JP2010269512A - 樹脂発泡体の製造装置及び樹脂発泡体の製造方法 - Google Patents

樹脂発泡体の製造装置及び樹脂発泡体の製造方法 Download PDF

Info

Publication number
JP2010269512A
JP2010269512A JP2009122941A JP2009122941A JP2010269512A JP 2010269512 A JP2010269512 A JP 2010269512A JP 2009122941 A JP2009122941 A JP 2009122941A JP 2009122941 A JP2009122941 A JP 2009122941A JP 2010269512 A JP2010269512 A JP 2010269512A
Authority
JP
Japan
Prior art keywords
cavity
resin
mold
resin foam
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009122941A
Other languages
English (en)
Inventor
Atsushi Wada
敦 和田
Hiroyuki Hirano
博之 平野
Wataru Naruta
弥 鳴田
Kensuke Tsumura
健輔 津村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2009122941A priority Critical patent/JP2010269512A/ja
Publication of JP2010269512A publication Critical patent/JP2010269512A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Molding Of Porous Articles (AREA)
  • Screw Conveyors (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

【課題】高発泡倍率の樹脂発泡体を高い形状精度で製造することができる樹脂発泡体の製造装置及び樹脂発泡体の製造方法を提供する。
【解決手段】スクリュー20は、圧縮部31と、第1〜第3の供給部30a〜30cとを含んでいる。第1の供給部30aにおけるフライト25のピッチは、圧縮部31におけるフライト25のピッチよりも大きい。第2の供給部30bにおけるフライト25のピッチは、第1及び第3の供給部30a、30cにおけるフライト25のピッチよりも小さい。超音波印加機構46は、射出機構10がキャビティ43に対して樹脂の射出を開始してから樹脂の射出を終了するまでの間の期間の少なくとも一部において、成形型40に超音波を印加する。
【選択図】図1

