビームに対する透過率が変化し、それに伴い各光ビームの被走査面上での光量が変化する。そのため、例えば2の液晶偏向素子を用いて2段階までの偏向を行う例では、偏向を行わない場合、1段階目のみの偏向を行う場合、2段階目まで偏向を行う場合のそれぞれの場合について、解像度モード毎に各光ビームによる露光量を調整する必要がある。
各光ビームの露光量の調整は、図10を用いて説明したトナーのパッチ列を利用して行う。偏向時に透過率が異なるチャネルまたはチャネルの組み合わせ毎にトナーのパッチ列を形成し、各パッチ列に対して対応するチャネルの光ビームを照射し、パッチ列それぞれのトナーパターンの濃度が等しい所定の値となるように、露光量を調整する。
図20は、図15に例示した8ビーム構成に対応するパッチ列の例を示す。なお、図20において、図10と共通する部分には同一の符号を付し、詳細な説明を省略する。この場合、上述したように、2チャネルを1組として透過率が異なるため、チャネルch1およびch2によるパッチ列17A、チャネルch3およびch4によるパッチ列17B、チャネルch5およびch6によるパッチ列17C、ならびに、チャネルch7およびch8によるパッチ列17Dをそれぞれ形成する。そして、パッチ列17A〜17Dのそれぞれのトナーパターンの濃度が等しい所定の値となるように、LD102E〜LD102Lの光量などを調整し、露光量の調整を行う。
図21は、本第3の実施形態による光ビームのピッチ切り替え処理を示す一例のフローチャートである。このフローチャートにおける各処理は、例えばCPU112によりプログラムに従い実行される。先ず、このフローチャートによる処理に先んじて、解像度モードが指定される。ここでは、液晶偏向素子701および702を駆動しない600dpiの解像度モード、液晶偏向素子701のみを駆動する1200dpiの解像度モード、ならびに、液晶偏向素子701および702を駆動する2400dpiの解像度モードのうち1つを選択可能とする。
最初のステップS200で、CPU112は、現在指定されている解像度モードを判定する。若し、600dpiの解像度モードが指定されていると判定したら、CPU112は、処理をステップS201に移行させる。ステップS201で、CPU112は、液晶偏向素子701および702をそれぞれ非駆動(OFF)に設定する液晶ON/OFF制御信号#1および#2を、液晶駆動部130に供給する。そして、処理を後述するステップS206に移行させる。
また、CPU112は、ステップS200で、1200dpiの解像度モードが指定されていると判定したら、処理をステップS202に移行させる。ステップS202で、CPU112は、液晶偏向素子701を駆動(ON)させる液晶ON/OFF制御信号#1と、液晶偏向素子702を非駆動(OFF)に設定する液晶ON/OFF制御信号#2とを、液晶駆動部130に供給する。
CPU112は、次のステップS203で、図16または図17を用いて説明したようにして、各画像データWDATAと各チャネルとの組み合わせを変更する。例えば、CPU112は、ROM112Aに記憶された、画像データWDATAとチャネルとの解像度モード毎の対応関係を示すテーブルを参照して、画像データ制御部110内のタイミング制御部123に対して、ラインメモリに格納される各画像データWDATAの読み出し順を指定する。そして、処理を後述するステップS206に移行させる。
さらに、CPU112は、ステップS200で、2400dpiの解像度モードが指定されていると判定したら、処理をステップS204に移行させる。ステップS204で、CPU112は、液晶偏向素子701およびを駆動(ON)させる液晶ON/OFF制御信号#1と、液晶偏向素子702を駆動(ON)させる液晶ON/OFF制御信号#2とを、液晶駆動部130に供給する。次に、CPU112は、ステップS205で、図16または図17を用いて説明したようにして、各画像データWDATAと各チャネルとの組み合わせを変更し、処理をステップS206に移行させる。
