WO2021241589A1 - 分析装置、分析装置用プログラム及び分析方法 - Google Patents

分析装置、分析装置用プログラム及び分析方法 Download PDF

Info

Publication number
WO2021241589A1
WO2021241589A1 PCT/JP2021/019833 JP2021019833W WO2021241589A1 WO 2021241589 A1 WO2021241589 A1 WO 2021241589A1 JP 2021019833 W JP2021019833 W JP 2021019833W WO 2021241589 A1 WO2021241589 A1 WO 2021241589A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
sample
light
correlation value
concentration
Prior art date
Application number
PCT/JP2021/019833
Other languages
English (en)
French (fr)
Inventor
享司 渋谷
Original Assignee
株式会社堀場製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社堀場製作所 filed Critical 株式会社堀場製作所
Priority to CN202180036191.5A priority Critical patent/CN115667884A/zh
Priority to US17/928,388 priority patent/US20230204498A1/en
Priority to EP21811914.7A priority patent/EP4160189A4/en
Priority to JP2022526591A priority patent/JPWO2021241589A1/ja
Publication of WO2021241589A1 publication Critical patent/WO2021241589A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/39Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using tunable lasers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N2021/3196Correlating located peaks in spectrum with reference data, e.g. fingerprint data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/39Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using tunable lasers
    • G01N2021/396Type of laser source
    • G01N2021/399Diode laser
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • G01N21/274Calibration, base line adjustment, drift correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/069Supply of sources
    • G01N2201/0691Modulated (not pulsed supply)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/12Circuits of general importance; Signal processing
    • G01N2201/121Correction signals
    • G01N2201/1211Correction signals for temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/12Circuits of general importance; Signal processing
    • G01N2201/121Correction signals
    • G01N2201/1218Correction signals for pressure variations

