JP2010257589A - 光電変換素子及び太陽電池 - Google Patents

光電変換素子及び太陽電池 Download PDF

Info

Publication number
JP2010257589A
JP2010257589A JP2009102812A JP2009102812A JP2010257589A JP 2010257589 A JP2010257589 A JP 2010257589A JP 2009102812 A JP2009102812 A JP 2009102812A JP 2009102812 A JP2009102812 A JP 2009102812A JP 2010257589 A JP2010257589 A JP 2010257589A
Authority
JP
Japan
Prior art keywords
group
substituted
unsubstituted alkyl
photoelectric conversion
heterocyclic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009102812A
Other languages
English (en)
Other versions
JP5396987B2 (ja
Inventor
Hidekazu Kawasaki
秀和 川▲崎▼
Kazuya Isobe
和也 磯部
Hideya Miwa
英也 三輪
Kazukuni Nishimura
一国 西村
Mayuko Ushiro
真優子 鵜城
Akihiko Itami
明彦 伊丹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Business Technologies Inc
Original Assignee
Konica Minolta Business Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Business Technologies Inc filed Critical Konica Minolta Business Technologies Inc
Priority to JP2009102812A priority Critical patent/JP5396987B2/ja
Publication of JP2010257589A publication Critical patent/JP2010257589A/ja
Application granted granted Critical
Publication of JP5396987B2 publication Critical patent/JP5396987B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

【課題】新規で酸化物半導体への吸着性が良く、光電変換効率が高い増感色素を用いた光電変換素子及び太陽電池を提供することにある。
【解決手段】対向する一対の電極間に、少なくとも増感色素を半導体に担持してなる半導体層及び電荷輸送層が設けられている色素増感型光電変換素子において、前記増感色素が下記一般式(1)で表される化合物を含有することを特徴とする光電変換素子。
【化1】
Figure 2010257589

【選択図】なし

Description

本発明は、新規な増感色素を用いた光電変換素子及び太陽電池に関する。
近年、無限で有害物質を発生しない太陽光の利用が精力的に検討されている。このクリーンエネルギー源である太陽光利用として現在実用化されているものは、住宅用の単結晶シリコン、多結晶シリコン、アモルファスシリコン及びテルル化カドミウムやセレン化インジウム銅等の無機系太陽電池が挙げられる。
しかしながら、これらの無機系太陽電池の欠点としては、例えば、シリコン系では、非常に純度の高いものが要求され、当然精製の工程は複雑でプロセス数が多く、製造コストが高いことが挙げられる。