Description

本発明は、樹脂発泡体の製造装置及び樹脂発泡体の製造方法に関する。
近年、軽量で、断熱性、吸音性などに優れた樹脂発泡体の製造装置の研究開発が盛んに行われている。例えば下記の特許文献1では、反応ガスのリークを抑制でき、高発泡倍率の樹脂発泡体を成型し得る樹脂発泡体の製造装置が提案されている。
特開2007−320718号公報
ところで、近年、樹脂発泡体のさらなる軽量化を図るため、発泡倍率をさらに高めたいという要望が出てきている。製品の厚みを一定に保ちつつ、発泡倍率を高めようとすると、溶融樹脂を注入する際のキャビティの厚みを薄くする必要がある。しかしながら、樹脂注入時のキャビティの厚みを薄くすると、キャビティの隅部にまで溶融樹脂が充填されにくくなる。このため、単に特許文献1に記載の製造装置を用いたのみでは、高い形状精度の高発泡倍率の樹脂発泡体を得ることが困難であるという問題がある。
本発明は、かかる点に鑑みてなされたものであり、その目的は、高発泡倍率の樹脂発泡体を高い形状精度で製造することができる樹脂発泡体の製造装置及び樹脂発泡体の製造方法を提供することにある。
本発明に係る樹脂発泡体の製造装置は、射出機構と、成形型と、移動機構と、超音波印加機構とを備えている。射出機構は、樹脂を溶融混練した後に射出する。成形型は、第1の成形型と、第2の成形型とを有する。第1の成形型と、第2の成形型とは、射出機構により射出された樹脂が供給されるキャビティを形成している。移動機構は、第1の成形型と第2の成形型とのうちの少なくとも一方を移動させることによりキャビティの容積を拡大する。超音波印加機構は、成形型に超音波を印加する。射出機構は、可塑化シリンダと、スクリューとを有する。可塑化シリンダには、樹脂が供給される。スクリューは、可塑化シリンダ内に配置されている。スクリューは、圧縮部と、供給部とを有する。供給部は、圧縮部の上流側に位置している。供給部には、供給部の他の部分よりも圧縮比率が高いシール部が設けられている。超音波印加機構は、射出機構がキャビティに対して樹脂の射出を開始してから樹脂の射出を終了するまでの間の期間の少なくとも一部において、成形型に超音波を印加する。移動機構は、射出機構が樹脂の射出を終了した後に第1の成形型と第2の成形型とのうちの少なくとも一方を移動させてキャビティの容積を拡大することにより樹脂を発泡させる。
本発明に係る樹脂発泡体の製造装置のある特定の局面では、スクリューは、円柱状のスクリュー本体と、スクリュー本体の外周面に螺旋状に形成されているフライトとを有し、シール部におけるフライトのピッチは、供給部のシール部以外の部分におけるフライトのピッチよりも小さい。
本発明に係る樹脂発泡体の製造装置の他の特定の局面では、キャビティに気体を供給することによりキャビティを加圧する加圧機構をさらに備え、加圧機構は、射出機構がキャビティに対して樹脂の射出を開始する前にキャビティに気体を供給することによりキャビティを加圧する。この構成によれば、発泡工程が開始される前における溶融樹脂の発泡を抑制することができる。このため、樹脂発泡体の表面に気泡や破泡が発生することを抑制することができる。従って、表面の平坦性が高い樹脂発泡体を製造することができる。
本発明に係る樹脂発泡体の製造装置の別の特定の局面では、射出機構がキャビティに対して樹脂を射出する際のキャビティの厚みが1mm以下である。射出機構がキャビティに対して樹脂を射出する際のキャビティの厚みが1mm以下である場合は、キャビティの隅部にまで溶融樹脂が特に充填されにくいが、本発明の樹脂発泡体の製造装置を用いることにより、溶融樹脂射出時のキャビティの厚みが1mm以下であってもキャビティの隅部にまで溶融樹脂を充填することができる。従って、この構成によれば、極めて高い発泡倍率の樹脂発泡体を高い形状精度で製造することができる。
本発明に係る樹脂発泡体の製造装置のさらに他の特定の局面では、スクリューは、圧縮部よりも下流側に位置する計量部をさらに有し、計量部は、圧縮部よりも高い剪断力を有する。この構成によれば、平均気泡径及び気泡径のばらつきを小さくすることができる。
本発明に係る樹脂発泡体の製造方法は、上記本発明に係る樹脂発泡体の製造装置を用いた樹脂発泡体の製造方法に関する。本発明に係る樹脂発泡体の製造方法は、射出工程と、超音波印加工程と、発泡工程とを備える。射出工程では、射出機構によりキャビティに樹脂を射出する。超音波印加工程では、射出工程が行われる期間のうちの少なくとも一部において、超音波印加機構により成形型に超音波を印加する。発泡工程では、射出工程が終了した後に、移動機構により第1の成形型と第2の成形型とのうちの少なくとも一方を移動させてキャビティの容積を拡大することにより樹脂を発泡させる。
本発明に係る樹脂発泡体の製造方法のある特定の局面では、樹脂発泡体の製造装置が、キャビティに気体を供給することによりキャビティを加圧する加圧機構をさらに備え、射出工程を開始する前に、加圧機構によりキャビティに気体を供給することによりキャビティを加圧する工程をさらに備える。この構成によれば、表面の平坦性が高い樹脂発泡体を製造することができる。
本発明では、超音波印加機構により、射出機構がキャビティに対して樹脂の射出を開始してから樹脂の射出を終了するまでの間の期間の少なくとも一部において、成形型に超音波が印加される。このため、キャビティ内における樹脂の流動性が向上し、樹脂射出時のキャビティ厚が薄い場合であっても、キャビティの隅部にまで樹脂を確実に充填することができる。また、スクリューの供給部には、圧縮比率の高いシール部が設けられている。このため、反応ガスのリークが抑制される。よって、溶融樹脂中の反応ガス濃度を高めることができる。従って、高倍率発泡の樹脂発泡体を高い形状精度で製造することができる。
樹脂発泡体の製造装置の略図的断面図である。 スクリューの略図的平面図である。 第1の供給部の一部分を拡大した略図的平面図である。 第2の供給部の一部分を拡大した略図的平面図である。 第3の供給部の一部分を拡大した略図的平面図である。 圧縮部の略図的平面図である。 計量部の略図的平面図である。 樹脂発泡体の製造工程を表すフローチャートである。 射出工程及び超音波印加工程を説明するための成形型の略図的断面図である。 発泡工程を説明するための成形型の略図的断面図である。 取り出し工程を説明するための成形型の略図的断面図である。 第1の変形例における計量部の一部分を拡大した略図的平面図である。 第2の変形例における計量部の一部分を拡大した略図的平面図である。 第3の変形例における計量部の一部分を拡大した略図的平面図である。
以下、本発明を実施した好ましい形態の一例について、図1に示す製造装置1を例に挙げて説明する。但し、製造装置1は、単なる一例であって、本発明は、製造装置1に限定されない。
図1は、本実施形態に係る樹脂発泡体の製造装置1の略図的断面図である。図1に示すように、製造装置1は、射出機構10を備えている。射出機構10は、ホッパー13から供給された熱可塑性樹脂15を溶融混練した後に、溶融樹脂を後述の成形型40のキャビティ43に対して射出する機構である。
射出機構10は、可塑化シリンダ11と、可塑化シリンダ11を加熱するヒーター12と、ホッパー13と、射出シリンダ14と、スクリュー20とを備えている。ホッパー13は、可塑化シリンダ11の上流側端部に取り付けられている。可塑化シリンダ11へは、このホッパー13から熱可塑性樹脂15が投入される。
なお、使用される熱可塑性樹脂15の種類は、特に限定されず、例えば、得ようとする樹脂発泡体の特性などに応じて適宜設定することができる。熱可塑性樹脂15の具体例としては、例えば、ポリプロピレン、ポリエチレン、ポリスチレン、プロピレン/エチレンコポリマーなどのオレフィン系樹脂やポリスチレンなどが挙げられる。使用する熱可塑性樹脂15のMFRも特に限定されず、例えば、5g/10分〜100g/10分程度とすることができるが、使用する熱可塑性樹脂15のMFRは、30g/10分〜90g/10分程度であることが好ましい。
また、熱可塑性樹脂15に含ませる発泡剤も特に限定されない。発泡剤としては、化学発泡剤や物理発泡剤が使用できる。化学発泡剤の具体例としては、例えば、アゾジカルボンアミドや、重炭酸ナトリウム等の重炭酸塩などが挙げられる。物理発泡剤としては、窒素ガスやアルゴンガスなどが挙げられる。
また、熱可塑性樹脂15には、発泡剤以外に、必要に応じて、公知の、発泡助剤、発泡核剤、発泡成形安定剤、安定剤、紫外線吸収剤、酸化防止剤、帯電防止剤、滑剤、着色剤、難燃剤、架橋剤、充填剤などを配合してもよい。
発泡助剤としては、例えば、ステアリン酸塩、モンタン酸塩等の高級脂肪酸金属塩、尿素もしくは尿素系化合物、パラフィン、その他ステアロアミド等が挙げられる。モンタン酸塩の具体例としては、例えば、モンタン酸カルシウム(オクタコサン酸カルシウム)、モンタン酸亜鉛などが挙げられる。ステアリン酸塩の具体例としては、例えば、ステアリン酸ナトリウム、ステアリン酸カルシウム、ステアリン酸マグネシウム、ステアリン酸カリウム、ステアリン酸亜鉛などが挙げられる。
発泡核剤としては、タルク、シリカ、炭酸カルシウム、ケイ酸カルシウム等の無機フィラー等が挙げられる。
スクリュー20は、可塑化シリンダ11内に配置されている。スクリュー20は、スクリュー20を回転させる図示しない回転機構に接続されている。なお、回転機構は、特に限定されず、例えば、モータや油圧ポンプにより構成することができる。
また、スクリュー20は、射出シリンダ14に接続されている。この射出シリンダ14によりスクリュー20が軸方向に進退させられることにより溶融樹脂の射出動作が行われる。
