JP2010287831A - 半導体装置およびその製造方法 - Google Patents
半導体装置およびその製造方法 Download PDFInfo
- Publication number
- JP2010287831A JP2010287831A JP2009142215A JP2009142215A JP2010287831A JP 2010287831 A JP2010287831 A JP 2010287831A JP 2009142215 A JP2009142215 A JP 2009142215A JP 2009142215 A JP2009142215 A JP 2009142215A JP 2010287831 A JP2010287831 A JP 2010287831A
- Authority
- JP
- Japan
- Prior art keywords
- sidewall
- insulating film
- film
- interlayer insulating
- semiconductor device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/522—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
- H01L23/5226—Via connections in a multilevel interconnection structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76801—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
- H01L21/76802—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
- H01L21/76804—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics by forming tapered via holes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76801—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
- H01L21/76802—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
- H01L21/76807—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics for dual damascene structures
- H01L21/76808—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics for dual damascene structures involving intermediate temporary filling with material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76801—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
- H01L21/76829—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
- H01L21/76831—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers in via holes or trenches, e.g. non-conductive sidewall liners
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/522—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
- H01L23/532—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
- H01L23/53204—Conductive materials
- H01L23/53209—Conductive materials based on metals, e.g. alloys, metal silicides
- H01L23/53228—Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being copper
- H01L23/53238—Additional layers associated with copper layers, e.g. adhesion, barrier, cladding layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/522—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
- H01L23/532—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
- H01L23/5329—Insulating materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/522—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
- H01L23/532—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
- H01L23/5329—Insulating materials
- H01L23/53295—Stacked insulating layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
【課題】リーク電流の増加と絶縁耐圧の劣化を抑制し、かつ配線容量の増加を抑制する、信頼性の高い半導体装置を提供する。
【解決手段】半導体基板1上の層間絶縁膜11,13に、第2の配線溝20内の第2の銅配線24、および第2の配線溝20に接続したビアホール15内のプラグとを設ける。ビアホール15の側壁に設けられた第1のサイドウォール17および第2のサイドウォール22と、第2の配線溝20の側壁に設けられた第2のサイドウォール22とを備える。これによりビアホール15のサイドウォールの膜厚を、第2の配線溝20のサイドウォールの膜厚より厚くする。
【選択図】図1
【解決手段】半導体基板1上の層間絶縁膜11,13に、第2の配線溝20内の第2の銅配線24、および第2の配線溝20に接続したビアホール15内のプラグとを設ける。ビアホール15の側壁に設けられた第1のサイドウォール17および第2のサイドウォール22と、第2の配線溝20の側壁に設けられた第2のサイドウォール22とを備える。これによりビアホール15のサイドウォールの膜厚を、第2の配線溝20のサイドウォールの膜厚より厚くする。
【選択図】図1
Description
本発明は、半導体装置およびその製造方法に関する。
従来の半導体装置の多層配線構造においては、銅配線と低誘電率層間絶縁膜とが用いられている。半導体装置の世代が進み、パターンが微細になるにつれて、次のような課題があった。つまり、配線の寄生容量、寄生抵抗が大きくなると、半導体装置の回路動作速度に影響する。また、寄生容量が大きくなると、消費電力も増加する。
このような回路動作速度の劣化、消費電力の増加を抑えるため、より誘電率の低いポーラスな低誘電率膜(ポーラスLow−k膜)が層間絶縁膜として使われるようになってきている(特許文献1)。ところが、ポーラスLow−k膜は配線形成用の溝を開口するときの反応性イオン性エッチング時や、その後のレジスト剥離工程であるアッシング時に、側壁にダメージが生じやすい。
このダメージに起因して、配線間リーク電流の増加や絶縁耐圧の低下などが発生することがある。そのため、溝やビアホールの側壁を覆う保護膜として、非ポーラスの保護膜からなるサイドウォールと呼ばれる構造が採用されている。これにより、ポーラスLow−k膜に多少ダメージが入ったとしても、それが原因となって発生する配線間リーク電流の増加や絶縁耐圧の低下などを防止することができる。
たとえば、特許文献2には、図7に示すように、配線溝およびビアホールの側壁に絶縁膜よりなるサイドウォールを被覆する、半導体装置が記載されている。この半導体装置においては、ビアホール106の側壁にサイドウォール107が形成され、配線溝108の側壁にサイドウォール109が形成されている(図7)。同文献によれば、このサイドウォール107、109は、ビアホールと上層配線溝との側壁に、同一工程により同時に形成される。そのため、各サイドウォール107、109の膜厚を個別に制御することは困難である。また、少なくとも底面部においては、サイドウォール107とサイドウォール109とは同程度の膜厚となっている。
また、特許文献3には、配線溝の外壁に絶縁膜よりなるサイドウォールを形成する製法が記載されている。特許文献4には、配線溝およびビアホールの側壁に絶縁膜よりなるサイドウォールを被覆している、半導体装置が記載されている。このサイドウォールは、有機絶縁膜をエッチングするときの形状くずれを防止するための犠牲膜として利用されている。また、同文献においては、ビアホール内と配線溝内とのサイドウォールの膜厚の違いについては言及されていない。また、特許文献5には、配線溝および接続孔の側壁に、多層の酸化防止膜が設けられている、半導体装置が記載されている。