その一方で、有機材料を使う太陽電池も多く提案されている。有機太陽電池としては、p型有機半導体と仕事関数の小さい金属を接合させるショットキー型光電変換素子、p型有機半導体とn型無機半導体、あるいはp型有機半導体と電子受容性有機化合物を接合させるヘテロ接合型光電変換素子等があり、利用される有機半導体は、クロロフィル、ペリレン等の合成色素や顔料、ポリアセチレン等の導電性高分子材料、またはそれらの複合材料等である。これらを真空蒸着法、キャスト法、またはディッピング法等により、薄膜化し電池材料が構成されている。有機材料は低コスト、大面積化が容易等の長所もあるが、変換効率は1%以下と低いものが多く、また耐久性も悪いという問題もあった。
こうした状況の中で、良好な特性を示す太陽電池がスイスのグレッツェル博士らによって報告された(非特許文献1参照)。提案された電池は色素増感型太陽電池であり、ルテニウム錯体で分光増感された酸化チタン多孔質薄膜を作用電極とする湿式太陽電池である。この方式の利点は酸化チタン等の安価な金属化合物半導体を高純度まで精製する必要がないこと、従って安価で、さらに利用できる光は広い可視光領域にまでわたっており、可視光成分の多い太陽光を有効に電気へ変換できることである。
反面、資源的制約があるルテニウム錯体が使われているため、この太陽電池が実用化された場合に、ルテニウム錯体の供給が危ぶまれている。また、このルテニウム錯体は高価なことと、経時での安定性に問題があり、安価で安定な有機色素へ変更することができれば、この問題は解決できる。
この電池の色素としてローダニン骨格含有アミン構造を有する化合物を用いると光電変換効率が高い素子が得られることが開示されている(例えば、特許文献1、2参照)。しかし、これら化合物を用いた場合でも、ルテニウム錯体を用いた場合に比べ変換効率が低く、さらに光電変換効率が高い増感色素が求められている。
特開2005−123033号公報 特開2005−63833号公報
B.O’Regan,M.Gratzel,Nature,353,737(1991)
本発明は、上記課題に鑑みなされたものであり、その目的は、新規で酸化物半導体への吸着性が良く、光電変換効率が高い増感色素を用いた光電変換素子及び太陽電池を提供することにある。
本発明の上記課題は、以下の構成により達成される。
1.対向する一対の電極間に、少なくとも増感色素を半導体に担持してなる半導体層及び電荷輸送層が設けられている色素増感型光電変換素子において、前記増感色素が下記一般式(1)で表される化合物を含有することを特徴とする光電変換素子。
Figure 2010257589
(式中、Arは置換または未置換のアリーレン基または複素環基を表す。R、Rは置換または未置換のアルキル基、アルケニル基、アルキニル基、アリール基または複素環基を表し、R、R、Arは互いに連結して環状構造を形成してもよい。また、R、Rは水素、置換または未置換のアルキル基、アルケニル基、アルキニル基、アリール基、アミノ基、シアノ基または複素環基を表す。RはXで置換した、置換または未置換のアルキル基、アルケニル基、アルキニル基、アルコキシ基、チオアルコキシ基、セレノアルコキシ基、アミノ基、アリール基または複素環基を表す。Xは酸性基を表し、mは1以上の整数を表し、m≧2の場合、Xは同じでも異なってもよい。炭素−炭素二重結合は、シス体、トランス体のどちらでもよい。)
2.前記一般式(1)で表される化合物が、下記一般式(2)で表される化合物であることを特徴とする前記1に記載の光電変換素子。
Figure 2010257589
(式中、Arは置換または未置換のアリーレン基または複素環基を表す。R、Rは置換または未置換のアルキル基、アルケニル基、アルキニル基、アリール基または複素環基を表し、R、R、Arは互いに連結して環状構造を形成してもよい。また、R、Rは水素原子、置換または未置換のアルキル基、アルケニル基、アルキニル基、アリール基、アミノ基、シアノ基または複素環基を表す。R、Rは水素原子、ハロゲン原子、水酸基、チオール基、シアノ基、置換または未置換のアルキル基、アリール基、アルケニル基、アルキニル基、アルコキシ基、アミノ基または複素環基を表し、互いに連結して環状構造を形成してもよい。nは0以上の整数を表し、n≧2の場合、R、Rは同じでも異なってもよい。Yは硫黄原子、酸素原子またはセレン原子を表し、Xは酸性基を表す。炭素−炭素二重結合は、シス体、トランス体のどちらでもよい。)