次に、本実施形態のスクリュー20の構成について主として図2〜図7を参照しながら詳細に説明する。なお、図1では、描画の便宜上、スクリュー20を略図的に示している。
図2は、スクリュー20全体の略図的平面図である。図2に示すように、スクリュー20は、スクリュー本体21と、フライト25と、略円錐状のチェックリング26とを備えている。チェックリング26は、スクリュー本体21の先端部に固定されている。
スクリュー本体21は、略円柱状に形成されている。スクリュー本体21の基端部は、射出シリンダ14に接続されている。スクリュー本体21の内部には、スクリュー本体21の軸方向に延びる図示しない中心孔が形成されている。この中心孔には、スプライン軸であるスクリュー軸(図示せず)が挿入されている。
スクリュー本体の外周面には、螺旋状のフライト25が形成されている。本実施形態では、スクリュー20の一部分は、ダブルフライト型とされている。具体的には、フライト25は、スクリュー本体21の外周面の軸方向の全域にわたって形成されている主フライト22と、スクリュー本体21の外周面の軸方向の一部にのみ形成されている副フライト23,24とにより構成されている。但し、本発明はこの構成に限定されない。例えば、フライトは、主フライトのみにより構成されていてもよい。また、フライトは、主フライトと、複数の副フライトにより構成されていてもよい。
フライト25の高さ、換言すればフライト25により形成される溝25aの深さは、スクリュー本体21の軸方向において一定であってもよいし、一定でなくてもよい。典型的には、フライト25の高さは、上流側から下流側にいくにしたがって小さくなるように設定される。
なお、本実施形態において、「フライトのピッチ」とは、スクリュー本体の軸方向において、隣り合うフライト間の中心間距離をいう。例えば、フライトが主フライトのみにより構成されている場合は、フライトのピッチは、隣り合う主フライト間の中心間距離となる。また、例えば、主フライトと副フライトとが設けられている部分においては、スクリュー本体の軸方向において、主フライトと副フライトとが隣り合うこととなる。このため、フライトのピッチは、スクリュー本体の軸方向において、隣り合う主フライトと副フライトとの間の中心間距離となる。
スクリュー20には、上流側から下流側に向かって、供給部30と、圧縮部31と、計量部32とがこの順番で設けられている。最も上流側に位置する供給部30は、図1に示すホッパー13から供給された熱可塑性樹脂15を溶融し、混練しながら下流側に輸送する部分である。供給部30には、上流側から下流側に向かって第3の供給部30c、シール部としての第2の供給部30b及び第1の供給部30aがこの順番で設けられている。第2の供給部30bは、熱可塑性樹脂15内の発泡剤が溶融されて反応ガスが発生し始める部分である。すなわち、本実施形態においては、第3の供給部30cでは反応ガスが実質的に発生しておらず、第1及び第2の供給部30a、30bにおいて反応ガスが発生する。
供給部30の下流側に位置する圧縮部31は、供給部30から供給された熱可塑性樹脂15をさらに溶融しつつ圧縮する部分である。この圧縮部31によって溶融樹脂が圧縮されることにより、反応ガスが溶融樹脂中に溶解され、分散される。
計量部32は、圧縮部31により圧縮された溶融樹脂を所定の体積だけ、スクリュー・ポンプの原理によって後述する成形型40のキャビティ43(図1を参照)に押し出す部分である。また、計量部32には、気泡や気泡核、発泡剤などを溶融樹脂中に均一に分散させる機能を有している。
次に、スクリュー20の各部分におけるフライト25の構成について詳細に説明する。
図6に圧縮部31の一部分を拡大した略図的平面図を示す。図6及び図2に示すように、圧縮部31には、主フライト22と共に、副フライト24が設けられている。主フライト22と副フライト24とは、スクリュー本体21の軸方向において交互に配置されている。すなわち、主フライト22と副フライト24とは、二重螺旋構造を形成している。
圧縮部31における主フライト22のセグメントの数量は特に限定されず、例えば使用する樹脂の種類や溶融温度に応じて適宜に設定することができる。本実施形態では、圧縮部31における主フライト22のセグメントの数量は、4とされている。
圧縮部31では、フライト25のピッチが小さく設定されている。圧縮部31におけるフライト25のピッチP(第1のピッチ、図6を参照)は、使用する熱可塑性樹脂15の種類や溶融温度などにもよるが、例えば、図3に示すPの1/2〜1/3程度に設定することができる。
計量部32は、圧縮部31よりも高い剪断力を有する。すなわち、スクリュー20が回転しているときにおいて、計量部32が溶融樹脂に付与する剪断力が圧縮部31が溶融樹脂に付与する剪断力よりも大きくなるような形状に計量32は形成されている。このようにすることにより、溶融樹脂中に気泡や気泡核、発泡剤を均一に分散させることができる。その結果、平均気泡径を小さくすることができる。また、気泡径のばらつきを小さくすることができる。すなわち、小さな気泡が均一に分散した樹脂発泡体を得ることができる。
図7に計量部32の一部分を拡大した略図的平面図を示す。図7を参照しつつ、計量部32の具体的形状について説明する。計量部32には、主フライト22のみが形成されている。主フライト22の螺旋を描く角度θ1は、0°〜75°の範囲内であることが好ましく、本実施形態では45°とされている。主フライト22の対向面には、互い違いに三角堰22aが一定間隔で設けられている。計量部32の両端には、ランド部55が設けられている。このランド部55により、溶融樹脂の流れがスムーズにされている。なお、計量部32において、フライト25の数は、8〜24程度とすることができ、本実施形態では、具体的には、16とされている。また、本実施形態では、(計量部32の長さL)/(計量部32における直径D)は、1に設定されている。
図5に第1の供給部30aの一部分を拡大した略図的平面図を示す。図5及び図2に示すように、第1の供給部30aには、主フライト22のみが形成されている。第1の供給部30aにおける主フライト22のセグメントの数量は、特に限定されず、例えば使用する樹脂の種類や溶融温度などに応じて適宜設定することができる。本実施形態では、第1の供給部30aにおける主フライト22のセグメントの数量は、5とされている。
第1の供給部30aでは、圧縮部31よりもフライト25のピッチが大きく設定されている。すなわち、第1の供給部30aにおけるフライト25のピッチP(第2のピッチ、図5を参照)は、圧縮部31におけるフライト25のピッチP(第1のピッチ、図6を参照)よりも大きい。第1の供給部30aにおけるフライト25のピッチP(第2のピッチ)は、使用する熱可塑性樹脂15の種類や溶融温度などにもよるが、例えば、圧縮部31におけるフライト25のピッチP(第1のピッチ)の2倍〜2.5倍程度に設定することができる。
図4に第2の供給部30bの一部分を拡大した略図的平面図を示す。図4及び図2に示すように、第2の供給部30bには、主フライト22と共に、副フライト23が形成されている。主フライト22と副フライト23とは、スクリュー本体21の軸方向において交互に配置されている。すなわち、主フライト22と副フライト23とは、二重螺旋構造を形成している。
なお、本発明において、副フライト23,24は必須ではない。すなわち、スクリューには単一のフライトのみが形成されていてもよい。
第2の供給部30bにおける主フライト22のセグメントの数量は特に限定されず、例えば使用する樹脂の種類や溶融温度に応じて適宜に設定することができる。本実施形態では、第2の供給部30bにおける主フライト22のセグメントの数量は、4とされている。
第2の供給部30bでは、第1の供給部30aよりも、フライト25のピッチが小さく設定されている。第2の供給部30bにおけるフライト25のピッチP(第3のピッチ、図4を参照)は、使用する熱可塑性樹脂15の種類や溶融温度などにもよるが、例えば、第1の供給部30aにおけるフライト25のピッチP(第2のピッチ、図5を参照)の1/2倍〜1/4倍程度に設定することができる。
図3に第3の供給部30cの一部分を拡大した略図的平面図を示す。図3及び図2に示すように、第3の供給部30cには、第1の供給部30aと同様に、主フライト22のみが形成されている。第3の供給部30cにおける主フライト22のセグメントの数量は、特に限定されず、例えば使用する樹脂の種類や溶融温度などに応じて適宜に設定することができる。本実施形態では、第3の供給部30cにおける主フライト22のセグメントの数量は、第1の供給部30aにおける主フライト22のセグメントの数量と同じ5とされている。
第3の供給部30cでは、第2の供給部30bよりもフライト25のピッチが大きく設定されている。すなわち、第3の供給部30cにおけるフライト25のピッチP(第4のピッチ、図3を参照)は、第2の供給部30bにおけるフライト25のピッチPよりも大きい。第3の供給部30cにおけるフライト25のピッチP(第4のピッチ)は、使用する熱可塑性樹脂15の種類や溶融温度などにもよるが、例えば、第2の供給部30bにおけるフライト25のピッチP(第3のピッチ、図4を参照)の2倍〜4倍程度に設定することができる。
すなわち、第1の供給部30aと、第3の供給部30cとの間に位置する第2の供給部30bにおけるフライト25のピッチP(第3のピッチ)は、第1及び第3の供給部30a、30cにおけるフライト25のピッチP(第2のピッチ)、P(第4のピッチ)よりも小さい値に設定されている。