ここで、微細化が進み、ビアホールがその上の配線や下の配線からはみ出すようになると、ビアホールと隣接する配線の間の距離が短くなり、この部分において、リーク電流の増加や絶縁耐圧の劣化等の現象が起こることがあった。つまり、ビアホールの曲率半径が配線溝のものと比較して小さいため、ビアホールに被覆されている絶縁膜サイドウォールは、カバレージが悪くなりやすくい。しかも、ビアホールと隣接する配線の間に電位差が生じると、ビアホールが配線からはみ出した部分に電界が集中しやすい。このような状況において、電界がビアホールから上部に延在する上層配線の突出部の、特に上部に集中すると、この部分でリーク電流が発生したり、絶縁耐圧が低下しやすくなることがあった。
このように、上記文献記載の従来技術は、以下の点で課題を有していた。
第1に、電界の集中を防止する観点から、配線からビアホールがはみ出ないように、サイドウォールを薄くすると、リーク電流増加、絶縁耐圧劣化を加速する結果になる。
第2に、リーク電流、絶縁耐圧の性能を向上するために、配線溝およびビアホールの側壁を含む全体のサイドウォール膜厚を厚くすると、配線容量が増加し、配線における信号伝播遅延時間が長くなる。
以上、ポーラスLow−k膜の例を用いて説明したが、これに限らず、一般的な低誘電率膜についても同様の課題がある。
第1に、電界の集中を防止する観点から、配線からビアホールがはみ出ないように、サイドウォールを薄くすると、リーク電流増加、絶縁耐圧劣化を加速する結果になる。
第2に、リーク電流、絶縁耐圧の性能を向上するために、配線溝およびビアホールの側壁を含む全体のサイドウォール膜厚を厚くすると、配線容量が増加し、配線における信号伝播遅延時間が長くなる。
以上、ポーラスLow−k膜の例を用いて説明したが、これに限らず、一般的な低誘電率膜についても同様の課題がある。
本発明によれば、
基板と、
前記基板上に設けられた層間絶縁膜と、
前記層間絶縁膜に設けられた、配線溝内に金属膜が設けられている配線および、前記配線溝に接続した接続孔内に金属膜が設けられているプラグと、
前記接続孔の側壁に設けられた第1のサイドウォールと、
前記配線溝の側壁に設けられた第2のサイドウォールと、を備え、
前記接続孔の側壁の底部近傍の前記第1のサイドウォールの膜厚が、前記配線溝の側壁の底部近傍の前記第2のサイドウォールの膜厚より、厚い、半導体装置が提供される。
基板と、
前記基板上に設けられた層間絶縁膜と、
前記層間絶縁膜に設けられた、配線溝内に金属膜が設けられている配線および、前記配線溝に接続した接続孔内に金属膜が設けられているプラグと、
前記接続孔の側壁に設けられた第1のサイドウォールと、
前記配線溝の側壁に設けられた第2のサイドウォールと、を備え、
前記接続孔の側壁の底部近傍の前記第1のサイドウォールの膜厚が、前記配線溝の側壁の底部近傍の前記第2のサイドウォールの膜厚より、厚い、半導体装置が提供される。
本発明によれば、
基板上に層間絶縁膜を形成し、前記層間絶縁膜に配線溝および前記配線溝に接続した接続孔を形成し、前記配線溝内および前記接続孔内に金属膜を形成するとともに、前記接続孔の側壁に第1のサイドウォールを形成し、前記配線溝の側壁に第2のサイドウォールを形成する工程と、を含み、
前記接続孔の側壁の底部近傍の前記第1のサイドウォールの膜厚が、前記配線溝の側壁の底部近傍の前記第2のサイドウォールの膜厚より、厚い、半導体装置の製造方法が提供される。
基板上に層間絶縁膜を形成し、前記層間絶縁膜に配線溝および前記配線溝に接続した接続孔を形成し、前記配線溝内および前記接続孔内に金属膜を形成するとともに、前記接続孔の側壁に第1のサイドウォールを形成し、前記配線溝の側壁に第2のサイドウォールを形成する工程と、を含み、
前記接続孔の側壁の底部近傍の前記第1のサイドウォールの膜厚が、前記配線溝の側壁の底部近傍の前記第2のサイドウォールの膜厚より、厚い、半導体装置の製造方法が提供される。
本実施の形態においては、ビアホール内の第1のサイドウォールの膜厚を、配線溝の第2のサイドウォールの膜厚より、厚くなるように形成することができる。このため、ビアホールの第1のサイドウォールの膜厚を厚くすることにより、リーク電流が増加することを抑制でき、絶縁耐圧が劣化することを防止できるとともに、配線溝全体の第2のサイドウォールを薄くすることにより、配線間の寄生容量を低減することができる。
本発明によれば、信頼性の高い半導体装置が提供される。
以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。
(第1の実施の形態)
図1は、第1の実施の形態の半導体装置の断面図を模式的に示す。
本実施の形態においては、半導体基板1上には、不図示のトランジスタ等が形成されている。
本実施の形態の半導体装置は、基板(半導体基板1)と、半導体基板1上に設けられた層間絶縁膜と、層間絶縁膜に設けられた、配線溝(第2の配線溝20)内に金属膜が設けられている配線(第2の銅配線24)および、第2の配線溝20に接続した接続孔(ビアホール15)内に金属膜が設けられているプラグと、ビアホール15の側壁に設けられた第1のサイドウォール(第1のサイドウォール17および第2のサイドウォール22)と、第2の配線溝20の側壁に設けられた第2のサイドウォール(第2のサイドウォール22)と、を備え、ビアホール15の側壁の底部近傍の第1のサイドウォール(第1のサイドウォール17および第2のサイドウォール22)の膜厚が、第2の配線溝20の側壁の底部近傍の第2のサイドウォール(第2のサイドウォール22)の膜厚より、厚いものである。
図1は、第1の実施の形態の半導体装置の断面図を模式的に示す。
本実施の形態においては、半導体基板1上には、不図示のトランジスタ等が形成されている。
本実施の形態の半導体装置は、基板(半導体基板1)と、半導体基板1上に設けられた層間絶縁膜と、層間絶縁膜に設けられた、配線溝(第2の配線溝20)内に金属膜が設けられている配線(第2の銅配線24)および、第2の配線溝20に接続した接続孔(ビアホール15)内に金属膜が設けられているプラグと、ビアホール15の側壁に設けられた第1のサイドウォール(第1のサイドウォール17および第2のサイドウォール22)と、第2の配線溝20の側壁に設けられた第2のサイドウォール(第2のサイドウォール22)と、を備え、ビアホール15の側壁の底部近傍の第1のサイドウォール(第1のサイドウォール17および第2のサイドウォール22)の膜厚が、第2の配線溝20の側壁の底部近傍の第2のサイドウォール(第2のサイドウォール22)の膜厚より、厚いものである。
図1に示すように、半導体基板1(シリコン基板)上に、第1の層間絶縁膜2が形成されている。第1の層間絶縁膜2上に、下から順に、第1のエッチストッパー膜3、第2の層間絶縁膜4および第1のキャップ絶縁膜5が形成されている。これらの層間絶縁膜中に、第1の配線溝6が選択的に形成されている(ここで、図中の先端に矢印が付されているものは、溝や孔を指す)。第1の配線溝6内には、第1のバリアメタル8をライナーとして第1の銅配線9が形成されている。また、第1の配線溝6の側壁には、第1層のサイドウォール7が形成されている。つまり、第2の層間絶縁膜4と第1のバリアメタル8との間に、第1層のサイドウォール7が形成されている。
また、第1の銅配線9の直上に、第2のエッチストッパー膜10、ビア層間絶縁膜11、第3のエッチストッパー膜12、第3の層間絶縁膜13および第2のキャップ絶縁膜14が下から順に形成されている(図1)。ビア層間絶縁膜11には、ビアホール15が選択的に形成されている。第3の層間絶縁膜13中に、第2の配線溝20が形成されている。ビアホール15および第2の配線溝20の内部には、第2のバリアメタル23をライナーとして第2の銅配線24が形成されている。
本実施の形態では、ビアホール15および第2の銅配線24が、いわゆるデュアルダマシンプロセスにより一体に形成されている。
ここで、図1に示すように、ビアホール15の側壁には、第1のサイドウォール17および第2のサイドウォール22が形成されている。一方、第2の配線溝20には、第2のサイドウォール22のみが形成されている。つまり、ビア層間絶縁膜11と第2のバリアメタル23との間に、第1のサイドウォール17および第2のサイドウォール22が形成されている。このとき、ビアホール15内では、第1のサイドウォール17より内側に、第2のサイドウォール22が形成されている。また、第3の層間絶縁膜13と第2のバリアメタル23との間に、第2のサイドウォール22が形成されている。
このように、本実施の形態の半導体装置においては、ビアホール15のサイドウォールの膜厚(第1のサイドウォール17と第2のサイドウォール22との合計膜厚)が、第2の配線溝20の第2のサイドウォール22の膜厚より、厚い。このとき、少なくとも、底部の膜厚を比較した場合、ビアホール15のサイドウォールの膜厚のほうが厚い。
次に、第1の実施の形態の半導体装置の製造方法を、図2〜図6を用いて説明する。
図2〜図6は、第1の実施の形態の半導体装置の製造手順の工程断面図を示す。
図2〜図6は、第1の実施の形態の半導体装置の製造手順の工程断面図を示す。
本実施の形態の半導体装置の製造方法は、基板(半導体基板1)上に層間絶縁膜を形成し、層間絶縁膜に配線溝(第2の配線溝20)および第2の配線溝20に接続した接続孔(ビアホール15)を形成し、第2の配線溝20内およびビアホール15内に金属膜(第2のバリアメタル23)を形成するとともに、ビアホール15の側壁に第1のサイドウォール(第1のサイドウォール17および第2のサイドウォール22)を形成し、第2の配線溝20の側壁に第2のサイドウォール(第2のサイドウォール22)を形成する工程と、を含み、ビアホール15の側壁の底部近傍の第1のサイドウォール(第1のサイドウォール17および第2のサイドウォール22)の膜厚が、第2の配線溝20の側壁の底部近傍の第2のサイドウォール(第2のサイドウォール22)の膜厚より、厚いものである。本実施の形態では、上記層間絶縁膜は、第1の層間絶縁膜(ビア層間絶縁膜11)と、ビア層間絶縁膜11上に設けられた第2の層間絶縁膜(第3の層間絶縁膜13)とにより構成されている。また、ビア層間絶縁膜11にビアホール15が設けられ、第3の層間絶縁膜13に第2の配線溝20が設けられている。