3.前記一般式(2)で表される化合物のYが硫黄原子、すなわち下記一般式(3)で表される化合物であることを特徴とする前記2に記載の光電変換素子。
Figure 2010257589
(式中、Arは置換または未置換のアリーレン基または複素環基を表す。R、Rは置換または未置換のアルキル基、アルケニル基、アルキニル基、アリール基または複素環基を表し、R、R、Arは互いに連結して環状構造を形成してもよい。また、R、Rは水素原子、置換または未置換のアルキル基、アルケニル基、アルキニル基、アリール基、アミノ基、シアノ基または複素環基を表す。R、Rは水素原子、ハロゲン原子、水酸基、チオール基、シアノ基、置換または未置換のアルキル基、アリール基、アルケニル基、アルキニル基、アルコキシ基、アミノ基または複素環基を表し、互いに連結して環状構造を形成してもよい。nは0以上の整数を表し、n≧2の場合、R、Rは同じでも異なってもよい。Xは酸性基を表す。炭素−炭素二重結合は、シス体、トランス体のどちらでもよい。)
4.前記一般式(3)で表される化合物のRが水素原子、すなわち下記一般式(4)で表される化合物であることを特徴とする前記3に記載の光電変換素子。
Figure 2010257589
(式中、Arは置換または未置換のアリーレン基または複素環基を表す。R、Rは置換または未置換のアルキル基、アルケニル基、アルキニル基、アリール基または複素環基を表し、R、R、Arは互いに連結して環状構造を形成してもよい。また、Rは水素原子、置換または未置換のアルキル基、アルケニル基、アルキニル基、アリール基、アミノ基、シアノ基または複素環基を表す。R、Rは水素原子、ハロゲン原子、水酸基、チオール基、シアノ基、置換または未置換のアルキル基、アリール基、アルケニル基、アルキニル基、アルコキシ基、アミノ基または複素環基を表し、互いに連結して環状構造を形成してもよい。nは0以上の整数を表し、n≧2の場合、R、Rは同じでも異なってもよい。Xは酸性基を表す。炭素−炭素二重結合は、シス体、トランス体のどちらでもよい。)
5.前記一般式(4)で表される化合物が、下記一般式(5)で表される化合物であることを特徴とする前記4に記載の光電変換素子。
Figure 2010257589
(式中、R、Rはハロゲン原子、置換または未置換のアルキル基、アルケニル基、アルキニル基、アルコキシ基、チオアルコキシ基、セレノアルコキシ基、アリール基または複素環基を表し、n8、n9は1〜5の整数を表す。n8、n9≧2の場合は、R、Rは同じでも異なってもよい。また、Rは水素原子、置換または未置換のアルキル基、アルケニル基、アルキニル基、アリール基、アミノ基、シアノ基または複素環基を表す。R、Rは水素原子、ハロゲン原子、水酸基、チオール基、シアノ基、置換または未置換のアルキル基、アリール基、アルケニル基、アルキニル基、アルコキシ基、アミノ基または複素環基を表し、互いに連結して環状構造を形成してもよい。nは0以上の整数を表し、n≧2の場合、R、Rは同じでも異なってもよい。Xは酸性基を表す。炭素−炭素二重結合は、シス体、トランス体のどちらでもよい。)
6.前記一般式(4)で表される化合物が、下記一般式(6)で表される化合物であることを特徴とする前記4に記載の光電変換素子。
Figure 2010257589
(式中、R、R10はハロゲン原子、置換または未置換のアルキル基、アルケニル基、アルキニル基、アルコキシ基、チオアルコキシ基、セレノアルコキシ基、アリール基または複素環基を表し、n9、n10はそれぞれ1〜5、1〜8の整数を表す。n9、n10≧2の場合は、R、R10は同じでも異なってもよい。また、Rは水素原子、置換または未置換のアルキル基、アルケニル基、アルキニル基、アリール基、アミノ基、シアノ基または複素環基を表す。R、Rは水素原子、ハロゲン原子、水酸基、チオール基、シアノ基、置換または未置換のアルキル基、アリール基、アルケニル基、アルキニル基、アルコキシ基、アミノ基または複素環基を表し、互いに連結して環状構造を形成してもよい。nは0以上の整数を表し、n≧2の場合、R、Rは同じでも異なってもよい。Xは酸性基を表す。炭素−炭素二重結合は、シス体、トランス体のどちらでもよい。)
