JP2010512536A - 温度補償機能を備えるセンサ濃度検出器 - Google Patents

温度補償機能を備えるセンサ濃度検出器 Download PDF

Info

Publication number
JP2010512536A
JP2010512536A JP2009540935A JP2009540935A JP2010512536A JP 2010512536 A JP2010512536 A JP 2010512536A JP 2009540935 A JP2009540935 A JP 2009540935A JP 2009540935 A JP2009540935 A JP 2009540935A JP 2010512536 A JP2010512536 A JP 2010512536A
Authority
JP
Japan
Prior art keywords
sample
light source
current
calibration
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009540935A
Other languages
English (en)
Inventor
ケステレン,ハンス ウェー ファン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips NV
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips NV, Koninklijke Philips Electronics NV filed Critical Koninklijke Philips NV
Publication of JP2010512536A publication Critical patent/JP2010512536A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/1702Systems in which incident light is modified in accordance with the properties of the material investigated with opto-acoustic detection, e.g. for gases or analysing solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • G01N21/274Calibration, base line adjustment, drift correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/12Circuits of general importance; Signal processing
    • G01N2201/121Correction signals
    • G01N2201/1211Correction signals for temperature

Landscapes

  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Engineering & Computer Science (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

サンプル混合物内のサンプルの濃度を検出するサンプルセンサ200であって、光源101、検出器素子、処理セクション106及びパラメータ測定手段を含む。光源101は、サンプルの分子を励起させる光ビーム113を生成する。検出器素子は、サンプルの励起された分子の量を検出し、前記量を指示する検出器電流を供給する。処理セクション106は、検出器素子103に接続され、濃度を表す出力信号109を生成するために前記検出器電流を処理する。処理セクション106は、出力波長以外の、光源101の温度依存パラメータの少なくとも1つの測定値に基づいて、光源101の温度依存波長シフトを補償するよう構成された温度補償モジュール112を含む。パラメータ測定手段は、前記少なくとも1つの測定値を得る。