まず、半導体基板1上に、トランジスタ等の能動素子や、容量抵抗等の受動素子を形成する。これらの素子と配線部分についてコンタクト導通部以外の部分を電気的に絶縁するために、図2(A)のように、第1の層間絶縁膜2を成膜する。第1の層間絶縁膜2としては、200nm〜800nmのPSG膜を用い、プラズマCVD法により成膜した。第1の層間絶縁膜2上に、第1のエッチストッパー膜3として、20nm〜70nmのSiCNおよび第2の層間絶縁膜4として80nm〜150nmのポーラスSiCOH(ポーラスLow−k膜)を、この順でCVD(Chemical Vapor Deposition)法により成膜した(以下、「〜」は、特に明示しない限り、上限値と下限値を含むことを表す)。
続いて、第2の層間絶縁膜4に対して、たとえば、200nm〜500nmの波長領域を含む紫外線を、基板温度350℃〜420℃の条件下で照射した。紫外線照射を行うことにより、Si−O−SiからなるポーラスLow−k膜の骨格部分を強固にし、同時にC−Hnよりなるポロジェンの脱離を促進することが可能となる。
続いて、第2の層間絶縁膜4上に、第1のキャップ絶縁膜5として、10nm〜50nmのSiOCをプラズマCVD法により成膜した。そして、フォトリソグラフィー工程、反応性ドライエッチングおよびアッシング工程を実施した。これにより、第1のエッチストッパー膜3、第1のキャップ絶縁膜5および第2の層間絶縁膜4に、所望のパターンの第1の配線溝6が形成された。そして、平均膜厚が10nm〜40nmのSiOCを成膜した後エッチバックすることにより、第1の配線溝6内部の側壁に、第1層のサイドウォール7として、2nm〜20nmのSiOCを形成した。この内部をさらに、第1のバリアメタル8、第1の銅配線9で埋設した(図2(A))。ここで、第1のバリアメタル8としては、Taを用いた。
続いて、図2(B)のように、第1の配線溝6上に、第2のエッチストッパー膜10として20nm〜70nmのSiCN、ビア層間絶縁膜11として50nm〜120nmのSiCOHを、この順で成膜した。次いで、第3のエッチストッパー膜12として20nm〜70nmのSiCNを成膜し、第3の層間絶縁膜13として50nm〜120nmのポーラスSiCOHを成膜した。さらに、第3の層間絶縁膜13上に、第2のキャップ絶縁膜14として30nm〜60nmのSiOCをプラズマCVD法により成膜した。
続いて、図3(A)のように、フォトリソグラフィー工程および反応性ドライエッチングにより、第1のビアホール15を、ビアエッチストッパー層10内で止まるように選択的に開口する。このとき、ビアホール15は、第2のキャップ絶縁膜14、第3の層間絶縁膜13、第3のエッチストッパー膜12およびビア層間絶縁膜11を貫通している。このとき、基板平面に対して垂直方向から見て重なるように、第1の配線溝6内の第1の銅配線9上にビアホール15を形成した。
続いて、図3(B)のように、ビアホール15内および第2のキャップ絶縁膜14上に、第1のサイドウォール形成用絶縁膜16として、ビアホール15内の平均膜厚10nm〜50nmのSiOCを成膜した。続いて、図4(A)のように、第2のサイドウォール形成用絶縁膜16をエッチバックした。これにより、ビアホール15内の平均膜厚3nm〜40nmのSiOCである第1のサイドウォール17(サイドウォール用絶縁膜16がエッチバックで残った部分)を形成した。このとき、第1のサイドウォール17の上部の周囲が、テーパ状となる。
続いて、図4(B)のように、ビアホール15内および第2のキャップ絶縁膜14上を埋め込み材18で埋設する。埋め込み材18としては、たとえば有機系塗布膜を用いた。そして、埋め込み材18上にフォトレジストを形成した後、第2の配線溝20が形成される予定領域を露出するように、第2の配線溝形成用のフォトレジスト19を残した。このとき、以後の工程において、第1の銅配線9と第2の銅配線24とが重なる位置にビアホール15が配置されるようにフォトレジスト19の開口パターンが設けられている。続いて、図5(A)のように、第2の配線溝20を選択的に開口し、第3のエッチストッパー膜12の途中でエッチングを止めた。
続いて、図5(B)のように、埋め込み材18およびフォトレジスト19を除去した。そして、第2のキャップ絶縁膜14上、第2の配線溝20およびビアホール15内に、10nm〜50nmの膜厚の第2のサイドウォール形成用絶縁膜21を成膜した。
次に、図6(A)のように、第2のサイドウォール形成用絶縁膜21を反応性イオンエッチングによりエッチバックを行った。これにより、第2の配線溝20の側壁およびビアホール15の側壁に、第2のサイドウォール22が形成された。この第2のサイドウォール22の最終的な側壁部分の平均膜厚は、第1のビアホール15では、3nm〜40nm、第2の配線溝20では、2nm〜20nmの膜厚となるようにした。このとき、ビアホール15内の第2のサイドウォール22の上部の周囲が、テーパ状となる。
このようにして、ビアホール15内のサイドウォールとして、第1のサイドウォール17上に第2のサイドウォール22が積層されている多層構造が得られる。このため、ビアホール15のサイドウォールの膜厚(第1のサイドウォール17と第2のサイドウォール22との合計膜厚)が、第2の配線溝20の第2のサイドウォール22の膜厚より、厚くなるように形成される。このとき、少なくとも、底部の膜厚を比較した場合、ビアホール15のサイドウォールの膜厚のほうが厚くなるように、形成されている。
この後、ビアホール15および第2のサイドウォール22内面を覆うように、第2のバリアメタル23を形成した。このとき、第2のバリアメタル23として、Taを用いた。そして、ビアホール15および第2のサイドウォール22を埋め込むように、Cuシード層を形成し、めっき法により銅を成膜した。この後、第2の配線溝20外部に形成された、金属を化学的機械的研磨(CMP)により除去して、第2の銅配線24を形成した。このようにして、第1の銅配線9および第2の銅配線24がビアホール15により連結した多層配線構造が得られた(図6(B))。
以上の工程により、図1に示す二層配線構造の半導体装置が得られた。
以上の工程により、図1に示す二層配線構造の半導体装置が得られた。
次に、本実施の形態の作用効果について説明する。
本実施の形態においては、ビアホール15内のサイドウォールの膜厚を、第2の配線溝20の第2のサイドウォール22の膜厚より、厚くなるように形成することができる。また、ビアホール15内のサイドウォールは、第1のサイドウォール17および第2のサイドウォール22の多層構造とすることができるため、第2の配線溝20の第2のサイドウォール22の膜厚を低減しつつ、ビアホール15内のサイドウォール(第1のサイドウォール17)の膜厚のみ増加させることができる。このため、ビアホール15内のサイドウォールの膜厚を厚くすることにより、リーク電流が増加することを抑制でき、絶縁耐圧が劣化することを防止できる。それに加えて、第2の配線溝20全体の第2のサイドウォール22を薄くすることができるため、一定の配線幅を形成するに際して、比誘電率の高いサイドウォール部分のスペースに占める比率を下げることができ、低誘電率膜の比率を高めることができるので、結果として、配線間の寄生容量を低減することができる。以上により、信頼性に優れた半導体装置の実現を図ることができる。
本実施の形態においては、ビアホール15内のサイドウォールの膜厚を、第2の配線溝20の第2のサイドウォール22の膜厚より、厚くなるように形成することができる。また、ビアホール15内のサイドウォールは、第1のサイドウォール17および第2のサイドウォール22の多層構造とすることができるため、第2の配線溝20の第2のサイドウォール22の膜厚を低減しつつ、ビアホール15内のサイドウォール(第1のサイドウォール17)の膜厚のみ増加させることができる。このため、ビアホール15内のサイドウォールの膜厚を厚くすることにより、リーク電流が増加することを抑制でき、絶縁耐圧が劣化することを防止できる。それに加えて、第2の配線溝20全体の第2のサイドウォール22を薄くすることができるため、一定の配線幅を形成するに際して、比誘電率の高いサイドウォール部分のスペースに占める比率を下げることができ、低誘電率膜の比率を高めることができるので、結果として、配線間の寄生容量を低減することができる。以上により、信頼性に優れた半導体装置の実現を図ることができる。
本実施の形態においては、サイドウォールとして、緻密な絶縁膜、好ましくは空孔を含まない絶縁膜を用いることができる。そのため、リーク電流の低減および絶縁耐性の向上を図ることができる。一方、このような緻密なサイドウォールは誘電率が高いため、配線溝の側壁の全体のサイドウォール膜厚を薄くしている。これにより、比誘電率の高いサイドウォール部分のスペースに占める比率を下げることができる。その結果、本実施の形態においては、配線容量の増加を抑制し、配線における信号伝播遅延時間を短くすることができる。
また、本実施の形態では、回路動作速度の劣化、消費電力の増加を抑える観点から、誘電率が低い、好ましくは誘電率が3以下の、ポーラスな低誘電率膜(ポーラスLow−k膜)を、層間絶縁膜(第1の層間絶縁膜2、第2の層間絶縁膜4および第3の層間絶縁膜13)として用いている。