7.前記増感色素として、前記一般式(1)〜(6)で表される化合物から選ばれた複数の化合物を含有することを特徴とする前記1〜6のいずれか1項に記載の光電変換素子。
8.前記半導体層を形成する半導体が酸化チタンであることを特徴とする前記1〜7のいずれか1項に記載の光電変換素子。
9.前記1〜8のいずれか1項に記載の光電変換素子を有することを特徴とする太陽電池。
本発明により、新規で酸化物半導体への吸着性が良く、光電変換効率が高い増感色素を用いた光電変換素子及び太陽電池を提供することができた。
本発明に用いられる光電変換素子の一例を示す断面図である。
前述のように、従来、トリフェニルアミン構造を有する化合物は光電変換効率が高い色素として知られているが、これらの色素は前述のルテニウム錯体色素に比べ変換効率が劣り、さらなる改善が求められている。
本発明者らが検討した結果、励起した増感色素分子から半導体への電子注入が効率的に行われれば変換効率向上につながると推測された。そこで、光励起状態(LUMO)における特定原子付近の電荷密度分布が高い化合物を検討したところ、これを用いた光電変換素子は光電変換効率が高いことが分かった。この新しい色素は、イミダゾール環の4位に存在するカルボニル酸素原子のLUMO電荷分布密度が高い構造となっており、半導体への効率的な電子注入が実現しているためと推定している。
以下、本発明をさらに詳細に説明する。
〔光電変換素子〕
本発明の光電変換素子について、図により説明する。
図1は、本発明の光電変換素子の一例を示す断面図である。
図1に示すように、基板1、1′、透明導電膜2、7、半導体3、増感色素4、電荷輸送層5、隔壁9等から構成されている。
本発明の光電変換素子は、透明導電膜2を付けた基板1(導電性支持体とも言う。)上に、半導体3の粒子を焼結して形成した空孔を有する半導体層を有し、その空孔表面に色素4を吸着させたものが用いられる。対向する一対の電極の内の一つの電極6としては、基板1′上に透明導電膜7が形成され、その上に白金8を蒸着したものが用いられ、両電極間には電荷輸送層5として電荷輸送物質が充填されている。透明導電膜2及び7に端子を付けて光電流を取り出す。
本発明は、新規な増感色素、及びそれを用いた光電変換素子及び太陽電池に関するものである。
《一般式(1)で表される化合物》
以下に、前記一般式(1)で表される化合物について説明する。
一般式(1)において、Arは置換または未置換のアリーレン基または複素環基を表す。R、Rは置換または未置換のアルキル基、アルケニル基、アルキニル基、アリール基または複素環基を表し、R、R、Arは互いに連結して環状構造を形成してもよい。また、R、Rは水素、置換または未置換のアルキル基、アルケニル基、アルキニル基、アリール基、アミノ基、シアノ基または複素環基を表す。RはXで置換した、置換または未置換のアルキル基、アルケニル基、アルキニル基、アルコキシ基、チオアルコキシ基、セレノアルコキシ基、アミノ基、アリール基または複素環基を表す。Xは酸性基を表し、mは1以上の整数を表し、m≧2の場合、Xは同じでも異なってもよい。炭素−炭素二重結合は、シス体、トランス体のどちらでもよい。
Arで表されるアリーレン基としては、フェニレン基、トリレン基等が挙げられ、複素環基としては、フラニル基、チエニル基、イミダゾリル基、チアゾリル基、モルホニル基等が挙げられる。
、Rで表されるアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、tert−ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、シクロペンチル基、シクロヘキシル基等が挙げられ、アルケニル基としては、ビニル基、1−プロペニル基、2−プロペニル基、2−ブテニル基、アリル基等が挙げられ、アルキニル基としては、プロパルギル基、3−ペンチニル基等が挙げられ、アリール基としては、フェニル基、ナフチル基、アントラセニル基等が挙げられ、複素環基としては、フラニル基、チエニル基、イミダゾリル基、チアゾリル基、モルホニル基等が挙げられる。