Description

本発明は、サンプル混合物内のサンプルの濃度を検出するサンプルセンサであって、前記サンプルの分子を励起させる光ビームを生成する光源と、前記サンプルの励起された分子の量を検出し、前記量を指示する検出器電流を供給する検出器素子と、前記検出器素子に接続され、濃度を表す出力信号を生成するために前記検出器電流を処理する処理セクションとを含むと共に、光源の温度依存波長シフトを補償する補償手段を更に含む、サンプルセンサに関する。
かかるサンプルセンサは知られている(例えば、特許文献1参照)。この特許文献1は、気体混合物内のトレースガスの濃度を測定する波長変調光音響分光システム及び方法を開示する。本方法は、光源から光を生成するステップと、サンプル領域に光を通すステップと、音響検出器を用いてサンプル領域を通過する光により生成される音をサンプリングするステップと、波長コントローラを用いて光の波長を制御するセンサとを含む。波長変調は、トレースガスの最適吸収波長周辺の周波数fを用いて実行される。温度変動に起因して、光源からの光の平均波長が変化するとき、波長シフトが検出される。波長コントローラは、この影響を平均波長を調整することによって補償する。
温度補償は、次のように実行される。光の一部は、比較的高い濃度のトレースガスを備える参照ガスセルを通過する。参照セルの背後の光ダイオードは、参照セルにおける吸収量に依存する信号を提供する。周波数fによる波長変調は、周波数2f(各変調期間に対して2つの吸収量ピーク)で光ダイオード信号に変調をもたらす。温度変化に起因して、光源により生成される光の波長がシフトしたとき、変調は、最適な吸収量の値周辺で正確にもはや実行されない。その結果、変調周波数の奇数調波(3f)が、検出器信号に導入される。光検出器での3f信号は、トレースガスの吸収スペクトルを介して平均波長がシフトするときに変動し、吸収ラインの中心に平均レーザー波長が対応するときにゼロに等しくなる。波長コントローラは、光ダイオード信号における3f成分を最小化するために光源の平均波長を制御する。
米国特許第6,552,792号
しかしながら、上記のアプローチは、研究機関の基礎研究に対して使用できるが、参照ガスセルの使用は、商品に対して好ましいアプローチではない。参照ガスセル信号は吸収量に基づくので、長い参照ガスセルが必要とされ、これは、コンパクトなセンサに対して魅力的なものでなく、若しくは、高濃度を使用する必要が生じ、例えば二酸化窒素の場合、参照ガスセルが事故で壊れたときに危険となる。更に、参照ガスセルの問題は、あるガスの濃度は、例えば壁付着や分離に起因して長い期間に亘って安定しないことである。
本発明の目的は、参照ガスセルを用いることなく、温度変動に対して出力信号を補正することができるサンプルセンサを提供することである。
本発明の一局面によれば、上記目的は、冒頭の段落によるサンプルセンサであって、処理セクションが、出力波長以外の、光源の温度依存パラメータの少なくとも1つの測定値に基づいて、光源の温度依存波長シフトを補償するよう構成された温度補償モジュールを含み、更に、前記少なくとも1つの測定値を得るパラメータ測定手段を含む、サンプルセンサを提供することによって、達成される。
本発明は、放出された光の波長が温度に依存するのみならず、他の光源パラメータも温度依存性があり、当該依存性が、光源の温度依存波長シフトを補償するために使用できるという、考えに基づく。前記少なくとも1つの測定値は、パラメータ測定手段により取得される。光源のパラメータの値は、温度の直接の結果であり、温度は、光源の出力波長を決定するものである。従って、必要とされる温度補償は、光源の測定されたパラメータから導出可能である。本発明によるサンプルセンサは、温度補償に適しているが、温度依存波長シフトを決定するために参照ガスセルを必要としない。
温度の変動は、光源により放出される光の波長の変動に関連する。波長の変動は、検出器電流の偏差に対応する。これらの関係は、前記少なくとも1つの測定値に基づいて温度依存波長シフトを補償するために使用される。
一実施例では、サンプルセンサは、光音響検出器であり、励起された分子の量を変化させて前記サンプル混合物に圧力変動を起こさせるために前記光ビームを変調する光変調器を含み、前記検出器素子は、前記圧力変動を前記検出器電流に変換する圧力センサを含む。
その他の実施例では、検出は、サンプルによる光ビームの光吸収量に基づくものであり、サンプルセンサは、前記サンプルの分子の励起により生ずる光吸収量を測定し、前記検出器電流に前記光吸収量を変換するフォットダイオードを含む。
一実施例では、サンプルセンサは、温度補償モジュールに接続され、前記出力波長を制御することにより前記補償を実行する波長調整手段を更に含む。
このとき、温度依存波長シフトは、波長シフトの算出後、波長シフトが補償されるように光源の出力波長を調整することによって、補償される。
その他の実施例では、温度補償手段は、前記温度依存波長シフトに対して出力信号を補正することにより前記補償を実行するように構成される。
上記の特許文献1の従来の実施例及びシステムとは対照的に、この実施例によるサンプルセンサは、温度依存波長シフトを防止せず、その代わりに、波長シフトを受け入れ、光源のその他の温度依存パラメータの少なくとも1つの測定値に基づいて出力信号を補正する。