Definitions

  • the present invention relates to an analyzer or the like used for, for example, analysis of gas components.
  • Patent Document 1 an analysis method (TDLAS: Tubable Diode Laser Absorption Spectroscopy) in which the injection current of a semiconductor laser is modulated to sweep the oscillation wavelength and the absorption spectrum of the gas to be measured is obtained to quantify the concentration.
  • TDLAS Tubable Diode Laser Absorption Spectroscopy
  • the measurement target component When the measurement target component itself has a high concentration, the measurement target component itself becomes a coexisting component, and a coexistence effect occurs due to a change in the concentration of the measurement target component itself (self-broadening). That is, the coexisting component is a component that has a broadening effect on itself or other components. Further, in absorption spectroscopy using a laser such as TDLAS, a measurement error occurs in the concentration of the component to be measured due to the wavelength shift of the light emitted from the laser due to a change in ambient temperature or the like. That is, in either case, the light absorption spectrum of the component to be measured changed, and a measurement error occurred in the concentration of the component to be measured.
  • the present invention has been made in view of the above-mentioned problems, and in an analyzer using light absorption, the measurement target component is measured by correcting the coexistence effect due to the coexisting components or the change in the light absorption spectrum caused by the wavelength shift.
  • the main task is to measure the concentration with high accuracy.
  • the light absorption spectrum broadened by the influence of the coexisting components has a wide spectrum width and a low absorption peak height according to the concentration of the coexisting components, but the total area thereof. Is known to be almost unchanged.
  • the pressure fluctuates as shown in FIG. 10B, the width of the light absorption spectrum widens, but the height of the absorption peak does not change.
  • the inventor of the present application pays attention to the difference and similarity in the change of the light absorption spectrum due to the coexistence effect and the pressure fluctuation, and shows the change rate of the light absorption spectrum of the measurement target component caused by the coexistence component contained in the sample.
  • the F B newly introduced when the absorbance signal at a certain pressure P a (t, P) and the absorbance signal a '(t, P) when the broadening of the broadening factor F B occurred by coexistence effect , I found that it is approximately expressed by the following equation.
  • the present invention is based on the basic concept of converting the broadening due to the coexistence effect into a pressure change by utilizing this, and performing the coexistence effect correction at the same time as the pressure correction.
  • the light absorption spectrum changes due to the wavelength shift of the light source due to changes in ambient temperature, etc., so it is necessary to detect and correct this change.
  • the analyzer is an analyzer that analyzes the component to be measured contained in the sample, and is a light source that irradiates the sample with reference light and a sample light that the reference light has passed through the sample.
  • a light detector that detects the intensity
  • a parameter determination unit that determines a parameter that represents a change in the light absorption spectrum of the component to be measured or an interference component caused by a wavelength shift of the coexisting component contained in the sample or the reference light. It is characterized by including a concentration calculation unit for calculating the concentration of the component to be measured corrected by using a parameter representing a change in the light absorption spectrum from an intensity-related signal related to the intensity of the sample light.
  • the concentration of the measurement target component corrected by using the parameter representing the change in the light absorption spectrum of the measurement target component or the interference component caused by the wavelength shift of the coexisting component or the reference light contained in the sample is calculated. Therefore, it is possible to accurately measure the concentration of the component to be measured by correcting the change in the light absorption spectrum caused by the coexistence effect due to the coexisting components or the wavelength shift.
  • a broadening factor indicating the rate of change in the light absorption spectrum of the measurement target component or the interference component caused by the coexisting component contained in the sample, or the wavelength shift amount of the reference light is used. Can be mentioned.
  • the concentration calculation unit uses the intensity-related signal related to the intensity of the sample light and the broadening factor or the wavelength shift amount to determine the coexistence effect due to the coexisting components or the wavelength shift of the reference light.
  • the corrected concentration of the measurement target component is calculated.
  • the parameter determination unit fits the reference data related to the light absorption signal of the measurement target component and the interference component whose broadening factor or pressure is known, and the sample data related to the light absorption signal obtained from the intensity of the sample light. Then, it is conceivable to determine the broadening factor.
  • fitting is to compare and collate the reference data and the sample data.
  • the reference data is converted and used by using the relationship between the pressure value of the sample and the above-mentioned equation (Equation 1).
  • the comparison and collation method include a non-linear least squares method with iterative calculation using the steepest descent method, the Gauss-Newton method, the Weinberg-Marquardt method, and the like.
  • the parameter determination unit determines the broadening factor by using the relational data showing the relationship between the concentration of the coexisting component and the spreading factor and the measured concentration of the coexisting component.
  • the parameter determination unit fits the reference data related to the light absorption signal of the measurement target component and the interference component whose wavelength shift amount is known, and the sample data related to the light absorption signal obtained from the intensity of the sample light. , It is conceivable to determine the amount of wavelength shift.
  • the parameter determination unit determines the wavelength deviation amount of the reference light by using the relational data showing the relationship between the ambient temperature and the wavelength deviation amount and the measured ambient temperature.
  • the analyzer further includes a correlation value calculation unit for calculating a correlation value between an intensity-related signal related to the intensity of the sample light and a predetermined feature signal, and the concentration calculation unit includes the correlation value and the measurement target component.
  • a correlation value calculation unit for calculating a correlation value between an intensity-related signal related to the intensity of the sample light and a predetermined feature signal
  • the concentration calculation unit includes the correlation value and the measurement target component.
  • it is desirable to calculate the concentration of the component to be measured by correcting the coexistence effect due to the coexisting component or the wavelength deviation of the reference light by using a parameter representing a change in the light absorption spectrum of the interference component.
  • the characteristics of the absorbed signal can be captured with dramatically fewer variables without conversion to, and the concentration of the component to be measured can be measured by a simple calculation without complicated spectral calculation processing.
  • the concentration can be calculated with the same accuracy by using the correlation values of several to several tens at most.
  • the analyzer of the present invention is an analyzer that analyzes a measurement target component in a sample containing an interference component for which one or a plurality of interference effects should be removed, and the correlation value calculation unit is a type of the measurement target component.
  • a plurality of correlation values are calculated using a number of feature signals that is equal to or greater than the number and the number of types of the interference components, and the concentration calculation unit calculates the plurality of correlation values and the measurement target component or interference. It is desirable to calculate the concentration of the component to be measured using a parameter representing a change in the light absorption spectrum of the component.
  • the unit of the measurement target component and each interference component obtained from the respective intensity-related signals and the plurality of the characteristic signals when the measurement target component and each interference component are present independently.
  • a storage unit for storing a single correlation value which is a correlation value per concentration is further provided, and the concentration calculation unit includes a plurality of correlation values obtained by the correlation value calculation unit, the plurality of single correlation values, and the measurement. It is desirable to calculate the concentration of the measurement target component by using a parameter representing a change in the light absorption spectrum of the target component or the interference component.
  • the concentration calculation unit corrects the plurality of single correlation values using parameters representing changes in the light absorption spectrum of the component to be measured or the interference component, and calculates the corrected plurality of single correlation values and the correlation value. It is desirable to calculate the concentration of the component to be measured by using a plurality of correlation values obtained by the unit. With this configuration, the effects of interference and coexistence due to coexisting components, or the effects of wavelength shift of the reference light are removed by a simple and reliable calculation of solving simultaneous equations of several to several tens of elements at most. The concentration of the component to be measured can be determined.
  • the concentration calculation unit includes a plurality of correlation values obtained by the correlation value calculation unit, a plurality of corrected single correlation values, and concentrations of the measurement target component and each of the interference components. It is desirable to calculate the concentration of the component to be measured by solving the simultaneous equations consisting of.
  • the single correlation value in order to correct the single correlation value, it is desirable to store the single correlation value of each component acquired in advance at a plurality of known pressures or wavelength deviations of the reference light in the storage unit. By doing so, the single correlation value can be corrected by using the broadening factor or the amount of wavelength shift determined by the parameter determination unit.
  • the single correlation value stored in the storage unit in advance may be acquired by a known broadening factor instead of the one acquired at a known pressure, but it is possible to create a state of a known broadening factor. Since it is not easy, it is preferable to use the single correlation value obtained at a known pressure.
  • the pressure of the sample fluctuates during measurement, it is desirable to monitor the pressure of the sample with a pressure sensor or the like and use the pressure value to correct the single correlation value. By doing so, it is possible to simultaneously correct the coexistence effect due to the coexistence component and the effect due to the pressure fluctuation.
  • the concentration calculation unit includes the single correlation value of each component acquired for each of the plurality of known pressures of the sample, the plurality of correlation values obtained by the correlation value calculation unit, and the pressure in the cell. It is conceivable to correct the single correlation value using the relationship between the value and the following equation (Equation 2).
  • p is the pressure of the sample measured by the pressure sensor
  • F B is the broadening factor broadening factor determined by the determination unit
  • s ij alone correlation value at each pressure stored in the storage unit
  • s'ij is a corrected single correlation value.
  • the above formula (Formula 2) is for a single correlation value s ij in the pressure p of a sample during sample measurement (p), the F B multiplied by the multiplying 1 / F B alone correlation value in the pressure pressure Indicates that the corrected single correlation value s'ij is obtained.
  • the broading factor of the interfering component may be separately determined to correct the single correlation value of the interfering component. This makes it possible to further improve the measurement accuracy.
  • the program for an analyzer is a program applied to an analyzer including a light source for irradiating a sample with reference light and a light detector for detecting the sample light transmitted through the sample.
  • a parameter determination unit that determines a parameter representing a change in the light absorption spectrum of the component to be measured or an interference component caused by a wavelength shift of the coexisting component contained in the reference light or the reference light, and an intensity relationship related to the intensity of the sample light. It is characterized in that the analyzer exerts a function as a concentration calculation unit for calculating the concentration of the component to be measured corrected by using a parameter representing a change in the light absorption spectrum from the signal.
  • the analysis method analyzes an analysis target component contained in the sample by using a light source that irradiates the sample with reference light and a light detector that detects the sample light that has passed through the sample.
  • the method determines a parameter representing a change in the light absorption spectrum of the component to be measured or an interference component caused by a wavelength shift of the coexisting component contained in the sample or the reference light, and is related to the intensity of the sample light. It is characterized in that the concentration of the component to be measured corrected by using a parameter representing a change in the light absorption spectrum is calculated from the intensity-related signal.
  • the change in the light absorption spectrum caused by the coexistence effect due to the coexisting components or the wavelength shift of the reference light is corrected, and the concentration of the component to be measured is accurately measured. Can be measured.
  • the analyzer 100 of the present embodiment is a concentration measuring device for measuring the concentration of a component to be measured (here, for example, CO, CO 2, etc.) contained in a sample gas such as exhaust gas, and as shown in FIG.
  • the cell 1 into which the sample gas is introduced, the semiconductor laser 2 which is a light source for irradiating the laser beam modulated into the cell 1, and the sample light which is the laser beam transmitted through the cell 1 are provided on the optical path to receive the sample light. It includes a light detector 3, a signal processing device 4 that receives an output signal of the light detector 3 and calculates the concentration of a component to be measured based on the value, and a pressure sensor 7 that monitors the pressure in the cell 1. ing.
  • the analyzer 100 of the present embodiment is connected to an introduction flow path for introducing the sampling gas into the analyzer 100, and is connected to an discharge flow path through which the gas analyzed by the analyzer 100 is discharged. Has been done.
  • a pump for introducing the sampling gas into the analyzer 100 is provided in the introduction flow path or the discharge flow path.
  • the introduction flow path may be configured to directly sample the exhaust gas from the exhaust pipe or the like, or may be configured to introduce the exhaust gas from the bag in which the exhaust gas is collected, for example, CVS (Constant).
  • the exhaust gas diluted by a diluting device such as volumesampler
  • the cell 1 is made of a transparent material such as quartz, calcium fluoride, barium fluoride, etc., which hardly absorbs light in the absorption wavelength band of the component to be measured, and has an inlet and an outlet for light formed. Although not shown, the cell 1 is provided with an inlet port for introducing gas into the cell and an outlet port for discharging the gas inside, and sample gas is supplied from the inlet port into the cell 1. It is introduced and enclosed in.
  • the semiconductor laser 2 is a quantum cascade laser (QCL: Quantum Cascade Laser), which is a kind of semiconductor laser 2, and oscillates a mid-infrared (4 to 12 ⁇ m) laser beam.
  • the semiconductor laser 2 can modulate (change) the oscillation wavelength by a given current (or voltage). As long as the oscillation wavelength is variable, another type of laser may be used, and the temperature may be changed in order to change the oscillation wavelength.
  • thermopile a thermal type photodetector such as a thermopile, which is relatively inexpensive, is used here, but other types, for example, a quantum type photoelectric such as HgCdTe, InGaAs, InAsSb, PbSe, etc., which have good responsiveness, are used. An element may be used.
  • the signal processing device 4 includes an analog electric circuit consisting of a buffer, an amplifier, etc., a digital electric circuit consisting of a CPU, a memory, etc., and an AD converter, a DA converter, etc. that mediate between the analog / digital electric circuits.
  • a light source control unit 5 that controls the output of the semiconductor laser 2 and an optical detector by cooperating with a CPU and its peripheral devices according to a predetermined program stored in a predetermined area of the memory. It functions as a signal processing unit 6 that receives the output signal from 3 and calculates the value thereof to calculate the concentration of the component to be measured.