で表されるアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基等が挙げられ、チオアルコキシ基としては、チオメチル基、チオエチル基、チオプロピル基、チオイソプロピル基、チオブチル基、チオ−tert−ブチル基、チオヘキシル基等が挙げられ、セレノアルコキシ基としては、セレノメチル基、セレノエチル基、セレノプロピル基、セレノブチル基、セレノヘキシル基等が挙げられ、アミノ基としては、アミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロポエンチルアミノ基等が挙げられ、上記アルコキシ基、チオアルコキシ基、セレノアルコキシ基、アミノ基のアルキル上にXが置換する。
、R、Rで表されるアルキル基、アルケニル基、アルキニル基、アリール基、複素環基としては、R、Rで挙げた基と同義である。
で表されるアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基等が挙げられ、チオアルコキシ基としては、チオメチル基、チオエチル基、チオプロピル基、チオイソプロピル基、チオブチル基、チオ−tert−ブチル基、チオヘキシル基等が挙げられ、セレノアルコキシ基としては、セレノメチル基、セレノエチル基、セレノプロピル基、セレノブチル基、セレノヘキシル基等が挙げられ、アミノ基としては、アミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロポエンチルアミノ基等が挙げられ、上記アルコキシ基、チオアルコキシ基、セレノアルコキシ基、アミノ基のアルキル上にXが置換する。
Xは酸性基を表し、酸性基としては、カルボキシル基、スルホ基、スルフィノ基、スルフィニル基、ホスホリル基、ホスフィニル基、ホスホノ基、ホスホニル基、スルホニル基、及び、それらの塩等が挙げられ、カルボキシル基、スルホ基が好ましい。
置換基としては、アルキル基(メチル基、エチル基、プロピル基、イソプロピル基、tert−ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、シクロペンチル基、シクロヘキシル基)、アルケニル基(例えば、ビニル基、1−プロペニル基、2−プロペニル基、2−ブテニル基、アリル基等)、アリール基(例えば、フェニル基、ナフチル基、アントラセニル基等)、水酸基、アミノ基、チオール基、シアノ基、ハロゲン原子(例えば、塩素原子、臭素原子、フッ素原子等)または複素環基(例えば、ピロリジル基、イミダゾリジル基、モルホリル基、オキサゾリジル基、2−テトラヒドロフラニル基、2−テトラヒドロチエニル基、2−テトラヒドロピラニル基、3−テトラヒドロピラニル基等)が挙げられる。また、これらの置換基は複数が互いに結合して環を形成していてもよい。
《一般式(2)で表される化合物》
前記一般式(1)で表される化合物の中で、前記一般式(2)で表される化合物は、光電変換効率が高く好ましい。
一般式(2)において、Arは置換または未置換のアリーレン基または複素環基を表す。R、Rは置換または未置換のアルキル基、アルケニル基、アルキニル基、アリール基または複素環基を表し、R、R、Arは互いに連結して環状構造を形成してもよい。また、R、Rは水素原子、置換または未置換のアルキル基、アルケニル基、アルキニル基、アリール基、アミノ基、シアノ基または複素環基を表す。R、Rは水素原子、ハロゲン原子、水酸基、チオール基、シアノ基、置換または未置換のアルキル基、アリール基、アルケニル基、アルキニル基、アルコキシ基、アミノ基または複素環基を表し、互いに連結して環状構造を形成してもよい。nは0以上の整数を表し、n≧2の場合、R、Rは同じでも異なってもよい。Yは硫黄原子、酸素原子またはセレン原子を表し、Xは酸性基を表す。炭素−炭素二重結合は、シス体、トランス体のどちらでもよい。
