JP2010534825A - 距離検知システムおよび方法 - Google Patents

距離検知システムおよび方法 Download PDF

Info

Publication number
JP2010534825A
JP2010534825A JP2010517196A JP2010517196A JP2010534825A JP 2010534825 A JP2010534825 A JP 2010534825A JP 2010517196 A JP2010517196 A JP 2010517196A JP 2010517196 A JP2010517196 A JP 2010517196A JP 2010534825 A JP2010534825 A JP 2010534825A
Authority
JP
Japan
Prior art keywords
sensor
source
distance
mount
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010517196A
Other languages
English (en)
Inventor
シャー,パンカイ
コノリッジ,クルト
アウゲンブラウン,ジョー
ドナルドソン,ニック
フィービッグ,チャールズ
リュー,ユーミン
カーン,ハサーン
ピンザーローン,ジョセフ
サリナス,レオ
タン,フア
テイラー,ラファエル
Original Assignee
ニート ロボティックス,インコーポレイティド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ニート ロボティックス,インコーポレイティド filed Critical ニート ロボティックス,インコーポレイティド
Publication of JP2010534825A publication Critical patent/JP2010534825A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • G01S7/4813Housing arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/46Indirect determination of position data
    • G01S17/48Active triangulation systems, i.e. using the transmission and reflection of electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • G01S2007/4975Means for monitoring or calibrating of sensor obstruction by, e.g. dirt- or ice-coating, e.g. by reflection measurement on front-screen
    • G01S2007/4977Means for monitoring or calibrating of sensor obstruction by, e.g. dirt- or ice-coating, e.g. by reflection measurement on front-screen including means to prevent or remove the obstruction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Measurement Of Optical Distance (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Electric Vacuum Cleaner (AREA)
  • Traffic Control Systems (AREA)

Abstract

レーザ距離センサを使用する距離測定システムおよび方法は、種々の応用において有用性を有している。本発明の一観点に従えば、レーザ距離センサは、短いベースラインで正確な距離測定値を獲得することができる。
【選択図】図4B