少なくとも1つの測定値は、前記光源の光出力パワーであり、このとき、前記パラメータ測定手段は、前記光出力パワーの直接的な測定用の内部のフォットダイオードを含む。
レーザーパワーの直接的な測定は、参照セル内の参照ガスによる吸収量を測定することよりも非常に容易である。
或いは若しくはそれに加えて、前記光源は、半導体レーザーダイオードであり、前記少なくとも1つの測定値は、前記半導体レーザーダイオードを通る順電流の閾値電流であり、該閾値電流未満では前記光出力パワーは略ゼロであり、該閾値電流以上では前記光出力パワーは実質的に増加する。半導体レーザーダイオードを備えるサンプルセンサのその他の実施例では、前記少なくとも1つの測定値は、前記半導体レーザーダイオードの順電圧である。
半導体レーザーに対して、固定された電流での出力パワー及び閾値電流は、レーザー温度に応じて、良好に定義される態様で、変化することが分かる。また、電圧も、固定された電流で良好に定義される態様で変化する。固定された電流でのレーザー電圧、パワー若しくは閾値電流を求めることにより、温度を導出することができる。波長(変化)及び関連する吸収量は、(既知の若しくは事前に測定された)波長対温度依存性及び吸収スペクトルから容易に得ることができる。
或いは、温度補償モジュールは、校正測定からの校正係数を使用し、この場合、前記光出力パワー及び前記検出器電流は、前記サンプルの既知の校正濃度及び前記光源に対する既知の校正駆動電流を用いて、種々の温度で測定されている。
本発明による第2の側面によれば、上記の段落で記載した光音響検出器の出力信号の温度補償用の校正係数を決定するための方法が提供され、本方法は、前記サンプルの既知の校正濃度及び前記光源に対する既知の校正駆動電流を用いつつ、種々の温度で前記光出力パワー及び前記検出器電流を測定するステップと、前記測定された光出力パワー及び測定された検出器電流から、校正係数を決定するステップとを含む。
或いは、校正係数は、半導体レーザーの光出力パワーに代えて順電圧に関連する。
本発明のその他の局面によれば、光源の温度依存ン波長シフトに対して本発明による光音響検出器の出力信号を補正する方法が提供され、本方法は、前記光源のその他の温度依存パラメータの少なくとも1つの値を測定するステップと、前記測定された少なくとも1つの値に基づいて前記出力信号を補正するステップとを含む。
本発明のこれらの及び他の局面は、後述の実施例を参照して教示され明らかになるだろう。
本発明による光音響検出器の一実施例を概略的に示す図。 異なる温度でのレーザーダイオードの出力パワーとレーザーダイオードを通る順電流との関係を示す図。 異なる温度でのレーザーダイオードの順電圧とレーザーダイオードを通る順電流との関係を示す図。 レーザーダイオードのピーク波長と温度との関係を示す図。 光源を通る順電流に対する模範的な波形及びそれによる出力パワー波形を示す図。 図4aの波形の一部の拡大図。 本発明による校正方法の結果を示す図。 本発明による校正方法の結果を示す図。 本発明による校正方法の結果を示す図。
図1は、本発明によるサンプルセンサ200の一実施例を概略的に示す。図1に示すサンプルセンサ200は、光音響検出器であり、光吸収量に基づいてセンサ濃度を検出するように構成される。以下の説明は、主に、光音響検出器を説明するが、当業者は、濃度を測定するための光吸収量を用いるときに温度補償が同様に機能することを容易に理解することができるだろう。選択的に、双方の技術は、より信頼性の高い測定を得るために並列で使用される。
以下で説明する光音響トレースガス検出器200は、ガス混合物内のトレースガス濃度を検出するが、本発明は、他のサンプル混合物内の組織、流体若しくは固体を検出するために適用されてもよい。試験されるガス混合物は、ガスセル107内に含められる。ガスセル107は、ガスセル107を充てん及び空にするガス入口104及びガス出口105を含んでよい。息の試験用の装置では、ユーザは、ガスセル107を通して試験される空気を吹くことができる。
トレースガス検出器200は、光源としてレーザーダイオード101を用いる。レーザー光113の波長は、トレースガスの分子を励起できるように選択される。或いは、トレースガス分子を励起させる十分なエネルギを備える光ビームを生成できる、他の種類のレーザー源若しくは他の光源が使用されてもよい。レーザーデバイス102は、レーザーダイオード101に対して駆動信号を供給する。本実施例では、レーザードライバ102は、また、光ビームを変調する変調器としても機能する。レーザードライバ102により生成される電流を変化させることによって、光ビーム113の強度が時間に亘って変化される。光ビームの強度の変調は、連続的な強度で光ビームを操作することによって実現されてもよい。例えば、連続波光ビームから強度変調光ビームを生成する機械的なチョッパは我々によく知られている。
レーザービーム113のより強い強度は、トレースガスのより多くの分子が励起される結果を生み、これにより、ガス混合物のより高い温度がもたらされる。駆動信号のより大きい振幅は、より大きい励起及びより大きい温度変動を生む。トレースガスのより高い濃度は、トレースガス分子の増加した励起を介して、より大きな温度変動も生む。温度変動は、ガス混合物内に圧力変動若しくは音波を引き起こす。圧力変動は、マイクロフォンや発振器素子のような、検出器素子103により検出される。レーザー光が、発振器素子の共振周波数で変調される場合、音波が発振器を励起する。好ましくは、発振器素子は、水晶チューニングフォークのような、水晶発振器である。水晶チューニングフォークは、高い感度を有し、高い周波数で動作する。更に、水晶チューニングフォークは、例えばデジタル時計の製造のためのように、大規模で使用されているので、非常に高価ではない。