ステップS206で、CPU112は、副走査方向の主走査のライン間隔を均一にするために、解像度モードに合わせて主走査の線速、若しくは、ポリゴンミラー37の回転速度を変更する。すなわち、600dpiの解像度モードでは、線速またはポリゴンミラー37の回転速度は変更しない。1200dpiの解像度モードでは、ポリゴンミラー37の回転速度を2倍にするか、若しくは、感光体ドラム線速を1/2とする。また、2400dpiの解像度モードでは、ポリゴンミラー37の回転速度を4倍にするか、若しくは、感光体ドラム線速を1/4とする。
次のステップS207で、CPU112は、各チャネルの光ビームによる露光量を調整する。すなわち、CPU112は、図20を用いて説明したような、偏向時に透過率が異なるチャネルまたはチャネルの組み合わせ毎にトナーのパッチ列を形成して、それぞれのトナーパターンの濃度が等しい所定の値となるように、各チャネルの露光量を調整する。これに限らず、予め図20のようなパッチ列を用いて各解像度モードについて露光量を調整した際のパラメータを、図示されない不揮発性メモリなどに記憶しておき、この記憶された値を用いて露光量の調整を行うようにもできる。
ステップS207で露光量の調整を行ったら、処理がステップS208に移行され、CPU112は、画像形成装置20の各部を制御して光書き込みを開始させる。
なお、図21のフローチャートでは、液晶偏向素子701および702を有し、2段階目までの偏向を行う例について示した。これに対し、1の液晶偏向素子70を有し、1段階目までの偏向を行う場合には、ステップS204およびステップS205の処理を省略することで対応できる。
<色ズレ補正について>
画像形成装置20のような、所謂タンデムタイプのカラー画像形成装置では、色毎に異なるLDユニットから出力される光ビームによって画像の書込みを行い、生成された画像を転写紙上に転写する際に、各色間の画素位置が、例えば用紙搬送方向である副走査方向にずれて形成されてしまい、いわゆる色ズレが発生してしまうことがある。この色ズレを解消するために、処理対象画像を実際に印刷する前に、特定の補正パターン像を例えば搬送ベルト2上に形成し、この補正パターン像を用いて各色間の色ズレの発生を抑制する補正処理を行うことが従来から知られている。
この色ズレ補正処理は、搬送ベルト2上に各色のトナーパターンを形成し、そのトナーパターンを正反射光で検知することで、色間での色ずれ量を算出し、その算出結果を基に、色ズレ補正制御を実行する。
液晶偏向素子を利用するビームピッチ切り替えによって走査密度すなわち副走査方向の画素密度を切り替える場合、液晶偏向素子を用いる従来のビームピッチ調整方法(図22参照)では、ピッチを切り替えるために全ての光ビームの位置を変更するため、色ズレの抑制効果が低かった。
これに対して、本第3の実施形態では、マルチビーム発光源からの光ビーム列全体を2分するうちの一部の光ビームに単一の液晶偏向素子を作用させることでピッチの切り替えを行っているため、偏向する光ビームの数は全光ビーム数の半分でよい。さらに、偏向する光ビームに対して1の液晶偏向素子を作用させていることから、各光ビームの偏向量が同一となる。したがって、ビームピッチ切り替えによる色ズレを効果的に抑制できる。
20 画像形成装置
31 LDユニットK
32 LDユニットY
33,34,44,45,140 シリンダレンズ
37 ポリゴンミラー
42 LDユニットC
43 LDユニットM
56,57,58,59 液晶偏向素子
70,701,702 液晶偏向素子
801〜804,811〜818 光ビーム
100 LD駆動ユニット
101A〜101L レーザダイオードドライバ
102A〜102L レーザダイオード
110 画像データ制御部
111A〜111D PWM部
112 CPU
112A ROM
123 タイミング制御部
124A〜124D FIFO部
130 液晶駆動部
特許第4197431号公報