、Rで表されるハロゲン原子としては、塩素原子、臭素原子、フッ素原子等が挙げられる。置換または未置換のアルキル基、アリール基、アルケニル基、アルキニル基、アルコキシ基または複素環基としては、一般式(1)におけるアリール基、アルケニル基、アルキニル基、アルコキシ基または複素環基と同義である。
一般式(2)において、Ar、R、R、R、R、R、R、Xは、一般式(1)におけるAr、R、R、R、R、R、R、Xと同義である。
《一般式(3)で表される化合物》
前記一般式(2)で表される化合物のYが硫黄原子、すなわち前記一般式(3)で表される化合物は、光電変換効率が高く好ましい。
一般式(3)において、Arは置換または未置換のアリーレン基または複素環基を表す。R、Rは置換または未置換のアルキル基、アルケニル基、アルキニル基、アリール基または複素環基を表し、R、R、Arは互いに連結して環状構造を形成してもよい。また、R、Rは水素原子、置換または未置換のアルキル基、アルケニル基、アルキニル基、アリール基、アミノ基、シアノ基または複素環基を表す。R、Rは水素原子、ハロゲン原子、水酸基、チオール基、シアノ基、置換または未置換のアルキル基、アリール基、アルケニル基、アルキニル基、アルコキシ基、アミノ基または複素環基を表し、互いに連結して環状構造を形成してもよい。nは0以上の整数を表し、n≧2の場合、R、Rは同じでも異なってもよい。Xは酸性基を表す。炭素−炭素二重結合は、シス体、トランス体のどちらでもよい。
一般式(3)において、Ar、R、R、R、R、R、R、Xは、一般式(2)におけるAr、R、R、R、R、R、R、Xと同義である。
《一般式(4)で表される化合物》
前記一般式(3)で表される化合物のRが水素原子、すなわち前記一般式(4)で表される化合物は、光電変換効率が高く好ましい。
一般式(4)において、Arは置換または未置換のアリーレン基または複素環基を表す。R、Rは置換または未置換のアルキル基、アルケニル基、アルキニル基、アリール基または複素環基を表し、R、R、Arは互いに連結して環状構造を形成してもよい。また、Rは水素原子、置換または未置換のアルキル基、アルケニル基、アルキニル基、アリール基、アミノ基、シアノ基または複素環基を表す。R、Rは水素原子、ハロゲン原子、水酸基、チオール基、シアノ基、置換または未置換のアルキル基、アリール基、アルケニル基、アルキニル基、アルコキシ基、アミノ基または複素環基を表し、互いに連結して環状構造を形成してもよい。nは0以上の整数を表し、n≧2の場合、R、Rは同じでも異なってもよい。Xは酸性基を表す。炭素−炭素二重結合は、シス体、トランス体のどちらでもよい。
一般式(4)において、Ar、R、R、R、R、R、Xは、一般式(3)におけるAr、R、R、R、R、R、Xと同義である。
《一般式(5)で表される化合物》
前記一般式(4)で表される化合物が、前記一般式(5)で表される化合物であることが好ましい。
一般式(5)において、R、Rはハロゲン原子、置換または未置換のアルキル基、アルケニル基、アルキニル基、アルコキシ基、チオアルコキシ基、セレノアルコキシ基、アリール基または複素環基を表し、n8、n9は1〜5の整数を表す。n8、n9≧2の場合は、R、Rは同じでも異なってもよい。また、Rは水素原子、置換または未置換のアルキル基、アルケニル基、アルキニル基、アリール基、アミノ基、シアノ基または複素環基を表す。R、Rは水素原子、ハロゲン原子、水酸基、チオール基、シアノ基、置換または未置換のアルキル基、アリール基、アルケニル基、アルキニル基、アルコキシ基、アミノ基または複素環基を表し、互いに連結して環状構造を形成してもよい。nは0以上の整数を表し、n≧2の場合、R、Rは同じでも異なってもよい。Xは酸性基を表す。炭素−炭素二重結合は、シス体、トランス体のどちらでもよい。
、Rで表される、ハロゲン原子、置換または未置換のアルキル基、アルケニル基、アルキニル基、アルコキシ基、アリール基または複素環基としては、一般式(4)におけるハロゲン原子、置換または未置換のアルキル基、アルケニル基、アルキニル基、アルコキシ基、アリール基または複素環基と同義である。R、Rで表される、チオアルコキシ基、セレノアルコキシ基としては、一般式(1)におけるチオアルコキシ基、セレノアルコキシ基と同義である。