Description

本出願は、同時継続中の“MULTI−FUNCTION ROBOTIC DEVICE”と題された2006年9月1日出願の米国特許出願第11/515,022号の部分継続出願であり、且つ、同時継続中の“LOCALIZATION AND MAPPING SYSTEM AND METHOD FOR A ROBOTIC DEVICE”と題された2006年9月1日出願の米国特許出願第11/515、100号の部分継続出願であり、これらに開示された事項はその全てが参照によって本願に組み込まれる。
本発明の特徴は、一般に、距離測定の分野に関し、さらに特定すると、種々の応用において有用性を有するレーザ距離センサを使用した距離測定システムおよび方法に関する。
例えば掃除のような家庭および工業用の応用に対して使用される自動または自律装置(即ち、ロボット装置またはロボット)は、往々にして、ユーザあるいはオペレータからの入力が無い状態であるいは最小の入力で、周辺を進行するように動作しなければならない。家庭用および工業用の応用に対して費用効果を高めるためには、ロボットのナビゲーションを可能とする従来のセンサシステムは、単純すぎる傾向がある。この点に関して、初期のナビゲーションシステムは、従来装置を動作環境において非効率に飛んだり跳ねたりさせる。これらの装置は、反動的に障害物にぶつかって跳ね返り、既に処理された領域を繰り返して訪れ、貴重な消耗品およびバッテリ容量を無駄にする。これに代わるものとして、ある場合には、費用効果を維持するために冗長性を最小としあるいは排除する一方で、多くの機能を提供するために高機能センサシステムを実現することが望まれる。
とりわけ前述の同時継続米国特許出願は、ロボット装置のナビゲーションに典型的に関連するこれまでに未解決の問題に、実用的な解決方法を提供する。しかしながら、本願で開示された距離センサ装置および方法の実施形態は、ロボット装置のナビゲーションを越えて多くの応用に対して効果を有している。
例えば、最近、多くの自動車は、ドライバが車両を駐車させようとする場合にこれを補助する電子距離測定機構を装備している。幾つかの実施形態では、比較的基本的なレーダー、超音波、赤外(IR)またはその他のセンサを、例えば、後部バンパにまたはその近くに設け、車両がバックギアにある場合、そのセンサによって“ブラインドスポット”即ちドライバ席から観察するのが困難な場所に配置された物体までの距離を測定することができる。このようなシステムは典型的に、可聴式警報機構を採用しており、例えば、トーンまたは周波数における変化によってセンサから障害物までの距離を表示する。さらに高機能の自動化システムでは、例えば並列駐車中のような状況において、種々のセンサを使用して自動車が自身で自動的に、即ちドライバの介入無しで、駐車できることを追い求めている。
幾つかの自動車メーカーでは、“スマートクルーズコントロール”機能を開発しようとしており、この機能は、安全な車間距離を維持するために、例えば速度およびその他の運行状況の関数としてスロットルとブレーキシステムを制御することを試みる。自動車機器クラスター(オーディオエンターティメントセレクションから詳細なナビゲーション情報および地球位置システム(GPS)データまでの種々の情報を表示するための)への高解像度ディスプレイパネルの最近の導入に伴って、距離測定に依存する重要情報を、自動車およびその他の車両に組み込むことが望まれることがある。
距離測定機器は、全ての種類の走行車両に関連して、かつ種々の全ての環境の下で効果を有し得る。ロボットおよび上記の自動車の例に加えて、例えば、倉庫で作動するフォークリフトは、特にオペレータが多くの状況下で視野が制限されているために、正確な距離測定システムを設置することによって恩恵を受けることができる。さらに、種々の種類のセンサ技術を使用することによって、動かないまたは“固定された”応用において、即ち、固定されたセンサがその動作環境において動きを検出するように動作する場合に、有用である。例えば、幾つかの工業的安全システムでは“防火カーテン”を使用している。このカーテンは、人間または走行中の機器が危険な機械に近づいたとき、警報を発することができる。その他の事例では、センサまたはセンサアレイは回転ドア、安全性チェックポイント、料金所またはその他の監視すべき領域に固定することができる。なお、このようなシステムは、空間の特定の領域を通過する人々または車両を検出しカウントするために使用することができる。
典型的な距離測定機器は、多くの応用に対して実際に使用するには高価すぎ、あるいは、小さな形状ファクタを必要とする応用に対して適切であるには、大きすぎ且つ扱いにくい。車両における使用またはその他の応用に対して可能性が限られている、2個のポピュラーなレーザ距離センサ(LDS)装置、即ち、現在、SICK AGによって販売されているSICK LMS 200およびHokuyo Automatic Co,Ltd.によって現在販売されているHokuyo URG−04LXは両方とも、最も単純な家庭用および工業用のロボット掃除機よりも高い費用がかかり、従ってこのような使用に対して適していない。さらに、これらの装置は、走査動作を回転ミラーに依存しており、従って付随のレンズおよびその他の光学部品を必要とし、その結果として形状ファクタが大きくなり、かつ、制限された解像度および範囲はこれらの装置の殆どを、自動車またはその他のスケールの大きい応用に対して不適切とする傾向がある。
従って、コンパクトで堅固なパッケージにおいて正確な距離データを得ることが可能なレーザ距離検知システムおよび方法を提供することが望ましい。
本発明の実施形態は、種々の応用において有用性を有するレーザ距離センサを使用する距離測定システムおよび方法を提供することによって、従来技術の上記および種々のその他の欠点を克服している。本発明の一つの特徴によれば、レーザ距離センサは、短いベースライン(基線)によって正確な距離測定を確保することができる。
本発明の種々の実施形態の上記およびその他の特徴は、添付の図面と共に以下の詳細な記載を検証することによって、明白となるであろう。
距離センサの一実施形態を使用するロボットの上面図を簡略化して示す図面である。 距離センサの他の実施形態を使用するロボットの上面図を簡略化して示す図である。 距離センサのさらに他の実施形態を使用するロボットの上面図を簡略化して示す図である。 距離センサのさらに他の実施形態を使用するロボットの上面図を簡略化して示す図である。 距離センサのさらに他の実施形態を使用するロボットおよびこの距離センサの構成部品の上面図を簡略化して示す図である。 距離センサのさらに他の実施形態を使用するロボットおよびこの距離センサの構成部品の上面図を簡略化して示す図である。 三角測量に使用可能な基本の形状を簡略化して示す図である。 レーザ距離センサの性能特性に対する、焦点距離とベースラインの積の効果を示すグラフである。 ソースおよびセンサを搬送するマウントの一実施形態の構成部品を簡略化して示す斜視図である。 最大可能照射とパルス電力をパルス幅の関数としてプロットしたグラフである。 レーザ距離センサに使用される電子回路パッケージの一実施形態の構成部品を簡略化して示すブロック図である。 レーザ距離センサの回転形状を簡略化して示す図面である。
例えば、関連する同時継続の米国特許出願に開示されたような幾つかのロボット装置では、マッピングと局在化機能とを促進するためにレーザ距離計を使用することができる。種々の構成部品に関連する製造コストおよび所要電力が、消費者用あるいは工業用の使用に対して低コストで効率的なロボットプラットフォームを開発しかつ配置するための障害となっているが、上記の出願および本明細書は、様々な状況下でレーザ距離測定技術を実用化する解決策に取り組んでいる。この点に関して、レーザ距離センサ(LDS)技術は、その他の実施の中でも、室内および室外移動ロボットあるいは自動車用距離測定応用に対して適切な、ある利点を有している。
多くのセンサ技術を(種々の複雑性と共に)、距離データを得るために使用することができるが、LDSシステムは、データを簡単に利用できる形状で効率的に提供する。例えば、LDSは距離データを直接出力する。即ち、LDSは、LDSとその視野内のオブジェクトとの間の距離に関する情報を提供する。この直接測定機能は、例えば、視覚センサ技術とは区別することができる。視覚センサ技術では、獲得したイメージデータから距離を間接的に計算するものであり、従って、これらのシステムは距離を測定するために、通常、複雑な(そして通常はエラーを発生しやすい)画像データ処理およびその他の計算のための諸経費と同様、高度な画像形成ハードウエハを必要とする。超音波変換器またはIRセンサに依存するシステムのような他の種類の距離測定装置とは異なり、LDSは角度および距離における高い分解能と膨大な数のデータポイント(毎秒数100から数千のポイント測定)と、低い偽の陽性率および偽の陰性率を達成することができる。さらに、LDS走査データに関連した使用に対して、高効率マッピングおよび局在化アルゴリズムが存在する。
一般に周知のように、三角測量ベースのLDSシステムが獲得したデータの精度は、センサ装置の全体のサイズによって限定されることがある。特に、ベースライン、即ちレーザ源とセンサ、即ち位置検出装置(PSD)との間の距離は、精度および範囲(限界)の両方に影響を与えることがある。一般に、ある範囲内の距離において、LDSの精度および範囲はベースラインに直接比例して変化することがある。即ち、ベースラインが減少すれば、デバイスの精度および範囲が減少する。従って、より長いベースラインを有する長いデバイスと同様の効果を実現する、小型のLDSを設計し実現することは挑戦的である。
以下に述べるレーザ距離センサシステムおよび方法は、コンパクトな平面LDSを使用することができる。この平面LDSは、約6mの範囲において約1−3cmの精度、約10Hzまたはそれ以上の完全360度スキャンで約4kHzまたはそれ以上の高速収集、および、約0.25度またはそれ以下の角度誤差で完全360度スキャンに対して約1度またはそれ以下の角度分解能、と同等の能力を有する、より長くより高価なレーザスキャナに匹敵する。さらに、以下に述べるLDS実施形態は、以下の特性の幾つかあるいは全てを含んでいても良い。即ち、使用したレーザは適切な安全性基準に従って目に安全であり、システムおよび方法は標準的な室内照明条件および幾つかの室外条件の下で動作可能であり、短いベースラインがLDSセンサのサイズを小さくすることが可能で、さらに、このシステムは2Wまたはそれ以下の低電力消費要件を示し得る、と言う特性の幾つかあるいは全てを含むことができる。
ここに図示し記載した実施形態は、自律的位置決めおよびマッピングが可能な種々のロボット装置において有用性を有しているが、同様に、比較的短い距離測定から中程度の範囲の距離測定で有用である自動車または車両応用を非限定的に含む、その他の多くの応用において有用性を有している。他の実施例は、建設現場での応用(例えば、ビルまたは部屋の一群を測量しあるいは監視すること)、工業的な“防火幕”への応用、人々あるいは車両を計数するためのエリア監視への応用などを含む。
(実施形態)
図面を参照すると、図1は、距離センサの一実施形態を使用するロボットの上面図を簡略化して示す図であり、図2は距離センサの別の実施形態を使用するロボットの上面図を簡略化して示す図である。
図1および2において、ロボット100は、仕事を実行するように設計され且つ動作する、種々の自律的な自己推進デバイスとして具体化されている。ある種の典型的な家庭および工業的実施では、ロボット100は掃除、バキューミング、モップがけあるいはワックスがけの機能を実施するように構成されており、同様に、ロボット100のある実施形態では、草刈および熊手でかき集めるような中庭あるいは庭園の手入れを実行することができる。同時継続出願において図示され記載されているように、ロボット100は多くの異なる仕事の何れか実行するように選択的に構成されていても良い。当然のことながら、本開示および請求の範囲の主題は、ロボット100の何れかの特定の構成あるいは機能的特徴に限定されるものではない。以下に述べるように、ここに記載したLDSは、全ての種類の移動車両あるいは、上述したような種々の全ての固定された位置検出応用体に取付け、一体化し、あるいはこれらと共に使用することができる。
図1に示すように、LDSシステム260の一実施形態では、通常、ソース1090と、ある距離、即ちベースラインだけ離れたセンサ1010とを使用する。
センサ1010は、電荷結合素子(CCD)、線形CCD、相補型金属酸化物半導体(CMOS)センサ、位置敏感型検出器(PSD)あるいは、ソース1090からの出力と同じ電磁スペクトルの周波数バンド内で感度を有するその他のセンサ装置を含み、あるいはこれらによって実現しても良い。この技術のあるもの、あるいはその変形は、デジタルカメラおよびその他の家庭用電化製品において一般的となっており、さらに、種々の種類のデジタルカメラ検知技術をセンサ1010に組み込んでも良い。センサ1010として使用するのに適したデバイスの一例として、CMOSセンサ(例えば、Micron Technology Incによって現在販売されている、モデル番号MT9V032センサ)があるが、上述したように、その他の種類のセンサ技術を使用しても良い。
ソース1090は、例えばレーザ、あるいは、センサ1010によって検出し得るスペクトルバンド内で電磁エネルギーを生成するその他のソースを含み、あるいはこれらによって具現化しても良い。ある状況では、正確な距離測定は、高度に平行化された光によって恩恵を受けることができる。発光ダイオード(LED)は平行光学系と共に使用することができるが、例えば、レーザはさらに効率的、効果的、あるいはその両方であり得る。ここに記載するように、ソース1090はレーザとして言及されるが、その他のタイプの電磁源(現在入手可能なものあるいは将来開発されるものの両方)であっても同様の結果を達成するために適当である。ソース1090の出力は人間の目に可視であっても不可視であっても良い。適切なソース1090の一例は短波長レーザダイオード(例えば、Union Optronics Corporationによって現在販売されている、モデル番号SLD−650−P5−300−05)であるが、以下に述べるように、その他のデバイスであっても正確な距離測定が可能である。
照射される対象の色および反射率が、センサ1010によって受信される光の品質および特性に影響を与えることによって、ある方法を使用する距離測定に影響するので、異なる周波数バンドで可変出力を形成することができるソース1090を使用することが望ましい。ソース1090の出力を異なる周波数にシフトさせることによって、ある場合にはより正確な結果を生成することができる。さらに、あるいはそれに代わって、ある周波数を減衰させその他を透過させるように作動するフィルタを使用して、同様の効果を得ることも可能である。
さらに、ソース1090は、例えば、平行化(コリメート)しあるいは放射された光の特性に影響を与えるために、この技術において一般に周知である光学系のパッケージを含んでいても良い。このような光学パッケージは、1個またはそれ以上の固定焦点レンズ、能動的焦点制御装置、光コリメータ、ビームスプリッター、アパーチャ、ミラー、選択的バンドパスフィルタ、あるいはこれらおよびその他の部品の種々の組合せ、を使用することができる。以下により詳細に述べるように、センサ1010は、光学パッケージ1019と同様に種々の構成を含み、あるいはこの構成と共に実施することができる。
ある実施形態では、ソース1090からの出力を回転させている。この点において、ロボット100の専用モータは、ソース1090自身、あるいは光学パッケージの選択された要素の所望の回転を提供するために使用することができる。例えば、ソース1090はその全体を回転させても良く、あるいは光学系パッケージの特定の要素(例えばミラーまたはビームスプリッター)を回転させても良い。当業者であれば、従来のソースおよびその他の光学部品から回転ビームを形成することは、発明力を伴うことなく実行できることを理解するであろう。
作業中、ソース1090およびセンサ1010、またはそれらの個々の光学部品を、動作環境の360度完全視野を有するようにロボット100上に配置することができる。従って、ソース1090からのビームを、ロボット100が置かれている表面に対する法線軸の周りに360度パターンで、連続的または間欠的に回転させても良い。あるいは、ビームを、360度より小さい円弧にわたって前後にスィープさせるようにしても良い。さらに、あるいはその代わりに、ソース1090からの出力を一瞬、特定の方向に積極的に向けるようにしても良い。前述のそれぞれのオプションは、距離測定を助けるデータを獲得するために有用である。
ソース1090から投射された光は動作環境における対象によって反射され、ある測定角度でセンサ1010によって受信される。ソース1090とセンサ1010の相対的位置と空間方向が既知であってロボット100に関係する電子機器に記録されあるいは格納されている場合、LDSシステム260は、精密な距離計算を可能とすることによってロボット100の正確な位置決めを促進することができる。この点に関して、位置およびナビゲーションに関する処理は、例えば、センサ1010によって受信された信号の性質およびタイミングと同様に、ソース1090に対するセンサ1010の既知の位置関係を考慮して、ロボット100に組み込まれた電子機器によって実行することができる。例えば、センサ1010とソース1090間の既知の距離(即ち、ベースライン)、センサ1010によって検出された反射光の角度、ロボット100の速度、ソース1090によるビームの生成とセンサ1010におけるその後の受信との間の時間遅延、連続する測定間の不一致などの要因の組合せを使用して、三角測量法によって決定することができる。センサ1010に光が入射する角度は一般に、ロボット100の移動の関数として、およびソース1090によって生成されたビームの回転によって、時間の経過と共に変化する。
センサ1010の検知面上に入射する光の角度は種々の方法で決定することができる。例えば、この角度は、検知面上のアレイ中で最も明るいピクセルを識別することによって決定することができる。その代わりに、例えば、連続する列の中心または中心領域を識別し、且つ、最も明るいピクセルの点を考慮する等によって、最も明るいピクセルの連続列を使用することができる。サブピクセル処理、補間、正規化などの種々の画像処理技術を使用して、センサ1010の感知面上の明るい領域を決定し、その領域を使用して入射光の角度を確定することができる。
ある実施形態では、光が実質的に垂直な表面(例えば、壁)上に入射する場合、その光がこの表面上で実質的に垂直な線として検出されるように、ソース1090からの出力を平面として投射することができる。投射された線の異なる部分までの距離は、センサ1010によって決定された光の角度を測定することによって、決定することができる。例えば、ソース1090からの出力が光学部品260に対して垂直な表面上に投射される場合、センサ1010は垂直な直線を検出することができる。ソース1090からの出力が垂直でない表面上に投射される場合、センサ1010は、垂直から角度を為した線を検出することができる。この点に関して、当業者は、ソース1090が光の点または光の線を形成することを理解することができる。光の線がソース1090によって形成される場合、実際のそれぞれの距離は、ラインのそれぞれの部分が表面上に投影された位置に関して計算することができる。即ち、その個々がラインの投影されたラインの特定の部分に対応する、複数の距離測定が可能である。前述の方法で、三次元深度マップを動作環境の360度走査に対して作成することができる。
LDSシステム260の部品の配置を決定すると、対象までの距離を検出するために種々の方法を使用することができる。例えば、“飛行時間(time to flight)”および三角測量計算は、通常、部品の相対位置、角度方向、速度および多重測定に基づいて、計算における有用性がある。センサ1010上に入射する反射電磁エネルギーの大きさの測定に別の方法を使用することもできる。この点に関して、ソース1090からの出力がレーザでありまたはその他の高度にコリメートされた光である場合、照射対象の材料、色および反射特性は、対象から反射されセンサ1010によって検出された光の強度に影響を与える。従って、この方法で獲得された距離測定は、照射される対象の組成に基づくこのセンシング方法の限界によって、非常に正確でありまたは非常に不正確となる。