  • the pressure sensor 7 monitors the pressure of the sample, and here, it measures the absolute pressure in the cell 1, and here, a silicon piezo resistance type absolute pressure sensor is used. Although not shown, the pressure inside the cell at the time of measurement is adjusted by using a pump and a pressure regulator so as to be about 20 to 30 kPa.
  • the light source control unit 5 controls the current source (or voltage source) of the semiconductor laser 2 by outputting a current (or voltage) control signal. Specifically, the light source control unit 5 changes the drive current (or drive voltage) of the semiconductor laser 2 at a predetermined frequency, and modulates the oscillation wavelength of the laser light output from the semiconductor laser 2 at a predetermined frequency with respect to the center wavelength. .. As a result, the semiconductor laser 2 emits modulated light modulated at a predetermined modulation frequency.
  • the light source control unit 5 changes the drive current in a triangular wave shape and modulates the oscillation frequency in a triangular wave shape (see “oscillation wavelength” in FIG. 4).
  • the drive current is modulated by another function so that the oscillation frequency has a triangular wave shape.
  • the oscillation wavelength of the laser beam is modulated with the peak of the light absorption spectrum of the component to be measured as the center wavelength.
  • the light source control unit 5 may change the drive current into a sinusoidal shape, a sawtooth shape, or an arbitrary functional shape, and may modulate the oscillation frequency into a sinusoidal shape, a sawtooth shape, or an arbitrary functional shape.
  • the signal processing unit 6 includes a logarithmic calculation unit 61, a correlation value calculation unit 62, a storage unit 63, a broadening factor determination unit 64 which is a parameter determination unit, a concentration calculation unit 65, and the like.
  • the logarithmic calculation unit 61 performs logarithmic calculation on the light intensity signal which is the output signal of the photodetector 3.
  • the function I (t) indicating the change over time of the light intensity signal obtained by the photodetector 3 becomes as shown in the “light intensity I (t)” in FIG. 4, and by performing a logarithmic calculation, the “light intensity I (t)” in FIG. 4 is obtained.
  • Logarithmic intensity L (t) ”.
  • the correlation value calculation unit 62 calculates the respective correlation values between the intensity-related signal related to the intensity of the sample light and the plurality of predetermined feature signals.
  • the feature signal is a signal for extracting the waveform feature of the strength-related signal by correlating with the strength-related signal.
  • the feature signal for example, a sine wave signal or various signals according to the waveform feature to be extracted from other intensity-related signals can be used.
  • the correlation value calculation unit 62 has a correlation value between an intensity-related signal related to the intensity of the sample light and a plurality of feature signals having a correlation different from that of the sinusoidal signal (sine wave function) with respect to the intensity-related signal. Is calculated.
  • the correlation value calculation unit 62 uses the logarithmically calculated light intensity signal (logarithmic intensity L (t)) as the intensity-related signal.
  • T in the following equation (Equation 3) is a modulation period.
  • the correlation value S i between the intensity-related signal L (t) of the sample light and the plurality of feature signals Fi (t) is as shown in the equation (Equation 3). It is desirable to calculate the sample correlation values S 'i in which the correction of subtracting the reference correlation value R i is the correlation value of the intensity of the reference light-related signal L 0 (t) and the plurality of feature signals F i (t) from .. As a result, the offset included in the sample correlation value can be removed, the correlation value becomes proportional to the concentration of the measurement target component and the interference component, and the measurement error can be reduced. It should be noted that the configuration may be such that the reference correlation value is not subtracted.
  • the acquisition timing of the reference light is at the same time as the sample light, before or after the measurement, or at any timing.
  • the intensity-related signal of the reference light or the reference correlation value may be acquired in advance and stored in the storage unit 63.
  • the modulated light from the semiconductor laser 2 is split by a beam splitter or the like, one is used for sample light measurement, and the other is used as a reference. It may be used for optical measurement.
  • the correlation value calculation unit 62 uses, as a plurality of feature signals Fi (t), a function that makes it easier to capture the waveform feature of the logarithmic intensity L (t) than the sine function. If you want to correct the coexistence effect of the coexisting components of the measurement target component in the sample gas containing the measurement target component and one interference component, the three characteristic signals F 1 (t), F 2 (t), and F 3 ( It is conceivable to use t), and as these three characteristic signals, for example, a function based on the Lorentz function close to the shape of the absorption spectrum as shown in the following equation (Equation 4) and a function based on the Lorentz function are used.
  • a function based on the Voigt function, a function based on the Gaussian function, or the like can be used instead of the function based on the Lorentz function.
  • a function based on the Voigt function a function based on the Gaussian function, or the like can be used instead of the function based on the Lorentz function.
  • the offset of the characteristic signal so that the DC component is removed, that is, it becomes zero when integrated in the modulation period.
  • the DC component of the intensity-related signal may be removed, or the DC component of both the feature signal and the intensity-related signal may be removed.
  • the measured value of the absorption signal of the component to be measured and / or the interference component, or a signal imitating them may be used.
  • the logarithmic intensity L (t) can be obtained.
  • the features can be extracted more efficiently, and the concentration obtained by the simultaneous equations described later can be made accurate.
  • the storage unit 63 includes the measurement target component and the measurement target component obtained from the respective intensity-related signals and the plurality of feature signals Fi (t) when the measurement target component and each interference component at a known pressure in the cell are present alone. It stores a single correlation value, which is a correlation value per unit concentration of each interference component.
  • a plurality of feature signals F i used to determine the single correlation value (t) is the same as the plurality of feature signals F i to be used in the correlation value calculation section 62 (t). In this way, the storage unit 63 stores a single correlation value for each pressure in various cells.
  • the storage unit 63 when the storage unit 63 stores the single correlation value, the storage unit 63 makes a correction for converting per unit concentration after subtracting the reference correlation value from the correlation value when the measurement target component and each interference component exist independently. It is desirable to store the single correlation value. As a result, the offset included in the single correlation value can be removed, the correlation value becomes proportional to the concentration of the measurement target component and the interference component, and the measurement error can be reduced. It should be noted that the configuration may be such that the reference correlation value is not subtracted.
  • Broadening factor 64 is to determine the broadening factor F B showing the measurement target component and the rate of change of the optical absorption spectrum of the interference components caused by coexisting components contained in the sample. In the case also coexist influence of coexisting components to interference components to be considered, the broadening factor F B is added to each component thereof, are determined.
  • the method for determining the broadening factor F B can be considered the following procedures (a) or (b).
  • the concentration of the measured coexisting components determines the broadening factor F B.
  • the relationship data is previously generated by obtaining experimentally or by calculation broadening factor F B for each concentration of coexisting components.
  • the measured concentration of the coexisting component may be measured by the analyzer 100 of the present embodiment before the coexistence effect correction, or the concentration of the coexisting component may be measured by using another analyzer. May be.
  • the concentration calculation unit 65 calculates the concentration of the component to be measured using a plurality of sample correlation values obtained by the correlation value calculation unit 62.
  • the concentration calculating unit 65 stored and a plurality of sample correlation values obtained by the correlation value calculation section 62, and the broadening factor F B which is determined by the broadening factor determining unit 64, the storage unit 63
  • the concentration of the component to be measured is calculated based on the single correlation value of. More specifically, the density calculating unit 65, from the broadening factor F B obtained by the broadening factor determining unit 64, acquires by correcting a plurality of single correlation value stored in the storage unit 63.
  • the concentration calculating section 65 a plurality of sample correlation values obtained by the correlation value calculation section 62, and a plurality of individual correlation values corresponding correction to the determined Broadening factor F B, the component to be measured and the The concentration of the component to be measured is calculated by solving a simultaneous equation consisting of the concentration of each interference component.
  • the sample gas contains one measurement target component and one interference component.
  • the light source control unit 5 controls the semiconductor laser 2 to modulate the wavelength of the laser light with a predetermined modulation frequency and modulation depth and centering on the peak of the absorption spectrum of the component to be measured.
  • the reference measurement using zero gas may be performed and the reference correlation value may be measured.
  • the span gas gas having a known component concentration
  • the reference measurement is performed in each of the span gas in which the component to be measured is present alone and the span gas in which the interference component is present alone.
  • the logarithmic calculation unit 61 receives each output signal of the photodetector 3 at the pressure in each cell and calculates the logarithmic intensity L (t). Then, the correlation value calculation unit 62 calculates the correlation value between the logarithmic intensity L (t) and the three feature signals F 1 (t), F 2 (t), and F 3 (t), and calculates the correlation value from the correlation value. By dividing the value obtained by subtracting the reference correlation value by the concentration of span gas, the single correlation value, which is the correlation value of each span gas per unit concentration, is calculated. Instead of calculating the single correlation value per unit concentration, the span gas concentration and the single correlation value of the span gas may be stored.
  • correlation value calculation unit 62 which correlation value S 1tar (p k), S 2tar (p k), S 3tar (p k) from the measurement target component minus the reference correlation values R i span gas concentration c
  • the single correlation values s 1 tar (p k ), s 2 tar (p k ), and s 3 tar (p k ) are calculated. This procedure is performed at each pressure while sequentially changing the pressure in the cell (for example, 20 to 40 kPa every 1 kPa) by a method such as adjusting a pressure regulator that adjusts the pressure in the cell, and each pressure obtained.
  • the span gas concentration c tar of the component to be measured is input to the signal processing unit 6 in advance by a user or the like.
  • S 1 int (p k ) is a correlation value with the first feature signal
  • S 2 int (p k ) is a correlation value with the second feature signal
  • S 3 int (p k ) is a correlation value with the second feature signal.
  • the correlation value calculation unit 62 subtracts the reference correlation value R i from the correlation values S 1 int (p k ), S 2 int (p k ), and S 3 int (p k ), and subtracts the reference correlation value R i from the span gas concentration c int of the interfering component.
  • the single correlation values s 1 int (p k ), s 2 int (p k ), and s 3 int (p k ) are calculated. This procedure is performed at each pressure while sequentially changing the pressure in the cell (for example, 20 to 40 kPa every 1 kPa), and the relationship between the single correlation value at each obtained pressure and the pressure is stored.
  • the span gas concentration int of the interference component is input to the signal processing unit 6 in advance by a user or the like.
  • the light source control unit 5 controls the semiconductor laser 2 and modulates the wavelength of the laser beam centered on the peak of the absorption spectrum of the component to be measured at a predetermined modulation frequency and modulation depth.
  • the sample gas is introduced into the cell 1 by the operator or automatically, and the sample measurement is performed.
  • the logarithmic calculation unit 61 receives the output signal of the photodetector 3 and calculates the logarithmic intensity L (t). Then, the correlation value calculation unit 62 has sample correlation values S 1 , S 2 , S of the logarithmic intensity L (t) and the plurality of feature signals F 1 (t), F 2 (t), F 3 (t). 3 is calculated, the sample correlation value S obtained by subtracting the reference correlation values R i from the correlation value '1, S' to calculate the 2, S '3.
  • the broadening factor determining unit 64 by the method described above (a) or (b), to determine the broadening factor F B.
  • the concentration calculation unit 65 was determined by the single correlation value of the pressure pk in each cell stored in the storage unit 63, the pressure value p in the cell measured by the pressure sensor 7, and the broadening factor determination unit 64. and the broadening factor F B, by using the expression (2) described above, alone correlation value s '1tar, s' of the measurement target component corrected by both pressure and broadening factor in the cell and TAR, the cell
  • the single correlation values s'1 int and s'2 int of the interference component corrected only by the pressure of (the broadening factor is 1) are determined.
  • a method of determination for example, a method using linear interpolation, quadratic interpolation, spline interpolation, or the like can be considered.
  • the concentration calculator 65 the sample correlation values S corrected by the reference correlation value calculated correlation value calculating section 62 '1, S' 2, and, corrected single correlation value s' 1tar, s' 2tar, s' 1INT, solving s' and 2int, measured components and interference components respective concentrations C tar, the following binary simultaneous equations consisting of a C int (see FIG. 5).
  • the concentration Tar of the component to be measured from which the interference influence and the coexistence influence are removed can be determined by a simple and reliable calculation of solving the simultaneous equations of the above equation (Equation 5).
  • Equation 6 By solving the n-element simultaneous equations represented by this equation (Equation 6), it is possible to determine the concentration at which the interference influence and coexistence influence of each gas of the measurement target component and the interference component are corrected. Even if the sample does not contain an interference component, it is possible to determine the concentration corrected for the coexistence effect of each gas of the measurement target component and the coexisting component by solving the above n-element simultaneous equations. can.
  • the analysis apparatus 100 of the present embodiment configured to determine a broadening factor F B showing the change rate of the light absorption spectrum of the measurement target component caused by coexisting components, the determined Broadening factor F B Since the concentration of the measurement target component corrected for the coexistence effect of the coexisting component is calculated, the change in the light absorption spectrum of the measurement target component caused by the coexistence effect of the coexisting component is corrected, and the concentration of the measurement target component is measured accurately. can do.
  • a log intensity L (t) is the intensity associated signal related to the intensity of the sample light, a plurality of feature signals to the log intensity L (t) F i (t ) And each correlation value S i is calculated, and the concentration of the component to be measured is calculated using the calculated multiple correlation values S i. Therefore, the absorption signal is characterized without converting the absorption signal into an absorption spectrum. Can be captured with dramatically fewer variables, and the concentration of the component to be measured can be measured by a simple calculation without complicated spectral calculation processing. For example, the number of data points used in general spectrum fitting is required to be several hundred, but in the present invention, the concentration can be calculated with the same accuracy by using the correlation values of several to several tens at most.
  • the load of arithmetic processing can be dramatically reduced, an advanced arithmetic processing apparatus becomes unnecessary, the cost of the analyzer 100 can be reduced, and the size can be reduced.
  • the plurality of feature signals use signals having a correlation different from that of the sine wave signal, the accuracy is equal to or higher than that of the analyzer that performs the concentration calculation by the method using the conventional lock-in detection. The concentration of the component to be measured can be obtained.
  • the analyzer 100 of the present embodiment is a concentration measuring device for measuring the concentration of a component to be measured (here, for example, CO, CO 2, etc.) contained in a sample gas such as exhaust gas, and as shown in FIG.