この場合、層間絶縁膜の側壁は、サイドウォールによって保護されている。このため、配線溝等を開口するとき、反応性イオン性エッチング時や、その後のレジスト剥離工程であるアッシング時に、層間絶縁膜の側壁にダメージが多少生じたとしても、ダメージに起因する、配線間リーク電流の増加や絶縁耐圧の低下などを防止できる。これは、ダメージの入った層間絶縁膜の外側、つまり溝配線と接触する部分を、層間絶縁膜より緻密なサイドウォール(化学的に安定な膜)でカバーすることによる効果である。ここでいうダメージとは、ポーラスLow−k膜中の炭素原子が抜けてしまうことにより全体の膜密度や膜を構成している結合(Si−O−Si結合)の強度や密度が低くなることである。
この場合、層間絶縁膜の側壁は、サイドウォールによって保護されている。このため、配線溝等を開口するとき、反応性イオン性エッチング時や、その後のレジスト剥離工程であるアッシング時に、層間絶縁膜の側壁にダメージが多少生じたとしても、ダメージに起因する、配線間リーク電流の増加や絶縁耐圧の低下などを防止できる。これは、ダメージの入った層間絶縁膜の外側、つまり溝配線と接触する部分を、層間絶縁膜より緻密なサイドウォール(化学的に安定な膜)でカバーすることによる効果である。ここでいうダメージとは、ポーラスLow−k膜中の炭素原子が抜けてしまうことにより全体の膜密度や膜を構成している結合(Si−O−Si結合)の強度や密度が低くなることである。
また、本実施の形態においては、図1に示すように、ビアホール15内のサイドウォールの上部の周囲、つまり第1のサイドウォール17および第2のサイドウォール22の上部の周囲が、テーパ状となっている。これにより、ビアホール15内のサイドウォールに対して、第2のバリアメタル23のカバレージが向上する。このため、信頼性に優れた半導体装置の実現を図ることができる。また、本実施の形態の製造マージンを向上させることができる。
さらに、本実施の形態の工程によれば、第2の配線溝20の側壁に、コンフォーマルな第2のサイドウォール22が形成される。このとき、第2の配線溝20の側壁上部の第2のサイドウォール22の断面形状は、角部を有する。第2のサイドウォール22の断面形状は、基板垂線方向に対して、少なくとも一部が、テーパ状となってもよい。また、第2のサイドウォール22は、第2の配線溝20の側壁において、上端部から下端部まで、所定膜厚を確保している。そのため、図1に示すように、第3のエッチストッパー膜12、第3の層間絶縁膜13および第2のキャップ絶縁膜14からなる積層構造と、第2のバリアメタル23との間に、第2のサイドウォール22が設けられた構造となる。これにより、第2のバリアメタル23が、主に第3の層間絶縁膜13中に含まれる水分と反応することを防ぐことができる。また、第2のバリアメタル23の成膜時に、主に第3の層間絶縁膜13からのガス脱に起因する第2のバリアメタル23のカバレージの低下を防ぐことができる。このようにして、信頼性の高い半導体装置の実現を図ることができる。一方、通常の手法により、バリアメタルまたは銅配線が層間絶縁膜に直接隣接している場合、バリアメタルまたは銅配線が、主に層間絶縁膜中に含まれる水分と反応したり、成膜時に、主に層間絶縁膜のガス脱に起因して、バリアメタルまたは銅配線のカバレージの低下が発生することがあった。
(第2の実施の形態)
第2の実施の形態の半導体装置を、図7を参照して説明する。
図7は、第2の実施の形態の半導体装置の断面図を模式的に示す。
第2の実施の形態は、第1の実施の形態と第2の配線溝20とビアホール15との位置関係が異なる以外は同様とする。第2の実施の形態においては、図7に示すように、ミスアライメント等により、ビアホール15の端部が第2層配線(第2の配線溝20)の端部の外側に突出している。つまり、図1に示す第1の実施の形態と比較すると、第1のサイドウォール17が、第2の配線溝20内の第2のサイドウォール22より外側に形成されている。
第2の実施の形態の半導体装置を、図7を参照して説明する。
図7は、第2の実施の形態の半導体装置の断面図を模式的に示す。
第2の実施の形態は、第1の実施の形態と第2の配線溝20とビアホール15との位置関係が異なる以外は同様とする。第2の実施の形態においては、図7に示すように、ミスアライメント等により、ビアホール15の端部が第2層配線(第2の配線溝20)の端部の外側に突出している。つまり、図1に示す第1の実施の形態と比較すると、第1のサイドウォール17が、第2の配線溝20内の第2のサイドウォール22より外側に形成されている。
図7に示すように、一部において、ビアホール15および第2の配線溝20のサイドウォールとして、第1のサイドウォール17と第2のサイドウォール22とが共通している。また、ビアホール15と第2の配線溝20とは、ほぼ同じ面(第1のサイドウォール17の内面)で構成されている。さらに、基板に対して垂線方向から見た曲率半径においては、ビアホール15と第2の配線溝20とは同程度となっている。
続いて、第2の実施の形態の半導体装置の製造方法について説明する。図8〜図12は、第1の実施の形態の半導体装置の製造手順の工程断面図を示す。
第2の実施の形態の製造工程は、第1の実施の形態の製造工程と同様に、層間絶縁膜に接続孔(ビアホール15)を形成する工程と、ビアホール15の内部に第1の絶縁膜(第1のサイドウォール形成用絶縁膜16)を形成し、ビアホール15の側壁に第1のサイドウォール形成用絶縁膜16を残すようにエッチバックする工程と、層間絶縁膜に、ビアホール15と接続する第2の配線溝20を形成する工程と、ビアホール15の内部および第2の配線溝20の内部に、第2の絶縁膜(第2のサイドウォール形成用絶縁膜21)を形成する工程と、ビアホール15の側壁の第1の絶縁膜(第1のサイドウォール形成用絶縁膜16)上および第2の配線溝20の側壁に、第2の絶縁膜(第2のサイドウォール形成用絶縁膜21)を残すようにエッチバックして、ビアホール15の側壁に、第1の絶縁膜(第1のサイドウォール形成用絶縁膜16)および第2の絶縁膜(第2のサイドウォール形成用絶縁膜21)を含む第1のサイドウォール(第1のサイドウォール17および第2のサイドウォール22)を形成するとともに、第2の配線溝20の側壁に、第2の絶縁膜(第2のサイドウォール形成用絶縁膜21)を含む第2のサイドウォール(第2のサイドウォール22)を形成する工程と、を含む。
このとき、第1のサイドウォール(第1のサイドウォール17および第2のサイドウォール22)は、第1の絶縁膜(第1のサイドウォール形成用絶縁膜16)および第2の絶縁膜(第2のサイドウォール形成用絶縁膜21)の一部をエッチバックで残すことによって形成される。
このとき、第1のサイドウォール(第1のサイドウォール17および第2のサイドウォール22)は、第1の絶縁膜(第1のサイドウォール形成用絶縁膜16)および第2の絶縁膜(第2のサイドウォール形成用絶縁膜21)の一部をエッチバックで残すことによって形成される。
図8〜図12に示す第2の実施の形態の製造方法は、図2〜図6に示す第1の実施の形態の製造方法と、次の点を除いて同様にする。第2の実施の形態中、第1の実施の形態と異なる点は、図10(A)に示すビアホール15の位置と、図11(A)に示す、ビアホール15に対する第2の配線溝20の位置である。本工程では、ビアホール15の外周部の一部と第2の配線溝20の外周部の一部とをオンライン上になるように形成する。つまり、第2の配線溝20を形成する際、ビアホール15の外周部(第1のサイドウォール17)の基板垂直方向の延在部分が、第2の配線溝20の外周部となる。このように、一部において、ビアホール15の外周部と第2の配線溝20の外周部とが、シームレスに形成される。
また、本実施の形態においては、第2の配線溝20の側壁上の第2のサイドウォール22の上部の一部の断面形状が、角部を有する。さらに、ビアホール15の側壁上のサイドウォール(ビアホール15および第2のサイドウォール22)の上部の一部と第2の配線溝20の側壁上の第2のサイドウォール22の上部の一部とが、テーパ状となっている。
図10(A)に示す工程においては、フォトレジスト中の開口部の位置を調節すことにより、ビアホール15の位置を調節する。また、図11(A)に示すに示す工程においては、フォトレジスト19中の開口部の位置を調節すことにより、第2の配線溝20の位置を調節する。このようにして、図7に示すように、ミスアライメント等により、ビアホール15の端部を第2層配線(第2の配線溝20)の端部の外側に突出させている。
第2の実施の形態の効果について説明する。
ビアホール15および第2の配線溝20の側壁部分には、全体にわたって共通の厚いサイドウォール(第1のサイドウォール17および第2のサイドウォール22)が形成されている。このため、第2の実施の形態においては、TDDB(TimeDependent Dielectric Breakdown 絶縁膜経時破壊)寿命を長く保つことができる。また、サイドウォールが厚い部分は、ビアホール15近傍だけであるため、第2の配線溝20の寄生容量は、低く保つことができる。
ビアホール15および第2の配線溝20の側壁部分には、全体にわたって共通の厚いサイドウォール(第1のサイドウォール17および第2のサイドウォール22)が形成されている。このため、第2の実施の形態においては、TDDB(TimeDependent Dielectric Breakdown 絶縁膜経時破壊)寿命を長く保つことができる。また、サイドウォールが厚い部分は、ビアホール15近傍だけであるため、第2の配線溝20の寄生容量は、低く保つことができる。
さらに図14を参照して、第2の実施の形態の効果を説明する。
図14は、第2層中の2つの第2の銅配線24、ビアホール15、第1のサイドウォール17および第2のサイドウォール22を模式的に示す。
図14中、領域Aは、ビアホールが設けられている配線間領域を示し、領域Bは、ビアホールがない、配線間領域を示す。領域Aにおいては、ビアホールの側壁サイドウォールを厚くしている。このため、リーク電流の低減およびTDDB耐性の向上を図ることができる。一方、配線の大部分を占める領域Bにおいては、サイドウォールを薄くしている。このため、配線間の寄生容量を低減することができる。このとき、領域Bにおいては、配線間隔を、十分に確保することができる。そのため、サイドウォールは薄くても、リーク電流およびTDDB耐性は問題とならない。