この欠点に対向するための一つの方策は、例えばレーザ(或いは他のコリメート光ソース)とLED(或いは他の拡散ソース)のような、異なる種類の独立したソースで対象を照明することである。或いは、ソース1090を周波数が変化するレーザ光を発生するように具現化しても良い。異なる種類の反射光の測定は、ロボット100に関係する電子回路が、帰還した平行光において検出された変動の大きさを説明することを可能とする。前述の方法において異なる周波数を用いることで、例えば、エラー修正、正規化、或いは検出された平行光の振幅(および振幅変動)の評価において有用なその他の計算を容易にすることができる。
上記のようにして計算された距離測定値の正確性は、距離測定値を得るための規則性および周波数によって大きく影響されることがある。従って、一実施形態では、ソース1090は恒久的に動作して連続ビームを生成し、センサ1010は周期的な間隔で受信光を瞬時に読み取り、ある場合には、連続する測定間の間隔が短くなれば成る程、測定がより正確になる。別の方法として、充分な処理電力が提供されている場合、ロボット100がその方向を動的に変化させた場合にリアルタイムでその信号変化をモニタすることができるように、センサ1010を連続して動作させることもできる。別の方法として、ソース1090が断続的、即ちパルス出力を提供しても良く、或いは、先の実施形態のようにセンサ1010は連続して動作するが、しかし距離測定はソース1090がパルスを出力している時にのみ入手するようにしても良い。さらに別の方法として、ソース1090によってパルスが投射されている場合にのみセンサ1010が照射を検出する様に、センサ1010をパルスソース1090と同期させても良い。このような実施形態において、種々の同期装置の何れかを使用して、ソース1090とセンサ1010の間欠動作の時間を決定するようにしても良い。例えば、マイクロプロセッサまたはマイクロコントローラによって、ソース1090とセンサ1010に同期動作のための適正な駆動信号を与えるようにしても良く、さらに、追加的にあるいは選択的に、光学エンコーダ或いはその他の電気機械式同期装置を使用しても良い。
上述した様に、センサ1010を光学パッケージと連携して使用することができる。ある場合には、この光学パッケージが、ソース1090からの出力と実質的に同じ周波数で動作する狭帯域光学フィルタを含むことが望ましく、この実施形態において、センサ1010によって検出可能な最も明るい光は、通常、ソース1090によって投射される光となるであろう。当然のことながら、このようなフィルタ戦略はある応用に対しては望ましくないかも知れない。
ソース1090とセンサ1010(および付随する全ての光学パッケージ)の構成部品の実装および構造的配置が多くの変形を受け入れる余地があることを、当業者は当然に理解することであろう。例えば、標準的なレンズを使用する1個またはそれ以上のカメラをセンサ1010において使用することが可能であり、180度の“魚眼”レンズが光学パッケージにおいて使用された場合、2個のセンサによって全360度領域をカバーすることができる。ソース1090からのビームを回転させるための光学パッケージを使用するよりもむしろ、ロボット100の外部の回転プラットフォーム上で固定ソースを使用することができ、センサ1010を、図2に示すように、このような回転プラットフォーム上に同様に取付けることもできる。
図2の実施形態において、LDS270は回転プラットフォームまたはブームを含み、その上にセンサ1010とソース1090をマウントするようにしても良い。動作中、例えば、回転軸の周りにブームが回転することにより出力の回転がもたらされるように、ソース1090をブームの縦軸(長手方向の軸)に対して固定しても良い。内部の回転ミラー或いはその他の回転機構の必要性を最小とし或いは取り除くため、このような構成によって、ソース1090とセンサ1010(および全ての付随する光学パッケージ)を単純化することができる。図2に示す様に、ソース1090およびセンサ1010をブームの回転軸の対向する側に配置することが望ましい。
図3Aおよび3Bは、距離センサの他の実施形態の上面図を示す単純化した図面である。図示するように、LDS270のソース1090とセンサ1010の両者はブームの回転軸に対して同じ側に位置していても良い。近くの対象を検出するために使用される近位ミラーを、例えば、センサ1010に比較的接近して配置しても良く、反対に、遠い対象を検出するために使用される遠位ミラーを、例えば、センサ1010から比較的離れて配置するようにしても良い。図示の実施形態において、近位ミラーと遠位ミラーを異なる高さに配置して(例えば、図3Aに示す回転軸に沿って)、センサ1090における検出面のそれぞれの部分が各対応するミラーからの光を検出するようにしても良い。
当然のことながら、近位および遠位ミラーに対する視野の相違を、長距離および短距離の検出様式の両方を容易にするために使用することができる。特定の対象に対してさらに適切な視野を有するミラーからの光を距離計算に使用しても良い。例えば、近位ミラーを通して見たレーザドットの位置を、近くの対象までの距離を決定するために使用しても良く、一方、遠位ミラーを通して見たレーザドットの位置を、遠くの対象までの距離を決定するために使用しても良い。遠い距離における検出精度は、それぞれのミラーに関連する視野、ミラーの平行化特性およびその他の要因に基づいて、近位ミラーを通した場合よりも遠位ミラーを通した場合の方が大きくなり得る。追加的或いは代替的に、例えば、両方のミラーが共に対象(例えば、図3Bに示す様にミラーの視野がオーバーラップする位置にある対象)を検出する場合、両方のミラーからの測定を、例えば平均を計算するために、あるいは一方の測定を他方に対してクロスチェックするために使用することができる。
例えば上述のLDSシステムを実装したロボット100の実施形態は、全動作環境を完全に且つシステマティックにカバーする点で特に効果がある。この点に関して、ロボット100は、LDSシステム260または270によって獲得される距離測定値に関係したデータに少なくとも部分的に依存する適切な電子回路によって、案内されあるいは影響を受けることができる。同時位置特定およびマッピング(SLAM)技術の各種のバージョンがこのような応用において有用であり、さらに、本開示および請求する主題は、獲得した距離データに対して実行される全ての特定のデータ処理操作によって、限定されることを意図するものではない。
図4Aおよび4Bは、他の実施形態の距離センサと距離センサ部品を使用するロボットの上面図をそれぞれ示す簡略化された図面である。この実施形態において、図2に示すLDS270は小さなフォームファクタに修正されており、ロボット100は一般に、特に図2に示すLDSシステム270の実施形態よりもかなり短いベースラインを有するLDSシステム290を備えている。
一実施形態では、LDSシステム290は一般に、マウント291に固定されあるいは取付けられたソース1090とセンサ1010を備えている。マウント291は、ハウジング292と共に回転軸の周りを回転することが可能である。この点に関して、マウント291は、直接あるいは適切なギア機構を介して回転を提供する適切なモータ(例えば、ステップモータ、ブラシモータ、直流(DC)モータ或いはその他の電子モータ)に接続されていても良く、或いはその代わりに、マウント291をロボット100と共同する適正なギア機構に接続し、例えば、ロボット100上のホイール或いはトラックの回転の関数として、ロボット100の動きに応答してマウント291の回転が形成されるようにしても良い。LDSシステム290はこのようなモータを駆動するための電力を、例えばロボット100内に配置された外部電源から受信するようにしても良いし、或いはその代わりに、LDSシステム290は、例えば再充電可能なバッテリのような内部電源を備え、或いは組み込むことが可能である。
ある状況では、マウント291を、毎秒10回転の速度で全360度回転させることが望ましい。付加的に或いはその代わりに、マウント291を360度より小さく回転させ、既定の或いは動的に調整された円弧を時計周りおよび反時計回りの両方でスイープさせても良い。マウント291に対してこのような回転を提供するのに適した、種々の種類のモータおよび回転アッセンブリがこの分野において広く知られている。ある実施形態では、マウント291は任意数の360度単方向回転を通して回転可能であり、これは、例えば、誘導電源とデータ結合またはスリップリングを使用して遂行することができる。
ハウジングは図4Aおよび4Bに示す様に平面図で円形である必要は無いが、円形の実施形態はマウント291の与えられた回転を容易に且つ効率的に実現することができる。ハウジング292は、ロボット100の表面に取り付けられていても良く、さらに、ソース1090とセンサ1010がこの表面から充分に遠く突出して、例えば、ソース1090によって放射されセンサ1010によって受信された光が遮断されず、遮蔽されず、或いはとにかくロボット100の構成部品によって減衰されないように、この表面から突出していても良い。ハウジング292は、ソース1090とセンサ1010の性能が粒子状物質あるいはその他の汚染物質によって劣化される可能性を最小とするために、実質的に透明なウインドウ或いは保護カバーを備えていても良い。このようなウインドウまたは保護カバーは、ソース1090とセンサ1010の動作周波数の光が、実質的に減衰することなく、即ち、センサ1010とソース1090の性能を有意に減少させること無く通過することを可能とする、適切な光学特性を有する(例えば、プラスティック、アクリル或いはサファイアのような)材料で形成することができる。このような構造に使用される材料は、使用した特定のセンシング技術に基づいて選択することができる。当然ながら、このような実質的に透明なウインドウは、ソース1090とセンサ1010が360度走査による距離測定値を獲得できるように、ハウジング292の構造の中に組み込まれ、ある実施形態では全360度に広げられても良い。
LDSシステム290は付加的に、内部あるいは“オンボード”計算機能を提供するプロセッサ299を備えていても良い。プロセッサ299は、例えば、シングル或いは多重コアの、マイクロプロセッサ、マイクロコントローラ、プログラマブルロジックコントローラ、特定用途向け集積回路(ASIC)、フィールドプログラマグルゲートアレイ(FPGA)、およびその他の種類のデータ処理エンジンのような、種々の種類の計算機ハードウエアによって実現されあるいはこれらを備えていても良い。
ある実施形態では、プロセッサ299は、ソース1090とセンサ1010の機能をサポートし、且つ、付加的な処理と距離計算のために距離測定データを外部デバイスまたはプロセッサ(例えば、ロボット100上に配置されているような)に提供するように設計され動作する。別の方法として、プロセッサ299は、必要な全て或いは所望の距離計算を実行し、その結果を外部デバイスまたはプロセッサに提供し得るように、充分に高機能化されていても良い。この点に関して、プロセッサ299は、無線でまたはデータ線を介した何れかで付加的な処理リソース(例えば、LDSシステム290に対して外的な)とデータ通信を行うようにしても良い。無線での実施形態では、プロセッサ229は、例えば、ブルーツース(Bluetooth)(登録商標)標準或いはIEEE802.11標準を使用して通信することができるが、その他の標準および通信プロトコルも同様に使用することができる。
当然、種々の必要性或いは所望の動作を促進するために、LDSシステム290は付加的な構成部品を含んでいても良い。例えば、図9を参照して以下に述べるように、LDSシステム290は、例えば、光学エンコーダから受信したデータに応答してソース1090およびセンサ1010の動作を制御し、或いは影響を与えるために、メモリおよび適当な駆動電子回路を含んでいても良い。
以下でさらに詳細に述べるように、LDSシステム290は、創造的なレーザポイントセンサモジュールを表していても良い。このモジュールは、レーザポイントビームを投射するソース1090と、短いベースラインによって分離されたラインセンサを備えるセンサ1010とを使用して、三角測量法原理で動作する。幾つかの実施形態では、LDSシステム290は、ソース1090、センサ1010、全ての付随する光学部品および小型で堅固なパッケージ中のプロセッサ299を組み込んでいる。この点に関して、LDSシステム290は、現在入手可能なIR距離センサよりも僅かに大きいが、しかし、精度および速度と言った特性において、実質的に優れた性能を提供することができる。
上述したように、LDSシステム290は外部のデバイス、処理リソースあるいはその他の計算システムとデータ通信することができる。このようなデータ通信は、例えばブルーツースまたはIEEE802.11のような無線RFプロトコルを介して、或いはその他の多くの異なるデータ通信方式を介していても良い。例として、電源ライン上の搬送電流を介して、或いは、例えば、スリップリングまたはその他の機構を介して提供される光或いはその他のデータラインを介して、データ通信を達成することができる。別の方法として、例えば、マウント291の回転を利用して、データを誘導的に提供することができる。同様に、LDSシステム290の種々の構成部品のための電力を、誘導的に或いはスリップリングを通して供給することができる。
この点において、当然ながら、マウント291はその回転に対して限定されているものではない。例えば、スリップリングまたは誘導結合を使用することによって、マウント291は特定の方向において任意数の回転を介して回転可能とされていることもある。
データ通信に関して、当然ながら、LDSシステム290は、種々の全ての外部システムに加工されていないデータ或いは距離測定結果を提供することができる。ある実施形態では、このようなデータは、(例えば、図1、2および4Aに示された)ロボット100のナビゲーションシステム、或いは、幾つかのその他の種類の自律走行車に供給されても良い。別の方法として、(例えば、スポーツ或いは娯楽会場、裁判所、空港、料金所等で使用されている)“人数計数”システム、(例えば、工業環境或いはその他の商業的環境において使用されている)“防火膜”近接警報システム、住居或いは業務用アラームシステム、およびその他の種々の固定位置センシングシステムに、LDSシステム290はデータを提供することができる。
ある実施形態では、LDSシステム290は、自動車のような車両に配置された電子回路に、距離に関するデータ、即ち実際の距離測定結果を提供することができる。例えば、電子モジュールの高度化および一個またはそれ以上のナビゲーションシステムまたはシステム構成部品の能力に依存して、このような車両は、LDSシステム290およびそれから獲得したデータを、例えば、ナビゲーションするため或いは車両を走行させまたは駐車させるために、組み込むことができる。別の方法として、距離データをナビゲーションシステムまたは安全システムに統合することは、車両内のモニタまたはディスプレイと共に使用することによって提供されうる。例えば、多くのナビゲーション支援機器では、ドライバがある場所に到達することを助けるために、地図またはその他のディスプレイを提供する。これらのシステムは、例えば、街路をディスプレイするように装備されているが、一方、障害物をディスプレイすることはできない。車両電子機器モジュールは、LDSシステム290から受信した距離データを組み込み、且つ、車両の周辺の平面図または三次元透視図を表示するように、容易に適応させることができる。この表示では、隣接する車両、消火栓、電柱、ガードレール等が当該車両の表示に対してそれらの位置で表示される。この点に関して、LDSシステム290を組み込み、且つ、オペレータに視覚的支援またはその他の距離に関連した情報を提供するために距離データを使用する車両は、例えば駐車中および霧の中またはその他の悪条件での操作において、特に安全となる。
三角測量技術
現在入手可能な単一ポイント走査センサ(例えば前述のSICKおよびHokuyoデバイス)の全ては、ポイントセンサを走査するためにミラーを使用している。これらのデバイスは通常、飛行時間距離センサとして、即ち、光が対象まで進行しセンサまで反射されるのに要する時間を測定するように構成することができる。その他の技術としては三角測量法がある。上述したように、三角測量法によれば、対象までの距離は対象から反射された光の角度の関数として測定することができる。
図5は、三角測量計算に使用することができる基本的な幾何学を示す、単純化された図である。ソースにより(例えば、レーザ化され或いは平行化された光のような)小さな光のポイントが形成され、この光が対象によって反射されてセンサの結像面上に反射する。センサの結像面上に入射したこの光は、しばしば“ドット”と称される。ソースによって形成されたビームが、焦点の中心を通って結像面の使用可能部分の端部へ向かう光線に平行となる様に、理想的なピンホールカメラまたはその他のセンサを方向付けしても良い。この構造的な配置によって、ドットの位置を確定することによって、無限大(イメージの一端において)から最小の距離qmin(イメージの他端において)までの距離測定値を、LDSが計算することが可能となる。同様の三角法によって、焦点の中心から対象までの垂直距離qは、以下の様に定義される。
q=fs/x (式1)
ここで、fは焦点距離であり、sはベースラインを、さらにxはソースビームに平行な光線と対象から復帰した光線との間で測定された距離を示す。対象までの距離は、従って、対象から反射されたイメージ中のドットの角度(位置に影響を及ぼす)の関数として確定される。
さらに、対象までのソース出力光線に沿った距離dは、イメージ軸に対するソースの角度βに依存する。
d=q/sin(β) (式2)
式(1)および(2)は、イメージ距離(即ち、センサのイメージ面上で測定された距離)と三角測量の属性である対象距離との間の双曲線関係を示している。感度範囲が以下に示す様に距離と共に二次的に増加するため、この非線形関係は長い距離を決定することに対して困難性を引起しうる。
dq/dx=q2/fs (式3)
例えば、一個のピクセルのセンサにおける(即ち、センサアレイ上の)変位が1mにおいて1cmの距離の変位に相当する場合、センサ上のイメージの同じ一個のピクセルの変位は2mで4cmの変位に相当する。
上述したように、良い最小距離性能(式1から)と一致する基準および良い範囲分解能(式3から)と一致する基準は、一般に釣り合っている。即ち、fsの積が小さいと小さいqminを提供し、一方、fsの積が大きいとより良い範囲分解能を提供する。
距離計算においてfsの積に提供される相対的重みは、使用したセンサの能力および機能特性に依存し、或いは決定され、または影響される。ある実施形態では、センサは短い照射時間を有し(例えば、周辺光拒絶を改善するために)、多数のピクセルを有している(例えば、xの高度な分解能を可能とするために)。一実施形態では、752ピクセルの分解能を有しかつ35μsの最小シャッタ時間を有する球状シャッタCMOSセンサが多くの応用に対して充分であり、この場合、各ピクセルは約6μmであり、さらにサブピクセル補間処理によって0.1ピクセル或いはそれより良い実効分解能を可能とすることができる。
図6は、焦点距離とベースラインの積がレーザ距離センサの性能特性に及ぼす効果を示すグラフである。上記のパラメータを前提とすると、範囲分解能および最小距離に与えるfsの効果を、図6に示す様にプロットすることができる。qminが20cmまたはそれ以下である場合(例えば、幾つかの小さいスケールのロボット応用に対して望ましい場合)、fsは900かまたはそれ以上でなければならない。範囲分解能が6mで30mmまたはそれ以下の場合、fsの積は700よりも大きくなければならない。多くの実行に対して、積fsを800として選択することは良い妥協である。しかしながら、この積は、LDSシステムが目的とする使用方法に従って選択することができる。
異なる方法によって積fs=800を達成することができるが、小さいスケールの応用に対しては、焦点距離を適当な値に保つ(長い距離に対して一般に長い焦点距離が要求される)一方で、短いベースラインを提供することが望まれる。一例として、約50mmのベースラインによって、焦点距離は約16mmとなり得る。
ソース出力の光学軸に対する角度βは以下の様にして計算することができる。
β=arctan(f/(376*6μm))≒82° (式4)
LDSシステムの全体のエラーは、上述した種々のパラメータ、センサにおけるドット分解能中の全てのエラー、較正プロシージャ、またはこれらの組合せの関数であり得る。この文脈における用語“較正”は一般に、種々の構成部品の何らかの不整合を意味する。LDS動作全体に影響を与え得るこのような不整合は、ソース(例えば、レーザダイオード)の取付け角度、センサ(または付属レンズ)の取付け角度、センサにおけるレンズ或いはその他の光学部品によってもたらされる全ての収差を含んでいる。