  • the cell 1 into which the sample gas is introduced, the semiconductor laser 2 which is a light source for irradiating the laser light modulated into the cell 1, and the sample light which is the laser light transmitted through the cell 1 are provided on the optical path to receive the sample light. It includes a light detector 3 and a signal processing device 4 that receives an output signal of the light detector 3 and calculates the concentration of a component to be measured based on the value thereof.
  • the functions of those having the same reference numerals as those of the first embodiment are basically the same as those of the first embodiment, and the description thereof will be omitted.
  • what is different from the first embodiment will be described.
  • the signal processing unit 6 includes a logarithmic calculation unit 61, a correlation value calculation unit 62, a storage unit 63, a concentration calculation unit 65, a wavelength shift detection unit 66 which is a parameter determination unit, and the like.
  • the correlation value calculation unit 62 uses, as a plurality of feature signals Fi (t), a function that makes it easier to capture the waveform feature of the logarithmic intensity L (t) than the sine function. If you want to further correct the effect of the wavelength shift of the reference light with a sample gas containing the component to be measured and one interference component, the three feature signals F 1 (t), F 2 (t), and F 3 (t).
  • the three feature signals for example, a function based on the Lorentz function close to the shape of the absorption spectrum as shown in the following equation (Equation 7) and a function based on the Lorentz function. It is conceivable to use a partial differential function of the deviation from the reference time position.
  • Equation 7 w is the Lorentz width, s is the deviation of the absorption peak from the reference time position due to the wavelength shift, A is an arbitrary constant, and A 1 , A 2 , and A 3 are F 1 (t), respectively. It is an offset adjusted so that it becomes zero when F 2 (t) and F 3 (t) are integrated in the modulation period.
  • a function based on the Voigt function, a function based on the Gaussian function, or the like can be used instead of the function based on the Lorentz function.
  • a function based on the Voigt function a function based on the Gaussian function, or the like can be used instead of the function based on the Lorentz function.
  • the storage unit 63 is a measurement obtained from each intensity-related signal when the measurement target component and each interference component in the known wavelength shift amount of the reference light are present independently, and a plurality of feature signals Fi (t). It stores a single correlation value, which is a correlation value per unit concentration of the target component and each interference component.
  • a plurality of feature signals F i used to determine the single correlation value (t) is the same as the plurality of feature signals F i to be used in the correlation value calculation section 62 (t). In this way, the storage unit 63 stores the single correlation values for each wavelength shift of the various reference lights.
  • the storage unit 63 when the storage unit 63 stores the single correlation value, the storage unit 63 makes a correction for converting per unit concentration after subtracting the reference correlation value from the correlation value when the measurement target component and each interference component exist independently. It is desirable to store the single correlation value. As a result, the offset included in the single correlation value can be removed, the correlation value becomes proportional to the concentration of the measurement target component and the interference component, and the measurement error can be reduced. It should be noted that the configuration may be such that the reference correlation value is not subtracted.
  • the wavelength shift determination unit 66 determines the wavelength shift amount W of the reference light from the light intensity signal which is the output signal of the photodetector 3.
  • the following procedure (a) or (b) can be considered.
  • the number of required feature signals is equal to or greater than the total number of types of measurement target components and the number of types of interference components plus one.
  • the reason for adding 1 is to correspond to the amount of wavelength shift, which is a parameter common to the light absorption spectra of each component.
  • the wavelength deviation amount W of the reference light is determined by using the relational data showing the relationship between the ambient temperature and the wavelength deviation amount W and the measured ambient temperature. At this time, the related data is generated by obtaining the wavelength deviation W of the reference light for each ambient temperature of the light source 2 by experiment or calculation in advance.
  • the concentration calculation unit 65 calculates the concentration of the component to be measured using a plurality of sample correlation values obtained by the correlation value calculation unit 62.
  • the concentration calculation unit 65 includes a plurality of sample correlation values obtained by the correlation value calculation unit 62, a wavelength deviation amount W determined by the wavelength deviation determination unit 66, and a plurality of single units stored in the storage unit 63.
  • the concentration of the component to be measured is calculated based on the correlation value. More specifically, the concentration calculation unit 65 corrects and acquires a plurality of single correlation values stored in the storage unit 63 from the wavelength deviation amount W obtained by the wavelength deviation determination unit 66. Then, the concentration calculation unit 65 includes a plurality of sample correlation values obtained by the correlation value calculation unit 62, a plurality of corrected single correlation values corresponding to the determined wavelength deviation amount W, a component to be measured, and each interference. The concentration of the component to be measured is calculated by solving a simultaneous equation consisting of the concentration of each component (see FIG. 5).
  • the sample gas contains one measurement target component and one interference component.
  • the light source control unit 5 controls the semiconductor laser 2 to modulate the wavelength of the laser light with a predetermined modulation frequency and modulation depth and centering on the peak of the absorption spectrum of the component to be measured.
  • the reference measurement using zero gas may be performed and the reference correlation value may be measured.
  • the span gas gas having a known component concentration
  • the reference measurement is performed in each of the span gas in which the component to be measured is present alone and the span gas in which the interference component is present alone.
  • the logarithmic calculation unit 61 receives each output signal of the photodetector 3 at each wavelength shift amount of the reference light and calculates the logarithmic intensity L (t). Then, the correlation value calculation unit 62 calculates the correlation value between the logarithmic intensity L (t) and the three feature signals F 1 (t), F 2 (t), and F 3 (t), and calculates the correlation value from the correlation value.
  • the single correlation value which is the correlation value of each span gas per unit concentration, is calculated. Instead of calculating the single correlation value, the relationship between the span gas concentration and the correlation value of the span gas may be stored.
  • the correlation value calculation unit 62 determines the correlation value S 1 tar (w k ) of the measurement target component.
  • S 2tar (w k ), S 3 tar (w k ) are calculated.
  • S 1 tar (w k ) is a correlation value with the first feature signal
  • S 2 tar (w k ) is a correlation value with the second feature signal
  • S 3 tar (w k ) is.
  • the correlation value calculation unit 62 subtracts the reference correlation value R i from the correlation values S 1 tar (w k ), S 2 tar (w k ), and S 3 tar (w k ) to obtain the span gas concentration c of the component to be measured.
  • the single correlation values s 1 tar (w k ), s 2 tar (w k ), and s 3 tar (w k ) are calculated.
  • the correlation value calculation unit 62 determines the correlation value S 1 int (w k ) of the interference component. , S 2 int (w k ), S 3 int (w k ) are calculated.
  • S 1 int (w k ) is a correlation value with the first feature signal
  • S 2 int (w k ) is a correlation value with the second feature signal
  • S 3 int (w k ) is.
  • the correlation value calculation unit 62 subtracts the reference correlation value R i from the correlation values S 1 int (w k ), S 2 int (w k ), and S 3 int (w k ), and subtracts the reference correlation value R i from the span gas concentration c int of the interfering component. By dividing by, the single correlation values s 1 int (w k ), s 2 int (w k ), and s 3 int (w k ) are calculated.
  • the wavelength shift amount of the reference light is sequentially changed (e.g., 0.001 cm per -1 -0.01cm -1 ⁇ + 0.01cm -1 )
  • Perform for each wavelength shift amount and memorize the relationship between the single correlation value and the wavelength shift amount in each obtained wavelength shift amount.
  • the span gas concentration int of the interference component is input to the signal processing unit 6 in advance by a user or the like.
  • Single correlation values at the wavelength shift amount w k of each reference light calculated above s 1 tar (w k ), s 2 tar (w k ), s 3 tar (w k ), s 1 int (w k ), s 2 int (w) k ) and s 3int (w k ) are stored in the storage unit 63. It should be noted that this reference measurement may be performed before the product is shipped or may be performed regularly.
  • the light source control unit 5 controls the semiconductor laser 2 and modulates the wavelength of the laser beam centered on the peak of the absorption spectrum of the component to be measured at a predetermined modulation frequency and modulation depth.
  • the sample gas is introduced into the cell 1 by the operator or automatically, and the sample measurement is performed.
  • the logarithmic calculation unit 61 receives the output signal of the photodetector 3 and calculates the logarithmic intensity L (t). Then, the correlation value calculation unit 62 has sample correlation values S 1 , S 2 , S of the logarithmic intensity L (t) and the plurality of feature signals F 1 (t), F 2 (t), F 3 (t). 3 and calculates the reference correlation value R sample correlation value S i minus '1, S' 2 from the correlation value.
  • the wavelength shift determination unit 66 determines the wavelength shift amount W by the method described above.
  • Concentration calculator 65 uses the single correlation value at the wavelength shift amount w k of each reference light stored in the storage unit 63, and a wavelength deviation amount W which is determined by the wavelength shift determination unit 64, the wavelength shift amount W in corrected measurement target component and interference component alone correlation value s '1tar, s' 2tar, s '1int, s' determines the 2int.
  • a method of determination for example, a method using linear interpolation, quadratic interpolation, spline interpolation, or the like can be considered.
  • the concentration calculator 65 similarly to the first embodiment, a sample correlation value S '1, S' 2 corrected by the reference correlation value calculated the correlation value calculation unit 62, the corrected single correlation value s' 1tar, s' 2tar, s' 1int, solving s' and 2int, the measurement target component and the interference components each concentration C tar, the following binary simultaneous equations consisting of a C int.
  • the concentration calculation unit 65 may use the n-element simultaneous equations as in the above-mentioned equation (Equation 6) as in the first embodiment. Will be solved.
  • the wavelength deviation amount W of the reference light is determined, and the determined wavelength deviation amount W is used to correct the influence of the wavelength deviation of the reference light. Since the concentration of the component is calculated, the change in the light absorption spectrum of the component to be measured caused by the wavelength shift of the reference light can be corrected, and the concentration of the component to be measured can be measured accurately.
  • the configuration of the first embodiment and the configuration of the second embodiment may be combined to form an analyzer that performs both coexistence influence correction and wavelength shift correction at the same time.
  • the analyzer 100 has a broadening factor determination unit 64 of the first embodiment and a wavelength shift determination unit 66 of the second embodiment, and the storage unit 63 has the first embodiment.
  • the single correlation value s ij (p k , w k ) for each pressure PK and wavelength shift w k of the reference light in various cells as in the second embodiment are stored.
  • the concentration calculation unit 65 calculates the concentration of the component to be measured by using the above-mentioned (Equation 6) using the corrected single correlation value.
  • the logarithmic calculation unit 61 of each of the above-described embodiments performs a logarithmic calculation of the light intensity signal of the photodetector 3, but the light intensity signal of the photodetector 3 is used to obtain the intensity of the sample light and the reference light.
  • the logarithm of the ratio to the intensity of the modulated light (so-called absorbance) may be calculated.
  • the logarithm calculation unit 61 may calculate the logarithm of the intensity of the sample light, calculate the logarithm of the intensity of the reference light, and then subtract them to calculate the absorbance, or the intensity of the sample light and the reference light.
  • Absorbance may be calculated by taking the logarithm of the ratio after obtaining the ratio with the intensity of.
  • the correlation value calculation unit 62 of each of the above embodiments calculates the correlation value between the intensity-related signal and the feature signal, but calculates the internal product value between the intensity-related signal and the feature signal. May be good.
  • the storage unit 63 stores the single correlation value corrected by using the reference correlation value, but the storage unit 63 stores the single correlation value before correction and calculates the concentration.
  • the unit 63 may be configured to subtract the reference correlation value from the single correlation value before correction and then obtain the corrected single correlation value to be converted per unit concentration.
  • the plurality of feature signals are not limited to the above-described embodiment, and may be functions different from each other. Further, as the feature signal, for example, a function showing a waveform (sample spectrum) of light intensity, logarithmic intensity, or absorbance obtained by flowing a span gas having a known concentration may be used. Further, when measuring the concentration of one measurement target component, at least one feature signal is sufficient.
  • the number of single correlation values and sample correlation values larger than the number of gas types are obtained by using the feature signals of the kinds larger than n.
  • the single correlation value at the pressure in each cell is stored in the storage unit 63 at the time of reference measurement, and converted into the single correlation value in each broadening factor using the relationship of the equation (Equation 2).
  • the single correlation value for each broadening factor may be directly measured at the time of reference measurement and stored in the storage unit 63.
  • the light source control unit 5 of each of the above embodiments is for continuously oscillating (CW) the semiconductor laser, but as shown in FIG. 8, it may be for quasi-continuous oscillation (pseudo-CW).
  • the light source control unit 5 controls the current source (or voltage source) of each semiconductor laser 2 by outputting a current (or voltage) control signal to drive the drive current (drive) of the current source (or voltage source).
  • the voltage should be equal to or higher than the predetermined threshold for pulse oscillation.
  • the light source control unit 5 oscillates pseudo-continuously by pulse oscillation having a predetermined pulse width (for example, 10 to 50 ns, duty ratio 5%) repeated in a predetermined period (for example, 1 to 5 MHz).
  • the light source control unit 5 changes the temperature by changing the drive current (drive voltage) of the current source (or voltage source) at a predetermined frequency with a wavelength sweeping value that is less than the threshold value for pulse oscillation. Is generated to sweep the oscillation wavelength of the laser beam.
  • the modulation signal that modulates the drive current varies in a triangular wave shape, a saw wave shape, or a sinusoidal shape, and its frequency is, for example, 1 to 100 Hz.
  • the light intensity signal obtained by the photodetector by oscillating the semiconductor laser in a pseudo-continuous manner is as shown in FIG. In this way, the absorption spectrum can be acquired for the entire pulse train. Pseudo-continuous oscillation consumes less power than continuous oscillation, facilitates exhaust heat treatment, and extends the life of the light source.
  • the sample gas may be not only exhaust gas but also the atmosphere, or may be liquid or solid.
  • the present invention can be applied not only to gas but also to liquid or solid as the component to be measured. Further, it can be used not only for the absorbance of light transmitted through the measurement target but also for the calculation of the absorbance by reflection.
  • the light source may be any other type of laser regardless of the semiconductor laser, and any light source is used as long as it is a single-wavelength light source having a half-value width sufficient to ensure measurement accuracy and can even be wavelength-modulated. You may.
  • the present invention it is possible to accurately measure the concentration of the component to be measured by correcting the change in the light absorption spectrum of the component to be measured caused by the coexistence effect of the coexisting component or the wavelength shift of the reference light.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本発明は、共存成分による共存影響又は参照光の波長ずれによって生じる測定対象成分の光吸収スペクトルの変化を補正して、測定対象成分の濃度を精度良く測定するものであり、サンプル中に含まれる測定対象成分を分析する分析装置100であって、サンプルに参照光を射出する光源2と、参照光がサンプルを透過したサンプル光の強度を検出する光検出器3と、サンプルに含まれる共存成分、又は参照光の波長ずれによって生じる測定対象成分又は干渉成分の光吸収スペクトルの変化を表すパラメータを決定するパラメータ決定部64、66と、サンプル光の強度に関連する強度関連信号から、光吸収スペクトルの変化を表すパラメータを用いて補正された測定対象成分の濃度を算出する濃度算出部65とを備える。