なお、第3の供給部30cにおけるフライト25のピッチP(第4のピッチ)と、第1の供給部30aにおけるフライト25のピッチP(第2のピッチ)との大小関係は特に限定されない。例えば、ピッチPとピッチPとが同じであってもよいし、ピッチPとピッチPとのうちの一方が他方よりも大きくてもよい。本実施形態では、ピッチPとピッチPとが同じである場合を例に挙げて説明する。
また、主フライト22の高さ、すなわち、主フライト22によって形成される溝25aの深さは、計量部32,圧縮部31及び供給部30において、一定であってもよいし、一定でなくてもよい。本実施形態では、計量部32,圧縮部31及び供給部30のそれぞれにおいては、主フライト22の高さは一定とされている。供給部30における主フライト22の高さh1(図3〜図5を参照)は、計量部32における主フライト22の高さh2(図7を参照)よりも大きく設定されている。より具体的には、本実施形態では、高さh1は、高さh2の2.15倍に設定されている。したがって、本実施形態では、圧縮比h1/h2は、2.15である。なお、圧縮比h1/h2の好ましい範囲は、1.5〜2.5である。
本実施形態の射出機構10では、圧縮部31において、発生した反応ガスが溶融樹脂中に溶解する。ここで、例えば、供給部30に、フライト25のピッチが小さな第2の供給部30bが設けられていない場合は、発生した反応ガスが供給部30を通過して可塑化シリンダ11外にリークしてしまうおそれがある。反応ガスが可塑化シリンダ11外にリークしてしまうと、溶融樹脂中に含まれる反応ガスの量が少なくなる。従って、高い発泡倍率の樹脂発泡体を製造することが困難になる。
それに対して本実施形態では、フライト25のピッチが小さな第2の供給部30bが設けられている。このため、可塑化シリンダ11の第2の供給部30bが設けられている部分の樹脂圧力が第1及び第3の供給部30a、30cが設けられている部分の樹脂圧力よりも高くなる。よって、第2の供給部30bに位置する溶融樹脂がシール材として機能し、第1及び第2の供給部30a、30bにおいて発生した反応ガスが第2の供給部30bを通過することを抑制することができる。従って、ガスのリークを効果的に抑制することができる。よって、本実施形態のスクリュー20を用いることによって、溶融樹脂に熔解している反応ガスの量を多くすることができる。その結果、高発泡倍率の樹脂発泡体を得ることが可能となる。
次に、図1を参照して成形型40について説明する。成形型40は、第1の成形型41と、第2の成形型42とを有している。第1の成形型41と第2の成形型42とは互いに付き合わされている。第1の成形型41と第2の成形型42との間には、キャビティ43が形成されている。
第1の成形型41と第2の成形型42とのうちの少なくとも一方は、他方に対して相対的に移動可能である。具体的には、本実施形態では、第1の成形型41が移動不能な固定型であり、第2の成形型42が第1の成形型41に対して移動可能な移動型である。移動型である第2の成形型42には、移動機構45が接続されている。この移動機構45が第2の成形型42を移動させることにより、キャビティ43の体積が変更される。
第1の成形型41には、キャビティ43に接続されているゲート41aが形成されている。ゲート41aの基端部には、可塑化シリンダ11の先端部が接続されている。可塑化シリンダ11から射出された溶融樹脂は、ゲート41aを経由してキャビティ43に供給される。
第2の成形型42には、押出ピン47が取り付けられている。後述のように、この押出ピン47が第1の成形型41側に第2の成形型42に対して相対的に移動することにより、キャビティ43内の樹脂発泡体がキャビティ43から取り出される。
また、第1の成形型41には、加圧機構48が接続されている。加圧機構48は、キャビティ43に気体を供給することによりキャビティ43を加圧する機構である。具体的には、本実施形態では、加圧機構48は、加圧ポンプ48aと、チャンバ48bと、電磁バルブ48cとを備えている。加圧ポンプ48aは、チャンバ48bに気体を送入するためのものである。チャンバ48bは、加圧ポンプ48aとキャビティ43との間に配置されている。チャンバ48bとキャビティ43との間には電磁バルブ48cが配置されている。通常、電磁バルブ48cは閉状態とされている。このため、チャンバ48bが加圧ポンプ48aにより加圧されている状態にある。キャビティ43を加圧する場合は、電磁バルブ48cが開状態とされる。これにより、キャビティ43にチャンバ48bの気体が流入する。その結果、キャビティ43が加圧される。
また、第2の成形型42には、超音波印加機構46が取り付けられている。この超音波印加機構46により成形型40に超音波が印加される。なお、「超音波」とは、周波数が10KHz以上の弾性波を意味する。印加する超音波の好ましい周波数範囲は、10KHz〜10MHZであり、より好ましい範囲は20KHz〜100KHZである。
なお、本実施形態では、超音波印加機構46を第2の成形型42に取り付ける例について説明する。但し、本発明はこの構成に限定されない。例えば、超音波印加機構46は、第1の成形型41に取り付けられていてもよい。また、例えば、超音波印加機構46は、第1の成形型41と第2の成形型42との両方に取り付けられていてもよい。
また、本実施形態では、ゲートが形成されている第1の成形型を固定型とし、第2の成形型を可動型とする例について説明する。但し、本発明はこの構成に限定されない。例えば、第1の成形型を可動型とし、第2の成形型を固定型としてもよい。また、第1の成形型と第2の成形型との両方を可動型としてもよい。
また、本実施形態では、製造装置1には、制御部49が設けられている。この制御部49によって、加圧ポンプ48a、電磁バルブ48c、超音波印加機構46及び移動機構45が制御されている。
次に、本実施形態の樹脂発泡体の製造装置1を用いて樹脂発泡体を製造する方法について、主として図1及び図8〜図11を参照しながら詳細に説明する。
まず、図8に示すように、まず、ステップS1(加圧工程)において、図1に示すキャビティ43の加圧が行われる。具体的には、ステップS1では、図1に示す制御部49によって電磁バルブ48cが開状態とされる。これにより、チャンバ48bの気体がキャビティ43に流入する。その結果、キャビティ43が加圧される。このように、溶融樹脂をキャビティ43に充填する前にキャビティ43を加圧しておくことにより、後述する発泡工程が開始されるまでに溶融樹脂が発泡することが抑制される。従って、後述するスキン層51(図10を参照)に気泡54(特に気泡径の大きな気泡)や破泡が生じることを抑制することができる。その結果、スキン層51の表面に凹凸が生じることを効果的に抑制することができる。
なお、キャビティ43に供給する気体の種類は特に限定されない。キャビティ43に供給する気体としては、例えば、炭酸ガス、窒素ガス、酸素、アルゴンやネオン、ヘリウムなどの不活性ガスなどが挙げられる。なかでも、キャビティ43に供給する気体は、例えば、炭酸ガスや窒素ガスであることが好ましい。また、複数種類の気体を混合した混合気体をキャビティ43に供給してもよい。
また、加圧後のキャビティ43の圧力は、使用する樹脂の種類や溶融温度などに応じて適宜設定することができる。加圧後のキャビティ43の圧力は、例えば、0.1MPa〜2MPa程度とすることができる。加圧後のキャビティ43の圧力は、0.5MPa〜1.5MPaであることが好ましい。
また、キャビティ43に供給される気体の温度も特に限定されないが、キャビティ43に供給される気体の温度は、使用する樹脂の融点近傍であることが好ましい。キャビティ43に供給される気体の温度は、例えば、使用する樹脂の融点よりも50℃低い温度以上、融点よりも50℃高い温度以下とすることが好ましい。具体的には、ポリプロピレン樹脂を使用し、かつキャビティ43に炭酸ガスを供給する場合は、キャビティ43に供給される炭酸ガスの温度は、例えば、100℃〜200℃程度であることが好ましい。また、キャビティ43に供給される炭酸ガスの圧力は、1MPa〜2MPaであることが好ましく、0.5MPa〜1.5MPaであることが好ましい。
次に、図8及び図9に示すように、ステップS2(射出工程)において、溶融樹脂50をキャビティ43に射出充填する。具体的には、図1に示す制御部49は、射出機構10に溶融樹脂50をキャビティ43に対して射出させることにより、溶融樹脂50をキャビティ43に充填する。
溶融樹脂50が充填される際のキャビティ43の厚さ(キャビティ厚)は、製造しようとする樹脂発泡体の厚みや得ようとする発泡倍率に応じて適宜設定することができる。例えば、高発泡倍率の樹脂発泡体を得る場合は、溶融樹脂50が充填される際のキャビティ厚は、1mm以下、より好ましくは0.5mm以下に設定される。
ここで、本実施形態では、上記射出工程が行われる射出期間の少なくとも一部の期間において、超音波印加工程が行われる。具体的には、図1に示す制御部49は、超音波印加機構46に超音波を発生させる。これにより、成形型40に超音波が印加される。このように、上記射出期間の一部において成形型40に超音波を印加することによって、キャビティ43内における溶融樹脂50の流動性を高めることができる。その結果、例えば、キャビティ厚が薄いキャビティ43の隅部にまで溶融樹脂50が確実に充填する。キャビティ43の隅部にまで溶融樹脂50をより確実に充填させる観点から、射出期間の全期間にわたって超音波印加工程を行うことが好ましい。