Claims (7)

  1. 副走査方向に所定ピッチで並ぶ複数の光ビームを、前記副走査方向に隣接する略同数の光ビームによる2のグループに分けたうち一方のグループの光ビームの光路を偏向させる光路偏向手段と、
    前記光路偏向手段で光路を偏向された前記一方のグループの光ビームと、前記光路偏向手段で光路を偏向されない、前記2のグループのうち他のグループの光ビームとで被走査面を主走査方向に走査させる走査手段と、
    前記光路偏向手段を制御して、前記一方のグループの光ビームの前記被走査面上の照射位置と、前記他のグループの前記被走査面上の照射位置とが交互且つ等間隔に並ぶように、該一方のグループの光ビームの光路を偏向させる制御手段と
    を有する
    ことを特徴とする画像形成装置。
  2. 前記光路偏向手段は、
    前記一方のグループの全ての光ビームに対して単一の光路偏向素子を作用させて該一方のグループの光ビームの光路を偏向させる
    ことを特徴とする請求項1に記載の画像形成装置。
  3. 複数段の前記光路偏向手段を有し、
    前記複数段の光路偏向手段のうち2段目以降の前記光路偏向手段は、直前段の前記光路偏向手段で光路を偏向された前記一方のグループの光ビームと、該直前段の光路偏向手段で光路を偏向されない前記他のグループの光ビームとによる前記複数の光ビームを、前記副走査方向に隣接する略同数の光ビームによる2のグループに分けたうち一方のグループの光ビームの光路を偏向させる
    ことを特徴とする請求項1に記載の画像形成装置。
  4. 前記複数の光ビームをそれぞれ対応する画像データに従い発光され、
    前記制御手段は、
    前記画像データと前記複数の光ビームとの対応関係を、前記光路偏向手段で光路を偏向された一方のグループの光ビームと、前記光路偏向手段で光路を偏向されない他のグループの光ビームとによる複数の光ビームの副走査方向の順序に従い変更する
    ことを特徴とする請求項1に記載の画像形成装置。
  5. 前記光路偏向手段で光路を偏向された一方のグループの光ビームと、前記他のグループの光ビームとが前記被走査面に照射される光量の調整を行う光量調整手段をさらに有し、
    前記光量調整手段は、
    前記光路を偏向された一方のグループの光ビームが前記被走査面を走査することで形成したパターンと、前記他のグループの光ビームが前記被走査面を走査することで形成したパターンとをそれぞれ検出し、検出結果に従い前記光量の調整を行う
    ことを特徴とする請求項1に記載の画像形成装置。
  6. 前記他のグループの光ビームのピッチは該光ビームの光源のピッチであり、前記他のグループの光ビームと前記一方のグループの光ビームとのピッチは指定された走査密度に対応するピッチである
    ことを特徴とする請求項1に記載の画像形成装置。
  7. 光路偏向手段が、副走査方向に所定ピッチで並ぶ複数の光ビームを、前記副走査方向に隣接する略同数の光ビームによる2のグループに分けたうち一方のグループの光ビームの光路を偏向させる光路偏向ステップと、
    走査手段が、前記光路偏向ステップで光路を偏向された前記一方のグループの光ビームと、前記光路偏向手段で光路を偏向されない、前記2のグループのうち他のグループの光ビームとで被走査面を主走査方向に走査させる走査ステップと、
    制御手段が、前記光路偏向手段を制御して、前記一方のグループの光ビームの前記被走査面上の照射位置と、前記他のグループの前記被走査面上の照射位置とが交互且つ等間隔に並ぶように、該一方のグループの光ビームの光路を偏向させる制御ステップと
    を有する
    ことを特徴とする画像形成装置の制御方法。
JP2010130942A 2009-07-16 2010-06-08 画像形成装置 Expired - Fee Related JP5521799B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010130942A JP5521799B2 (ja) 2009-07-16 2010-06-08 画像形成装置
US12/831,501 US8446443B2 (en) 2009-07-16 2010-07-07 Image forming apparatus and method for controlling image forming method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009167982 2009-07-16
JP2009167982 2009-07-16
JP2010130942A JP5521799B2 (ja) 2009-07-16 2010-06-08 画像形成装置

Publications (2)

Publication Number Publication Date
JP2011039496A true JP2011039496A (ja) 2011-02-24
JP5521799B2 JP5521799B2 (ja) 2014-06-18