Description

分析装置、分析装置用プログラム及び分析方法
 本発明は、例えばガスの成分分析等に用いられる分析装置等に関するものである。
 従来、特許文献1に示すように、半導体レーザの注入電流を変調して発振波長を掃引し、測定対象ガスの吸収スペクトルを得ることにより濃度定量を行う分析手法(TDLAS:Tunable Diode Laser Absorption Spectroscopy)がある。
特開2016-90521号公報
 しかしながら、TDLASのようなレーザを用いた吸収分光法では、測定対象成分の光吸収スペクトルに重なる光吸収スペクトルを持つ干渉成分の影響(干渉影響)だけでなく、高濃度(数%~数十%程度)に共存する共存成分の濃度変化に影響を受けて、その形が変化してしまう(共存影響)。具体的には光吸収スペクトルの幅が広がり、吸収ピークが低くなってしまう(ブロードニング)。その結果、測定対象成分の濃度に測定誤差が生じてしまう。なお、測定対象成分自身が高濃度である場合は、測定対象成分自身が共存成分となり、測定対象成分自身の濃度変化により、共存影響が発生する(セルフブロードニング)。つまり、共存成分とは、自己又は他の成分に対してブロードニング影響を与える成分である。また、TDLASのようなレーザを用いた吸収分光法では、周囲温度変化などによるレーザから射出される光の波長ずれによって、測定対象成分の濃度に測定誤差が生じてしまう。すなわち、いずれの場合も、測定対象成分の光吸収スペクトルが変化してしまい、測定対象成分の濃度に測定誤差が生じていた。
 本発明は上述したような問題に鑑みてなされたものであり、光吸収を利用した分析装置において、共存成分による共存影響又は波長ずれによって生じる光吸収スペクトルの変化を補正して、測定対象成分の濃度を精度良く測定することをその主たる課題とするものである。
 共存成分の影響によりブロードニングした光吸収スペクトルは、図10(A)に示すように、共存成分の濃度に応じて、スペクトル幅が広がり、吸収ピークの高さが低くなるものの、その全体の面積はほとんど変わらないことが知られている。一方、圧力が変動した場合には、図10(B)に示すように、光吸収スペクトルの幅は広がるが、吸収ピークの高さはほぼ変わらない。
 そこで、本願発明者は、共存影響と圧力変動による光吸収スペクトルの変化の違いと類似性に着目し、サンプルに含まれる共存成分により生じる測定対象成分の光吸収スペクトルの変化率を示すブロードニングファクタFを新たに導入し、ある圧力Pにおける吸光度信号をA(t,P)とすると、共存影響によりブロードニングファクタFのブロードニングが起こったときの吸光度信号A’(t,P)は、近似的に以下の式で表されることを見出した。
Figure JPOXMLDOC01-appb-M000002
 つまり、共存影響によるスペクトル変化は、圧力がF倍になり、吸光度が1/F倍になったスペクトル変化とほぼ同じである。本発明は、このことを利用して共存影響によるブロードニングを圧力変化に換算して、圧力補正と同時に共存影響補正を行うことを基本概念とするものである。
 また、周囲温度変化などによる光源の波長のずれによっても光吸収スペクトルが変化するので、この変化を検知し、補正する必要がある。
 すなわち、本発明に係る分析装置は、サンプル中に含まれる測定対象成分を分析する分析装置であって、前記サンプルに参照光を照射する光源と、前記参照光が前記サンプルを透過したサンプル光の強度を検出する光検出器と、前記サンプルに含まれる共存成分、又は前記参照光の波長ずれによって生じる、前記測定対象成分又は干渉成分の光吸収スペクトルの変化を表すパラメータを決定するパラメータ決定部と、前記サンプル光の強度に関連する強度関連信号から、前記光吸収スペクトルの変化を表すパラメータを用いて補正された前記測定対象成分の濃度を算出する濃度算出部とを備えることを特徴とする。
 このような構成であれば、サンプルに含まれる共存成分又は参照光の波長ずれによって生じる測定対象成分又は干渉成分の光吸収スペクトルの変化を表すパラメータを用いて補正された測定対象成分の濃度を算出するので、共存成分による共存影響又は波長ずれによって生じる光吸収スペクトルの変化を補正して、測定対象成分の濃度を精度良く測定することができる。
 前記光吸収スペクトルの変化を表すパラメータとしては、前記サンプルに含まれる共存成分により生じる前記測定対象成分又は干渉成分の光吸収スペクトルの変化率を示すブロードニングファクタ、又は前記参照光の波長ずれ量を挙げることができる。
 これにより、前記濃度算出部は、前記サンプル光の強度に関連する強度関連信号と、前記ブロードニングファクタ又は前記波長ずれ量とを用いて、前記共存成分による共存影響又は前記参照光の波長ずれを補正した前記測定対象成分の濃度を算出する。
 前記パラメータ決定部は、ブロードニングファクタ又は圧力が既知である測定対象成分及び干渉成分の光吸収信号に関連するリファレンスデータと、前記サンプル光の強度から求まる光吸収信号に関連するサンプルデータとをフィッティングして、ブロードニングファクタを決定することが考えられる。ここで、フィッティングとは、リファレンスデータとサンプルデータとを比較して照合することである。なお、比較及び照合の際に、サンプルの圧力値と、上述した式(数1)の関係を用いて、リファレンスデータを変換して用いる。具体的な比較及び照合の方法としては、例えば、最急降下法、ガウス・ニュートン法、レーベンバーグ・マルカート法などを用いた反復計算を伴う非線形最小二乗法が挙げられる。
 また、前記パラメータ決定部は、前記共存成分の濃度及びブロードニングファクタの関係を示す関係データと、測定された前記共存成分の濃度とを用いて、ブロードニングファクタを決定することが考えられる。
 前記パラメータ決定部は、波長ずれ量が既知である測定対象成分及び干渉成分の光吸収信号に関連するリファレンスデータと、前記サンプル光の強度から求まる光吸収信号に関連するサンプルデータとをフィッティングして、波長ずれ量を決定することが考えられる。
 また、前記パラメータ決定部は、周囲温度と波長ずれ量の関係を示す関係データと、測定された周囲温度とを用いて、前記参照光の波長ずれ量を決定することが考えられる。
 分析装置は、前記サンプル光の強度に関連する強度関連信号と、所定の特徴信号との相関値を算出する相関値算出部をさらに備え、前記濃度算出部は、前記相関値及び前記測定対象成分又は干渉成分の光吸収スペクトルの変化を表すパラメータを用いて、前記共存成分による共存影響又は前記参照光の波長ずれを補正した前記測定対象成分の濃度を算出することが望ましい。
 この構成であれば、サンプル光の強度に関連する強度関連信号と特徴信号との相関値を算出し、算出された相関値を用いて測定対象成分の濃度を算出するので、吸収信号を吸収スペクトルへ変換することなく、吸収信号の特徴を劇的に少ない変数で捉えることができ、複雑なスペクトル演算処理をすることなく、測定対象成分の濃度を簡単な演算で測定できる。例えば一般的なスペクトルフィッティングで用いるデータ点数は数百点必要だが、本発明ではせいぜい数個から数十個程度の相関値を使えば同等の精度で濃度の算出が可能となる。その結果、演算処理の負荷を劇的に小さくすることができ、高度な演算処理装置が不要となり、分析装置のコストを削減することができるとともに、小型化が可能となる。
 本発明の分析装置は、1又は複数の干渉影響を除去すべき干渉成分が含まれるサンプル中の測定対象成分を分析する分析装置であって、前記相関値算出部は、前記測定対象成分の種類数及び前記干渉成分の種類数を合わせた数以上の数の特徴信号を用いて複数の相関値を算出するものであり、前記濃度算出部は、前記複数の相関値及び前記測定対象成分又は干渉成分の光吸収スペクトルの変化を表すパラメータを用いて、前記測定対象成分の濃度を算出することが望ましい。
 本発明の分析装置は、前記測定対象成分及び各干渉成分が単独で存在する場合のそれぞれの前記強度関連信号と複数の前記特徴信号とから求められた前記測定対象成分及び各干渉成分それぞれの単位濃度当たりの相関値である単独相関値を格納する格納部をさらに備え、前記濃度算出部は、前記相関値算出部により得られた複数の相関値と、前記複数の単独相関値と、前記測定対象成分又は干渉成分の光吸収スペクトルの変化を表すパラメータとを用いて、前記測定対象成分の濃度を算出するものであるであることが望ましい。
 具体的に前記濃度算出部は、前記複数の単独相関値を前記測定対象成分又は干渉成分の光吸収スペクトルの変化を表すパラメータを用いて補正し、補正した複数の単独相関値と前記相関値算出部により得られた複数の相関値とを用いて、前記測定対象成分の濃度を算出するものであることが望ましい。
 この構成であれば、せいぜい数個から数十個程度の元数の連立方程式を解くという簡単かつ確実な演算により、干渉影響と共存成分による共存影響、又は参照光の波長ずれの影響が取り除かれた測定対象成分の濃度を決定することができる。
 より具体的には、前記濃度算出部は、前記相関値算出部により得られた複数の相関値と、前記補正した複数の単独相関値と、前記測定対象成分及び前記各干渉成分それぞれの濃度とからなる連立方程式を解くことにより、前記測定対象成分の濃度を算出するものであることが望ましい。
 ここで、前記単独相関値の補正を行うために、予め複数の既知の圧力、又は参照光の波長ずれにおいて取得した各成分の単独相関値を前記格納部へ格納しておくことが望ましい。こうすることによって、パラメータ決定部で決定されたブロードニングファクタ、又は波長ずれ量を用いて、単独相関値を補正することができる。なお、予め格納部へ格納しておく単独相関値は、既知の圧力において取得したものの替わりに、既知のブロードニングファクタにおいて取得したものとしても良いが、既知のブロードニングファクタの状態を作り出すことは容易ではないため、既知の圧力において取得した単独相関値を用いる方が望ましい。
 またサンプルの圧力が測定中に変動する場合には、サンプルの圧力を圧力センサ等でモニタし、その圧力値も用いて、前記単独相関値を補正することが望ましい。こうすることによって、共存成分による共存影響と圧力変動による影響を同時に補正することができる。
 この時、前記濃度算出部は、前記サンプルの複数の既知の圧力ごとに取得した各成分の前記単独相関値と、前記相関値算出部により得られた複数の相関値と、前記セル内の圧力値と、以下の式(数2)の関係を用いて、前記単独相関値を補正することが考えられる。
Figure JPOXMLDOC01-appb-M000003
 ここで、pは前記圧力センサにより測定された前記サンプルの圧力、Fは前記ブロードニングファクタ決定部により決定されたブロードニングファクタ、sijは前記格納部に格納された各圧力における単独相関値であり、s′ijは補正された単独相関値である。なお、上記式(数2)は、サンプル測定時のサンプルの圧力pにおける単独相関値sij(p)に対して、圧力をF倍した圧力における単独相関値を1/F倍することによって、補正した単独相関値s′ijを求めることを示している。
 なお、干渉成分も共存成分によってブロードニングの影響を受ける場合は、干渉成分のブロードニングファクタを別途決定して、干渉成分の単独相関値を補正してもよい。これによって、さらに測定精度を上げることができる。
 本発明に係る分析装置用プログラムは、サンプルに参照光を照射する光源と、前記サンプルを透過したサンプル光を検出する光検出器とを具備した分析装置に適用されるプログラムであって、前記サンプルに含まれる共存成分、又は前記参照光の波長ずれによって生じる、前記測定対象成分又は干渉成分の光吸収スペクトルの変化を表すパラメータを決定するパラメータ決定部と、前記サンプル光の強度に関連する強度関連信号から、前記光吸収スペクトルの変化を表すパラメータを用いて補正された前記測定対象成分の濃度を算出する濃度算出部と、としての機能を前記分析装置に発揮させることを特徴とする。
 さらに、本発明に係る分析方法は、サンプルに参照光を照射する光源と、前記サンプルを透過したサンプル光を検出する光検出器とを用いて、前記サンプルに含まれる測定対象成分を分析する分析方法であって、前記サンプルに含まれる共存成分、又は前記参照光の波長ずれによって生じる、前記測定対象成分又は干渉成分の光吸収スペクトルの変化を表すパラメータを決定し、前記サンプル光の強度に関連する強度関連信号から、前記光吸収スペクトルの変化を表すパラメータを用いて補正された前記測定対象成分の濃度を算出することを特徴とする。
 以上に述べた本発明によれば、光吸収を利用した分析装置において、共存成分による共存影響又は参照光の波長ずれによって生じる光吸収スペクトルの変化を補正して、測定対象成分の濃度を精度良く測定することができる。
本発明の第1実施形態に係る分析装置の全体模式図である。 同実施形態における信号処理装置の機能ブロック図である。 同実施形態におけるレーザ発振波長の変調方法を示す模式図である。 同実施形態における発振波長、光強度I(t)、対数強度L(t)、特徴信号F(t)、相関値S(t)の一例を示す時系列グラフである。 同実施形態の単独相関値及び実測相関値を用いた濃度算出の概念図を示す図である。 本発明の第2実施形態に係る分析装置の全体模式図である。 本発明の第2実施形態における信号処理装置の機能ブロック図である。 疑似連続発振における駆動電流(電圧)及び変調信号を示す図である。 疑似連続発振による測定原理を示す模式図である。 共存影響によるスペクトル変化及び圧力変化によるスペクトル変化を示す模式図である。
100・・・分析装置
1  ・・・セル
2  ・・・光源(半導体レーザ)
3  ・・・光検出器
4  ・・・信号処理装置
61 ・・・対数演算部
62 ・・・相関値算出部
63 ・・・格納部
64 ・・・ブロードニングファクタ決定部
65 ・・・濃度算出部
66 ・・・波長ずれ決定部
7  ・・・圧力センサ
<第1実施形態(共存影響補正機能)>
 本実施形態の分析装置100は、排ガス等のサンプルガス中に含まれる測定対象成分(ここでは、例えばCOやCO等)の濃度を測定する濃度測定装置であり、図1に示すように、サンプルガスが導入されるセル1と、セル1に変調するレーザ光を照射する光源たる半導体レーザ2と、セル1を透過したレーザ光であるサンプル光の光路上に設けられてサンプル光を受光する光検出器3と、光検出器3の出力信号を受信し、その値に基づいて測定対象成分の濃度を算出する信号処理装置4と、セル1内の圧力をモニタする圧力センサ7とを備えている。
 なお、本実施形態の分析装置100には、分析装置100にサンプリングガスを導入するための導入流路が接続されており、また、分析装置100により分析されたガスが排出する排出流路が接続されている。そして、導入流路又は排出流路には、分析装置100にサンプリングガスを導入するためのポンプが設けられている。また、導入流路は、排気管等からの排ガスをダイレクトでサンプリングする構成であっても良いし、排ガスが捕集されたバッグから排ガスを導入する構成であっても良いし、例えばCVS(Constant volume sampler)等の希釈装置により希釈された排ガスを導入する構成であっても良い。
 各部を説明する。
 セル1は、測定対象成分の吸収波長帯域において光の吸収がほとんどない石英、フッ化カルシウム、フッ化バリウム等の透明材質で光の入射口及び出射口が形成されたものである。このセル1には、図示しないが、ガスを内部に導入するためのインレットポートと、内部のガスを排出するためのアウトレットポートとが設けられており、サンプルガスは、このインレットポートからセル1内に導入されて封入される。
 半導体レーザ2は、ここでは半導体レーザ2の一種である量子カスケードレーザ(QCL:Quantum Cascade Laser)であり、中赤外(4~12μm)のレーザ光を発振する。この半導体レーザ2は、与えられた電流(又は電圧)によって、発振波長を変調(変える)ことが可能なものである。なお、発振波長が可変でさえあれば、他のタイプのレーザを用いても良く、発振波長を変化させるために、温度を変化させる等しても構わない。
 光検出器3は、ここでは、比較的安価なサーモパイル等の熱型のものを用いているが、その他のタイプのもの、例えば、応答性がよいHgCdTe、InGaAs、InAsSb、PbSe等の量子型光電素子を用いても構わない。
 信号処理装置4は、バッファ、増幅器等からなるアナログ電気回路と、CPU、メモリ等からなるデジタル電気回路と、それらアナログ/デジタル電気回路間を仲立ちするADコンバータ、DAコンバータ等とを具備したものであり、前記メモリの所定領域に格納した所定のプログラムに従ってCPUやその周辺機器が協働することによって、図2に示すように、半導体レーザ2の出力を制御する光源制御部5や、光検出器3からの出力信号を受信し、その値を演算処理して測定対象成分の濃度を算出する信号処理部6としての機能を発揮する。
 圧力センサ7は、サンプルの圧力をモニタするものであり、ここでは、セル1内の絶対圧を計測するものであり、ここではシリコン・ピエゾ抵抗式の絶対圧センサを用いている。また図示はしていないが、測定時のセル内の圧力は20~30kPa程度になるように、ポンプと調圧器を用いて調整されている。
 以下に各部を詳述する。