超音波印加工程において成形型40に印加する超音波の周波数や振幅は、特に限定されず、例えば、キャビティ厚、キャビティ43に充填される溶融樹脂50の温度及び圧力、成形型40の表面状態などに応じて適宜設定することができる。
なお、ステップS1においてキャビティ43に供給されたガスは、遅くとも溶融樹脂50の射出が完了するまでにキャビティ43から除去される。例えば、溶融樹脂50の射出が開始されるまでに気体を除去してもよいし、溶融樹脂50の射出が開始されてから気体を除去してもよい。ガスのキャビティ43からの除去は、第1の成形型41と第2の成形型42とのパーティングラインから行ってもよいし、成形型40に形成されているガス排出経路を通じて行ってもよい。
図8に示すように、ステップS2に続いてステップS3(発泡工程)が行われる。ステップS3では、制御部49は、移動機構45に、第2の成形型42を移動(コアバック)させることによって、キャビティ43の容積を拡大させる。これにより、キャビティ43内の溶融樹脂50が発泡し、図10に示すように、非発泡樹脂からなるスキン層51と、発泡樹脂からなる発泡部52とを有する樹脂発泡体53が形成される。
ステップS3の発泡工程は、ステップS2の射出工程終了直後に開始されてもよいし、射出工程の終了後、所定の時間経過したのちに開始されてもよい。例えば、発泡工程は、射出工程の終了後、0〜10秒、好ましくは、0〜5秒経過した後に開始されてもよい。射出工程が終了してから発泡工程が開始されるまでの期間が長すぎると、溶融樹脂50の温度が低下し、スキン層51が厚くなりすぎる場合がある。
発泡工程における溶融樹脂50の発泡効率は、特に限定されないが、2.2倍〜6倍程度であることが好ましい。
図8に示すように、ステップS3の発泡工程に続いて、ステップS4が行われる。ステップS4では、図11に示すように、成形された樹脂発泡体53の取り出しが行われる。具体的には、ステップS4において、制御部49は、第2の成形型42を第1の成形型41から離れる方向にさらに移動させた後に、押出ピン47を突き出させることにより、樹脂発泡体53を成形型40から取り出す。
以上説明したように、本実施形態では、供給部30に、圧縮比率が高いシール部としての第2の供給部30bが設けられており、かつ射出期間のうちの少なくとも一部の期間において成形型40に超音波が印加されるため、下記の実施例の結果においても裏付けられるように、高発泡倍率で、かつ形状精度が高く、剛性の高い樹脂発泡体53を製造することができる。
具体的には、射出期間の少なくとも一部の期間において、成形型40に超音波が印加されるため、溶融樹脂50の流動性が向上する。その結果、例えば、キャビティ厚が1mm以下といった、キャビティ厚の薄いキャビティ43であっても、溶融樹脂50がキャビティ43の隅部にまで確実に充填される。
また、成形型40に超音波を印加すると、その超音波が射出機構10にも伝達し、反応ガスのリークが生じやすくなるが、圧縮比率の高い第2の供給部30bが設けられているため、溶融樹脂中の反応ガスがリークすることを効果的に抑制することができる。よって、第2の供給部30bが設けられているため、溶融樹脂中の反応ガス濃度を高くすることができる。従って、高発泡倍率の樹脂発泡体53を高い形状精度で製造することができる。
また、溶融樹脂50の流動性が向上するため、キャビティ43内を広がる際の溶融樹脂50の挙動を安定化することができる。すなわち、溶融樹脂50の流動の際の波打ちを抑制することができる。
それに加え、本実施形態では、射出工程が行われる前に、キャビティ43が与圧されている。このため、発泡工程が開始されるまで、すなわち、射出工程段階における溶融樹脂50の発泡を抑制することができる。よって、スキン層51に気泡が形成されることや、スキン層51の表面に破泡が生じることを抑制することができる。その結果、表面の平坦性が高く、かつ端部における形状精度が高い樹脂発泡体53を得ることができる。
また、キャビティ43の与圧により発泡工程が開始されるまでの発泡が規制され、かつ、超音波の印加により、溶融樹脂50中に多数の気泡核を生成させることができる。このため、本実施形態では、生成する気泡54の数量を多くでき、かつ気泡径のばらつきを抑制することができる。従って、高い剛性の樹脂発泡体53を製造することができる。
さらに、本実施形態では、超音波の印加により溶融樹脂50の流動性が向上されるため、流動性が悪い、高強度の樹脂を用いた場合であっても、キャビティ厚の薄いキャビティ43に好適に充填することができる。かつ、上述のように、気泡径のばらつきを抑制でき、微細かつ気泡径が均一な多数の気泡を均一に分散させることができる。よって、発泡倍率が高く、軽量でありつつ、高い剛性を有し、さらに剛性のムラが少ない樹脂発泡体53の製造が可能となる。
なお、本実施形態のスクリュー20は単なる例示である。本発明において、スクリューは、圧縮部と、第1〜第3の供給部とが設けられている限りにおいて特に限定されない。本発明において、スクリューは、例えば、マドックタイプのスクリュー、ピンタイプのスクリュー、ダルメージタイプのスクリューなどであってもよい。
(変形例)
上記実施形態では、三角堰をフライトに形成することによって計量部32の剪断力を大きくする例について説明した。但し、計量部32の形状はこの形状に限定されない。計量部32は、例えば、図12に示すように、スクリュー20の軸方向に対して傾斜するように周面に形成されており、かつ互いに幅の異なる第1及び第2の凹部32a、32bを有するものであってもよい。
また、例えば、図13に示すように、計量部32は、スクリュー20の軸方向に対して傾斜する方向と、その方向に直交する方向に延びる格子状のフライト25が形成されていてもよい。
また、例えば、図14に示すように、計量部32は、中心軸が違いに異なる第1及び第2のスクリュー本体21a、21bが互い違いに設けられたスクリュー本体21を備えるものであってもよい。
また、上記実施形態では、フライトのピッチを小さくすることによりシール部の圧縮比率を高めた例について説明した。但し、本発明は、これに限定されない。例えば、フライトにより形成される溝の深さを小さくしたりすることによりシール部の圧縮比率を高めてもよい。
(実施例1)
図1に示す上記実施形態の製造装置1を用い、下記条件及び下記の表に示す条件にて樹脂発泡体を作製した。なお、樹脂の充填に先立って、使用する熱可塑性樹脂の融点よりも30℃高い温度に加熱された窒素ガスを0.8MPaでキャビティに充填した。そして、充填した窒素ガスは射出充填完了直前に除去した。
熱可塑性樹脂:プライムポリマー社製ポリプロピレン(商品名:J830−HV、MFR=30g/10秒)
化学発泡剤:永和化成工業社製ポリスチレン(商品名:EE275F)
超音波印加機構:富士セラミックス社製超音波振動装置(型式:FL60152SS、周波数60KHz)
射出成型機:宇部興産機械製 MD1400
スクリュー20の有効長さ:2240mm
スクリュー20の口径:112mm
スクリューのL/D:20
第1の供給部30a及び第3の供給部30cにおけるフライト25のピッチ:112mm
第2の供給部30bにおけるフライト25のピッチ:44.8mm
圧縮部31におけるフライト25のピッチ:56mm
圧縮部31の上流側端部における溝深さ:第1の供給部30aの下流側端部における溝深さと同じ
圧縮部31の下流側端部における溝深さ:計量部32の上流側端部における溝深さと同じ
圧縮部31の上流側端部における溝深さ:圧縮部31の下流側端部における溝深さの2.15倍(圧縮部31における圧縮比:2.15)
計量部32におけるθ1(図7を参照):30°
計量部32におけるフライト25の数:16
計量部32における圧縮比:5
計量部32における溝深さ:圧縮部31の下流側端部における溝深さと同じ
可塑化シリンダの設定温度:220℃
スクリューの回転速度:100/秒
スクリューの背圧:3MPa
樹脂温度:220℃
溶融樹脂の射出時におけるキャビティの形状:たて500mm×横800mm×厚さ0.8mmの平板状
成形型の温度:45℃
射出時間:1.5秒
超音波印加時間:溶融樹脂の充填開始から1.2秒間
冷却時間:35秒
1サイクル時間:60秒
(実施例2)
超音波を印加する部分を成形型のノズル及びゲートが設けられている部分としたこと以外は、上記実施例1と同様にして樹脂発泡体を作製した。
(実施例3)
下記の表1に示すように、コアバック量を4.15mmとしたこと以外は、上記実施例1と同様にして樹脂発泡体を作製した。
(実施例4)
超音波を印加する部分を成形型のノズル及びゲートが設けられている部分としたこと以外は、上記実施例3と同様にして樹脂発泡体を作製した。
(実施例5)
使用する樹脂を日本ポリプロ社製ポリプロピレン(商品名:BC08F、MFR=75g/10秒)としたこと以外は上記実施例1と同様にして樹脂発泡体を作製した。
(実施例6)
超音波を印加する部分を成形型のノズル及びゲートが設けられている部分としたこと以外は、上記実施例5と同様にして樹脂発泡体を作製した。
(実施例7)
下記の表1に示すように、コアバック量を4.15mmとしたこと以外は、上記実施例5と同様にして樹脂発泡体を作製した。
(実施例8)
超音波を印加する部分を成形型のノズル及びゲートが設けられている部分としたこと以外は、上記実施例7と同様にして樹脂発泡体を作製した。
(実施例9)