《一般式(6)で表される化合物》
前記一般式(4)で表される化合物が、前記一般式(6)で表される化合物であることが好ましい。
一般式(6)において、R、R10はハロゲン原子、置換または未置換のアルキル基、アルケニル基、アルキニル基、アルコキシ基、チオアルコキシ基、セレノアルコキシ基、アリール基または複素環基を表し、n9、n10はそれぞれ1〜5、1〜8の整数を表す。n9、n10≧2の場合は、R、R10は同じでも異なってもよい。また、Rは水素原子、置換または未置換のアルキル基、アルケニル基、アルキニル基、アリール基、アミノ基、シアノ基または複素環基を表す。R、Rは水素原子、ハロゲン原子、水酸基、チオール基、シアノ基、置換または未置換のアルキル基、アリール基、アルケニル基、アルキニル基、アルコキシ基、アミノ基または複素環基を表し、互いに連結して環状構造を形成してもよい。nは0以上の整数を表し、n≧2の場合、R、Rは同じでも異なってもよい。Xは酸性基を表す。炭素−炭素二重結合は、シス体、トランス体のどちらでもよい。
、R10で表される、ハロゲン原子、置換または未置換のアルキル基、アルケニル基、アルキニル基、アルコキシ基、アリール基または複素環基としては、一般式(4)におけるハロゲン原子、置換または未置換のアルキル基、アルケニル基、アルキニル基、アルコキシ基、アリール基または複素環基と同義である。R、R10で表される、チオアルコキシ基、セレノアルコキシ基としては、一般式(1)におけるチオアルコキシ基、セレノアルコキシ基と同義である。
一般式(1)〜(6)で表される化合物の具体例を下記に示すが、本発明はこれらに限定されるものではない。この表で、部分構造の波線がついている部分は、一般式(1)〜(6)で結合している結合部分を表す。
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
Figure 2010257589
一般式(1)〜(6)で表される増感色素(以下、本発明の色素ともいう)は、一般的な合成法により合成することができるが、中でも、特開平7−5709号公報、同7−5706号公報等に記載の方法を用いて合成することができる。
《合成例》
合成例1(色素1の合成)
下記スキームにより、色素1を合成した。
Figure 2010257589
チオヒダントインのDMF溶液に1.05当量のジ−t−ブチルカーボネート、1.1当量のトリエチルアミンを加え、0℃にて1.5時間攪拌した。反応液に水を加えた後に、酢酸エチルで抽出、水洗、硫酸マグネシウムで乾燥後、ロータリーエバポレータにて濃縮乾固し、シリカカラムで処理し化合物Aを得た。
化合物BのDMF溶液に、2.5当量のdiethyl benzhydrylphosphonate、3当量のK−OtBuを加え、120℃で1.5時間攪拌した。反応液に水を加えた後に、酢酸エチルで抽出、水洗、硫酸マグネシウムで乾燥後、ロータリーエバポレータにて濃縮乾固し、シリカカラムで処理し化合物Bを得た。
化合物Cのトルエン溶液に、1.5当量のオキシ塩化リン、3当量のDMFを加え、60℃で1時間攪拌した。反応液に冷水を加え、室温にて1時間攪拌した後に、酢酸エチルで抽出、水洗、硫酸マグネシウムで乾燥後、ロータリーエバポレータにて濃縮乾固し、シリカカラムで処理し化合物Dを得た。
化合物Dの酢酸溶液に、1.2当量の化合物G、3当量の酢酸アンモニウムを加え120℃で1時間攪拌した。反応液に水を加えた後に、酢酸エチルで抽出、水洗、硫酸マグネシウムで乾燥後、ロータリーエバポレータにて濃縮乾固し、シリカカラムで処理し化合物Eを得た。
化合物Eのエタノール溶液に、1.05当量のブロモ酢酸、3当量の水酸化カリウムを加え、0℃で12時間攪拌した。ロータリーエバポレータにて濃縮乾固した後に、水、酢酸エチルを加え分液ロート酢酸にて有機層を除去した。水槽に1mol/l塩酸を過剰量加え5分間攪拌した後、酢酸エチルにて抽出、水洗、硫酸マグネシウムで乾燥後、ロータリーエバポレータにて濃縮乾固し、シリカカラムで処理し化合物Fを得た。