 光源制御部5は、電流(又は電圧)制御信号を出力することによって半導体レーザ2の電流源(又は電圧源)を制御するものである。具体的に光源制御部5は、半導体レーザ2の駆動電流(又は駆動電圧)を所定周波数で変化させ、半導体レーザ2から出力されるレーザ光の発振波長を中心波長に対して所定周波数で変調させる。これによって、半導体レーザ2は、所定の変調周波数で変調された変調光を射出することになる。
 この実施形態においては、光源制御部5は駆動電流を三角波状に変化させ、発振周波数を三角波状に変調する(図4の「発振波長」参照)。実際には、発振周波数が三角波状になるように、駆動電流の変調を別の関数で行う。また、レーザ光の発振波長は、図3に示すように、測定対象成分の光吸収スペクトルのピークを中心波長として変調されるようにしてある。その他、光源制御部5は、駆動電流を正弦波状や鋸波状、または任意の関数状に変化させ、発振周波数を正弦波状や鋸波状、または任意の関数状に変調してもよい。
 信号処理部6は、対数演算部61、相関値算出部62、格納部63、パラメータ決定部であるブロードニングファクタ決定部64、濃度算出部65等からなる。
 対数演算部61は、光検出器3の出力信号である光強度信号に対数演算を施すものである。光検出器3により得られる光強度信号の継時変化を示す関数I(t)は、図4の「光強度I(t)」のようになり、対数演算を施すことにより、図4の「対数強度L(t)」のようになる。
 相関値算出部62は、サンプル光の強度に関連する強度関連信号と複数の所定の特徴信号とのそれぞれの相関値を算出するものである。特徴信号とは、強度関連信号と相関を取ることで、強度関連信号の波形特徴を抽出するための信号である。特徴信号としては、例えば正弦波信号や、それ以外の強度関連信号から抽出したい波形特徴に合わせた様々な信号を用いることができる。
 以下では、特徴信号に正弦波信号以外のものを用いた場合の例を説明する。相関値算出部62は、サンプル光の強度に関連する強度関連信号と、当該強度関連信号に対して正弦波信号(正弦関数)とは異なる相関が得られる複数の特徴信号とのそれぞれの相関値を算出する。ここでは、相関値算出部62は、対数演算された光強度信号(対数強度L(t))を強度関連信号として用いる。
 また、相関値算出部62は、測定対象成分の種類数及び干渉影響を除去すべき干渉成分の種類数を合わせた数以上の特徴信号F(t)(i=1,2,・・・,n)を用いて、下式(数3)により、サンプル光の強度関連信号と複数の特徴信号とのそれぞれの相関値である複数のサンプル相関値Sを算出するものである。なお、下式(数3)におけるTは、変調の周期である。
Figure JPOXMLDOC01-appb-M000004
 相関値算出部62は、サンプル相関値を算出する時、式(数3)のように、サンプル光の強度関連信号L(t)と複数の特徴信号F(t)との相関値Sからリファレンス光の強度関連信号L(t)と複数の特徴信号F(t)との相関値であるリファレンス相関値Rを差し引く補正をしたサンプル相関値S′を算出することが望ましい。これにより、サンプル相関値に含まれるオフセットを除去し、測定対象成分及び干渉成分の濃度に比例した相関値となり、測定誤差を低減できる。なお、リファレンス相関値を差し引かない構成であっても良い。
 ここで、リファレンス光の取得タイミングは、サンプル光と同時、測定の前後又は任意のタイミングである。リファレンス光の強度関連信号又はリファレンス相関値は、予め取得して格納部63に記憶させておいても良い。また、リファレンス光を同時に取得する方法は、例えば、光検出器3を2つ設けて、半導体レーザ2からの変調光をビームスプリッタなどにより分岐させて、一方をサンプル光測定用とし、他方をリファレンス光測定用とすることが考えられる。
 本実施形態では、相関値算出部62は、複数の特徴信号F(t)として、正弦関数よりも対数強度L(t)の波形特徴を捉えやすい関数を用いている。測定対象成分及び1つの干渉成分を含むサンプルガスで、さらに測定対象成分の共存成分による共存影響を補正したい場合には、3つの特徴信号F(t)、F(t)、F(t)を用いることが考えられ、この3つの特徴信号としては、例えば、以下の式(数4)に示すような吸収スペクトルの形に近いローレンツ関数に基づいた関数と、当該ローレンツ関数に基づいた関数のローレンツ幅に関する偏微分関数とを用いることが考えられる。なお、式(数4)のwはローレンツ幅、sは波長ずれによる吸収ピークの基準時間位置からのずれ、Aは任意の定数、A、A、AはそれぞれF(t)、F(t)、F(t)を変調周期で積分した時にゼロになるように調整するオフセットである。このような関数を特徴信号として用いると共存影響によるスペクトル変化をより感度良くとらえることができ、共存影響補正をより精度よく実施することができる。また、特徴信号としては、ローレンツ関数に基づいた関数の代わりに、フォークト関数に基づいた関数、又はガウス関数に基づいた関数等を用いることもできる。このような関数を特徴信号に用いることで、正弦関数を用いた時よりもより大きな相関値を得ることができ、測定精度を向上させることができる。
Figure JPOXMLDOC01-appb-M000005
 ここで、特徴信号は、直流成分を除去、すなわち変調周期で積分した時にゼロになるようにオフセットを調整することが望ましい。こうすることで、光強度の変動による強度関連信号にオフセットが乗った時の影響を除去することができる。なお、特徴信号の直流成分を除去する代わりに、強度関連信号の直流成分を除去してもよいし、特徴信号と強度関連信号の両方とも直流成分を除去してもよい。その他、特徴信号として、測定対象成分及び/又は干渉成分の吸収信号の実測値、またはそれらを模したものをそれぞれ用いてもよい。
 なお、3つの特徴信号F(t)、F(t)、F(t)を互いに直交する直交関数列又は直交関数列に近い関数列とすることにより、対数強度L(t)の特徴をより効率的に抽出することができ、後述する連立方程式により得られる濃度を精度良くすることができる。
 格納部63は、既知のセル内の圧力における測定対象成分及び各干渉成分が単独で存在する場合のそれぞれの強度関連信号と複数の特徴信号F(t)とから求められた測定対象成分及び各干渉成分それぞれの単位濃度当たりの相関値である単独相関値を格納するものである。この単独相関値を求めるのに用いる複数の特徴信号F(t)は、相関値算出部62で用いる複数の特徴信号F(t)と同一である。このように格納部63には、種々のセル内の圧力毎の単独相関値が格納される。
 ここで、格納部63は、単独相関値を格納する時、測定対象成分及び各干渉成分が単独で存在する場合の相関値からリファレンス相関値を差し引いた上で、単位濃度当たりに換算する補正をした単独相関値を格納することが望ましい。これにより、単独相関値に含まれるオフセットを除去し、測定対象成分及び干渉成分の濃度に比例した相関値となり、測定誤差を低減できる。なお、リファレンス相関値を差し引かない構成であっても良い。
 ブロードニングファクタ64は、サンプルに含まれる共存成分により生じる測定対象成分及び干渉成分の光吸収スペクトルの変化率を示すブロードニングファクタFを決定するものである。なお、干渉成分に対する共存成分による共存影響も考慮すべき場合は、ブロードニングファクタFはその成分ごとに追加され、決定される。
 ブロードニングファクタFの決定方法としては、例えば、以下の(a)又は(b)の手順が考えられる。
(a)セル内の各圧力p(k=1,2,・・・,l)における測定対象成分及び干渉成分の各特徴信号F(t)に対応する各単独相関値sitar(p)、siint(p)を予め取得し、測定時に得られたサンプル相関値と、前記単独相関値とを比較、照合してブロードニングファクタFを決定する。なお、比較、照合の際、セル内の圧力値と、上述した式(数2)の関係とを用いて、前記単独相関値を変換して用いる。この方法の場合、必要な特徴信号の数は、測定対象成分の種類数と干渉成分の種類数とブロードニングファクタの種類数を合わせた数以上となる。
(b)共存成分の濃度及びブロードニングファクタFの関係を示す関係データと、測定された共存成分の濃度とを用いて、ブロードニングファクタFを決定する。
 このとき、前記関係データは、予め、共存成分の各濃度毎にブロードニングファクタFを実験により又は計算により求めることで生成される。測定された共存成分の濃度は、本実施形態の分析装置100により、共存影響補正前に測定したものであってもよいし、別の分析装置を用いて共存成分の濃度を測定したものであっても良い。
 濃度算出部65は、相関値算出部62により得られた複数のサンプル相関値を用いて測定対象成分の濃度を算出するものである。
 具体的に濃度算出部65は、相関値算出部62により得られた複数のサンプル相関値と、ブロードニングファクタ決定部64により決定されたブロードニングファクタFと、格納部63に格納された複数の単独相関値とに基づいて、測定対象成分の濃度を算出するものである。より詳細には、濃度算出部65は、ブロードニングファクタ決定部64により得られたブロードニングファクタFから、格納部63に格納された複数の単独相関値を補正して取得する。そして、濃度算出部65は、相関値算出部62により得られた複数のサンプル相関値と、決定されたブロードニングファクタFに対応する補正された複数の単独相関値と、測定対象成分及び各干渉成分それぞれの濃度とからなる連立方程式を解くことにより、測定対象成分の濃度を算出するものである。
 次に、前記各部の詳細説明を兼ねて、この分析装置100の動作の一例を説明する。以下では、サンプルガス中に1つの測定対象成分と1つの干渉成分とが含まれる場合を想定している。
<リファレンス測定>
 まず、光源制御部5が、半導体レーザ2を制御し、所定の変調周波数と変調深さで且つ測定対象成分の吸収スペクトルのピークを中心に、レーザ光の波長を変調する。なお、スパンガスを用いたリファレンス測定の前に、ゼロガスを用いたリファレンス測定を行い、リファレンス相関値の測定を行ってもよい。
 次に、オペレータにより又は自動的に、セル1内にスパンガス(成分濃度既知のガス)が導入されて、リファレンス測定が行われる。このリファレンス測定は、測定対象成分が単独で存在するスパンガスと、干渉成分が単独で存在するスパンガスとのそれぞれにおいて行われる。
 具体的には、リファレンス測定において、対数演算部61が各セル内の圧力における光検出器3の各出力信号を受信して対数強度L(t)を算出する。そして、相関値算出部62は、その対数強度L(t)と3つの特徴信号F(t)、F(t)、F(t)との相関値を算出し、その相関値からリファレンス相関値を差し引いたものをスパンガスの濃度で割ることにより、単位濃度当たりの各スパンガスの相関値である単独相関値を算出する。なお、単位濃度あたりの単独相関値を算出する代わりに、スパンガス濃度と当該スパンガスの単独相関値とを記憶させておいても良い。
 具体的には以下の通りである。
 セル内の圧力をpに調整し、測定対象成分が単独で存在するスパンガスをセル1内に導入することにより、相関値算出部62により測定対象成分の相関値S1tar(p)、S2tar(p)、S3tar(p)を算出する。ここで、S1tar(p)は、第1の特徴信号との相関値であり、S2tar(p)は、第2の特徴信号との相関値であり、S3tar(p)は、第3の特徴信号との相関値である。そして、相関値算出部62は、それら相関値S1tar(p)、S2tar(p)、S3tar(p)からリファレンス相関値Rを差し引いたものを測定対象成分のスパンガス濃度ctarで割ることにより、単独相関値s1tar(p)、s2tar(p)、s3tar(p)を算出する。この手順をセル内の圧力を調整する調圧器を調整するなどの方法により、セル内の圧力を順次変化させながら(例えば、20~40kPaを1kPa毎)、各圧力において行い、得られた各圧力における単独相関値とその圧力の関係を記憶しておく。なお、測定対象成分のスパンガス濃度ctarは、予めユーザ等により信号処理部6に入力される。
 また、干渉成分が単独で存在するスパンガスをセル内の圧力値をpに調整したセル1内に導入することにより、相関値算出部62により干渉成分の相関値S1int(p)、S2int(p)、S3int(p)を算出する。ここで、S1int(p)は、第1の特徴信号との相関値であり、S2int(p)は、第2の特徴信号との相関値であり、S3int(p)は、第3の特徴信号との相関値である。そして、相関値算出部62は、それら相関値S1int(p)、S2int(p)、S3int(p)からリファレンス相関値Rを差し引いたものを干渉成分のスパンガス濃度cintで割ることにより、単独相関値s1int(p)、s2int(p)、s3int(p)を算出する。この手順をセル内の圧力を順次変化させながら(例えば、20~40kPaを1kPa毎)、各圧力において行い、得られた各圧力における単独相関値とその圧力の関係を記憶しておく。なお、干渉成分のスパンガス濃度cintは、予めユーザ等により信号処理部6に入力される。
 上記により算出された各セル内の圧力pにおける単独相関値s1tar(p)、s2tar(p)、s3tar(p)、s1int(p)、s2int(p)、s3int(p)は、格納部63に格納される。なお、このリファレンス測定は、製品出荷前に行うようにしても良いし、定期的に行うようにしてもよい。
<サンプル測定>
 光源制御部5が、半導体レーザ2を制御し、所定の変調周波数と変調深さで且つ測定対象成分の吸収スペクトルのピークを中心に、レーザ光の波長を変調する。
 次に、オペレータにより又は自動的に、セル1内にサンプルガスが導入されて、サンプル測定が行われる。
 具体的には、サンプル測定において、対数演算部61が光検出器3の出力信号を受信して対数強度L(t)を算出する。そして、相関値算出部62は、その対数強度L(t)と複数の特徴信号F(t)、F(t)、F(t)とのサンプル相関値S、S、Sを算出し、その相関値からリファレンス相関値Rを差し引いたサンプル相関値S′、S′、S′を算出する。
 また、ブロードニングファクタ決定部64は、上述した(a)又は(b)の方法により、ブロードニングファクタFを決定する。
 濃度算出部65は、格納部63に格納された各セル内の圧力pにおける単独相関値と、圧力センサ7によって測定したセル内の圧力値pと、ブロードニングファクタ決定部64により決定されたブロードニングファクタFと、上述した式(数2)とを用いて、セル内の圧力とブロードニングファクタの両方で補正した測定対象成分の単独相関値s′1tar、s′2tarと、セル内の圧力でのみ補正した(ブロードニングファクタは1とする)干渉成分の単独相関値s′1int、s′2intとを決定する。決定の方法は、例えば、線形補間、2次補間、スプライン補間などを使う方法が考えられる。
 そして、濃度算出部65は、相関値算出部62が算出したリファレンス相関値で補正したサンプル相関値S′、S′2、と、補正した単独相関値s′1tar、s′2tar、s′1int、s′2intと、測定対象成分及び干渉成分それぞれの濃度Ctar、Cintとからなる以下の二元連立方程式を解く(図5参照)。
Figure JPOXMLDOC01-appb-M000006
 これにより、上式(数5)の連立方程式を解くという簡単かつ確実な演算により、干渉影響及び共存影響が取り除かれた測定対象成分の濃度Ctarを決定することができる。
 なお、干渉影響を除去すべき干渉成分が2以上存在すると想定し得る場合でも、干渉成分の数だけ、単独相関値を追加して、成分種の数と同じ元数の連立方程式を解くことで、同様に干渉影響及び共存影響が取り除かれた測定対象成分の濃度を決定することができる。
 すなわち、一般に測定対象成分と干渉成分を合わせてn種のガスが存在する場合、i番目の特徴信号におけるj番目のガス種の補正した単独相関値をs′ij、j番目のガス種の濃度をC、i番目の特徴信号F(t)におけるサンプル相関値をSとすると、以下の式(数6)が成り立つ。
Figure JPOXMLDOC01-appb-M000007
 この式(数6)で表されるn元連立方程式を解くことで、測定対象成分及び干渉成分の各ガスの干渉影響及び共存影響が補正された濃度を決定することができる。なお、サンプル中に干渉成分が含まれない場合であっても、上記のn元連立方程式を解くことにより、測定対象成分及び共存成分の各ガスの共存影響が補正された濃度を決定することができる。
 このように構成した本実施形態の分析装置100によれば、共存成分により生じる測定対象成分の光吸収スペクトルの変化率を示すブロードニングファクタFを決定し、決定されたブロードニングファクタFを用いて、共存成分による共存影響を補正した測定対象成分の濃度を算出するので、共存成分による共存影響によって生じる測定対象成分の光吸収スペクトルの変化を補正し、測定対象成分の濃度を精度良く測定することができる。
 また本実施形態の分析装置100によれば、サンプル光の強度に関連する強度関連信号である対数強度L(t)と、当該対数強度L(t)に対して複数の特徴信号F(t)とのそれぞれの相関値Sを算出し、算出された複数の相関値Sを用いて測定対象成分の濃度を算出するので、吸収信号を吸収スペクトルへ変換することなく、吸収信号の特徴を劇的に少ない変数で捉えることができ、複雑なスペクトル演算処理をすることなく、測定対象成分の濃度を簡単な演算で測定できる。例えば一般的なスペクトルフィッティングで用いるデータ点数は数百点必要だが、本発明ではせいぜい数個から数十個程度の相関値を使えば同等の精度で濃度の算出が可能となる。その結果、演算処理の負荷を劇的に小さくすることができ、高度な演算処理装置が不要となり、分析装置100のコストを削減することができるとともに、小型化が可能となる。