検出器103からの信号は、トレースガスの濃度を表す出力信号109を生成するために処理セクション106に送られる。本発明によれば、光源の幾つかのパラメータは、パラメータ測定手段111により測定され、パラメータは、また、処理セクション106に供給される。例えば、レーザーダイオード101を通る駆動電流若しくはレーザーダイオード101に亘る順電圧は、処理セクション106に送られる。順電流も、レーザードライバ102から直接取得されてもよい。処理セクション106に供給されてもよい他のパラメータは、光源101の出力パワーである。この実施例では、出力パワーは、レーザーダイオード101の後方の小平面の背後に直接的に配置される内部ダイオード110により測定される。以下で説明するように、これらの光源パラメータは、温度依存波長シフトを補償するために処理セクション106の温度補償モジュール112により使用される。これらのパラメータは、光源101から直接取得可能であるので、温度補償は、参照ガスを備える参照ガスセルを必要とした上述の先行技術の光音響検出器よりも非常に容易である。
光ダイオード108は、光ビームがガスセルを出る位置に配置される。この光ダイオード108は、光吸収量に基づいて濃度を測定するために使用される。ガスセル内のサンプルの有り無しで測定された光ダイオード信号の相違は、この際、処理ユニットに対する入力として使用される。
図2aは、異なる温度(20℃、40℃及び60℃)でのレーザーダイオード101の出力パワー及びレーザーダイオード101を通る順電流の間の関係を示す。全ての温度で、低い順電流Ifは、如何なるレーザー出力パワーPoutを生まない。Ifが閾値電流Ithを超えるとき、レーザーダイオードは、光を放出し始める。閾値電流Ithは、レーザーダイオードの温度に依存する。図2aから分かるように、低温(20℃)では、Ith24は、高温(60℃)でのIth23より小さい。従って、Ithが異なる温度に対して知られている場合、レーザーダイオード温度は、Ithを求めることによって判断することができる。Ithと温度の間の関係は、通常、レーザーダイオードのサプライヤにより提供される。もしそうで無い場合は、関係は、構成測定を介して取得されてもよい。或いは若しくはそれに加えて、ダイオード温度は、好ましくは考えられる最も高い温度に対するIthよりも大きい既知の順電流に対してPoutを測定することによって判断されてもよい。図2aから分かるように、固定の順電流では、Pout22は、低温(20℃)では、高温(60℃)でのPout21より低い。所定の順電流に対する温度及びPoutの関係も、レーザーダイオードのサプライヤにより提供されてもよいし、若しくは、校正測定を介して取得されてもよい。
図2bは、異なる温度でのレーザーダイオードを通る順電流とレーザーダイオードに亘る順電圧Vfの間の関係を示す。図2bから分かるように、固定の順電流では、Vf26は、低温(20℃)では、高温(60℃)でのVf25より大きい。所定の順電流に対するVfと温度の関係も、レーザーダイオードのサプライヤにより提供されてもよいし、若しくは、校正測定を介して取得されてもよい。
図3は、レーザーダイオードのピーク波長λpeakと温度の関係を示す。図2a及び図2bからの情報を用いてレーザーダイオード温度を判断した後、レーザーダイオードの温度依存波長シフトは、図3からの情報を用いて判断される。サンプルの吸収スペクトルに依存して、この波長シフトは、同一の分子による光の吸収量に小さい若しくは大きい影響を有する。処理セクション106の温度補償モジュール112は、光の平均出力波長を調整してもよいし、若しくは、出力信号109に補正を施してもよい。光源101の出力波形を適合することは、本分野で一般的に知られている幾つかの方法でなされてもよい。出力信号109の補正は、元の補正されていない出力信号109への波長シフトの寄与度を判断することにより実行される。この寄与度は、とりわけ、出力波長以外の、光源101の温度依存パラメータの測定値を用いて計算される。
図4aは、光源を通る順電流42、Ifに対する模範的な波形(実線)及びそれによる出力パワー波形41、Pout(破線)を示す。図4aに示すような変調スキームを用いる場合、レーザーダイオードの2つの異なる温度依存パラメータを取得することができる。これらのパラメータの取得方法が図4bを参照して説明される。
図4bは、図4aの波形の一部の拡大図である。図2aを参照して上述した如く、レーザーダイオードの温度は、閾値電流If、又は所定の順電流Ifでの光出力パワーPoutを用いて判断されてもよい。これらの2つの温度依存パラメータは、図4bに示すような波形信号41,42から取得されてもよい。Ithは、Poutが増加し始める瞬間43若しくはPoutが最小値に到達する瞬間46でのIfに対する値である。Ifの波形42の形状が知られている場合、Ithは、Ifが増加し始める瞬間からPoutも増加し始める瞬間までの時間遅延45から取得されてもよい。この方法は、Ifがレーザードライバ102により制御されそれ故にIfの波形42が知られているので、非常に有用である。同等の時間遅れは、Pout及びIfがそれぞれの最小値に達する瞬間の間に生ずる。Ithが知られるとき、レーザーダイオード101の温度は、図2aの情報を用いて判断される。