図14は、第2層中の2つの第2の銅配線24、ビアホール15、第1のサイドウォール17および第2のサイドウォール22を模式的に示す。
図14中、領域Aは、ビアホールが設けられている配線間領域を示し、領域Bは、ビアホールがない、配線間領域を示す。領域Aにおいては、ビアホールの側壁サイドウォールを厚くしている。このため、リーク電流の低減およびTDDB耐性の向上を図ることができる。一方、配線の大部分を占める領域Bにおいては、サイドウォールを薄くしている。このため、配線間の寄生容量を低減することができる。このとき、領域Bにおいては、配線間隔を、十分に確保することができる。そのため、サイドウォールは薄くても、リーク電流およびTDDB耐性は問題とならない。
本実施例では、以下に示す、実施例および比較例で作製した試料1および試料2について、Cu配線間のTDDB耐性の評価(温度を150℃まで上げて、絶縁膜がブレークダウンしない程度の電圧3.6Vまで加え続けて破壊が起こるまでの時間を測定)を行った。なお、Cu配線の配線幅を70nmとし、配線間隔を70nmとした。また、ビアホールのサイズは、70nmφとした。TDDB評価結果を図13に示す。図13中、実施例は黒丸を示し、比較例は白丸を示す。
(1)実施例
上記試料1として、上述の製造方法に従い、ビアと配線とがシームレス配線である、第1の実施の形態に相当する構造を作製し、さらに、ミスアライメント距離をふって、ビアズレした、第2の実施の形態に相当する構造を作製した。試料1においては、ビアホール内のサイドウォールの膜厚は、第2層配線中のサイドウォールの膜厚より厚くした。
(2)比較例
上記試料2としては、ビアホール内のサイドウォールの膜厚と第2層配線中のサイドウォールの膜厚とを同じにした以外は、試料1と同様の構造とした。
(1)実施例
上記試料1として、上述の製造方法に従い、ビアと配線とがシームレス配線である、第1の実施の形態に相当する構造を作製し、さらに、ミスアライメント距離をふって、ビアズレした、第2の実施の形態に相当する構造を作製した。試料1においては、ビアホール内のサイドウォールの膜厚は、第2層配線中のサイドウォールの膜厚より厚くした。
(2)比較例
上記試料2としては、ビアホール内のサイドウォールの膜厚と第2層配線中のサイドウォールの膜厚とを同じにした以外は、試料1と同様の構造とした。
本実施の形態の半導体装置の効果を、比較例と比較しつつ、図13を用いて説明する。図13は、TDDB評価の結果として、TDDBライフタイムの配線−ビア間ミスアライメント距離依存性を示す。
比較例に示すように、ビアホール内の側壁に形成されたサイドウォールと第2層配線溝の側壁に形成されたサイドウォールの膜厚が同程度の場合、わずかなミスアライメント距離でもTDDB寿命は劣化して目標値に達しなくなってしまう。なお、これを防止するため、ビアホール内の側壁部と第2層配線溝の側壁部の両方のサイドウォール絶縁膜の膜厚を厚くすると、第2層配線間に存在する絶縁膜の誘電率が大きくなり、寄生容量が増加してしまう。
これに対して、実施例に示すように、ビアホール内のサイドウォール膜厚を厚く、第2層配線溝の内部のサイドウォール膜厚を薄くしておくことにより、TDDB寿命を向上することが可能になる。たとえ、ビアホールが配線からはみ出した部分に電界が集中したとしても、この部分でリーク電流が発生したり、絶縁耐圧が低下しやすくなることを抑制することができる。そのため、信頼性に優れた半導体装置の実現を図ることができる。このとき、一定幅の配線を形成するに際して、比誘電率の高いサイドウォール部分のスペース部分に占める比率を下げることができ、低誘電率膜の比率を高めることができる。その結果、本実施の形態においては、配線間の寄生容量を低減することができる。
以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
たとえば、第1の実施の形態においては、配線2層の場合を記載したが、実際の製品には、多層の配線が形成されるが、3層以上の銅配線層を有する場合は、図2(A)〜図6(B)までが複数回繰り返される。また、組立て時のボンディング用のパッドを形成する工程が最後に付加されるが、これについては、記載を省略する。
たとえば、第1の実施の形態においては、配線2層の場合を記載したが、実際の製品には、多層の配線が形成されるが、3層以上の銅配線層を有する場合は、図2(A)〜図6(B)までが複数回繰り返される。また、組立て時のボンディング用のパッドを形成する工程が最後に付加されるが、これについては、記載を省略する。
本実施の形態においては、ビアホール15と第2の配線溝20との位置関係は、特に限定されない。上述のとおり、ビアホール15の外周部は、第2の配線溝20の外周部に対して、オンライン上でもよく、内側、外側に設けられていてもよい。たとえば、本実施の形態では、オンライン上の場合、ビアホール15のサイドウォールが2層、第2の配線溝20のサイドウォールの一部が1層または2層となる。オンライン上以外の場合、ビアホール15のサイドウォールが2層、第2の配線溝20のサイドウォールが1層となる。また、本実施の形態においては、ビアホール15の径は、第2の配線溝20との関係で特に限定されず、第2の配線溝20の幅に対して、同程度でもよく、小さくても大きくてもよい。
第1の層間絶縁膜2としては、たとえば、シリコン酸化膜、シリコン窒化膜またはPSG(Phospho−Silicate−Glass)膜等を用いることができる。第1の層間絶縁膜2の膜厚としては、たとえば200nm〜800nmとすることができる。
第1のエッチストッパー膜3は、第1の配線溝6のエッチストッパー膜として働く限りは、特に材料や膜厚は限定されない。第1のエッチストッパー膜3により、配線を溝内に埋設形成する際に、溝の深さバラツキを一定以下に抑えることができる。
第1のエッチストッパー膜3は、たとえば、SiC、SiCN、SiOCまたはこれらの積層構造より構成される。また、第1のエッチストッパー膜3の膜厚は、たとえば、20nm〜70nmとすることができる。
第1のエッチストッパー膜3は、第1の配線溝6のエッチストッパー膜として働く限りは、特に材料や膜厚は限定されない。第1のエッチストッパー膜3により、配線を溝内に埋設形成する際に、溝の深さバラツキを一定以下に抑えることができる。
第1のエッチストッパー膜3は、たとえば、SiC、SiCN、SiOCまたはこれらの積層構造より構成される。また、第1のエッチストッパー膜3の膜厚は、たとえば、20nm〜70nmとすることができる。
第2の層間絶縁膜4および第3の層間絶縁膜13としては、低誘電率な多孔質絶縁膜、つまりポーラスLow−k膜を用いる限り、特に限定されない。ポーラスLow−k膜としては、SiおよびOを構成元素として含む膜またはSi、C、OおよびHを構成元素として含む膜とすることができる。また、第2の層間絶縁膜4の膜厚は、たとえば、80nm〜150nmとすることができる。第3の層間絶縁膜13の膜厚は、たとえば、50nm〜120nmとすることができる。
また、層間絶縁膜が、低誘電率膜としては、ポリオルガノシロキサン膜、水素化シロキサン膜、またはこれらの膜がポーラス化された膜であってもよい。
なお、第2の層間絶縁膜4および第3の層間絶縁膜13の材料は、同一でもよく、異なっていてもよい。低誘電率膜の比誘電率は、たとえば3.5以下、好ましくは3以下とすることができる。
なお、第2の層間絶縁膜4および第3の層間絶縁膜13の材料は、同一でもよく、異なっていてもよい。低誘電率膜の比誘電率は、たとえば3.5以下、好ましくは3以下とすることができる。
ビア層間絶縁膜11は、特に限定されないが、たとえば、空孔のないSi、C、OおよびHを構成元素として含む膜とすることができる。ビア層間絶縁膜11の膜厚は、たとえば、50nm〜120nmとすることができる。
第1のキャップ絶縁膜5および第2のキャップ絶縁膜14は、特に限定されないが、たとえば、Si、CおよびOを構成元素として含む膜とすることができる。また、第1のキャップ絶縁膜5の膜厚は、たとえば、10nm〜50nmとすることができる。第2のキャップ絶縁膜14の膜厚は、30nm〜60nmとすることができる。
第1層のサイドウォール7、第1のサイドウォール17および第2のサイドウォール22としては、緻密な絶縁膜であれば、特に限定されない。空孔のない絶縁膜を用いることもできる。この緻密な絶縁膜は、保護膜として作用する。つまり、第2の層間絶縁膜4、ビア層間絶縁膜11および第3の層間絶縁膜13の、第1の配線溝6、ビアホール15および第2の配線溝20と接触する部分を化学的に安定な膜でカバーすることができる。特に、ポーラスLow−k膜を保護することができる。
第1の絶縁膜サイドウォール7、第1のサイドウォール17および第2のサイドウォール22は、たとえば、SiおよびCを構成元素として含む膜、Si、CおよびOを構成元素として含む膜、Si、CおよびNを構成元素として含む膜、SiおよびOを構成元素として含む膜等を用いることができる。たとえば、SiC、SiOC、SiO2またはSiCNを含む材料が用いられる。
また、第1のサイドウォール17の膜厚は、たとえば、2nm〜20nmとすることができる。第1のサイドウォール17の膜厚は、たとえば、3nm〜40nmとすることができる。第2のサイドウォール22の膜厚は、たとえば、2nm〜20nmとすることができる。
なお、これらの膜の製造方法については、特に限定されず、たとえばCVD(chemical vapor deposition)法や塗布法により形成される。
なお、本実施の形態では、ビアホール側壁、およびビアホールから上部配線に延在する部分の配線溝の側壁に形成された絶縁膜サイドウォールの膜厚が、ビアホールが存在する以外の部分の配線溝に形成される絶縁膜サイドウォールの膜厚よりも厚い構造となっている。これにより、最も距離が短くなるビアホールと、隣接する配線のスペース部の間に、ポーラスではないLow−k材料が厚く存在することにより、リーク特性、TDDBなどの劣化を防止することができる。