 ここで、複数の特徴信号が、正弦波信号とは異なる相関が得られる信号を用いているので、従来のロックイン検波を用いた手法により濃度演算を行う分析装置と同等或いはそれ以上の精度で測定対象成分の濃度を求めることができる。
<第2実施形態(波長ずれ補正機能)>
 本実施形態の分析装置100は、排ガス等のサンプルガス中に含まれる測定対象成分(ここでは、例えばCOやCO等)の濃度を測定する濃度測定装置であり、図6に示すように、サンプルガスが導入されるセル1と、セル1に変調するレーザ光を照射する光源たる半導体レーザ2と、セル1を透過したレーザ光であるサンプル光の光路上に設けられてサンプル光を受光する光検出器3と、光検出器3の出力信号を受信し、その値に基づいて測定対象成分の濃度を算出する信号処理装置4とを備えている。なお、第2実施形態において、前記第1実施形態と同一の符号を付したものの機能は、前記第1実施形態のものと基本的に同一であり説明は省略する。以下において、前記第1実施形態とは異なるものについて説明する。
 信号処理部6は、図7に示すように、対数演算部61、相関値算出部62、格納部63、濃度算出部65、パラメータ決定部である波長ずれ検出部66等からなる。
 本実施形態では、相関値算出部62は、複数の特徴信号F(t)として、正弦関数よりも対数強度L(t)の波形特徴を捉えやすい関数を用いている。測定対象成分及び1つの干渉成分を含むサンプルガスで、さらに参照光の波長ずれの影響を補正したい場合には、3つの特徴信号F(t)、F(t)、F(t)を用いることが考えられ、この3つの特徴信号としては、例えば、以下の式(数7)に示すような吸収スペクトルの形に近いローレンツ関数に基づいた関数と、当該ローレンツ関数に基づいた関数の基準時間位置からのずれの偏微分関数とを用いることが考えられる。なお、式(数7)のwはローレンツ幅、sは波長ずれによる吸収ピークの基準時間位置からのずれ、Aは任意の定数、A、A、AはそれぞれF(t)、F(t)、F(t)を変調周期で積分した時にゼロになるように調整するオフセットである。このような関数を特徴信号として用いると参照光の波長ずれの影響によるスペクトル変化をより感度良くとらえることができ、参照光の波長ずれの影響の補正をより精度よく実施することができる。また、特徴信号としては、ローレンツ関数に基づいた関数の代わりに、フォークト関数に基づいた関数、又はガウス関数に基づいた関数等を用いることもできる。このような関数を特徴信号に用いることで、正弦関数を用いた時よりもより大きな相関値を得ることができ、測定精度を向上させることができる。
Figure JPOXMLDOC01-appb-M000008
 格納部63は、既知の参照光の波長ずれ量における測定対象成分及び各干渉成分が単独で存在する場合のそれぞれの強度関連信号と、複数の特徴信号F(t)とから求められた測定対象成分及び各干渉成分それぞれの単位濃度当たりの相関値である単独相関値を格納するものである。この単独相関値を求めるのに用いる複数の特徴信号F(t)は、相関値算出部62で用いる複数の特徴信号F(t)と同一である。このように格納部63には、種々の参照光の波長ずれ毎の単独相関値が格納される。
 ここで、格納部63は、単独相関値を格納する時、測定対象成分及び各干渉成分が単独で存在する場合の相関値からリファレンス相関値を差し引いた上で、単位濃度当たりに換算する補正をした単独相関値を格納することが望ましい。これにより、単独相関値に含まれるオフセットを除去し、測定対象成分及び干渉成分の濃度に比例した相関値となり、測定誤差を低減できる。なお、リファレンス相関値を差し引かない構成であっても良い。
 波長ずれ決定部66は、光検出器3の出力信号である光強度信号から、参照光の波長ずれ量Wを決定するものである。
 波長ずれ量Wの決定方法としては、例えば、以下の(a)又は(b)の手順が考えられる。
(a)各参照光の波長ずれW(k=1,2,・・・,l)における測定対象成分及び干渉成分の各特徴信号F(t)に対応する各単独相関値sitar(W)、siint(W)を予め取得し、測定時に得られたサンプル相関値と、前記単独相関値とを比較、照合して、参照光の波長ずれWを決定する。この方法の場合、必要な特徴信号の数は、測定対象成分の種類数と干渉成分の種類数とを合わせた数に1を加えた数以上となる。1を加えた理由は、各成分の光吸収スペクトルに共通するパラメータである波長ずれ量に対応するためである。
(b)周囲温度と波長ずれ量Wの関係を示す関係データと、測定された周囲温度とを用いて、参照光の波長ずれ量Wを決定する。
 このとき、前記関係データは、予め、光源2の周囲温度毎に参照光の波長ずれWを実験により又は計算により求めることで生成される。
 濃度算出部65は、相関値算出部62により得られた複数のサンプル相関値を用いて測定対象成分の濃度を算出するものである。
 具体的に濃度算出部65は、相関値算出部62により得られた複数のサンプル相関値と、波長ずれ決定部66により決定された波長ずれ量Wと、格納部63に格納された複数の単独相関値とに基づいて、測定対象成分の濃度を算出するものである。より詳細には、濃度算出部65は、波長ずれ決定部66により得られた波長ずれ量Wから、格納部63に格納された複数の単独相関値を補正して取得する。そして、濃度算出部65は、相関値算出部62により得られた複数のサンプル相関値と、決定された波長ずれ量Wに対応する補正された複数の単独相関値と、測定対象成分及び各干渉成分それぞれの濃度とからなる連立方程式を解くことにより、測定対象成分の濃度を算出するものである(図5参照)。
 次に、前記各部の詳細説明を兼ねて、この分析装置100の動作の一例を説明する。以下では、サンプルガス中に1つの測定対象成分と1つの干渉成分とが含まれる場合を想定している。
<リファレンス測定>
 まず、光源制御部5が、半導体レーザ2を制御し、所定の変調周波数と変調深さで且つ測定対象成分の吸収スペクトルのピークを中心に、レーザ光の波長を変調する。なお、スパンガスを用いたリファレンス測定の前に、ゼロガスを用いたリファレンス測定を行い、リファレンス相関値の測定を行ってもよい。
 次に、オペレータにより又は自動的に、セル1内にスパンガス(成分濃度既知のガス)が導入されて、リファレンス測定が行われる。このリファレンス測定は、測定対象成分が単独で存在するスパンガスと、干渉成分が単独で存在するスパンガスとのそれぞれにおいて行われる。
 具体的には、リファレンス測定において、対数演算部61が参照光の各波長ずれ量における光検出器3の各出力信号を受信して対数強度L(t)を算出する。そして、相関値算出部62は、その対数強度L(t)と3つの特徴信号F(t)、F(t)、F(t)との相関値を算出し、その相関値からリファレンス相関値を差し引いたものをスパンガスの濃度で割ることにより、単位濃度当たりの各スパンガスの相関値である単独相関値を算出する。なお、単独相関値を算出する代わりに、スパンガス濃度と当該スパンガスの相関値との関係を記憶させておいても良い。
 具体的には以下の通りである。
 参照光の波長ずれ量をwに調整し、測定対象成分が単独で存在するスパンガスをセル1内に導入することにより、相関値算出部62により測定対象成分の相関値S1tar(w)、S2tar(w)、S3tar(w)を算出する。ここで、S1tar(w)は、第1の特徴信号との相関値であり、S2tar(w)は、第2の特徴信号との相関値であり、S3tar(w)は、第3の特徴信号との相関値である。そして、相関値算出部62は、それら相関値S1tar(w)、S2tar(w)、S3tar(w)からリファレンス相関値Rを差し引いたものを測定対象成分のスパンガス濃度ctarで割ることにより、単独相関値s1tar(w)、s2tar(w)、s3tar(w)を算出する。この手順を半導体レーザ2の設定温度を変化させるなどの方法により、参照光の波長ずれ量を順次変化させながら(例えば、-0.01cm-1~+0.01cm-1を0.001cm-1毎)、各波長ずれ量において行い、得られた各波長ずれ量における単独相関値とその波長ずれの関係を記憶しておく。なお、測定対象成分のスパンガス濃度ctarは、予めユーザ等により信号処理部6に入力される。
 また、参照光の波長ずれ量をwに調整し、干渉成分が単独で存在するスパンガスをセル1内に導入することにより、相関値算出部62により干渉成分の相関値S1int(w)、S2int(w)、S3int(w)を算出する。ここで、S1int(w)は、第1の特徴信号との相関値であり、S2int(w)は、第2の特徴信号との相関値であり、S3int(w)は、第3の特徴信号との相関値である。そして、相関値算出部62は、それら相関値S1int(w)、S2int(w)、S3int(w)からリファレンス相関値Rを差し引いたものを干渉成分のスパンガス濃度cintで割ることにより、単独相関値s1int(w)、s2int(w)、s3int(w)を算出する。この手順を半導体レーザ2の設定温度を変化させるなどの方法により、参照光の波長ずれ量を順次変化させながら(例えば、-0.01cm-1~+0.01cm-1を0.001cm-1毎)、各波長ずれ量において行い、得られた各波長ずれ量における単独相関値とその波長ずれ量の関係を記憶しておく。なお、干渉成分のスパンガス濃度cintは、予めユーザ等により信号処理部6に入力される。
 上記により算出された各参照光の波長ずれ量wにおける単独相関値s1tar(w)、s2tar(w)、s3tar(w)、s1int(w)、s2int(w)、s3int(w)は、格納部63に格納される。なお、このリファレンス測定は、製品出荷前に行うようにしても良いし、定期的に行うようにしてもよい。
<サンプル測定>
 光源制御部5が、半導体レーザ2を制御し、所定の変調周波数と変調深さで且つ測定対象成分の吸収スペクトルのピークを中心に、レーザ光の波長を変調する。
 次に、オペレータにより又は自動的に、セル1内にサンプルガスが導入されて、サンプル測定が行われる。
 具体的には、サンプル測定において、対数演算部61が光検出器3の出力信号を受信して対数強度L(t)を算出する。そして、相関値算出部62は、その対数強度L(t)と複数の特徴信号F(t)、F(t)、F(t)とのサンプル相関値S、S、Sを算出し、その相関値からリファレンス相関値Rを差し引いたサンプル相関値S′、S′を算出する。
 また、波長ずれ決定部66は、上述した方法により、波長ずれ量Wを決定する。
 濃度算出部65は、格納部63に格納された各参照光の波長ずれ量wにおける単独相関値と、波長ずれ決定部64により決定された波長ずれ量Wとを用いて、波長ずれ量Wで補正した測定対象成分及び干渉成分の単独相関値s′1tar、s′2tar、s′1int、s′2intとを決定する。決定の方法は、例えば、線形補間、2次補間、スプライン補間などを使う方法が考えられる。
 そして、濃度算出部65は、前記第1実施形態と同様に、相関値算出部62が算出したリファレンス相関値で補正したサンプル相関値S′、S′と、補正した単独相関値s′1tar、s′2tar、s′1int、s′2intと、測定対象成分及び各干渉成分それぞれの濃度Ctar、Cintとからなる以下の二元連立方程式を解く。
Figure JPOXMLDOC01-appb-M000009
 なお、測定対象成分と干渉成分を合わせてn種のガスが存在する場合は、濃度算出部65は、前記第1実施形態と同様に、上述した式(数6)のようなn元連立方程式を解くことになる。
 このように構成した本実施形態の分析装置100によれば、参照光の波長ずれ量Wを決定し、決定された波長ずれ量Wを用いて、参照光の波長ずれの影響を補正した測定対象成分の濃度を算出するので、参照光の波長ずれによって生じる測定対象成分の光吸収スペクトルの変化を補正し、測定対象成分の濃度を精度良く測定することができる。
<その他の実施形態>
 例えば、前記第1実施形態の構成と第2実施形態の構成を組み合わせて、共存影響補正と波長ずれ補正との両方を併せて行う分析装置を構成しても良い。具体的には、分析装置100が、前記第1実施形態のブロードニングファクタ決定部64及び第2実施形態の波長ずれ決定部66を有しており、格納部63には、前記第1実施形態と第2実施形態のように種々のセル内の圧力p及び参照光の波長ずれw毎の単独相関値sij(p,w)が格納されている。この分析装置100において、濃度算出部65が、圧力センサ7によって測定したセル内の圧力値pと、ブロードニングファクタ決定部64及び波長ずれ決定部66により決定されたブロードニングファクタF及び波長ずれ量Wとを用いて、以下の式(数9)により、セル内の圧力と、ブロードニングファクタと、波長ずれ量とで補正した測定対象成分及び干渉成分の単独相関値を決定する。そして、濃度算出部65は、補正した単独相関値を用いて、上述した(数6)を用いて、測定対象成分の濃度を算出する。
Figure JPOXMLDOC01-appb-M000010
 前記各実施形態の対数演算部61は、光検出器3の光強度信号を対数演算するものであったが、光検出器3の光強度信号を用いて、サンプル光の強度と参照光である変調光の強度との比の対数(いわゆる吸光度)を算出するものであってもよい。このとき、対数演算部61は、サンプル光の強度の対数を演算し、リファレンス光の強度の対数を演算した後にそれらを差し引くことで吸光度を算出しても良いし、サンプル光の強度とリファレンス光の強度との比を求めた後にその比の対数を取ることで吸光度を算出してもよい。
 また、前記各実施形態の相関値算出部62は、強度関連信号と特徴信号との相関値を算出するものであったが、強度関連信号と特徴信号との内積値を算出するものであってもよい。
 また、前記各実施形態では、格納部63はリファレンス相関値を用いて補正した単独相関値を格納するものであったが、格納部63に補正前の単独相関値を格納しておき、濃度算出部63が、補正前の単独相関値からリファレンス相関値を差し引いた上で、単位濃度当たりに換算する補正をした単独相関値を求める構成としても良い。
 複数の特徴信号は、前記実施形態に限られず、互いに異なる関数であれば良い。また、特徴信号として、例えば濃度既知のスパンガスを流して得られた光強度や対数強度又は吸光度の波形(サンプルスペクトル)を示す関数を用いてもよい。また、1つの測定対象成分の濃度を測定する場合には、特徴信号は少なくとも1つあれば良い。
 さらに、測定対象成分と干渉成分を合わせてn種のガスが存在する場合、nより大きい種類の特徴信号を用いて、ガス種の数より大きい個数の単独相関値及びサンプル相関値を求めて、ガス種の数よりも大きい元数の連立方程式を作り、最小二乗法で、各成分濃度を決定してもよく、こうすることで、より測定ノイズに対しても誤差の小さい濃度決定が可能となる。
 前記第1実施形態では、リファレンス測定時に、各セル内の圧力における単独相関値を格納部63に格納して、式(数2)の関係を用いて、各ブロードニングファクタにおける単独相関値に換算しているが、直接、各ブロードニングファクタにおける単独相関値をリファレンス測定時に測定し、格納部63に格納してもよい。
 前記各実施形態の光源制御部5は半導体レーザを連続発振(CW)させるものであったが、図8に示すように、疑似連続発振(疑似CW)させるものであってもよい。この場合、光源制御部5は、電流(又は電圧)制御信号を出力することによって各半導体レーザ2の電流源(又は電圧源)を制御して、電流源(又は電圧源)の駆動電流(駆動電圧)をパルス発振させるための所定のしきい値以上とする。具体的に光源制御部5は、所定の周期(例えば1~5MHz)で繰り返される所定のパルス幅(例えば10~50ns、Duty比5%)のパルス発振で疑似連続発振させるものである。そして、光源制御部5は、電流源(又は電圧源)の駆動電流(駆動電圧)を前記パルス発振用のしきい値未満である波長掃引用の値で、所定周波数で変化させることにより温度変化を発生させてレーザ光の発振波長の掃引を行うものである。駆動電流を変調させる変調信号としては、三角波状、鋸波状又は正弦波状で変化するとともに、その周波数は例えば1~100Hzである。
 このように半導体レーザを疑似連続発振させて光検出器により得られる光強度信号は、図9のようになる。このようにパルス列全体で吸収スペクトルを取得することができる。疑似連続発振は連続発振に比べて光源の消費電力が小さく排熱処理も容易となり、さらに光源の長寿命化もできる。
 また、サンプルガスは、排ガスのみならず大気などでもよいし、液体や固体でも構わない。その意味では、測定対象成分もガスのみならず液体や固体でも本発明を適用可能である。また、測定対象を貫通透過した光の吸光度のみならず、反射による吸光度算出にも用いることができる。
 光源も、半導体レーザに関わらず、他のタイプのレーザでもよいし、測定精度を担保するに十分な半値幅をもつ単波長光源であって、波長変調さえできるものなら、どのような光源を用いてもよい。
 その他、本発明の趣旨に反しない限りにおいて様々な実施形態の変形や組み合わせを行っても構わない。
 本発明によれば、共存成分による共存影響又は参照光の波長ずれによって生じる測定対象成分の光吸収スペクトルの変化を補正して、測定対象成分の濃度を精度良く測定することができる。