温度は、或いは若しくはそれに加えて、所定の順電流Ifでの光出力パワーPoutから取得されてもよい。原理上、これは、駆動電流変調の振幅内の任意のIfでなされてもよい。好ましくは、レーザーダイオード101の温度は、Ifに対する所定の最大値でのPoutに基づいて判断される。Poutに対するこの値44は、変調中のPoutの最大値である。If及びPoutの最大値を知ることにより、レーザーダイオード101の温度は、図2aの情報を用いて判断される。或いは、順電圧Vfは、順電流Ifの変調中に測定されてもよい。If及びVfの最大値(若しくは他の対応する値)を知ると、レーザーダイオード101の温度は、図2bの情報を用いて判断される。
図5,6及び7は、本発明による温度補償校正方法の結果を示す。この校正測定では、レーザーダイオード101のハウジングは、その温度を制御するペルチェ素子上に配置された。図5は、内部光ダイオード110の反応から判断された測定パワー51(実線)及び出力信号52(点線)を示し、これらの双方は、レーザーハウジングの温度の関数である。校正測定中、セル107を通過して導かれ若しくはセル107内に維持されたサンプル混合物内のサンプルの濃度、及び、放電ランプ101の順電流の変調振幅は双方とも固定されている。温度の低下は、レーザー出力パワーPoutの増加をもたらすが、光音響出力信号52の現象をもたらし、これは、サンプルの吸収スペクトルの形状(微細構造)及び光源101の波長シフトに起因する。パワー及び出力信号52対温度依存性から、図6に示す温度補償校正曲線61を取得することができる。校正曲線61は、内部光ダイオード10により測定された出力パワーと光音響検出器信号の関係を示す。光音響ガスセルを用いてレーザーダイオードの温度の制御無しに未知のガス濃度を測定することを可能とするため、濃度校正が実行される。このため、既知のサンプル濃度[Sref]がガスセルに適用され、温度補償校正の間に同一の電流変調振幅が適用される。続いて、光音響信号PArefは、内部光ダイオード110上の信号Prefと同様に、判断される。図7に示すような温度補償曲線は、次いで、P=Prefでゼロに光音響信号を正規化することにより校正曲線61から導出される。
図7を用いると、未知のセンサ濃度は、校正測定中と同一の順電流変調振幅をレーザーダイオードに印加し、出力信号を測定し、次の公式を用いて測定された出力信号を測定することによって、判断されてもよい。
[S]=[S]ref*PA/PAref*C(P)
ここで、[S]はサンプルの濃度であり、[S]refは既知の校正濃度であり、PAは出力電流であり、PArefは校正測定中の出力電流であり、C(P)は、未知のサンプル濃度測定中の光出力パワーに対する温度補償係数である。濃度校正測定中、サンプル濃度は、[S]refであり、内部光ダイオードにより測定される光パワーはPrefである。
図5、6及び7を参照して上述した校正方法は、光源101のその他の温度依存パラメータを用いて実行されてもよい。例えば、レーザーダイオード101に亘る順電流Vfは、出力パワーPoutに代えて測定されてもよい。
温度補償係数C(P)若しくはC(Vf)は、例えば温度補償モジュール112のルックアップテーブルの形態で実現されることができる。温度補償曲線自体は、多数の方法で取得することができる。上述の温度補償校正ルーチンでは、試験的なアプローチが取られている。温度補償曲線を導出するその他の方法は、レーザーダイオードの逆電圧との組み合わせの有り無しで波長の温度依存性を判断し、これらをサンプルガスの高い分解能の吸収線の形に組み合わせることである。センサが大量に生成されるべきであり、レーザーが初期の波長の変動で印加されるとき、レーザーに対するピーク波長のみを判断しデータベースから正しい補償曲線を選択することによって、初期の波長のセット内で温度補償曲線を判断し、あるセンサモジュールに対する適切な補償曲線を選択することが適切となりうる。
なお、上述の実施例は、本発明を制限するものでなく例示するものであり、当業者は、添付のクレームの範囲から逸脱することなく多くの代替実施例を設計することができるだろう。クレームでは、カッコ内の如何なる参照符号もクレームを限定するものの解釈されるべきでない。単語“comprising(含む)”及び“comprises”等は、請求項や明細書全体に列挙された要素やステップ以外の要素やステップの存在を除外するものでない。要素に付される単数表現は、かかる要素の複数の存在を除外するものでない。本発明は、幾つかの区別される要素を含むハードウェアにより、及び、適切にプログラムされたコンピューターにより、実現されることができる。幾つかの手段を列挙する装置クレームでは、これらの手段のいくつかが、1つの同一のハードウェアのアイテムにより具現化されることができる。ある手段が、相互に異なる従属項の請求項に記載されているという単なる事実は、これらの手段の組み合わせが効果的に使用できないことを意味するものではない。