ソースおよびセンサの相対取付け角度に関して、図5の説明は一般に、通常、同一平面上に存在するソースビームおよびレンズ主光線(即ち、平行光線)を示していることに留意すべきである。これは理想であるが、実際は必ずしもそうであるとは限らない。較正の期間中、全ての距離におけるソースビームの位置に最も良く対応する水平走査ライン(例えば、センサにおいて)が求められる。動作中、LDSはセンサ上のこの中間点以上および以下で何本かの走査ラインを使用することができる。例えば、LDSは、センサアレイ(即ち、CCDまたはCMOS)上のピクセルの11本のラインにおけるデータに依存している。この11本のラインは、較正された走査ラインとその上の5本およびその下の5本のラインを示しているが、その他のラインの組み合わせ(偶数本を含む)を動作において使用することも可能である。センサが、ソースおよび焦点平面に対して過剰に回転しない場合、11本のラインで充分に理想的な平面幾何を近似することができる。
レンズ収差に関して、16mmレンズに対する通常の収差は、特に入射光の単一の波長に対して最適化されている場合、視野の端で僅か数パーセントである。センサに関係してこのようなレンズを有するLDSを較正する場合、このようなレンズ収差を無視することができる。その代わりに、意図した範囲の限界における或いは限界の近傍におけるテスト測定値を、センサのより近くから獲得したテスト測定値よりも、より重く重み付けすることができる。
従って、幾つかの実施形態によれば、種々の距離におけるソースビームを最も良く識別する中心走査ラインを位置決めし、且つ、センサに向かって反射されたドットを位置決めするために中心走査ラインの周りの走査ラインバンドを使用することによって、LDSを較正することができる。既知の距離の測定値セットに対して、式1によって表現された曲線をフィットさせることができる。この曲線では、離れた測定値は近い測定よりもより重く重み付けされている。距離測定値収集中にその後の使用に対して、2個のパラメータ(積fsと、xを計算するためのピクセルオフセット)を最適化するようにしても良い。当然ながら、前述のものは一例として提供されたものであり限定のためではない。使用したセンサの能力、使用した光の波長、ソースの出力、その上にセンサおよびソースが配置されたマウントの構造的特徴、或いはこれらおよびその他の因子の組合せによって、その他の種々のLDSの較正方法が適していることがある。
例えば、LDSシステムは、較正条件から離れたことを検出することができ、さらに、独立して或いはオペレータによる介入によって自己較正プロシージャを実行するように構成され且つ作動させても良い。例えば、ソースからの出力が真っ直ぐな壁の比較的長いセクション上に入射する場合、マウントが回転するために、センサは壁に沿って種々の長さを表す測定値を検出する。このような距離測定値は、マウントの回転の角度が変化するので、比較的短いもの(例えば、出力が壁の表面に対して垂直であるような場合、LDSシステムに近い壁の領域で)から比較的長いもの(例えば、さらに、LDSシステムから壁に沿って)まで広がっている。LDSシステムが適正に較正されていると、収集したデータを適正に処理することによって、真っ直ぐな壁が検出される。LDSシステムが不適正に較正されていると、処理操作によって、較正条件から離れたことを示す対称的に湾曲した壁を検出する結果となる。幾つかの事例では、明白な湾曲は、式3を参照して上記で議論した性能特性に基づいているものと考えられる。LDSの構造をここに記載したように仮定すると、より短い読取り値はより正確となり、一方、より長い読取り値は正確性がより少なくなる傾向がある。より長い距離読取り値が全て不正確に高く、或いは、全て不正確に低い場合、LDSシステムは、一般に平坦な表面とは対照的に、一般に均一で対称的な湾曲表面であると考えられるものを検出する場合がある。上述したように、LDSシステムは、このような測定値を、再較正が必要であるか或いは望ましいことを表示していると解釈することもできる。
幾つかの実施形態では、LDSシステムは自己較正システムを組み込み或いは自己較正システムへのアクセスを有していても良い。この自己較正システムは、構成上の或いはその他の不備を訂正する、即ち、上記の事例において壁が真っ直ぐに見えるようにするために、1個またはそれ以上の較正パラメータを調整することができる。例えば、ある場合には較正は手作業で実行され、或いは、オペレータによる入力によって促進され、ある場合には、オペレータがLDSシステムに較正プロシージャを実行するように指示する入力を提供することができ、さらに、真っ直ぐな壁の一部分までの垂直距離を推量する入力を提供することができる。追加的に或いは別の方法として、LDSシステムは、上記のように、較正条件からの逸脱を検出して、較正プロシージャを自動的に起動しても良い。このような自己較正は、一様に湾曲した壁は実際真っ直ぐであることが多く、且つ、較正パラメータは処理をそれに応じて促進させるように調整されるという仮定に基づいている。上述したように、短い距離の場合LDSシステムは較正に対して殆ど反応せず、反対に、比較的長い距離の場合LDSは較正に対して非常に影響されやすいため、この効果は予測可能である。較正ミスの状態を合理的に予期した場合(動作環境および意図する使用を考慮して)、短い、即ち近い距離は非常に良い精度で決定でき、従ってLDSは、このような精度の短距離測定から全予測距離範囲にわたって較正され得る。
熱ストレス、機械的ショックおよび、幾つかの部品の構造的配置または動作特性を変更する傾向があるその他の条件を含む動作条件の下で、LDSがその較正を維持することが一般に望ましい。ある状況下では、従って、レンズ要素、センサソース間の物理的連携(即ち、機械的接続)が強固であり、且つ、低い熱膨張または歪を示すことが望ましい。ソースとセンサの如何なる相対的な動きも、特に長い獲得距離において、大きなエラーを生じる結果となる。実際のところ、照準ミスに対する最も大きな脅威は、例えば、ソースおよびセンサが配置されているマウントの熱膨張或いは機械的シフトによって生じうる、ソースとセンサの相対的な回転である。
図7は、ソースおよびセンサを保持するマウントの一実施形態の構成部品を単純化して示す斜視図である。図7の実施形態において、マウント291は、図4Bを参照して説明したものと類似のものであって良い。マウント291は一般に、L字形状のシャーシ293を含み、このシャーシは、スチール、チタン、アルミ、ニッケル或いは硬くかつ低い熱膨張係数を有するその他の種々の合金で形成されていても良い。或いは、シャーシ293は、例えば、複合材料またはセラミックで形成されていても良い。充分な構造的堅固さおよび適切な熱伝導特性を有する全ての材料を使用することができる。マウント291はさらに電子回路パッケージ297を、例えば印刷回路基板またはモノリシック集積回路(IC)中に統合するようにして、含んでいても良い。電子回路パッケージ297は、図9を参照して以下に説明する。
例えば、ソース1090およびセンサ1010は、スクリューまたはボルトによって、シャーシ293に強固に固定されていても良い。ある事例では、ソース1090とセンサ1010をシャーシに永久に取り付けるために、溶接し、ロウ付けしまたはその他の方法を取ることが望ましい。本開示および請求項に記載した特定事項は、ソース1090およびセンサ1010をシャーシ293に固定するために使用する特定の方法または構造的機構に限定されることを意図してはいない。充分な剛性を提供しかつソース1090およびセンサ1010の相対的な動きを適正に防止する、全ての機械的または構造的接続を使用することができる。
ソース1090およびセンサ1010に関連したレンズブロックは、例えば、ガラス充填ポリカーボネート、または、熱膨張率が低く且つ高い引張係数を有するその他の材料である。レンズエレメント295はガラス、プラスティック、アクリル、サファイア、または、この技術分野で一般に知られているように、必要なまたは望ましい光学品質を有するその他の材料で形成される。レンズ295は、ねじによる噛み合いを介して調整(例えば、焦点に対して)され、周知のように、焦点距離の選択的修正を可能とする。ある実施形態では、両方のレンズが、例えば、位置決めネジ、接着剤、またはこれらの組合せ、および焦点が容易に変更されないようにレンズ295を固定することが可能なその他の技術、を使用して、固定されていても良い。
上述したように、ソース1090およびセンサ1010がシャーシ293に強固に接続されており、相対的な角度配置が固定されたままであること、且つ、種々の動作状況において一定のベースラインを維持することが望ましい。このような剛性は三角測量測定において高度の精度を可能とし、LDSシステム290に対する短いベースラインを中程度の測定距離に対して実用化する。さらに、ソース1090、センサ1010および付随する全ての光学部品を実質的に上述したように硬いマウント291に接続することは、通常、回転ミラーおよびその結果として起こる整合および同期に対する挑戦の必要性を取り除く。
ある動作環境において、ドットのイメージ(即ち、センサ1010に戻りイメージ面上に入射した光)が、周辺光によって損傷され、或いは過出力とされることがある。時間的フィルタリングおよび波長フィルタリングは、この干渉を最小とし或いは消滅させるために使用することができる2つの技術を表している。
幾つかの実施形態においては、可視の赤色波長(例えば、約650nm)のパルスレーザをソース1090において使用することができる。この波長で或いはこの波長の付近で動作するレーザは、例えば、IR波長で動作するレーザに比べて僅かに高い出力(即ち、依然として目に安全である)を生成する傾向がある。さらに、可視、赤色波長レーザはセンサ1010において優れた撮像応答を可能とし、IR波長レーザよりもデバッグおよび較正が容易である。ソース1090の出力が650nmである場合、センサ1010に実装された20nmバンドパスフィルタが約50倍、周辺光のフラックスを減少させることができる。他の種類のバンドパスフィルタを用いることもでき、さらに、これらのフィルタはアプリケーション特有であり、またはソース1090とセンサ1010の動作特性の関数として選択することができる。
時間的なフィルタリングを使用する実施形態において、センサ1010における球状電子シャッタをソース1090と同期させることができ、これによって、レーザがパルスを発している時のみセンサアレイ(即ち、イメージデータを捕獲するピクセル)を照射するようにすることができる。この点に関して、LDSシステムは、ソース1090とセンサ1010の間欠的な動作に同期させるために、同期機構を使用することができる。ショートパルスを使用することによって、出力を目に安全なレベルに維持しながら、レーザ出力を増加させることができる。一般に、適用可能な安全基準は、より長いパルスに比べてより短いパルスに同じ大きさの全体エネルギーを許可しない。これらの設計検討は、周辺光拒絶(ショートパルスが好ましい)とセンサ応答(ロングパルスおよび全体のエネルギーがより高いことが好ましい)との間でトレードオフの関係を示す。図8は、パルス幅の関数として最大許容照射とパルス出力をプロットしたグラフを表している。
図8に示す様に、1個のパルスに対する最大許容照射(MPEまたは全体エネルギー)が増加すると、パルス幅が増加するため、最大パルス出力は減少する。35μsの最小の照射において、パルス出力は5mW以上であり、この出力は周辺光干渉に関係する問題を用意に最小化することができる。より長いパルス持続期間において、パルス出力は対象からの反射に利用可能な全エネルギーは実質的に増加し、より暗い対象からの反射の獲得を容易にする。縦の線は60μsにおけるこれらの値を示しており、60μsは多くの応用において適切なパルス幅であり得る。
センサによって獲得されるデータを、距離測定値を提供するために処理することは幾つかのステップを含んでいる。このステップには、レーザをパルス発振させ且つセンサを照射する、センサ列を読み取る、レーザドットの重心を決定するために列を処理する、イメージ重心に対応する距離を計算する、距離測定値をフォーマットし通信する、各ステップを含むことができるが、しかし必ずしもこれらに限定されるものではない。
図9は、レーザ距離センサにおいて使用されている電子回路パッケージの一実施形態の構成部品を示す単純化されたブロック図である。幾つかの実施形態において、センサ1010はタイミングおよび制御装置を備えたCMOS撮像装置として具体化され、或いはこのようなCMOS撮像装置を備えている。従って、センサ1010は、照射およびその後の10列の読み取りにフレームパルスのみを必要とし、同じフレームパルスによって、例えばレーザ駆動回路または電子回路(参照番号901)によって促進される、ソース1090からの出力を開始させることもできる。プロセッサ299(図4Bを参照して上述した)は、多目的マイクロプロセッサまたはデジタル信号処理装置(DSP)として実現され或いはこれを備えている。別の方法として、プロセッサを専用のASICまたはその他の独自のハードウエアエンジンとしても良い。
(レーザドライバ901のような全ての付属の駆動回路へと同様に)センサ1010およびソース1090へ同期またはその他の制御信号を与えることに加えて、プロセッサ299は、センサ1010から獲得したデータを直接内部メモリ(例えば、キャッシュのような)に流すことができる。この技術分野で一般に知られている種々の技術に従ってこのデータを処理することが可能である。当然のことであるが、データを処理するために使用する方法は、例えば、センサ1010の性質および動作特性、全体のデータ処理能力の要求、またはこれらおよびその他のファクタの組合せに依存している。ドット重心の位置を確定し、重心位置を実質的に上述したように遠ざけるようにマップするために、適切な処理技術を使用することができる。
幾つかの実施形態では、必要な或いは所望のプログラムコード、較正データ、またはその他のデータおよび命令セットを格納してLDSシステムの全体の動作を促進するために、外部メモリ(即ち、プロセッサ299の外部)を設けることができる。図9に示すメモリ902は、一般に、フラッシュメモリ、ランダムアクセスメモリ(RAM)、ダイナミックRAM(DRAM)、同期DRAM(SDRAM)、又は二重データ速度(DDR)SDRAMとして実現できるが、幾つかの応用に対してはその他の種類の種々のデータ格納技術が適切であり得る。プロセッサ299が充分な内部キャッシュ容量を備えている場合、メモリ902は必要でない場合もある。
上述したように、種々の構成部品の動作を同期させることが可能な同期機構を提供することが望ましい。この点に関して、光学エンコーダ903はプロセッサ299に、ソース1090およびセンサ1010の両方の間欠動作における同期を促進するためのデータを供給することができる。一般に周知のように、光学エンコーダ903は一般に発光器と光検出器の対を備えており、例えば、シャフトが回転することによって、発光器と検出器間を伝送する光ビームが選択的に遮断される。プロセッサ299がセンサ1010とソース1090のデューティサイクルを制御するために、これらが取付けられているマウントが回転する間、光学エンコーダ903からのデジタルパルスを使用することができる。
図4B、7および9を参照すると、増分回転エンコーダが多くの場合に望ましいけれど、光学エンコーダ903の種々の実施形態が使用されている。回転エンコーダを使用するLDSシステム290の幾つかの実施形態では、発光器と検出器がマウント291に取付けられ或いは一体化されている上に、さらに、コード(即ち、マーク或いは発光器と検出器間のビームを遮断するように設計されたその他のしるし)をハウジング291と一体化しても良い。マウント291が回転すると、固定されたハウジング292上に配置されたコードが読み取られ、光学エンコーダ903はプロセッサ299にハウジング292に対するマウント291の角度方向を示すデジタル信号を提供する。
例えば、回転するマウント291上の2個の反射型センサによって、固定された放射状の白−黒(或いはその他の対照的な)パターンが読み取られる。1個のセンサはインデックスマーク或いはその他のしるしを読み取り、LDSシステム全体の名目上のヘディングに関する情報を提供することができ、他のセンサはソース1090とセンサ1010の動作サイクルのタイミングを取るように設計されたパターンを読み取ることができる。上記の方法において、データ獲得の角変位はモータ速度の変動に比較的反応せず、そのためあまり高価でないモータの使用が可能で且つリラックスしたモータとタイミング制御を可能とする。
図9に示す構成部品は、マウント291と関連する小さなPCB上でフィットするように適切なサイズとされている。幾つかの構成部品に対して適正な動作特性が選択されると、電子回路パッケージ279は通常の動作において1Wよりも少ない電力を消費することができる。電子回路パッケージ279、ソース1090およびセンサ1010のための電力は、例えば、回転中心(即ち、回転軸)上の2−ワイヤスリップリングを介して供給され得る。電気部品パッケージ279への或いは電気部品パッケージ279からの通信は、例えば56Kボー或いはそれ以上で動作する短距離用無線周波数(RF)モデム(図示せず)を介するようにすることができる。別の方法として、上述したように、電子回路パッケージ297および、特にプロセッサ299はデータラインを介して外部デバイスと通信することができる。
照射と読み取りは順々に発生するが、一方、処理をこれらの作動と並列に実行しても良い。幾つかの実施形態では、センサ1010から所望の本数のラインを読み取るために必要な時間は、速度に主要な限界を提示し、従って、高速技術を実現するセンサ1010を使用することが望ましい。例えば、撮像装置上でのラインのビニングによって、毎秒4000の距離測定値の読み取り速度に対して、0.25ms以下で照射−処理−読出しサイクルを実行することが可能となる。
図10は、レーザ距離センサの回転配置を単純化して示す図である。単一ポイント距離センサの視野を広げるために、センサ装置或いはその幾つかの構成部品を走査する必要がある。上述したように、三角測量法センサを走査するために典型的なハードウエア構成は、出力ビームを偏向(即ち、走査)させると同様に戻ってきた反射光を適切にイメージセンサに向かって偏向させるための、回転ミラーを使用する。このような構成は、本質的に嵩張っており、較正が困難で、ミラーとセンサおよびソース間で精細な位置決めを必要とする。さらに、完全な走査被覆率を達成することもまた困難であり、典型的な被覆率は180度またはそれ以下である。
反対に、上述したLDSシステムは、図4Bおよび7を参照して説明したように、機械的走査を可能とするに充分な程小さく且つ強固である。幾つかの実施形態では、センサおよびソースは一平面上で回転し、約10Hzまたはそれ以上の完全平面走査を生成する。高価なミラーおよびその後の整合問題を伴わない、ここに記載した機械的配置は、製造コストを低く保つ一方で、LDSシステムが高い信頼性で機能することを可能とする。他の配置もまた可能である。例えば、単一のポイントのみならず、ポイントセットまたはレーザラインの測定によって、完全な三次元走査を生成することができる。これは、ライン出力(即ち、ポイントビーム出力よりもむしろ)を有するソースと適正なサイズのピクセルアレイを有するセンサを使用することによって、容易に達成することができる。
マウント291はベアリングまたは、例えば、ソース1090とセンサ1010間の中間に位置する回転軸の周りの回転およびスピンを可能とする、その他の機械的要素に取付けることができる。マウント291が回転するにつれて、例えば(回転)分解能1度でデータ測定が得られるように、ソース1090の出力をパルス化することが望ましい。10Hzの回転速度において、上記の戦略によって、上記の事例で使用されたセンサの最大読取り速度毎秒4000以下である、毎秒約3600の測定値が生成される。上述したように、ある場合では、例えば、誘導電力およびデータ結合を使用することが望ましく、或いは、マウント291が任意数の単一方向の回転を通して回転するように、スリップリングまたはその他の機械的接続体を使用することが望ましい。この構造的配置によって、動作中マウント291に対する回転方向を反転する必要が無くなる。
図10に示す様に、ソース1090は回転の中心からずれている。回転の中心c上に始点を有する固定座標系に関して、走査される対象のx、y位置は、以下の様にして得られる。
x’y’=rcosΦ、rsinΦ
α=π−β+Φ (式5)
x、y=x+bcosα,y+bsinα
本発明の幾つかの構成および特徴を、限定のためではなく例示のための特定の実施形態を参照して、詳細に説明した。当業者は、開示された実施形態に対して代替的実現および種々の修正が、本開示の範囲および意図内であることを当然に理解するであろう。従って、本発明は、添付の請求の範囲によってのみ限定されるものと考えるべきである。