図14に示す計量部を用いたこと以外は、上記実施例5と同様にして樹脂発泡体を作製した。なお、中心軸が異なる第1のスクリュー本体21aと、第2のスクリュー本体21bとの偏心、すなわち、第1のスクリュー本体21aの中心軸と、第2のスクリュー本体21bの中心軸との距離は、第3の供給部30cにおける溝深さと計量部32における溝深さとの差と等しい。但し、フライト外径はフライト25と同じである。計量部では、スクリューが1回転する間(1リード)に圧縮比が1〜2.15〜1と変化する。フライト25のピッチは112mmである。
(実施例10)
下記の表2に示すように、コアバック量を4.15mmとしたこと以外は、上記実施例9と同様にして樹脂発泡体を作製した。
(実施例11)
図12に示す計量部を用いたこと以外は、上記実施例5と同様にして樹脂発泡体を作製した。第1及び第2の凹部32a、32bは、丸みをもっており、スクリュー20の軸方向に対し時計方向に10°傾斜している。第1及び第2の凹部32a、32bは、スクリュー20の外周面上に、周方向に沿って等間隔に合計16個形成されている。
第1の凹部32aは、8個形成されており、上流側に開口している一方、下流側には開口していない。第1の凹部32aの上流側開口部における溝深さは、圧縮部31の下流側端部における溝深さと同じである。第1の凹部32aの底面は、スクリュー20の下流側に向かって、径方向外側に傾斜している。第1の凹部32aの底面と、スクリュー20の中心軸とのなす角の大きさは、5°である。
第2の凹部32bは、8個形成されており、下流側に開口している一方、上流側には開口していない。第2の凹部32bの底面は、スクリュー20の下流側に向かって、径方向外側に傾斜している。第2の凹部32bの底面と、スクリュー20の中心軸とのなす角の大きさは、5°である。第2の凹部32bの下流側開口部における溝深さは、圧縮部31の下流側端部における溝深さと同じである。
(実施例12)
下記の表2に示すように、コアバック量を4.15mmとしたこと以外は、上記実施例9と同様にして樹脂発泡体を作製した。
(実施例13)
図13に示す計量部を用いたこと以外は、上記実施例5と同様にして樹脂発泡体を作製した。計量部では、螺旋状の主フライトに直交する螺旋状の副フライトが形成されている。副フライトは、主フライト間のフライト溝のスクリュー20が1回転する間(1リード)の部分を3等分している。副フライトのフライト幅は、主フライトのフライト幅の1/2である。副フライトのフライト高さは、主フライトのフライト高さの9/10である。主フライト間のフライト溝の深さは、圧縮部31の下流側端部における溝深さと同じである。
(実施例14)
下記の表2に示すように、コアバック量を4.15mmとしたこと以外は、上記実施例9と同様にして樹脂発泡体を作製した。
(実施例15)
通常のダブルフライト型の計量部を用いたこと以外は、上記実施例5と同様にして樹脂発泡体を作製した。なお、本実施例では、主フライト間のフライト溝の深さは、圧縮部31の下流側端部における溝深さと同じである。主フライト25間の1/2の位置に副フライトが位置している。主フライトのピッチは112mmである。副フライトのフライト高さは、主フライトのフライト高さの9/10である。副フライトのフライト幅は、主フライトのフライト幅の2/3である。
(比較例1)
化学発泡剤を5重量部とし、第2の供給部を設けず、供給部におけるフライトのピッチが均一であるスクリューを用いたこと以外は、上記実施例1と同様にして樹脂発泡体を作製した。すなわち、比較例1では、供給部におけるフライトのピッチは、112mmで一定とした。
(比較例2)
コアバック量を4.15mmとしたこと以外は、上記比較例1と同様にして樹脂発泡体を作製した。
(比較例3)
使用する樹脂を日本ポリプロ社製ポリプロピレン(商品名:BC08F、MFR=75g/10秒)としたこと以外は、上記比較例1と同様にして樹脂発泡体を作製した。
(比較例4)
コアバック量を4.15mmとしたこと以外は、上記比較例3と同様にして樹脂発泡体を作製した。
(比較例5)
超音波を印加する部分を成形型のノズル及びゲートが設けられている部分としたこと以外は、上記比較例1と同様にして樹脂発泡体を作製した。
(比較例6)
コアバック量を4.15mmとしたこと以外は、上記比較例5と同様にして樹脂発泡体を作製した。
(比較例7)
超音波を印加する部分を成形型のノズル及びゲートが設けられている部分としたこと以外は、上記比較例3と同様にして樹脂発泡体を作製した。
(比較例8)
コアバック量を4.15mmとしたこと以外は、上記比較例7と同様にして樹脂発泡体を作製した。
上記のように得られた実施例1〜15及び比較例1〜8の樹脂発泡体について、下記の要領で、平均気泡径、気泡径のばらつき、スキン層の平均厚さ、樹脂発泡体の表面の光沢度、樹脂発泡体の最大ひけ量等を測定し、気泡形状を観察した。測定結果及び観察結果を下記の表1〜表3に示す。
平均気泡径:1cm四方(長さ10mm×幅10mm)の測定範囲における全ての気泡の直径を測定し、それを平均することにより求めた。気泡の直径の測定は、気泡円周の3点デジタイズにより測定した。測定には、KEYENCE社製 マイクロスコープ VHX−100を用い、倍率を100倍とした。
気泡径のばらつき:上記平均気泡径の測定において測定した全ての気泡径の最大値から最小値を減算することにより気泡径のばらつきを求めた。
平均スキン層厚さ:気泡が含まれていない未発泡部であるスキン層の厚みを2cm間隔で、7点測定し、その測定結果を平均することにより平均スキン層厚さを求めた。測定には、KEYENCE社製 マイクロスコープ VHX−100を用い、倍率を100倍とした。
形状精度評価:得られた樹脂発泡体の外観を目視により検査した結果、キャビティの末端にまで樹脂が充填されており、リブ欠、バリが観察されなかった場合に「○」とした。一方、キャビティの末端にまで樹脂がされているものの、リブ欠やバリが観察された場合を「△」とし、それ以外の場合を「×」とした。
外観:目視検査により、シルバー(表面の微細な気泡跡、スワールマークともいう)やフローマークが観察されなかった場合を「○」とした。シルバーやフローマークがわずかに観察された場合を「△」とし、顕著なシルバーやフローマークが観察された場合を「×」とした。
平均曲げ弾性勾配(剛性):10個の樹脂発泡体のそれぞれの任意に部分から、50mm×150mm角の資料を4つずつ切り出し、合計40個のサンプルを作製した。そして、各サンプルについて、(株)オリエンテック社製の万能材料試験機(TENSILON RTC−1310)を用いて、下記の条件にて曲げ試験を行い、荷重−歪み線図を作成した。そして、荷重−歪み線図の初期の直線部分を延長するように補助線を描画し、この補助線と歪み量1cmの直線との交点を曲げ弾性勾配(N/cm)とした。そして、40個のサンプルの曲げ弾性勾配の平均値を平均曲げ弾性勾配とした。
光沢度評価:(株)堀場製作所社製の光沢度計(グロスチェッカ IG−320)を用いて、JIS−Z−8741−1959「光沢度測定方法」(入射角:60°)に従い光沢度を測定した。その結果、光沢度が90%以上である場合を「○」とし、90%未満である場合を「×」とした。
最大ひけ量:ディプゲージ((株)テクロック社製のデジタルデプスゲージ DMD−210)を用いて、樹脂発泡体の表面の平坦部から凹部の最深部までの深さを測定し、その測定結果を最大ひけ量として評価した。最大ひけ量が0.2mm以下を「○」とし、0.2mmより大きく0.4mm以下を「△」とし、0.4mmより大きい場合を「×」とした。
Figure 2010269512
Figure 2010269512
Figure 2010269512
上記の表1〜表3に示すように、実施例1〜15の方が、比較例1〜8よりも平均気泡径が小さく、気泡径のばらつきが小さく、平均曲げ弾性勾配が高かった。また、比較例1〜8では、形状精度、外観、光沢度、最大ひけ量のうちの少なくともひとつが不良(×または△)であったのに対して、実施例1〜15では、形状精度、外観、光沢度、最大ひけ量のすべてが良好(○)であった。
以上より、第2の供給部を設けており、かつ射出期間の少なくとも一部の期間において成形型に超音波を印加することにより、平均気泡径を小さくでき、気泡径のばらつきを小さくでき、高い形状精度、高い剛性を実現できることが分かる。
また、計量部の剪断力を高くした実施例1〜14と、計量部の剪断力が低い実施例15とを比較すると、剪断力が高い実施例1〜14の方が、平均気泡径が小さく、気泡径のばらつきも小さかった。この結果から、計量部の剪断力を高くすることにより、平均気泡径及び気泡径のばらつきを小さくできることが分かる。
1…製造装置
10…射出機構
11…可塑化シリンダ
12…ヒーター
13…ホッパー
14…射出シリンダ
15…熱可塑性樹脂
20…スクリュー
21…スクリュー本体
21a…第1のスクリュー本体
21b…第2のスクリュー本体
22…主フライト
23,24…副フライト
25…フライト
25a…フライトにより形成される溝
26…チェックリング
30…供給部
30a…第1の供給部
30b…第2の供給部
30c…第3の供給部
31…圧縮部
32…計量部
32a、32b…凹部
40…成形型
41…第1の成形型
41a…ゲート
42…第2の成形型
43…キャビティ
45…移動機構
46…超音波印加機構
47…押出ピン
48…加圧機構
48a…加圧ポンプ
48b…チャンバ
48c…電磁バルブ
49…制御部
50…溶融樹脂
51…スキン層
52…発泡部
53…樹脂発泡体
54…気泡