Claims (19)

  1. サンプル混合物内のサンプルの濃度を検出するサンプルセンサであって、
    前記サンプルの分子を励起させる光ビームを生成する光源と、
    前記サンプルの励起された分子の量を検出し、前記量を指示する検出器電流を供給する検出器素子と、
    前記検出器素子に接続され、濃度を表す出力信号を生成するために前記検出器電流を処理する処理セクションであって、出力波長以外の、前記光源の温度依存パラメータの少なくとも1つの測定値に基づいて、前記光源の温度依存波長シフトを補償するよう構成された温度補償モジュールを含む、処理セクションと、
    前記少なくとも1つの測定値を得るパラメータ測定手段とを含む、サンプルセンサ。
  2. 励起される分子の量を変化させて前記サンプル混合物に圧力変動を起こさせるために前記光ビームを変調する光変調器を更に含み、
    前記検出器素子は、前記圧力変動を前記検出器電流に変換する圧力センサを含む、請求項1に記載のサンプルセンサ。
  3. 前記検出器素子は、前記サンプルの分子の励起により生ずる光吸収量を測定し、前記検出器電流に前記光吸収量を変換するフォットダイオードを含む、請求項1に記載のサンプルセンサ。
  4. 前記温度補償モジュールに接続され、前記出力波長を制御することにより前記補償を実行する波長調整手段を更に含む、請求項1に記載のサンプルセンサ。
  5. 前記温度補償モジュールは、前記温度依存波長シフトに対して出力信号を補正することにより前記補償を実行するように構成される、請求項1に記載のサンプルセンサ。
  6. 前記少なくとも1つの測定値は、前記光源の光出力パワーであり、前記パラメータ測定手段は、前記光出力パワーの直接的な測定用の内部のフォットダイオードを含む、請求項1に記載のサンプルセンサ。
  7. 前記光源は、半導体レーザーダイオードであり、前記少なくとも1つの測定値は、前記半導体レーザーダイオードを通る順電流の閾値電流であり、該閾値電流未満では前記光出力パワーは略ゼロであり、該閾値電流以上では前記光出力パワーは実質的に増加する、請求項4に記載のサンプルセンサ。
  8. 前記光源は、半導体レーザーダイオードであり、前記少なくとも1つの測定値は、前記半導体レーザーダイオードの順電圧である、請求項1に記載のサンプルセンサ。
  9. 前記温度補償モジュールは、校正測定からの校正係数を使用し、
    前記光出力パワー及び前記検出器電流は、前記サンプルの既知の校正濃度及び前記光源に対する既知の校正駆動電流を用いて、種々の温度で測定されている、請求項4に記載のサンプルセンサ。
  10. 前記温度補償モジュールは、次の公式を用い、
    [S]=[S]ref*PA/PAref*C(P)
    ここで、[S]は前記サンプルの濃度であり、[S]refは前記既知の校正濃度であり、PAは前記検出器電流であり、PArefは校正測定中の検出器電流であり、C(P)は、サンプル測定中の前記光出力パワーPに対応する校正係数であり、
    PArefは、前記校正測定から導出される、請求項7に記載のサンプルセンサ。
  11. 前記温度補償モジュールは、校正測定からの校正係数を使用し、
    順電圧及び前記検出器電流は、前記サンプルの既知の校正濃度及び前記光源に対する既知の校正駆動電流を用いて、種々の温度で測定されている、請求項5に記載のサンプルセンサ。
  12. 前記温度補償モジュールは、
    次の公式を用い、
    [S]=[S]ref*PA/PAref*C(Vf)
    ここで、[S]は前記サンプルの濃度であり、[S]refは前記既知の校正濃度であり、PAは前記検出器電流であり、PAref(Vf)は、順電圧Vfに対応する校正測定中の検出器電流であり、C(Vf)は、順電圧Vfに対応する校正係数であり、
    PAref(Vf)及びC(Vf)は、前記校正測定から導出される、請求項9に記載のサンプルセンサ。
  13. 請求項5によるサンプルセンサにおける前記出力信号の温度補償用の校正係数を決定する方法であって、
    前記サンプルの既知の校正濃度及び前記光源に対する既知の校正駆動電流を用いつつ、種々の温度で前記光出力パワー及び前記検出器電流を測定するステップと、
    前記測定された光出力パワー及び測定された検出器電流から、校正係数を決定するステップとを含む、方法。
  14. 請求項7によるサンプルセンサにおける前記出力信号の温度補償用の校正係数を決定する方法であって、
    前記サンプルの既知の校正濃度及び前記光源に対する既知の校正駆動電流を用いつつ、種々の温度で順電圧及び前記検出器電流を測定するステップと、
    前記測定された順電圧及び測定された検出器電流から、校正係数を決定するステップとを含む、方法。
  15. 前記光源の温度依存波長シフトに対して請求項1によるサンプルセンサの前記出力信号を補正する方法であって、
    前記光源のその他の温度依存パラメータの少なくとも1つの値を測定するステップと、
    前記測定された少なくとも1つの値に基づいて前記出力信号を補正するステップとを含む、方法。
  16. 前記少なくとも1つの値は、前記光ビームの光出力パワーである、請求項13に記載の方法。
  17. 前記光源は、半導体レーザーダイオードであり、前記少なくとも1つの測定値は、前記半導体レーザーダイオードを通る順電流の閾値電流であり、該閾値電流未満では前記光出力パワーは略ゼロであり、該閾値電流以上では前記光出力パワーは実質的に増加する、請求項14に記載の方法。
  18. 前記少なくとも1つの値は、前記光ビームの順電圧である、請求項13に記載の方法。
  19. 前記補正は、請求項11又は12の方法を実行することにより得られる校正係数を使用することを含む、請求項13に記載の方法。
JP2009540935A 2006-12-12 2007-12-10 温度補償機能を備えるセンサ濃度検出器 Withdrawn JP2010512536A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP06125881 2006-12-12
PCT/IB2007/054996 WO2008072167A1 (en) 2006-12-12 2007-12-10 Sample concentration detector with temperature compensation