Claims (25)

  1. 平行化された光出力を提供するソース、
    対象に入射した前記出力を検出するように動作するセンサ、
    前記ソースおよび前記センサが取付けられている回転マウントであって、前記回転マウントは任意の回数の単方向回転を通して回転可能である、回転マウント、および
    前記回転マウントに取付けられ且つ前記ソースおよびセンサに結合された電子回路パッケージであって、前記マウントの回転に伴って前記センサによって獲得されるデータをデジタル処理するための電子回路パッケージ、を備える、距離検知システム。
  2. 請求項1に記載のシステムであって、さらに、前記ソースおよび前記センサの間欠動作を同期させるための同期機構を備える、距離検知システム。
  3. 請求項2に記載のシステムであって、前記同期機構は光学エンコーダである、距離検知システム。
  4. 請求項1に記載のシステムであって、前記デジタル処理は三角測量計算を実行することを含む、距離検知システム。
  5. 請求項1に記載のシステムであって、前記デジタル処理はサブピクセル補間を実行することを含む、距離検知システム。
  6. 請求項1に記載のシステムであって、前記デジタル処理は毎秒4000のデータポイントを計算することを含む、距離検知システム。
  7. 請求項1に記載のシステムであって、前記ソースはレーザである、距離検知システム。
  8. 請求項7に記載のシステムであって、前記出力は約650nmの波長を有している、距離検知システム。
  9. 請求項1に記載のシステムであって、前記センサは相補型金属酸化物半導体センサである、距離検知システム。
  10. ロボット装置であって、
    駆動機構、
    動作環境に前記ロボット装置を位置させるために前記駆動機構に命令を与えるための電子回路モジュール、
    前記電子回路モジュールに距離データを提供するための光学アッセンブリであって、前記距離データは動作環境中の対象に対する前記ロボット装置の位置に関係し、前記駆動機構に提供される前記命令に影響を与える光学アッセンブリ、を備え、
    前記光学アッセンブリは、
    平行化された光出力を提供するソース、
    動作環境において対象上に入射する出力を検出するように動作するセンサ、
    前記ソースおよび前記センサが取付けられている回転マウントであって、前記回転マウントは任意の回数の単方向回転を通して回転可能である、回転マウント、および
    前記回転マウントに取付けられ且つ前記ソースおよびセンサに結合された電子回路パッケージであて、前記マウントの回転に伴って前記センサによって獲得されるデータをデジタル処理して距離データを生成する、電子回路パッケージ、を備える、ロボット装置。
  11. 請求項10に記載のロボット装置であって、前記光学アッセンブリはさらに前記ソースと前記センサの間欠動作を同期させるための同期機構を備える、ロボット装置。
  12. 請求項11に記載のロボット装置であって、前記同期機構は光学エンコーダである、ロボット装置。
  13. 請求項10に記載のロボット装置であって、前記デジタル処理は三角測量計算を実行することを含む、ロボット装置。
  14. 請求項10に記載のロボット装置であって、前記デジタル処理はサブピクセル補間を実行することを含む、ロボット装置。
  15. 請求項10に記載のロボット装置であって、前記デジタル処理は毎秒4000のデータポイントを計算することを含む、ロボット装置。
  16. 請求項10に記載のロボット装置であって、前記ソースはレーザである、ロボット装置。
  17. 請求項16に記載のロボット装置であって、前記出力は約650nmの波長を有している、ロボット装置。
  18. 請求項10に記載のロボット装置であって、前記センサは相補型金属酸化物半導体センサである、ロボット装置。
  19. 請求項10に記載のロボット装置であって、前記光学アッセンブリはさらに、前記電子回路パッケージに接続された送信器を備え、前記送信器は前記電子回路モジュールに前記距離データを無線で送信する、ロボット装置。
  20. 車両の範囲内で対象までの距離に関係する距離データを生成するように動作する距離検知システムを備える車両であって、前記距離検知システムは、
    平行化された光出力を提供するソース、
    前記対象に入射した前記出力を検出するように動作するセンサ、
    前記ソースおよび前記センサを取付けるための回転マウントであって、前記回転マウントは任意の回数の単方向回転を通して回転可能である、回転マウント、および
    前記回転マウントに取付けられ且つ前記ソースおよびセンサに結合された電子回路パッケージであって、前記距離データを生成するための前記マウントの回転に伴って、前記センサによって獲得されるデータをデジタル処理するための電子回路パッケージ、および
    前記距離検知システムから前記距離データを受信するための電子回路モジュール、を備える、車両。
  21. 請求項20に記載の車両であって、前記距離検知システムはさらに、前記ソースと前記センサの間欠動作を同期させるための同期機構を備える、車両。
  22. 請求項21に記載の車両であって、前記同期機構は光学エンコーダである、車両。
  23. 請求項20に記載の車両であって、前記デジタル処理は三角測量計算を実行することを含む、車両。
  24. 請求項20に記載の車両であって、さらに、距離に関係する情報を表示するためのディスプレイを備える、車両。
  25. 請求項24に記載の車両であって、前記ディスプレイは、前記車両の表現に対する位置における対象の表現を表示するものである、車両。
JP2010517196A 2007-07-19 2008-07-18 距離検知システムおよび方法 Pending JP2010534825A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/780,017 US8996172B2 (en) 2006-09-01 2007-07-19 Distance sensor system and method
PCT/US2008/070548 WO2009012474A1 (en) 2007-07-19 2008-07-18 Distance sensor system and method