バリアメタル膜としては、本実施の形態では、Taを例示したが、これに限定されず、たとえば、配線がCuを主成分とする金属元素からなる場合には、窒化タンタル(TaN)、チタン(Ti)、窒化チタン(TiN)、炭窒化タングステン(WCN)、ルテニウム(Ru)のような高融点金属やその窒化物等、またはそれらの積層膜が使用される。またタングステンを主成分に用いるコンタクトプラグのバリアメタルにも前記の金属膜が用いられる。
また、本発明をダマシン法による配線構造に適用した場合、本発明の効果はより顕著となる。すなわち、本発明における金属領域は、シングルダマシン法またはデュアルダマシン法により形成することができる。
シングルダマシン法は以下の工程を含む。
(a)半導体基板上に、金属膜により構成された第一の配線を形成する工程、
(b)第一の配線を覆うように半導体基板の上部全体に第一の層間絶縁膜を形成する工程、
(c)第一の層間絶縁膜を選択的に除去して第一の配線の上面に達する接続孔を形成する工程、
(d)接続孔の内面を覆うバリアメタル膜を形成した後、接続孔を埋め込むように金属膜を形成する工程、
(e)接続孔外部に形成された金属膜を除去する工程、
(f)接続孔に形成された金属膜を覆うように半導体基板の上部全体に第二の層間絶縁膜を形成する工程、
(f)第二の層間絶縁膜を選択的に除去することにより、底面に接続孔に形成された金属膜の露出する配線溝を形成する工程、
(g)配線溝の内面を覆うバリアメタル膜を形成した後、配線溝を埋め込むように金属膜を形成する工程、
(h)配線溝外部に形成された金属膜を除去することにより第二の配線を形成する工程。
このプロセスにおいて、第一および第二の配線、接続孔の全部または一部を、本発明における「金属領域」とし、本発明に係る半導体装置およびその製造方法を適用することができる。ここで、上記(a)〜(h)の工程の一部を適宜省略することもできる。
(a)半導体基板上に、金属膜により構成された第一の配線を形成する工程、
(b)第一の配線を覆うように半導体基板の上部全体に第一の層間絶縁膜を形成する工程、
(c)第一の層間絶縁膜を選択的に除去して第一の配線の上面に達する接続孔を形成する工程、
(d)接続孔の内面を覆うバリアメタル膜を形成した後、接続孔を埋め込むように金属膜を形成する工程、
(e)接続孔外部に形成された金属膜を除去する工程、
(f)接続孔に形成された金属膜を覆うように半導体基板の上部全体に第二の層間絶縁膜を形成する工程、
(f)第二の層間絶縁膜を選択的に除去することにより、底面に接続孔に形成された金属膜の露出する配線溝を形成する工程、
(g)配線溝の内面を覆うバリアメタル膜を形成した後、配線溝を埋め込むように金属膜を形成する工程、
(h)配線溝外部に形成された金属膜を除去することにより第二の配線を形成する工程。
このプロセスにおいて、第一および第二の配線、接続孔の全部または一部を、本発明における「金属領域」とし、本発明に係る半導体装置およびその製造方法を適用することができる。ここで、上記(a)〜(h)の工程の一部を適宜省略することもできる。
デュアルダマシン法は以下の工程を含む。
(a)半導体基板上に、金属膜により構成された第一の配線を形成する工程、
(b)第一の配線を覆うように半導体基板の上部全体に第一の層間絶縁膜を形成する工程、
(c)第一の層間絶縁膜を選択的に除去して第一の配線の上面に達する接続孔と、この接続孔の上部に接続する配線溝を形成する工程、
(d)接続孔および配線溝の内面を覆うバリアメタル膜を形成した後、接続孔および配線溝を埋め込むように金属膜を形成する工程、
(e)配線溝外部に形成された金属膜を除去することにより第二の配線を形成する工程。
このプロセスにおいて、第一および第二の配線、接続孔の全部または一部を、本発明における「金属領域」とし、本発明に係る半導体装置およびその製造方法を適用することができる。ここで、上記(a)〜(e)の工程の一部を適宜省略することもできる。
(a)半導体基板上に、金属膜により構成された第一の配線を形成する工程、
(b)第一の配線を覆うように半導体基板の上部全体に第一の層間絶縁膜を形成する工程、
(c)第一の層間絶縁膜を選択的に除去して第一の配線の上面に達する接続孔と、この接続孔の上部に接続する配線溝を形成する工程、
(d)接続孔および配線溝の内面を覆うバリアメタル膜を形成した後、接続孔および配線溝を埋め込むように金属膜を形成する工程、
(e)配線溝外部に形成された金属膜を除去することにより第二の配線を形成する工程。
このプロセスにおいて、第一および第二の配線、接続孔の全部または一部を、本発明における「金属領域」とし、本発明に係る半導体装置およびその製造方法を適用することができる。ここで、上記(a)〜(e)の工程の一部を適宜省略することもできる。
以上のようなダマシンプロセスにより形成された配線構造は、半導体基板と、この半導体基板上に形成された第一の配線と、この第一の配線に接続して設けられた接続プラグと、この接続プラグに接続して設けられた第二の配線と、を含む構成を有する。
また、以上の実施形態においては、銅配線が設けられた半導体装置を例に説明したが、配線は、銅含有金属から主として構成されていればよい。また、配線の形成方法はめっき法には限られず、たとえば、CVD法を用いてもよい。
本実施の形態において、金属配線材およびコンタクトプラグ材とは、主にCuを主成分とする。金属配線材の信頼性を向上させるため、Cu以外の金属元素がCuからなる部材に含まれていても良く、Cu以外の金属元素がCuの上面や側面などに形成されていても良い。
半導体基板とは、半導体装置が構成された基板であり、特に単結晶シリコン基板上に作られたものだけでなく、絶縁物上に半導体薄膜が形成されたSOI(Silicon on Insulator)やSGOI(Silicon Germanium on Insulator)やHybrid基板上に半導体素子が形成されたもの、TFT(Thin film transistor)、液晶製造用基板などを含む。
1 半導体基板
2 第1の層間絶縁膜
3 第1のエッチストッパー膜
4 第2の層間絶縁膜
5 第1のキャップ絶縁膜
6 第1の配線溝
7 第1層のサイドウォール
8 第1のバリアメタル
9 第1の銅配線
10 第2のエッチストッパー膜
11 ビア層間絶縁膜
12 第3のエッチストッパー膜
13 第3の層間絶縁膜
14 第2のキャップ絶縁膜
15 ビアホール
16 サイドウォール形成用絶縁膜
17 第1のサイドウォール
18 埋め込み材
19 フォトレジスト
20 第2の配線溝
21 サイドウォール形成用絶縁膜
22 第2のサイドウォール
23 第2のバリアメタル
24 第2の銅配線
101 基板
102 下層配線
103 有機系低誘電率材料層
104 溝配線
105 接続プラグ
106 ビアホール
107 サイドウォール
108 配線溝
109 サイドウォール
2 第1の層間絶縁膜
3 第1のエッチストッパー膜
4 第2の層間絶縁膜
5 第1のキャップ絶縁膜
6 第1の配線溝
7 第1層のサイドウォール
8 第1のバリアメタル
9 第1の銅配線
10 第2のエッチストッパー膜
11 ビア層間絶縁膜
12 第3のエッチストッパー膜
13 第3の層間絶縁膜
14 第2のキャップ絶縁膜
15 ビアホール
16 サイドウォール形成用絶縁膜
17 第1のサイドウォール
18 埋め込み材
19 フォトレジスト
20 第2の配線溝
21 サイドウォール形成用絶縁膜
22 第2のサイドウォール
23 第2のバリアメタル
24 第2の銅配線
101 基板
102 下層配線
103 有機系低誘電率材料層
104 溝配線
105 接続プラグ
106 ビアホール
107 サイドウォール
108 配線溝
109 サイドウォール
Claims (23)
- 基板と、
前記基板上に設けられた層間絶縁膜と、
前記層間絶縁膜に設けられた、配線溝内に金属膜が設けられている配線および、前記配線溝に接続した接続孔内に金属膜が設けられているプラグと、
前記接続孔の側壁に設けられた第1のサイドウォールと、
前記配線溝の側壁に設けられた第2のサイドウォールと、を備え、
前記接続孔の側壁の底部近傍の前記第1のサイドウォールの膜厚が、前記配線溝の側壁の底部近傍の前記第2のサイドウォールの膜厚より、厚い、半導体装置。 - 前記第1のサイドウォールが、多層構造を有する、請求項1に記載の半導体装置。
- 前記第2のサイドウォールの上部の断面形状が、角部を有する、請求項1または2に記載の半導体装置。
- 前記第1のサイドウォールの上部の周囲が、テーパ状である、請求項3に記載の半導体装置。
- 前記第2のサイドウォールの上部の一部の断面形状が、角部を有する、請求項1または2に記載の半導体装置。
- 前記第1のサイドウォールの上部の一部と前記第2のサイドウォールの上部の一部とが、テーパ状である、請求項5に記載の半導体装置。
- 前記第1のサイドウォールと前記第2のサイドウォールとの一部が、共通する、請求項5または6に記載の半導体装置。
- 前記接続孔と前記配線溝とが、シームレスに形成されている、請求項1から4のいずれかに記載の半導体装置。
- 前記層間絶縁膜は、第1の層間絶縁膜と、前記第1の層間絶縁膜上に設けられた第2の層間絶縁膜と、を含み、
前記第1の層間絶縁膜に前記接続孔が設けられ、前記第2の層間絶縁膜に前記配線溝が設けられた、請求項1から8のいずれかに記載の半導体装置。 - 前記第2の層間絶縁膜は、多孔質絶縁膜から構成される、請求項9に記載の半導体装置。
- 前記多孔質絶縁膜は、SiおよびOを構成元素として含む多孔質膜またはSi、C、OおよびHを構成元素として含む多孔質膜である、請求項10に記載の半導体装置。