Publications (1)

Publication Number Publication Date
JP2010512536A true JP2010512536A (ja) 2010-04-22

Family

ID=39344550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009540935A Withdrawn JP2010512536A (ja) 2006-12-12 2007-12-10 温度補償機能を備えるセンサ濃度検出器

Country Status (7)

Country Link
US (1) US8233150B2 (ja)
EP (1) EP2092306B1 (ja)
JP (1) JP2010512536A (ja)
CN (1) CN101563595B (ja)
AT (1) ATE476650T1 (ja)
DE (1) DE602007008288D1 (ja)
WO (1) WO2008072167A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013541019A (ja) * 2010-11-01 2013-11-07 ガス・センシング・ソリューションズ・リミテッド 光吸収ガスセンサの温度校正方法と装置、およびこれにより校正される光吸収ガスセンサ
JP2020057761A (ja) * 2018-10-02 2020-04-09 日亜化学工業株式会社 紫外線照射装置及び紫外線硬化樹脂の硬化方法
WO2021241589A1 (ja) * 2020-05-29 2021-12-02 株式会社堀場製作所 分析装置、分析装置用プログラム及び分析方法

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8579829B2 (en) * 2009-04-17 2013-11-12 Linshom L.P. System and method for monitoring breathing
US8911380B1 (en) 2009-04-17 2014-12-16 Linshom, L.P. Respiration monitoring system and method
FR2962805B1 (fr) * 2010-07-19 2013-03-22 Silios Technologies Sonde optique de mesure d'absorption a plusieurs longueurs d'ondes
CN103620382B (zh) * 2011-04-26 2017-07-14 皇家飞利浦有限公司 用于针对光学气体测量系统来控制辐射源可变性的装置及方法
CN102252982A (zh) * 2011-04-29 2011-11-23 安徽皖仪科技股份有限公司 一种用于激光气体分析仪的波长漂移补偿方法
US8939006B2 (en) * 2011-05-04 2015-01-27 Honeywell International Inc. Photoacoustic detector with long term drift compensation
CN102608060B (zh) * 2012-03-09 2014-02-05 深圳市理邦精密仪器股份有限公司 一种气体浓度测量方法及设备
DE102012007016B3 (de) * 2012-04-05 2013-10-10 Dräger Safety AG & Co. KGaA Optischer Gassensor
JP6248211B2 (ja) * 2014-04-14 2017-12-13 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. ガスセンサの温度補償
CN107027320A (zh) * 2014-07-04 2017-08-08 宇部兴产株式会社 红外线气体分析装置及其使用方法
DE102016216875A1 (de) 2015-09-07 2017-03-09 Infineon Technologies Ag Vorrichtung und Verfahren für eine In-situ-Kalibrierung eines photoakustischen Sensors
US9992477B2 (en) 2015-09-24 2018-06-05 Ouster, Inc. Optical system for collecting distance information within a field
CN105158187A (zh) * 2015-10-26 2015-12-16 中国人民解放军军事医学科学院卫生装备研究所 一种在线监测式吸收型光纤气体传感器气室
CN105466854A (zh) * 2015-12-30 2016-04-06 武汉精昱光传感系统研究院有限公司 一种有源气室结构与光声光谱气体传感系统
EP3408677A4 (en) * 2016-01-29 2019-10-09 Ouster, Inc. SYSTEMS AND METHODS FOR CALIBRATING AN OPTICAL DISTANCE SENSOR
CN106093178A (zh) * 2016-08-26 2016-11-09 西安鼎研科技有限责任公司 Voc气体传感器的浓度和温度漂移的补偿电路及方法
AT518830B1 (de) * 2016-11-25 2018-07-15 Avl List Gmbh Messgerät und Verfahren zum Betreiben des Messgeräts
CN106769730B (zh) * 2016-12-30 2019-08-23 林雅露 激光二极管功率自主修正方法
WO2018172203A1 (en) * 2017-03-20 2018-09-27 Koninklijke Philips N.V. Respiration gas monitor with automated resistance calibration
CN107064012B (zh) * 2017-04-11 2019-06-25 山西大学 基于拍频效应的石英增强光声光谱气体检测装置及方法
CN106970409B (zh) * 2017-05-17 2023-08-25 成都理工大学 带土壤湿度校正的γ吸收剂量率仪及校正方法
CN110799823B (zh) * 2017-06-28 2022-10-18 朱利恩·J·科贝尔 用于确定大气中的包括炭黑在内的物质的光吸收的仪器和校准方法
CN107462522B (zh) * 2017-08-18 2023-06-20 上海交通大学 一种可在线连续进行液体光声检测的光声池及测量方法
US10551356B2 (en) * 2017-10-23 2020-02-04 Infineon Technologies Ag Photoacoustic gas sensor and method
US11385177B2 (en) * 2018-04-13 2022-07-12 Washington University Designs of accurate pm sensors and systems for laboratory and real time calibration / data inversion
CN112384785A (zh) * 2018-05-11 2021-02-19 开利公司 光声检测系统
CN108896487B (zh) * 2018-07-05 2021-03-30 山东大学 校正光声系统二次谐波波形及提升精度的装置和方法
CN109238987B (zh) * 2018-10-11 2021-07-09 成都中安瑞晨科技有限责任公司 一种多光谱汽车尾气监测装置
CN109991189B (zh) * 2019-04-04 2021-09-28 东南大学 一种基于波数漂移修正的固定点波长调制气体浓度测量装置及其测量方法
CN110274891B (zh) * 2019-06-24 2021-07-16 安庆师范大学 一种测量水汽变温吸收光谱的系统及其使用方法
EP3783275A1 (en) * 2019-08-21 2021-02-24 Grundfos Holding A/S Pump system
JP7440287B2 (ja) * 2020-02-05 2024-02-28 アズビル株式会社 測定装置
CN113466174A (zh) * 2020-03-31 2021-10-01 比亚迪半导体股份有限公司 甲烷气体浓度检测方法、装置及微控制器
CN112881325B (zh) * 2021-01-26 2022-06-17 杭州麦乐克科技股份有限公司 一种基于零漂估计的红外二氧化碳传感器的浓度检测方法
CN114062276B (zh) * 2021-11-18 2023-12-19 国网安徽省电力有限公司电力科学研究院 一种光纤光声传感的温度自补偿方法及装置
CN114264646B (zh) * 2021-12-13 2024-05-07 中国科学院大连化学物理研究所 一种具备温度补偿的光电二极管检测no装置及方法
DE102022128472A1 (de) * 2022-10-27 2024-05-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Anordnung und Verfahren zur Bestimmung der Konzentration eines oder mehrerer Stoffe in einem flüssigen oder gasförmigen Medium