Publications (1)

Publication Number Publication Date
JP2010534825A true JP2010534825A (ja) 2010-11-11

Family

ID=39897776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010517196A Pending JP2010534825A (ja) 2007-07-19 2008-07-18 距離検知システムおよび方法

Country Status (8)

Country Link
US (1) US8996172B2 (ja)
EP (1) EP2171498A1 (ja)
JP (1) JP2010534825A (ja)
KR (1) KR20100019576A (ja)
CN (1) CN101809461A (ja)
AU (1) AU2008275883A1 (ja)
CA (1) CA2694013A1 (ja)
WO (1) WO2009012474A1 (ja)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101563112B1 (ko) * 2015-05-29 2015-11-02 아마노코리아 주식회사 전방위 카메라와 레이저센서를 이용한 차량 카운트 시스템
KR101573660B1 (ko) * 2015-05-29 2015-12-02 아마노코리아 주식회사 차량 카운트 시스템을 이용한 주차장 정보 제공 방법 및 주차장 정보 제공 시스템
JP2017521755A (ja) * 2014-07-10 2017-08-03 アクチエボラゲット エレクトロルックス ロボット型清掃装置における計測誤差を検出する方法
US10149589B2 (en) 2013-12-19 2018-12-11 Aktiebolaget Electrolux Sensing climb of obstacle of a robotic cleaning device
US10209080B2 (en) 2013-12-19 2019-02-19 Aktiebolaget Electrolux Robotic cleaning device
US10219665B2 (en) 2013-04-15 2019-03-05 Aktiebolaget Electrolux Robotic vacuum cleaner with protruding sidebrush
US10231591B2 (en) 2013-12-20 2019-03-19 Aktiebolaget Electrolux Dust container
US10433697B2 (en) 2013-12-19 2019-10-08 Aktiebolaget Electrolux Adaptive speed control of rotating side brush
US10448794B2 (en) 2013-04-15 2019-10-22 Aktiebolaget Electrolux Robotic vacuum cleaner
US10499778B2 (en) 2014-09-08 2019-12-10 Aktiebolaget Electrolux Robotic vacuum cleaner
US10534367B2 (en) 2014-12-16 2020-01-14 Aktiebolaget Electrolux Experience-based roadmap for a robotic cleaning device
US10617271B2 (en) 2013-12-19 2020-04-14 Aktiebolaget Electrolux Robotic cleaning device and method for landmark recognition
US10678251B2 (en) 2014-12-16 2020-06-09 Aktiebolaget Electrolux Cleaning method for a robotic cleaning device
US10729297B2 (en) 2014-09-08 2020-08-04 Aktiebolaget Electrolux Robotic vacuum cleaner
US10816663B2 (en) 2016-11-08 2020-10-27 Kabushiki Kaisha Toshiba Distance measuring device and distance measuring method
US10874274B2 (en) 2015-09-03 2020-12-29 Aktiebolaget Electrolux System of robotic cleaning devices
US10874271B2 (en) 2014-12-12 2020-12-29 Aktiebolaget Electrolux Side brush and robotic cleaner
US10877484B2 (en) 2014-12-10 2020-12-29 Aktiebolaget Electrolux Using laser sensor for floor type detection
US11099554B2 (en) 2015-04-17 2021-08-24 Aktiebolaget Electrolux Robotic cleaning device and a method of controlling the robotic cleaning device
US11122953B2 (en) 2016-05-11 2021-09-21 Aktiebolaget Electrolux Robotic cleaning device
US11169533B2 (en) 2016-03-15 2021-11-09 Aktiebolaget Electrolux Robotic cleaning device and a method at the robotic cleaning device of performing cliff detection
US11474533B2 (en) 2017-06-02 2022-10-18 Aktiebolaget Electrolux Method of detecting a difference in level of a surface in front of a robotic cleaning device
US11921517B2 (en) 2017-09-26 2024-03-05 Aktiebolaget Electrolux Controlling movement of a robotic cleaning device