Claims (16)

  1.  サンプル中に含まれる測定対象成分を分析する分析装置であって、
     前記サンプルに参照光を照射する光源と、
     前記参照光が前記サンプルを透過したサンプル光の強度を検出する光検出器と、
     前記サンプルに含まれる共存成分、又は前記参照光の波長ずれによって生じる、前記測定対象成分又は干渉成分の光吸収スペクトルの変化を表すパラメータを決定するパラメータ決定部と、
     前記サンプル光の強度に関連する強度関連信号から、前記光吸収スペクトルの変化を表すパラメータを用いて補正された前記測定対象成分の濃度を算出する濃度算出部とを備える、分析装置。
  2.  前記光吸収スペクトルの変化を表すパラメータは、前記サンプルに含まれる共存成分により生じる前記測定対象成分又は干渉成分の光吸収スペクトルの変化率を示すブロードニングファクタ、又は前記参照光の波長ずれ量である、請求項1に記載の分析装置。
  3.  前記濃度算出部は、前記サンプル光の強度に関連する強度関連信号と、前記ブロードニングファクタ又は前記波長ずれ量とを用いて、前記共存成分による共存影響又は前記参照光の波長ずれを補正した前記測定対象成分の濃度を算出する、請求項2記載の分析装置。
  4.  前記パラメータ決定部は、ブロードニングファクタ又は圧力が既知である測定対象成分及び干渉成分の光吸収信号に関連するリファレンスデータと、前記サンプル光の強度から求まる光吸収信号に関連するサンプルデータとをフィッティングして、ブロードニングファクタを決定する、請求項2又は3に記載の分析装置。
  5.  前記パラメータ決定部は、前記共存成分の濃度及びブロードニングファクタの関係を示す関係データと、測定された前記共存成分の濃度とを用いて、ブロードニングファクタを決定する、請求項2又は3記載の分析装置。
  6.  前記パラメータ決定部は、波長ずれ量が既知である測定対象成分及び干渉成分の光吸収信号に関連するリファレンスデータと、前記サンプル光の強度から求まる光吸収信号に関連するサンプルデータとをフィッティングして、波長ずれ量を決定する、請求項2又は3に記載の分析装置。
  7.  前記パラメータ決定部は、周囲温度と波長ずれ量の関係を示す関係データと、測定された周囲温度とを用いて、前記参照光の波長ずれ量を決定する、請求項2又は3に記載の分析装置。
  8.  前記サンプル光の強度に関連する強度関連信号と、所定の特徴信号との相関値を算出する相関値算出部をさらに備え、
     前記濃度算出部は、前記相関値及び前記測定対象成分又は干渉成分の光吸収スペクトルの変化を表すパラメータを用いて、前記共存成分による共存影響又は前記参照光の波長ずれを補正した前記測定対象成分の濃度を算出する、請求項1乃至7の何れか一項に記載の分析装置。
  9.  1又は複数の干渉影響を除去すべき干渉成分が含まれるサンプル中の測定対象成分を分析する分析装置であって、
     前記相関値算出部は、前記測定対象成分の種類数及び前記干渉成分の種類数を合わせた数以上の数の特徴信号を用いて複数の相関値を算出するものであり、
     前記濃度算出部は、前記複数の相関値及び前記測定対象成分又は干渉成分の光吸収スペクトルの変化を表すパラメータを用いて、前記測定対象成分の濃度を算出する、請求項8に記載の分析装置。
  10.  前記測定対象成分及び各干渉成分が単独で存在する場合のそれぞれの前記強度関連信号と複数の前記特徴信号とから求められた前記測定対象成分及び各干渉成分それぞれの単位濃度当たりの相関値である単独相関値を格納する格納部をさらに備え、
     前記濃度算出部は、前記相関値算出部により得られた複数の相関値と、前記複数の単独相関値と、前記測定対象成分又は干渉成分の光吸収スペクトルの変化を表すパラメータとを用いて、前記測定対象成分の濃度を算出するものである、請求項9に記載の分析装置。
  11.  前記濃度算出部は、前記複数の単独相関値を前記測定対象成分又は干渉成分の光吸収スペクトルの変化を表すパラメータを用いて補正し、補正した複数の単独相関値と前記相関値算出部により得られた複数の相関値とを用いて、前記測定対象成分の濃度を算出するものである、請求項10に記載の分析装置。
  12.  前記濃度算出部は、前記相関値算出部により得られた複数の相関値と、前記補正した複数の単独相関値と、前記測定対象成分及び前記各干渉成分それぞれの濃度とからなる連立方程式を解くことにより、前記測定対象成分の濃度を算出するものである、請求項11に記載の分析装置。
  13.  前記サンプルの圧力をモニタする圧力センサをさらに備え、
     前記濃度算出部は、前記圧力センサにより得られた圧力値を用いて、前記単独相関値を補正する、請求項10乃至12の何れか一項に記載の分析装置。
  14.  前記濃度算出部は、前記サンプルの複数の既知の圧力ごとに取得した各成分の前記単独相関値と、前記相関値算出部により得られた複数の相関値と、前記セル内の圧力値と、以下の式(数2)の関係を用いて、前記単独相関値を補正する、請求項13記載の分析装置。
    Figure JPOXMLDOC01-appb-M000001
     ここで、pは前記圧力センサにより測定された前記サンプルの圧力、Fは前記ブロードニングファクタ決定部により決定されたブロードニングファクタ、sijは前記格納部に格納された各圧力における単独相関値であり、s′ijは補正された単独相関値である。なお、上記式(数2)は、サンプル測定時のサンプルの圧力pにおける単独相関値sij(p)に対して、圧力をF倍した圧力における単独相関値を1/F倍することによって、補正した単独相関値s′ijを求めることを示している。
  15.  サンプルに参照光を照射する光源と、前記サンプルを透過したサンプル光を検出する光検出器とを具備した分析装置に適用されるプログラムであって、
     前記サンプルに含まれる共存成分、又は前記参照光の波長ずれによって生じる、前記測定対象成分又は干渉成分の光吸収スペクトルの変化を表すパラメータを決定するパラメータ決定部と、前記サンプル光の強度に関連する強度関連信号から、前記光吸収スペクトルの変化を表すパラメータを用いて補正された前記測定対象成分の濃度を算出する濃度算出部と、としての機能を前記分析装置に発揮させることを特徴とする、分析装置用プログラム。
  16.  サンプルに参照光を照射する光源と、前記サンプルを透過したサンプル光を検出する光検出器とを用いて、前記サンプルに含まれる測定対象成分を分析する分析方法であって、
     前記サンプルに含まれる共存成分、又は前記参照光の波長ずれによって生じる、前記測定対象成分又は干渉成分の光吸収スペクトルの変化を表すパラメータを決定し、
     前記サンプル光の強度に関連する強度関連信号から、前記光吸収スペクトルの変化を表すパラメータを用いて補正された前記測定対象成分の濃度を算出する、分析方法。
PCT/JP2021/019833 2020-05-29 2021-05-25 分析装置、分析装置用プログラム及び分析方法 WO2021241589A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180036191.5A CN115667884A (zh) 2020-05-29 2021-05-25 分析装置、分析装置用程序及分析方法
US17/928,388 US20230204498A1 (en) 2020-05-29 2021-05-25 Analysis device, program for analysis device, and analysis method
EP21811914.7A EP4160189A4 (en) 2020-05-29 2021-05-25 ANALYSIS DEVICE, PROGRAM FOR AN ANALYSIS DEVICE AND ANALYSIS METHOD
JP2022526591A JPWO2021241589A1 (ja) 2020-05-29 2021-05-25

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020094709 2020-05-29
JP2020-094709 2020-05-29

Publications (1)

Publication Number Publication Date
WO2021241589A1 true WO2021241589A1 (ja) 2021-12-02

Family

ID=78744055

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/019833 WO2021241589A1 (ja) 2020-05-29 2021-05-25 分析装置、分析装置用プログラム及び分析方法

Country Status (5)

Country Link
US (1) US20230204498A1 (ja)
EP (1) EP4160189A4 (ja)
JP (1) JPWO2021241589A1 (ja)
CN (1) CN115667884A (ja)
WO (1) WO2021241589A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010512536A (ja) * 2006-12-12 2010-04-22 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 温度補償機能を備えるセンサ濃度検出器
JP2011209242A (ja) * 2010-03-30 2011-10-20 Toyota Motor Corp 炭化水素濃度の算出方法
WO2014112502A1 (ja) * 2013-01-16 2014-07-24 横河電機株式会社 レーザガス分析装置
US20160132617A1 (en) * 2014-11-11 2016-05-12 Spectrasensors, Inc. Target Analyte Detection and Quantification in Sample Gases With Complex Background Compositions
JP2016090521A (ja) 2014-11-11 2016-05-23 株式会社島津製作所 ガス吸光度測定装置
US20170059477A1 (en) * 2015-08-03 2017-03-02 Spectrasensors, Inc. Reconstruction of frequency registration for quantitative spectroscopy
JP2018096974A (ja) * 2016-12-15 2018-06-21 株式会社堀場製作所 分析装置、分析装置用プログラム及び分析方法
JP2019020230A (ja) * 2017-07-14 2019-02-07 株式会社堀場製作所 ガス分析装置、ガス分析装置用プログラム、及びガス分析方法
JP2020106528A (ja) * 2018-12-26 2020-07-09 株式会社堀場製作所 分析装置、分析装置用プログラム及び分析方法
WO2021005900A1 (ja) * 2019-07-05 2021-01-14 株式会社堀場製作所 試料ガス分析装置、試料ガス分析方法及び試料ガス分析用プログラム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5332901A (en) * 1991-03-15 1994-07-26 Li-Cor, Inc. Gas analyzing apparatus and method for simultaneous measurement of carbon dioxide and water
FI101429B1 (fi) * 1995-09-29 1998-06-15 Instrumentarium Oy Törmäyslevenemän korjaus kaasujen ei-dispersiivisessä absorptiomittauksessa
FI101749B1 (fi) * 1996-12-30 1998-08-14 Instrumentarium Oy Kaasukomponentin pitoisuuden tarkka mittaaminen kaasuseoksessa, jossa muut komponentit vaikuttavat pitoisuusmääritykseen
US20030160173A1 (en) * 2002-02-22 2003-08-28 Oleg Ershov Remote gas molecule detector
DE102005062910A1 (de) * 2005-12-29 2007-07-05 Basf Ag Verfahren zur Bestimmung der Identität oder Nicht-Identität und Konzentration einer chemischen Verbindung in einem Medium
US8976358B2 (en) * 2012-03-23 2015-03-10 Spectrasensors, Inc. Collisional broadening compensation using real or near-real time validation in spectroscopic analyzers
JP2014102152A (ja) * 2012-11-20 2014-06-05 Fuji Electric Co Ltd レーザ式ガス分析計
US9857267B1 (en) * 2016-11-14 2018-01-02 Aerodyne Research, Inc. Methods and apparatus for measuring small leaks from carbon dioxide sequestration facilities

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010512536A (ja) * 2006-12-12 2010-04-22 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 温度補償機能を備えるセンサ濃度検出器
JP2011209242A (ja) * 2010-03-30 2011-10-20 Toyota Motor Corp 炭化水素濃度の算出方法
WO2014112502A1 (ja) * 2013-01-16 2014-07-24 横河電機株式会社 レーザガス分析装置
US20160132617A1 (en) * 2014-11-11 2016-05-12 Spectrasensors, Inc. Target Analyte Detection and Quantification in Sample Gases With Complex Background Compositions
JP2016090521A (ja) 2014-11-11 2016-05-23 株式会社島津製作所 ガス吸光度測定装置
US20170059477A1 (en) * 2015-08-03 2017-03-02 Spectrasensors, Inc. Reconstruction of frequency registration for quantitative spectroscopy
JP2018096974A (ja) * 2016-12-15 2018-06-21 株式会社堀場製作所 分析装置、分析装置用プログラム及び分析方法
JP2019020230A (ja) * 2017-07-14 2019-02-07 株式会社堀場製作所 ガス分析装置、ガス分析装置用プログラム、及びガス分析方法
JP2020106528A (ja) * 2018-12-26 2020-07-09 株式会社堀場製作所 分析装置、分析装置用プログラム及び分析方法
WO2021005900A1 (ja) * 2019-07-05 2021-01-14 株式会社堀場製作所 試料ガス分析装置、試料ガス分析方法及び試料ガス分析用プログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4160189A4

Also Published As

Publication number Publication date
CN115667884A (zh) 2023-01-31
EP4160189A4 (en) 2024-06-26
US20230204498A1 (en) 2023-06-29
EP4160189A1 (en) 2023-04-05
JPWO2021241589A1 (ja) 2021-12-02

Similar Documents

Publication Publication Date Title
JP6513762B2 (ja) 分析装置、分析装置用プログラム及び分析方法
EP2942616B1 (en) Gas absorption spectroscopy system and gas absorption spectroscopy method
JP7061546B2 (ja) 分析装置及び分析方法
JP7135608B2 (ja) ガス吸収分光装置、及びガス吸収分光方法
KR20130139222A (ko) 시간 감쇠 신호들을 분석하기 위한, 광 신호 처리 방법 및 장치
US20230417660A1 (en) Gas analysis device and gas analysis method
JP6886507B2 (ja) 分析装置、分析装置用プログラム及び分析方法
NO20170996A1 (en) Chemical analysis method for measurement of tetrafluoromethane, cf4, with improved selectivity
WO2021241589A1 (ja) 分析装置、分析装置用プログラム及び分析方法
JP7461937B2 (ja) 試料分析装置
WO2023095876A1 (ja) 分析装置及び分析方法
WO2023095864A1 (ja) 分析装置、分析装置用プログラム及び分析方法
WO2023095881A1 (ja) 分析装置、分析装置用プログラム及び分析方法
WO2023106196A1 (ja) 分析装置及び分析方法
WO2021053804A1 (ja) ガス吸収分光装置、及びガス吸収分光方法
JP7473546B2 (ja) 分析装置
JP2024013408A (ja) 分析装置、分析方法及び分析用プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21811914

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022526591

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021811914

Country of ref document: EP

Effective date: 20230102