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3973852A (en) * 1974-08-30 1976-08-10 The Dow Chemical Company Method and apparatus for measuring particulate concentration in the atmosphere
JPS60259935A (ja) * 1984-06-07 1985-12-23 Komatsugawa Kakoki Kk 濁度計
US4968887A (en) * 1989-07-14 1990-11-06 Evionics, Inc. Gaseous nitrogen detection using excited-state laser spectroscopy
US5047639A (en) * 1989-12-22 1991-09-10 Wong Jacob Y Concentration detector
US5243983A (en) * 1990-12-14 1993-09-14 Georgia Tech Research Corporation Non-invasive blood glucose measurement system and method using stimulated raman spectroscopy
GB9107815D0 (en) * 1991-04-12 1991-05-29 Servomex Uk Ltd Apparatus and method for improving the performance of a single beam photometer
US5267019A (en) * 1991-09-30 1993-11-30 Consortium For Surface Processing, Inc. Method and apparatus for reducing fringe interference in laser spectroscopy
US5625189A (en) * 1993-04-16 1997-04-29 Bruce W. McCaul Gas spectroscopy
GB2286458A (en) * 1994-02-04 1995-08-16 Marconi Gec Ltd An optical absorption oxygen sensor
DE19516974A1 (de) 1995-04-07 1996-10-10 Landis & Gyr Tech Innovat Photoakustischer Gassensor
US5638816A (en) * 1995-06-07 1997-06-17 Masimo Corporation Active pulse blood constituent monitoring
US5723864A (en) * 1995-09-01 1998-03-03 Innovative Lasers Corporation Linear cavity laser system for ultra-sensitive gas detection via intracavity laser spectroscopy (ILS)
JPH09192120A (ja) 1996-01-19 1997-07-29 Nippon Koden Corp 血中光吸収物質濃度測定装置およびパルスオキシメータ
US5933245A (en) 1996-12-31 1999-08-03 Honeywell Inc. Photoacoustic device and process for multi-gas sensing
US6128945A (en) * 1997-09-03 2000-10-10 Figaro Engineering Inc. Gas detecting method and its detector
JP3336261B2 (ja) * 1998-07-17 2002-10-21 日本酸素株式会社 半導体レーザを用いた同位体の分光分析方法
CN1074832C (zh) * 1998-11-20 2001-11-14 清华大学 一种在线近红外多成分的测量方法及仪器
DE19940280C2 (de) * 1999-08-26 2001-11-15 Draeger Safety Ag & Co Kgaa Gassensor mit offener optischer Meßstrecke
US6552792B1 (en) 1999-10-13 2003-04-22 Southwest Sciences Incorporated Wavelength modulated photoacoustic spectrometer
EP1319939A4 (en) * 2000-09-22 2005-11-23 Organo Corp CONCENTRATION MEASURING DEVICE
BR0211327A (pt) 2002-09-06 2004-12-21 Tdw Delaware Inc Detecção de gás empregando espectroscopia de absorção de luz
DE10308409A1 (de) * 2003-02-27 2004-09-09 Marcus Dr. Wolff Verfahren zur Messung der Konzentration oder des Konzentrationsverhältnisses von Gaskomponenten mit potentiellen Anwendungen in der Atemtest-Analyse
US20060263256A1 (en) * 2005-05-17 2006-11-23 Nitrex Metal Inc. Apparatus and method for controlling atmospheres in heat treating of metals
US7599807B2 (en) * 2006-02-13 2009-10-06 Invensys Systems, Inc. Compensating for frequency change in flowmeters

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013541019A (ja) * 2010-11-01 2013-11-07 ガス・センシング・ソリューションズ・リミテッド 光吸収ガスセンサの温度校正方法と装置、およびこれにより校正される光吸収ガスセンサ
JP2020057761A (ja) * 2018-10-02 2020-04-09 日亜化学工業株式会社 紫外線照射装置及び紫外線硬化樹脂の硬化方法
JP7228111B2 (ja) 2018-10-02 2023-02-24 日亜化学工業株式会社 紫外線照射装置及び紫外線硬化樹脂の硬化方法
WO2021241589A1 (ja) * 2020-05-29 2021-12-02 株式会社堀場製作所 分析装置、分析装置用プログラム及び分析方法

Also Published As

Publication number Publication date
DE602007008288D1 (de) 2010-09-16
US8233150B2 (en) 2012-07-31
EP2092306A1 (en) 2009-08-26
ATE476650T1 (de) 2010-08-15
CN101563595B (zh) 2011-05-18
CN101563595A (zh) 2009-10-21
WO2008072167A1 (en) 2008-06-19
EP2092306B1 (en) 2010-08-04
US20100007889A1 (en) 2010-01-14

Similar Documents

Publication Publication Date Title
JP2010512536A (ja) 温度補償機能を備えるセンサ濃度検出器
JP4431622B2 (ja) 水晶により測定精度を向上させる光音響分光ガス検出方法及び検出器
US9546902B2 (en) Method and system for correcting incident light fluctuations in absorption spectroscopy
JP5176535B2 (ja) レーザ式ガス分析計
JP5039137B2 (ja) 改良されたフィードバック・ループをもつ空洞増強型光音響式微量気体検出器
JP4331741B2 (ja) ガス検出方法及びガス検出装置
JP2010512503A (ja) 光パワーエンハンスメントキャビティをもつ安定な光音響希ガス検出器
CA2538554A1 (en) Gas detection method and gas detector device
JP4758968B2 (ja) ガス検出方法及びガス検出装置
US8645081B2 (en) Device and method of examining absorption of infrared radiation
US20110001964A1 (en) Photo acoustic sample detector with background compensation
JP2014062892A (ja) テラヘルツ波分光測定装置及び方法、非線形光学結晶の検査装置及び方法
JP2008268064A (ja) 多成分対応レーザ式ガス分析計
JP5594514B2 (ja) レーザ式ガス分析計
JP5278757B2 (ja) レーザ式ガス分析計
Rey et al. Near-infrared resonant photoacoustic gas measurement using simultaneous dual-frequency excitation
US20100045991A1 (en) Method and device for measuring a photoacoustic signal with computer-assisted evaluation
JP5423496B2 (ja) レーザ式ガス分析計
JP5286911B2 (ja) 多成分用レーザ式ガス分析計
JP2010216959A (ja) レーザ式ガス分析装置
JP6028889B2 (ja) レーザ式ガス分析計
JP2023554186A (ja) 光音響効果を介してレーザー放射を計測する装置
Ma et al. Investigation of trace gas sensor based on QEPAS method using different QTFs

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120611

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20121227