Families Citing this family (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8996172B2 (en) 2006-09-01 2015-03-31 Neato Robotics, Inc. Distance sensor system and method
DE102009001734A1 (de) * 2009-03-23 2011-02-24 Robert Bosch Gmbh Optikträger
DE102009023066A1 (de) * 2009-04-01 2010-10-07 Vorwerk & Co. Interholding Gmbh Selbsttätig verfahrbares Gerät, insbesondere selbsttätig verfahrbares Bodenstaub-Aufsammelgerät
CA2772636A1 (en) * 2009-08-31 2011-03-03 Neato Robotics, Inc. Method and apparatus for simultaneous localization and mapping of mobile robot environment
US20110133914A1 (en) * 2009-12-04 2011-06-09 Delphi Technologies, Inc. Image based vehicle object detection sensor with range finder
US8428394B2 (en) 2010-05-25 2013-04-23 Marcus KRIETER System and method for resolving spatial orientation using intelligent optical selectivity
EP2602586A4 (en) * 2010-08-06 2016-11-23 Panasonic Ip Man Co Ltd IMAGING DEVICE AND METHOD
WO2012024487A2 (en) * 2010-08-18 2012-02-23 Savannah River Nuclear Solutions, Llc System and method for the identification of radiation in contaminated rooms
US8630799B2 (en) * 2010-10-12 2014-01-14 G. Edzko Smid Optical navigation aid within a beacon field
DE102010060347B4 (de) 2010-11-04 2024-05-16 Vorwerk & Co. Interholding Gmbh Selbsttätig verfahrbares Gerät sowie Verfahren zur Durchführung einer Überprüfung einer Abstandsmessgenauigkeit
US8736676B2 (en) 2011-04-04 2014-05-27 CyPhy Works, Inc. Imaging based stabilization
US8589012B2 (en) * 2011-06-14 2013-11-19 Crown Equipment Limited Method and apparatus for facilitating map data processing for industrial vehicle navigation
CN102998677A (zh) * 2011-09-16 2013-03-27 湖北华中光电科技有限公司 车载扫描式半导体激光预警雷达及其探测障碍物的方法
JP5912395B2 (ja) * 2011-10-14 2016-04-27 三星ダイヤモンド工業株式会社 基板上面検出方法及びスクライブ装置
TWI461656B (zh) 2011-12-01 2014-11-21 Ind Tech Res Inst 距離感測裝置及距離感測方法
WO2014025428A2 (en) * 2012-05-12 2014-02-13 Van Cruyningen Izak Jan Light ranging with moving sensor array
CN103631262B (zh) * 2012-08-29 2017-07-04 科沃斯机器人股份有限公司 自移动机器人行走范围限制系统及其限制方法
KR102007772B1 (ko) * 2012-12-28 2019-08-06 엘지전자 주식회사 3차원 공간 측정 장치 및 동작 방법
CN103135117B (zh) * 2013-02-05 2014-12-03 中国人民解放军国防科学技术大学 一种分散式多机器人协同定位方法
KR101395888B1 (ko) * 2013-03-21 2014-05-27 엘지전자 주식회사 로봇 청소기 및 그 동작방법
US9696420B2 (en) 2013-04-09 2017-07-04 Ford Global Technologies, Llc Active park assist object detection
CN104236521A (zh) * 2013-06-14 2014-12-24 科沃斯机器人科技(苏州)有限公司 用于自移动机器人的线激光测距方法
EP2884225B1 (en) * 2013-06-28 2020-11-18 Unimetrik, S.A. Laser sensor with a built-in rotary mechanism
US20150116691A1 (en) * 2013-10-25 2015-04-30 Planitar Inc. Indoor surveying apparatus and method
CN104655161B (zh) 2013-11-21 2017-05-10 科沃斯机器人股份有限公司 测距装置及其寻找测距起始点的方法
CN104808199B (zh) * 2014-01-27 2017-04-26 燕成祥 范围检测装置
CN103839258A (zh) * 2014-02-13 2014-06-04 西安交通大学 一种二值化激光散斑图像的深度感知方法
WO2015165008A1 (zh) * 2014-04-28 2015-11-05 深圳市大疆创新科技有限公司 测量装置及无人飞行器
US9764472B1 (en) 2014-07-18 2017-09-19 Bobsweep Inc. Methods and systems for automated robotic movement
TWM506280U (zh) 2015-03-20 2015-08-01 Arima Lasers Corp 旋轉光學測距裝置
CN104780001A (zh) * 2015-05-07 2015-07-15 上海思岚科技有限公司 一种用于相对运动的两物体之间的无线通信装置
US10042042B2 (en) * 2015-06-12 2018-08-07 Aero Vironment, Inc. Rotating lidar
DE102015109775B3 (de) 2015-06-18 2016-09-22 RobArt GmbH Optischer Triangulationssensor zur Entfernungsmessung
CN106323230B (zh) * 2015-06-30 2019-05-14 芋头科技(杭州)有限公司 一种障碍物识别装置及障碍物识别方法
CN107850445B (zh) * 2015-08-03 2021-08-27 通腾全球信息公司 用于生成及使用定位参考数据的方法及系统
CN106443697A (zh) * 2015-08-06 2017-02-22 信泰光学(深圳)有限公司 自走式装置及其环境测距装置
DE102015114883A1 (de) 2015-09-04 2017-03-09 RobArt GmbH Identifizierung und Lokalisierung einer Basisstation eines autonomen mobilen Roboters
DE102015119501A1 (de) 2015-11-11 2017-05-11 RobArt GmbH Unterteilung von Karten für die Roboternavigation
DE102015119865B4 (de) 2015-11-17 2023-12-21 RobArt GmbH Robotergestützte Bearbeitung einer Oberfläche mittels eines Roboters
US10082488B2 (en) * 2015-12-02 2018-09-25 Butterfly Network, Inc. Time gain compensation circuit and related apparatus and methods
US9492144B1 (en) 2015-12-02 2016-11-15 Butterfly Network, Inc. Multi-level pulser and related apparatus and methods
DE102015121666B3 (de) 2015-12-11 2017-05-24 RobArt GmbH Fernsteuerung eines mobilen, autonomen Roboters
CN108885436B (zh) * 2016-01-15 2021-12-14 美国iRobot公司 自主监视机器人系统
DE102016102644A1 (de) 2016-02-15 2017-08-17 RobArt GmbH Verfahren zur Steuerung eines autonomen mobilen Roboters
CN105891842A (zh) * 2016-03-28 2016-08-24 上海交通大学 基于摄像头和激光发射器的测高测距装置
US10366269B2 (en) 2016-05-06 2019-07-30 Qualcomm Incorporated Biometric system with photoacoustic imaging
CN107436439A (zh) * 2016-05-27 2017-12-05 科沃斯机器人股份有限公司 激光测距装置及其感光芯片的安装方法
KR102598711B1 (ko) 2016-07-07 2023-11-06 삼성전자주식회사 불균일 광을 조사하는 라이다 장치 및 이를 포함하는 자율 주행 로봇
US10845470B2 (en) 2016-11-16 2020-11-24 Waymo Llc Methods and systems for protecting a light detection and ranging (LIDAR) device
CN108242072A (zh) * 2016-12-23 2018-07-03 捷西迪光学(开曼)股份有限公司 建立空间地图的方法以及应用于该方法的斑块图形组
JP2020509500A (ja) 2017-03-02 2020-03-26 ロブアート ゲーエムベーハーROBART GmbH 自律移動ロボットの制御方法
US10394246B2 (en) 2017-03-31 2019-08-27 Neato Robotics, Inc. Robot with automatic styles
US10556585B1 (en) * 2017-04-13 2020-02-11 Panosense Inc. Surface normal determination for LIDAR range samples by detecting probe pulse stretching
US20180348783A1 (en) * 2017-05-31 2018-12-06 Neato Robotics, Inc. Asynchronous image classification
CN107271961A (zh) * 2017-06-02 2017-10-20 深圳市优必选科技有限公司 一种机器人及其测距方法、机器人充电系统
US10551843B2 (en) 2017-07-11 2020-02-04 Neato Robotics, Inc. Surface type detection for robotic cleaning device
WO2019014861A1 (en) * 2017-07-18 2019-01-24 Hangzhou Taruo Information Technology Co., Ltd. INTELLIGENT FOLLOWING OF OBJECTS
US10918252B2 (en) 2017-07-27 2021-02-16 Neato Robotics, Inc. Dirt detection layer and laser backscatter dirt detection
US10583561B2 (en) 2017-08-31 2020-03-10 Neato Robotics, Inc. Robotic virtual boundaries
GB2567944A (en) 2017-08-31 2019-05-01 Neato Robotics Inc Robotic virtual boundaries
CN107607960A (zh) 2017-10-19 2018-01-19 深圳市欢创科技有限公司 一种光学测距的方法及装置
US11353556B2 (en) * 2017-12-07 2022-06-07 Ouster, Inc. Light ranging device with a multi-element bulk lens system
US10638906B2 (en) 2017-12-15 2020-05-05 Neato Robotics, Inc. Conversion of cleaning robot camera images to floorplan for user interaction
CN109975791A (zh) * 2017-12-28 2019-07-05 沈阳新松机器人自动化股份有限公司 一种机器人用测距传感器的检测治具及检测方法
CN109968378B (zh) * 2017-12-28 2021-09-17 深圳市优必选科技有限公司 机器人及其测距方法、存储装置
WO2019195483A1 (en) 2018-04-03 2019-10-10 Sharkninja Operating Llc Time of flight sensor arrangement for robot navigation and methods of localization using same
WO2019225965A1 (en) 2018-05-24 2019-11-28 Samsung Electronics Co., Ltd. Lidar device
US10751875B2 (en) * 2018-05-31 2020-08-25 Indoor Robotics Ltd Rotatable mobile robot for mapping an area and a method for mapping the same
WO2020000141A1 (en) 2018-06-25 2020-01-02 Beijing Didi Infinity Technology And Development Co., Ltd. A high-definition map acquisition system
US11157016B2 (en) 2018-07-10 2021-10-26 Neato Robotics, Inc. Automatic recognition of multiple floorplans by cleaning robot
US11194335B2 (en) 2018-07-10 2021-12-07 Neato Robotics, Inc. Performance-based cleaning robot charging method and apparatus
US10943367B1 (en) * 2018-07-11 2021-03-09 Waymo Llc Calibration of detection system to vehicle using a mirror
JP2021177582A (ja) * 2018-07-31 2021-11-11 ソニーグループ株式会社 制御装置、制御方法、およびプログラム
US11272823B2 (en) 2018-08-31 2022-03-15 Neato Robotics, Inc. Zone cleaning apparatus and method
CN109460024A (zh) * 2018-11-13 2019-03-12 深圳市杉川机器人有限公司 一种扫地机器人
KR102299264B1 (ko) 2019-01-16 2021-09-07 삼성전자주식회사 라이다 장치
DE102019104218A1 (de) 2019-02-19 2020-08-20 Wirtgen Gmbh Arbeitszug, umfassend eine Bodenbearbeitungsmaschine und ein weiteres Fahrzeug sowie eine automatisierte Abstandsüberwachung
CN110123211A (zh) * 2019-05-15 2019-08-16 湖南格兰博智能科技有限责任公司 一种智能扫地机的测距结构
US11448731B2 (en) 2019-08-30 2022-09-20 Banner Engineering Corp. Triangulation sensor with a first metal lens barrel disposed in a first barrel mounting channel
US11327483B2 (en) * 2019-09-30 2022-05-10 Irobot Corporation Image capture devices for autonomous mobile robots and related systems and methods
CN110988898A (zh) * 2019-12-02 2020-04-10 北京石头世纪科技股份有限公司 激光测距装置和机器人
CN114063790A (zh) * 2020-07-29 2022-02-18 林俊宏 非接触式击键装置
CN114076934A (zh) * 2020-08-12 2022-02-22 三赢科技(深圳)有限公司 校准设备及深度相机的校准方法
CN112153286B (zh) * 2020-09-24 2021-12-03 广州极飞科技股份有限公司 用于图像传感器的aa制程方法、aa制程设备及系统
CN112782711A (zh) * 2021-01-29 2021-05-11 山东青岛烟草有限公司 一种条烟盘点激光测距装置
US20220260682A1 (en) * 2021-02-17 2022-08-18 Continental Automotive Systems, Inc. Lens for lidar assembly
CN115031657A (zh) * 2021-11-10 2022-09-09 苏州天准科技股份有限公司 一种3d激光位移传感器
US11928830B2 (en) 2021-12-22 2024-03-12 Honeywell International Inc. Systems and methods for generating three-dimensional reconstructions of environments
US20230320551A1 (en) 2022-04-11 2023-10-12 Vorwerk & Co. Interholding Gmb Obstacle avoidance using fused depth and intensity from nnt training

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59116806U (ja) * 1983-01-28 1984-08-07 株式会社日立製作所 三次元形状物体の非接触計測装置
JPS62257077A (ja) * 1986-04-30 1987-11-09 Toshiba Corp 計測装置
JPS6355409A (ja) * 1986-08-26 1988-03-09 Nippon Denso Co Ltd 車両用レ−ザ−距離測定装置
JPH01106204A (ja) * 1987-10-20 1989-04-24 Sanyo Electric Co Ltd 自走式掃除機
JPH03137507A (ja) * 1989-10-24 1991-06-12 Hamamatsu Photonics Kk 3次元位置認識装置
JPH03181812A (ja) * 1989-12-12 1991-08-07 Fanuc Ltd 回転走査形測距センサー
JPH0587922A (ja) * 1991-09-30 1993-04-09 Aisin Seiki Co Ltd 障害物検知装置
JPH06214149A (ja) * 1993-01-14 1994-08-05 Nikon Corp 測距装置
JPH07190848A (ja) * 1993-12-27 1995-07-28 Koito Mfg Co Ltd 騒音・距離測定装置
JPH10166971A (ja) * 1996-12-09 1998-06-23 Mitsubishi Motors Corp 車両の後側方障害物警報装置
WO2007028049A2 (en) * 2005-09-02 2007-03-08 Neato Robotics, Inc. Multi-function robotic device