Claims (7)

  1. 樹脂を溶融混練した後に射出する射出機構と、
    第1の成形型と、前記第1の成形型と共に、前記射出機構により射出された樹脂が供給されるキャビティを形成している第2の成形型とを有する成形型と、
    前記第1の成形型と前記第2の成形型とのうちの少なくとも一方を移動させることにより前記キャビティの容積を拡大する移動機構と、
    前記成形型に超音波を印加する超音波印加機構と、
    を備え、
    前記射出機構は、前記樹脂が供給される可塑化シリンダと、前記可塑化シリンダ内に配置されているスクリューとを有し、
    前記スクリューは、圧縮部と、前記圧縮部の上流側に位置している供給部とを有する樹脂発泡体の製造装置であって、
    前記供給部には、前記供給部の他の部分よりも圧縮比率が高いシール部が設けられており、
    前記超音波印加機構は、前記射出機構が前記キャビティに対して前記樹脂の射出を開始してから前記樹脂の射出を終了するまでの間の期間の少なくとも一部において、前記成形型に超音波を印加し、
    前記移動機構は、前記射出機構が前記樹脂の射出を終了した後に前記第1の成形型と前記第2の成形型とのうちの少なくとも一方を移動させて前記キャビティの容積を拡大することにより前記樹脂を発泡させる、樹脂発泡体の製造装置。
  2. 前記スクリューは、円柱状のスクリュー本体と、前記スクリュー本体の外周面に螺旋状に形成されているフライトとを有し、
    前記シール部における前記フライトのピッチは、前記供給部の前記シール部以外の部分における前記フライトのピッチよりも小さい、請求項1に記載の樹脂発泡体の製造装置。
  3. 前記キャビティに気体を供給することにより前記キャビティを加圧する加圧機構をさらに備え、
    前記加圧機構は、前記射出機構が前記キャビティに対して前記樹脂の射出を開始する前に前記キャビティに気体を供給することにより前記キャビティを加圧する、請求項1または2に記載の樹脂発泡体の製造装置。
  4. 前記射出機構が前記キャビティに対して樹脂を射出する際の前記キャビティの厚みが1mm以下である、請求項1〜3のいずれか一項に記載の樹脂発泡体の製造装置。
  5. 前記スクリューは、前記圧縮部よりも下流側に位置する計量部をさらに有し、
    前記計量部は、前記圧縮部よりも高い剪断力を有する、請求項1〜4のいずれか一項に記載の樹脂発泡体の製造装置。
  6. 請求項1〜5のいずれか一項に記載の樹脂発泡体の製造装置を用いた樹脂発泡体の製造方法であって、
    前記射出機構により前記キャビティに前記樹脂を射出する射出工程と、
    前記射出工程が行われる期間のうちの少なくとも一部において、前記超音波印加機構により前記成形型に超音波を印加する超音波印加工程と、
    前記射出工程が終了した後に、前記移動機構により前記第1の成形型と前記第2の成形型とのうちの少なくとも一方を移動させて前記キャビティの容積を拡大することにより前記樹脂を発泡させる発泡工程と、
    を備える樹脂発泡体の製造方法。
  7. 前記樹脂発泡体の製造装置は、前記キャビティに気体を供給することにより前記キャビティを加圧する加圧機構をさらに備え、
    前記射出工程を開始する前に、前記加圧機構により前記キャビティに気体を供給することにより前記キャビティを加圧する加圧工程をさらに備える、請求項6に記載の樹脂発泡体の製造方法。
JP2009122941A 2009-05-21 2009-05-21 樹脂発泡体の製造装置及び樹脂発泡体の製造方法 Withdrawn JP2010269512A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009122941A JP2010269512A (ja) 2009-05-21 2009-05-21 樹脂発泡体の製造装置及び樹脂発泡体の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009122941A JP2010269512A (ja) 2009-05-21 2009-05-21 樹脂発泡体の製造装置及び樹脂発泡体の製造方法