Family

ID=43464989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010130942A Expired - Fee Related JP5521799B2 (ja) 2009-07-16 2010-06-08 画像形成装置

Country Status (2)

Country Link
US (1) US8446443B2 (ja)
JP (1) JP5521799B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013035165A (ja) * 2011-08-04 2013-02-21 Ricoh Co Ltd 画像形成装置、画像形成制御方法及び画像形成制御プログラム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022187813A (ja) 2021-06-08 2022-12-20 株式会社リコー 画像形成装置、画像形成システム、及び、画像形成方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003084222A (ja) * 2001-03-07 2003-03-19 Ricoh Co Ltd マルチビーム走査装置
JP2003202511A (ja) * 2002-01-08 2003-07-18 Canon Inc 光走査装置及び光源装置及び画像形成装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04197431A (ja) 1990-11-29 1992-07-17 Sumitomo Electric Ind Ltd ダイヤモンドの合成方法
US7403316B2 (en) * 2004-01-14 2008-07-22 Ricoh Company, Ltd. Optical scanning device, image forming apparatus and liquid crystal device driving method
JP2007226130A (ja) * 2006-02-27 2007-09-06 Ricoh Co Ltd 光走査装置、画像形成装置、及び位相変調方法
US7674999B2 (en) * 2006-08-23 2010-03-09 Applied Materials, Inc. Fast axis beam profile shaping by collimation lenslets for high power laser diode based annealing system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003084222A (ja) * 2001-03-07 2003-03-19 Ricoh Co Ltd マルチビーム走査装置
JP2003202511A (ja) * 2002-01-08 2003-07-18 Canon Inc 光走査装置及び光源装置及び画像形成装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013035165A (ja) * 2011-08-04 2013-02-21 Ricoh Co Ltd 画像形成装置、画像形成制御方法及び画像形成制御プログラム

Also Published As

Publication number Publication date
JP5521799B2 (ja) 2014-06-18
US8446443B2 (en) 2013-05-21
US20110012981A1 (en) 2011-01-20

Similar Documents

Publication Publication Date Title
US7515170B2 (en) Optical scanner and image forming apparatus
US20170064108A1 (en) Light scanning apparatus and image forming apparatus
JP4364010B2 (ja) 画素クロック生成装置、光走査装置及び画像形成装置
US8314975B2 (en) Optical scanning device and image forming apparatus
JP5903894B2 (ja) 光走査装置及び画像形成装置
JP4808004B2 (ja) 光学装置、及び画像形成装置
US20070019269A1 (en) Optical scanning device and image forming apparatus
JP2008213243A (ja) 光走査装置、光走査方法、プログラム、記録媒体及び画像形成装置
JP5521799B2 (ja) 画像形成装置
EP2360508B1 (en) Multiple-source multiple-beam polarized laser scanning system
US8125504B2 (en) Image forming apparatus and control program of image forming apparatus
JP2007226129A (ja) 光走査装置及び画像形成装置
JP2004286888A (ja) 光走査装置、画像形成装置、および画像形成システム
JP2001311898A (ja) 光ビーム走査駆動装置及び画像形成装置
JP2009069270A (ja) 光走査装置及び画像形成装置
JP2007114518A (ja) 光走査装置、画像形成装置及び副走査位置補正方法
JP4919680B2 (ja) 光走査装置、画像形成装置、カラー画像形成装置
JP2007178761A (ja) 光走査装置及び画像形成装置
JP2004184527A (ja) 光走査装置及び画像形成装置
JP5397633B2 (ja) 光走査装置及び画像形成装置
JP2019077138A (ja) 画像形成装置、露光位置の補正方法、プログラム及びテストチャート形成媒体の製造方法
JP2007102107A (ja) 光走査装置・画像形成装置
JP4978958B2 (ja) 光走査装置および画像形成装置およびカラー画像形成装置
JP5108478B2 (ja) 光走査装置および画像形成装置
JP4662264B2 (ja) 光走査装置及び画像形成装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130813

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140324

LAPS Cancellation because of no payment of annual fees