Family Cites Families (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3809480A (en) * 1972-07-24 1974-05-07 Gen Dynamics Corp Method and apparatus for surveying the velocities of a flow field
DE3240251A1 (de) 1982-10-30 1984-05-03 Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt e.V., 5000 Köln Verfahren zum programmieren von bewegungen und erforderlichenfalls von bearbeitungskraeften bzw. -momenten eines roboters oder manipulators und einrichtung zu dessen durchfuehrung
JPH0827352B2 (ja) 1988-02-22 1996-03-21 トヨタ自動車株式会社 車両用先行車識別装置
US5040116A (en) 1988-09-06 1991-08-13 Transitions Research Corporation Visual navigation and obstacle avoidance structured light system
US5006721A (en) * 1990-03-23 1991-04-09 Perceptron, Inc. Lidar scanning system
JPH04227507A (ja) 1990-07-02 1992-08-17 Nec Corp 移動ロボット用のマップを作成し保持する方法
US5202661A (en) 1991-04-18 1993-04-13 The United States Of America As Represented By The Secretary Of The Navy Method and system for fusing data from fixed and mobile security sensors
GB2260422B (en) 1991-10-09 1995-03-08 Israel State Foldable optical apparatus
US5279672A (en) 1992-06-29 1994-01-18 Windsor Industries, Inc. Automatic controlled cleaning machine
CA2115859C (en) * 1994-02-23 1995-12-26 Brian Dewan Method and apparatus for optimizing sub-pixel resolution in a triangulation based distance measuring device
EP0766846B1 (de) 1994-06-22 1998-03-04 Siemens Aktiengesellschaft Verfahren zur orientierung, fahrwegplanung und steuerung einer autonomen mobilen einheit
US5672858A (en) * 1994-06-30 1997-09-30 Symbol Technologies Inc. Apparatus and method for reading indicia using charge coupled device and scanning laser beam technology
JP3770909B2 (ja) 1994-09-06 2006-04-26 シーメンス アクチエンゲゼルシヤフト 目標と自走ユニットとの間隔が自走ユニットによって動的に検出される、自走ユニットの環境マップ内の目標の位置特定方法
IT1283729B1 (it) 1996-04-12 1998-04-30 Datologic S P A Dispositivo elettroottico per rilevare la presenza di un corpo a distanza regolabile con soppressione di sfondo
JP3735198B2 (ja) 1997-04-24 2006-01-18 積水化学工業株式会社 接合構造及びユニット建物
JP3765356B2 (ja) 1997-12-22 2006-04-12 ソニー株式会社 ロボツト装置
DE19757847A1 (de) 1997-12-24 1999-07-15 Hipp Johann F Scanner für eine Vorrichtung zur optischen Erfassung von Objekten
JP2002506977A (ja) * 1998-03-10 2002-03-05 リーグル・レーザー・メジャーメント・システムズ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 被写体又は被写体空間を監視する方法
GB2349482B (en) 1998-12-22 2003-07-09 Caterpillar Inc Tool recognition and control system for a work machine
US6505097B1 (en) 1999-01-13 2003-01-07 Sony Corporation Arithmetic processing device, inter-object communication method, and robot
KR20010041969A (ko) 1999-01-18 2001-05-25 이데이 노부유끼 로봇 장치, 로봇 장치의 본체 유닛 및 로봇 장치의 결합유닛
US7800758B1 (en) * 1999-07-23 2010-09-21 Faro Laser Trackers, Llc Laser-based coordinate measuring device and laser-based method for measuring coordinates
US6560511B1 (en) 1999-04-30 2003-05-06 Sony Corporation Electronic pet system, network system, robot, and storage medium
US6611738B2 (en) 1999-07-12 2003-08-26 Bryan J. Ruffner Multifunctional mobile appliance
US6741054B2 (en) 2000-05-02 2004-05-25 Vision Robotics Corporation Autonomous floor mopping apparatus
US6481515B1 (en) 2000-05-30 2002-11-19 The Procter & Gamble Company Autonomous mobile surface treating apparatus
WO2002037133A2 (en) * 2000-10-30 2002-05-10 Arc Second, Inc. Position measurement system and method using cone math calibration
US7120517B2 (en) 2001-01-02 2006-10-10 Avraham Friedman Integration assisting system and method
GB0126497D0 (en) 2001-11-03 2002-01-02 Dyson Ltd An autonomous machine
AT412028B (de) * 2001-11-09 2004-08-26 Riegl Laser Measurement Sys Einrichtung zur aufnahme eines objektraumes
KR100980793B1 (ko) 2001-11-28 2010-09-10 에볼루션 로보틱스, 인크. 로봇을 위한 하드웨어 추상화 계층에서의 센서 및액추에이터 추상화 및 집단화
JP2003308221A (ja) 2002-04-12 2003-10-31 Nec Corp ロボット制御システムと方法並びにプログラム
WO2004015369A2 (en) 2002-08-09 2004-02-19 Intersense, Inc. Motion tracking system and method
AU2003256435A1 (en) 2002-08-16 2004-03-03 Evolution Robotics, Inc. Systems and methods for the automated sensing of motion in a mobile robot using visual data
US6728608B2 (en) * 2002-08-23 2004-04-27 Applied Perception, Inc. System and method for the creation of a terrain density model
US6878923B2 (en) 2002-10-04 2005-04-12 Lockheed Martin Corporation Low profile optical imaging system having a wide field of regard
US20050209736A1 (en) 2002-11-13 2005-09-22 Figla Co., Ltd. Self-propelled working robot
JP2006521536A (ja) * 2002-11-26 2006-09-21 ジェームス エフ. マンロ 高精度の距離測定装置およびその方法
US7135992B2 (en) 2002-12-17 2006-11-14 Evolution Robotics, Inc. Systems and methods for using multiple hypotheses in a visual simultaneous localization and mapping system
US6953299B2 (en) 2003-01-16 2005-10-11 The Clorox Company Cleaning implement with interchangeable tool heads
DE10313191A1 (de) * 2003-03-25 2004-10-07 Gutehoffnungshütte Radsatz Gmbh Verfahren zur berührungslosen dynamischen Erfassung des Profils eines Festkörpers
US20050155628A1 (en) 2004-01-16 2005-07-21 Andrew Kilkenny Cleaning composition for disposable cleaning head
JP2005211463A (ja) 2004-01-30 2005-08-11 Funai Electric Co Ltd 自走式掃除機
US7228203B2 (en) 2004-03-27 2007-06-05 Vision Robotics Corporation Autonomous personal service robot
CA2505715A1 (en) 2004-05-03 2005-11-03 Her Majesty In Right Of Canada As Represented By The Minister Of National Defence Volumetric sensor for mobile robotics
KR100601960B1 (ko) 2004-08-05 2006-07-14 삼성전자주식회사 로봇의 위치 추적 및 지도 작성 방법
KR100664053B1 (ko) 2004-09-23 2007-01-03 엘지전자 주식회사 로봇청소기의 청소툴 자동 교환 시스템 및 방법
US20060235585A1 (en) 2005-04-18 2006-10-19 Funai Electric Co., Ltd. Self-guided cleaning robot
US7578020B2 (en) 2005-06-28 2009-08-25 S.C. Johnson & Son, Inc. Surface treating device with top load cartridge-based cleaning system
CN101709962B (zh) * 2005-09-12 2013-07-17 特里伯耶拿有限公司 测量仪器和使用测量仪器提供测量数据的方法
US7738733B2 (en) * 2005-09-29 2010-06-15 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Systems and methods for 3-D imaging
US8577538B2 (en) 2006-07-14 2013-11-05 Irobot Corporation Method and system for controlling a remote vehicle
EP3067771B1 (en) 2006-03-17 2017-11-08 iRobot Corporation Robot confinement
EP2041515A4 (en) * 2006-07-13 2009-11-11 Velodyne Acoustics Inc HIGH DEFINITION LIDAR SYSTEM
US8996172B2 (en) 2006-09-01 2015-03-31 Neato Robotics, Inc. Distance sensor system and method
DE202006017076U1 (de) 2006-11-08 2007-01-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung zur Inspektion einer Rohrleitung
JP5141507B2 (ja) 2008-08-25 2013-02-13 村田機械株式会社 自律移動装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59116806U (ja) * 1983-01-28 1984-08-07 株式会社日立製作所 三次元形状物体の非接触計測装置
JPS62257077A (ja) * 1986-04-30 1987-11-09 Toshiba Corp 計測装置
JPS6355409A (ja) * 1986-08-26 1988-03-09 Nippon Denso Co Ltd 車両用レ−ザ−距離測定装置
JPH01106204A (ja) * 1987-10-20 1989-04-24 Sanyo Electric Co Ltd 自走式掃除機
JPH03137507A (ja) * 1989-10-24 1991-06-12 Hamamatsu Photonics Kk 3次元位置認識装置
JPH03181812A (ja) * 1989-12-12 1991-08-07 Fanuc Ltd 回転走査形測距センサー
JPH0587922A (ja) * 1991-09-30 1993-04-09 Aisin Seiki Co Ltd 障害物検知装置
JPH06214149A (ja) * 1993-01-14 1994-08-05 Nikon Corp 測距装置
JPH07190848A (ja) * 1993-12-27 1995-07-28 Koito Mfg Co Ltd 騒音・距離測定装置
JPH10166971A (ja) * 1996-12-09 1998-06-23 Mitsubishi Motors Corp 車両の後側方障害物警報装置
WO2007028049A2 (en) * 2005-09-02 2007-03-08 Neato Robotics, Inc. Multi-function robotic device

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10448794B2 (en) 2013-04-15 2019-10-22 Aktiebolaget Electrolux Robotic vacuum cleaner
US10219665B2 (en) 2013-04-15 2019-03-05 Aktiebolaget Electrolux Robotic vacuum cleaner with protruding sidebrush
US10433697B2 (en) 2013-12-19 2019-10-08 Aktiebolaget Electrolux Adaptive speed control of rotating side brush
US10617271B2 (en) 2013-12-19 2020-04-14 Aktiebolaget Electrolux Robotic cleaning device and method for landmark recognition
US10149589B2 (en) 2013-12-19 2018-12-11 Aktiebolaget Electrolux Sensing climb of obstacle of a robotic cleaning device
US10209080B2 (en) 2013-12-19 2019-02-19 Aktiebolaget Electrolux Robotic cleaning device
US10231591B2 (en) 2013-12-20 2019-03-19 Aktiebolaget Electrolux Dust container
JP2017521755A (ja) * 2014-07-10 2017-08-03 アクチエボラゲット エレクトロルックス ロボット型清掃装置における計測誤差を検出する方法
US10518416B2 (en) 2014-07-10 2019-12-31 Aktiebolaget Electrolux Method for detecting a measurement error in a robotic cleaning device
US10499778B2 (en) 2014-09-08 2019-12-10 Aktiebolaget Electrolux Robotic vacuum cleaner
US10729297B2 (en) 2014-09-08 2020-08-04 Aktiebolaget Electrolux Robotic vacuum cleaner
US10877484B2 (en) 2014-12-10 2020-12-29 Aktiebolaget Electrolux Using laser sensor for floor type detection
US10874271B2 (en) 2014-12-12 2020-12-29 Aktiebolaget Electrolux Side brush and robotic cleaner
US10534367B2 (en) 2014-12-16 2020-01-14 Aktiebolaget Electrolux Experience-based roadmap for a robotic cleaning device
US10678251B2 (en) 2014-12-16 2020-06-09 Aktiebolaget Electrolux Cleaning method for a robotic cleaning device
US11099554B2 (en) 2015-04-17 2021-08-24 Aktiebolaget Electrolux Robotic cleaning device and a method of controlling the robotic cleaning device
KR101573660B1 (ko) * 2015-05-29 2015-12-02 아마노코리아 주식회사 차량 카운트 시스템을 이용한 주차장 정보 제공 방법 및 주차장 정보 제공 시스템
KR101563112B1 (ko) * 2015-05-29 2015-11-02 아마노코리아 주식회사 전방위 카메라와 레이저센서를 이용한 차량 카운트 시스템
US10874274B2 (en) 2015-09-03 2020-12-29 Aktiebolaget Electrolux System of robotic cleaning devices
US11712142B2 (en) 2015-09-03 2023-08-01 Aktiebolaget Electrolux System of robotic cleaning devices
US11169533B2 (en) 2016-03-15 2021-11-09 Aktiebolaget Electrolux Robotic cleaning device and a method at the robotic cleaning device of performing cliff detection
US11122953B2 (en) 2016-05-11 2021-09-21 Aktiebolaget Electrolux Robotic cleaning device
US10816663B2 (en) 2016-11-08 2020-10-27 Kabushiki Kaisha Toshiba Distance measuring device and distance measuring method
US11474533B2 (en) 2017-06-02 2022-10-18 Aktiebolaget Electrolux Method of detecting a difference in level of a surface in front of a robotic cleaning device
US11921517B2 (en) 2017-09-26 2024-03-05 Aktiebolaget Electrolux Controlling movement of a robotic cleaning device

Also Published As

Publication number Publication date
WO2009012474A1 (en) 2009-01-22
EP2171498A1 (en) 2010-04-07
AU2008275883A1 (en) 2009-01-22
CA2694013A1 (en) 2009-01-22
KR20100019576A (ko) 2010-02-18
CN101809461A (zh) 2010-08-18
US8996172B2 (en) 2015-03-31
US20100030380A1 (en) 2010-02-04

Similar Documents

Publication Publication Date Title
US8996172B2 (en) Distance sensor system and method
JP5688876B2 (ja) レーザスキャナ測定システムの較正方法
JP4350385B2 (ja) ターゲットマークを自動検索する方法、ターゲットマークを自動検索する装置、受信ユニット、測地計および測地システム
US9322654B2 (en) Laser tracker with a target sensing unit for target tracking and orientation detection
KR100612834B1 (ko) 3차원 위치 측정 센서
JP3741477B2 (ja) 測量システム
JP6963936B2 (ja) 測量システム
TWI610650B (zh) 自走式吸塵器
US11536568B2 (en) Target instrument and surveying system
JP4228132B2 (ja) 位置測定装置
EP3460521A1 (en) Laser measuring method and laser measuring instrument
JP4059911B1 (ja) 三次元測距装置
JP3953103B2 (ja) 標的マークの位置を敏速に検出するための方法及び装置
JPH02170205A (ja) 光線システムで構成する視覚航法及び障害物回避装置
JP6653028B2 (ja) レーザー受信機に入射する受信ビームと回転レーザービームとを比較するための方法
JP2019519789A (ja) レーザー受信機に入射する受信ビームと回転レーザービームとを比較するための方法
EP3869152B1 (en) Surveying device with a coaxial beam deflection element
US9739874B2 (en) Apparatus for detecting distances in two directions
CN108572369A (zh) 一种微镜扫描探测装置及探测方法
JP2019039863A (ja) 測量システム
US20200033500A1 (en) Laser scanner with projector
US20190339391A1 (en) System measuring 3d coordinates and method thereof
CN207249118U (zh) 导盲眼镜的激光扫描测距装置
CN210961787U (zh) 一种扫地机器人的检测装置
US8830484B2 (en) Device and method for object detection and location

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120807