Publications (1)

Publication Number Publication Date
JP2010269512A true JP2010269512A (ja) 2010-12-02

Family

ID=43417947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009122941A Withdrawn JP2010269512A (ja) 2009-05-21 2009-05-21 樹脂発泡体の製造装置及び樹脂発泡体の製造方法

Country Status (1)

Country Link
JP (1) JP2010269512A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021070798A1 (ja) * 2019-10-10 2021-04-15 昭和電工マテリアルズ株式会社 発泡成形体、発泡成形体の製造方法、及び発泡成形体の外観不良の抑制方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021070798A1 (ja) * 2019-10-10 2021-04-15 昭和電工マテリアルズ株式会社 発泡成形体、発泡成形体の製造方法、及び発泡成形体の外観不良の抑制方法
JPWO2021070798A1 (ja) * 2019-10-10 2021-10-21 昭和電工マテリアルズ株式会社 発泡成形体、発泡成形体の製造方法、及び発泡成形体の外観不良の抑制方法
JP2021169619A (ja) * 2019-10-10 2021-10-28 昭和電工マテリアルズ株式会社 発泡成形体、発泡成形体の製造方法、及び発泡成形体の外観不良の抑制方法
CN114423581A (zh) * 2019-10-10 2022-04-29 昭和电工材料株式会社 发泡成形体、发泡成形体的制造方法和发泡成形体的外观不良的抑制方法
JP7259894B2 (ja) 2019-10-10 2023-04-18 株式会社レゾナック 発泡成形体、発泡成形体の製造方法、及び発泡成形体の外観不良の抑制方法

Similar Documents

Publication Publication Date Title
US20120326352A1 (en) Method for the injection moulding of plastic parts from thermoplastic material
Lee et al. Study of the foaming mechanisms associated with gas counter pressure and mold opening using the pressure profiles
JP2008018677A (ja) 発泡樹脂成形品の成形方法及び成形装置
EP3564004B1 (en) Method for producing container for foods
JP5805992B2 (ja) 発泡成形用射出成形機の射出装置
Peng et al. A new microcellular injection molding process for polycarbonate using water as the physical blowing agent
WO2019111890A1 (ja) 発泡成形体の製造方法及び製造装置
KR950012850B1 (ko) 사출성형법
JP2010269512A (ja) 樹脂発泡体の製造装置及び樹脂発泡体の製造方法
JP2010158866A (ja) 成形体及び成形体の製造方法
JP2009226872A (ja) 発泡樹脂成形品の成形方法及び成形装置
JP2006281698A (ja) 発泡成形品の成形方法及び発泡成形品の成形装置
JP2004017285A (ja) 薄肉発泡成形体の成形方法及び薄肉発泡成形体並びに発泡体成形装置
JP2008142997A (ja) 射出発泡成形体の製造方法および該方法によって得られる成形体
JP4951894B2 (ja) 射出装置
JP5255330B2 (ja) スクリュー
JP2011025472A (ja) 発泡成形体、発泡成形体の製造方法および発泡成形体製造用金型
KR20220030265A (ko) 고분자 발포체 물품 및 고분자 발포체의 제조 방법
JP2017071088A (ja) 発泡成形体の製造方法
Saini et al. Cavity pressure profile study during foam injection molding and its effect on cell formation of polypropylene/chemical blowing agent foam
JP2012081675A (ja) 発泡剤を含むプラスチックの押出成形方法及び押出成形機
JP2017148836A (ja) 鋳造用砂型の造型方法
JP2011000783A (ja) 成形品の製造方法とその製造装置及び成形品を用いた自動車用内装材
JP6474330B2 (ja) 射出成形方法
JP5315702B2 (ja) 発泡樹脂成形品の成形方法及び成形装置

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120807