- 前記第1の層間絶縁膜は、Si、C、OおよびHを構成元素として含む膜である、請求項9から11のいずれかに記載の半導体装置。
- 前記第1のサイドウォールは、SiC、SiOC、SiO2またはSiCNを含む材料により構成されている、請求項1から12のいずれかに記載の半導体装置。
- 前記第2のサイドウォールは、SiC、SiOC、SiO2またはSiCNを含む材料により構成されている、請求項1から13のいずれかに記載の半導体装置。
- 基板上に層間絶縁膜を形成し、前記層間絶縁膜に配線溝および前記配線溝に接続した接続孔を形成し、前記配線溝内および前記接続孔内に金属膜を形成するとともに、前記接続孔の側壁に第1のサイドウォールを形成し、前記配線溝の側壁に第2のサイドウォールを形成する工程と、を含み、
前記接続孔の側壁の底部近傍の前記第1のサイドウォールの膜厚が、前記配線溝の側壁の底部近傍の前記第2のサイドウォールの膜厚より、厚い、半導体装置の製造方法。 - 前記工程は、前記層間絶縁膜に前記接続孔を形成する工程と、
前記接続孔の内部に第1の絶縁膜を形成し、前記接続孔の側壁に前記第1の絶縁膜を残すようにエッチバックする工程と、
前記層間絶縁膜に、前記接続孔と接続する前記配線溝を形成する工程と、
前記接続孔の内部および前記配線溝の内部に、第2の絶縁膜を形成する工程と、
前記接続孔の前記側壁の前記第1の絶縁膜上および前記配線溝の側壁に、前記第2の絶縁膜を残すようにエッチバックして、前記接続孔の前記側壁に、前記第1の絶縁膜および前記第2の絶縁膜を含む前記第1のサイドウォールを形成するとともに、前記配線溝の前記側壁に、前記第2の絶縁膜を含む前記第2のサイドウォールを形成する工程と、を含む、請求項15に記載の半導体装置の製造方法。 - 前記接続孔と前記配線溝とが、シームレスに形成される、請求項15または16に記載の半導体装置の製造方法。
- 前記層間絶縁膜は、第1の層間絶縁膜と、前記第1の層間絶縁膜上に形成された第2の層間絶縁膜と、を含み、
前記第1の層間絶縁膜に前記接続孔が形成され、前記第2の層間絶縁膜に前記配線溝が形成された、請求項15から17のいずれかに記載の半導体装置の製造方法。 - 前記第2の層間絶縁膜は、多孔質絶縁膜から構成される、請求項18に記載の半導体装置の製造方法。
- 前記多孔質絶縁膜は、SiおよびOを構成元素として含む多孔質膜またはSi、C、OおよびHを構成元素として含む多孔質膜である、請求項19に記載の半導体装置の製造方法。
- 前記第1の層間絶縁膜は、Si、C、OおよびHを構成元素として含む膜である、請求項18から20のいずれかに記載の半導体装置の製造方法。
- 前記第1のサイドウォールは、SiC、SiOC、SiO2またはSiCNを含む材料により構成されている、請求項15から21のいずれかに記載の半導体装置の製造方法。
- 前記第2のサイドウォールは、SiC、SiOC、SiO2またはSiCNを含む材料により構成されている、請求項15から22のいずれかに記載の半導体装置の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009142215A JP2010287831A (ja) | 2009-06-15 | 2009-06-15 | 半導体装置およびその製造方法 |
US12/662,772 US20100314777A1 (en) | 2009-06-15 | 2010-05-03 | Semiconductor device and method for manufacturing same |
CN2010101949788A CN101937902A (zh) | 2009-06-15 | 2010-05-31 | 半导体器件和用于制造半导体器件的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009142215A JP2010287831A (ja) | 2009-06-15 | 2009-06-15 | 半導体装置およびその製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010287831A true JP2010287831A (ja) | 2010-12-24 |
JP2010287831A5 JP2010287831A5 (ja) | 2012-06-14 |
Family
ID=43305740
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009142215A Pending JP2010287831A (ja) | 2009-06-15 | 2009-06-15 | 半導体装置およびその製造方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20100314777A1 (ja) |
JP (1) | JP2010287831A (ja) |
CN (1) | CN101937902A (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190095702A (ko) * | 2018-02-07 | 2019-08-16 | 삼성전자주식회사 | 비아 플러그를 갖는 반도체 소자 및 그 형성 방법 |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7615480B2 (en) * | 2007-06-20 | 2009-11-10 | Lam Research Corporation | Methods of post-contact back end of the line through-hole via integration |
US8329573B2 (en) | 2008-05-06 | 2012-12-11 | Gautham Viswanadam | Wafer level integration module having controlled resistivity interconnects |
SG156550A1 (en) * | 2008-05-06 | 2009-11-26 | Gautham Viswanadam | Wafer level integration module with interconnects |
US9054110B2 (en) | 2011-08-05 | 2015-06-09 | Taiwan Semiconductor Manufacturing Company, Ltd. | Low-K dielectric layer and porogen |
US9960110B2 (en) * | 2011-12-30 | 2018-05-01 | Intel Corporation | Self-enclosed asymmetric interconnect structures |
US8881209B2 (en) | 2012-10-26 | 2014-11-04 | Mobitv, Inc. | Feedback loop content recommendation |
US8772938B2 (en) | 2012-12-04 | 2014-07-08 | Intel Corporation | Semiconductor interconnect structures |
US9659857B2 (en) | 2013-12-13 | 2017-05-23 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor structure and method making the same |
US10128113B2 (en) * | 2016-01-12 | 2018-11-13 | Taiwan Semiconductor Manufacturing Company Ltd. | Semiconductor structure and manufacturing method thereof |
US10535558B2 (en) | 2016-02-09 | 2020-01-14 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method of forming trenches |
US10276436B2 (en) * | 2016-08-05 | 2019-04-30 | International Business Machines Corporation | Selective recessing to form a fully aligned via |
US11348828B2 (en) * | 2017-11-23 | 2022-05-31 | Taiwan Semiconductor Manufacturing Co., Ltd. | Interconnect structure and method of forming the same |
KR102580659B1 (ko) * | 2018-10-01 | 2023-09-20 | 삼성전자주식회사 | 반도체 장치 및 그 제조 방법 |
US11502001B2 (en) * | 2018-10-31 | 2022-11-15 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor device with self-aligned vias |
US11227792B2 (en) * | 2019-09-19 | 2022-01-18 | International Business Machines Corporation | Interconnect structures including self aligned vias |
CN112786525B (zh) * | 2019-11-07 | 2023-07-07 | 长鑫存储技术有限公司 | 半导体器件及其形成方法 |
US11488926B2 (en) * | 2020-06-11 | 2022-11-01 | Taiwan Semiconductor Manufacturing Company, Ltd. | Self-aligned interconnect structure |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000164707A (ja) * | 1998-11-27 | 2000-06-16 | Sony Corp | 半導体装置およびその製造方法 |
JP2000294634A (ja) * | 1999-04-07 | 2000-10-20 | Nec Corp | 半導体装置及びその製造方法 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6372636B1 (en) * | 2000-06-05 | 2002-04-16 | Chartered Semiconductor Manufacturing Ltd. | Composite silicon-metal nitride barrier to prevent formation of metal fluorides in copper damascene |
US6683002B1 (en) * | 2000-08-10 | 2004-01-27 | Chartered Semiconductor Manufacturing Ltd. | Method to create a copper diffusion deterrent interface |
JP2002176099A (ja) * | 2000-12-08 | 2002-06-21 | Nec Corp | 半導体装置及びその製造方法 |
US6624066B2 (en) * | 2001-02-14 | 2003-09-23 | Texas Instruments Incorporated | Reliable interconnects with low via/contact resistance |
US6638849B2 (en) * | 2001-05-30 | 2003-10-28 | Winbond Electronics Corp. | Method for manufacturing semiconductor devices having copper interconnect and low-K dielectric layer |
US6509267B1 (en) * | 2001-06-20 | 2003-01-21 | Advanced Micro Devices, Inc. | Method of forming low resistance barrier on low k interconnect with electrolessly plated copper seed layer |
US6660630B1 (en) * | 2002-10-10 | 2003-12-09 | Taiwan Semiconductor Manufacturing Co. Ltd. | Method for forming a tapered dual damascene via portion with improved performance |
US7169698B2 (en) * | 2004-01-14 | 2007-01-30 | International Business Machines Corporation | Sacrificial inorganic polymer intermetal dielectric damascene wire and via liner |
US7282802B2 (en) * | 2004-10-14 | 2007-10-16 | International Business Machines Corporation | Modified via bottom structure for reliability enhancement |
US7309653B2 (en) * | 2005-02-24 | 2007-12-18 | International Business Machines Corporation | Method of forming damascene filament wires and the structure so formed |
KR100640662B1 (ko) * | 2005-08-06 | 2006-11-01 | 삼성전자주식회사 | 장벽금속 스페이서를 구비하는 반도체 소자 및 그 제조방법 |
US7338893B2 (en) * | 2005-11-23 | 2008-03-04 | Texas Instruments Incorporated | Integration of pore sealing liner into dual-damascene methods and devices |
-
2009
- 2009-06-15 JP JP2009142215A patent/JP2010287831A/ja active Pending
-
2010
- 2010-05-03 US US12/662,772 patent/US20100314777A1/en not_active Abandoned
- 2010-05-31 CN CN2010101949788A patent/CN101937902A/zh active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000164707A (ja) * | 1998-11-27 | 2000-06-16 | Sony Corp | 半導体装置およびその製造方法 |
JP2000294634A (ja) * | 1999-04-07 | 2000-10-20 | Nec Corp | 半導体装置及びその製造方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190095702A (ko) * | 2018-02-07 | 2019-08-16 | 삼성전자주식회사 | 비아 플러그를 갖는 반도체 소자 및 그 형성 방법 |
KR102606765B1 (ko) * | 2018-02-07 | 2023-11-27 | 삼성전자주식회사 | 비아 플러그를 갖는 반도체 소자 및 그 형성 방법 |
Also Published As
Publication number | Publication date |
---|---|
CN101937902A (zh) | 2011-01-05 |
US20100314777A1 (en) | 2010-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2010287831A (ja) | 半導体装置およびその製造方法 | |
JP5412506B2 (ja) | 半導体装置 | |
JP4417202B2 (ja) | 半導体装置 | |
US20100051578A1 (en) | Method for fabricating an integrated circuit | |
US9082769B2 (en) | Semiconductor device and fabrication method thereof | |
JP5263482B2 (ja) | 多層配線構造および多層配線の製造方法 | |
JP2007123328A (ja) | 半導体装置およびその製造方法 | |
US9972528B2 (en) | Semiconductor devices | |
JP6872553B2 (ja) | 半導体装置、撮像装置、および半導体装置の製造方法 | |
JP2004080044A (ja) | トレンチ側壁のバッファー層を使用して半導体装置用金属配線を形成する方法及びそれにより製造された装置 | |
JP4280204B2 (ja) | 半導体装置 | |
JP2011114049A (ja) | 半導体装置 | |
JP2007035955A (ja) | 半導体装置およびその製造方法 | |
JP2013062464A (ja) | 半導体装置および半導体装置の製造方法 | |
JP2011210840A (ja) | 半導体装置の製造方法 | |
JP5147751B2 (ja) | 半導体装置の製造方法 | |
EP1610376B1 (en) | Semiconductor device | |
JP5047504B2 (ja) | ビアキャッピング保護膜を使用する半導体素子のデュアルダマシン配線の製造方法 | |
JP2006019401A (ja) | 半導体装置及びその製造方法 | |
JP2012134422A (ja) | 半導体装置及びその製造方法 | |
JP2010080773A (ja) | 半導体装置 | |
JP5272221B2 (ja) | 半導体装置 | |
JP5582879B2 (ja) | 半導体装置及びその製造方法 | |
JP2008041804A (ja) | 半導体装置及びその製造方法 | |
JP5424551B2 (ja) | 半導体装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120425 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120425 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20140311 |