化合物Fから色素1を得る工程を追加して下さい。
色素1は、核磁気共鳴スペクトル及びマススペクトルで構造を確認した。
合成例2(色素223の合成)
下記スキームにより、色素223を合成した。
Figure 2010257589
チオヒダントインの1.05当量のトルエン溶液にエタノール、0.05当量のパラトルエンスルホン酸を加え、0℃にて12時間攪拌した。反応液に水を加えた後に、酢酸エチルで抽出、水洗、硫酸マグネシウムで乾燥後、ロータリーエバポレータにて濃縮乾固し、シリカカラムで処理し化合物Gを得た。
化合物Dの酢酸溶液に、1.2当量の化合物G、3当量の酢酸アンモニウムを加え120℃で1時間攪拌した。反応液に水を加えた後に、酢酸エチルで抽出、水洗、硫酸マグネシウムで乾燥後、ロータリーエバポレータにて濃縮乾固し、シリカカラムで処理し化合物Hを得た。
化合物Hのエタノール溶液に、1.05当量のブロモ酢酸、3当量の水酸化カリウムを加え、100℃にて2時間攪拌した。ロータリーエバポレータにて濃縮乾固した後に、水、酢酸エチルを加え分液ロート酢酸にて有機層を除去した。水槽に1mol/l塩酸を過剰量加え5分間攪拌した後、酢酸エチルにて抽出、水洗、硫酸マグネシウムで乾燥後、ロータリーエバポレータにて濃縮乾固し、シリカカラムで処理し色素223を得た。
色素223は、核磁気共鳴スペクトル及びマススペクトルで構造を確認した。
合成例3(色素638の合成)
下記スキームにより、色素638を合成した。
Figure 2010257589
化合物Jの酢酸溶液に、1.2当量の化合物G、3当量の酢酸アンモニウムを加え120℃で2時間攪拌した。反応液に水を加えた後に、酢酸エチルで抽出、水洗、硫酸マグネシウムで乾燥後、ロータリーエバポレータにて濃縮乾固し、シリカカラムで処理し化合物Kを得た。
化合物Kのエタノール溶液に、1.5当量のブロモ酢酸、3当量の水酸化カリウムを加え、0℃で20時間攪拌した。ロータリーエバポレータにて濃縮乾固した後に、水、酢酸エチルを加え分液ロート酢酸にて有機層を除去した。水槽に1mol/l塩酸を過剰量加え5分間攪拌した後、酢酸エチルにて抽出、水洗、硫酸マグネシウムで乾燥後、ロータリーエバポレータにて濃縮乾固し、シリカカラムで処理し色素638を得た。
色素638は、核磁気共鳴スペクトル及びマススペクトルで構造を確認した。
他の化合物も上記と同様に合成することができる。
このようにして得られた本発明の色素を半導体に担持させることにより増感し、本発明に記載の効果を奏することが可能となる。ここで、半導体に色素を担持させるとは、半導体表面への吸着、半導体が多孔質等のポーラスな構造を有する場合には、半導体の多孔質構造に前記色素を充填する等の種々の態様が挙げられる。
また、半導体層(半導体でもよい)1m当たりの本発明の色素の総担持量は0.01〜100ミリモルの範囲が好ましく、さらに好ましくは0.1〜50ミリモルであり、特に好ましくは0.5〜20ミリモルである。
本発明の色素を用いて増感処理を行う場合、色素を単独で用いてもよいし、複数を併用してもよく、また他の化合物(例えば、米国特許第4,684,537号明細書、同4,927,721号明細書、同5,084,365号明細書、同5,350,644号明細書、同5,463,057号明細書、同5,525,440号明細書、特開平7−249790号公報、特開2000−150007号公報等に記載の化合物)と混合して用いることもできる。
特に、本発明の光電変換素子の用途が後述する太陽電池である場合には、光電変換の波長域をできるだけ広くして太陽光を有効に利用できるように吸収波長の異なる二種類以上の色素を混合して用いることが好ましい。
半導体に本発明の色素を担持させるには、適切な溶媒(エタノール等)に溶解し、その溶液中によく乾燥した半導体を長時間浸漬する方法が一般的である。
本発明の色素を複数種併用したり、その他の色素を併用したりして増感処理する際には、各々の色素の混合溶液を調製して用いてもよいし、それぞれの色素について別々の溶液を用意して、各溶液に順に浸漬して作製することもできる。各色素について別々の溶液を用意し、各溶液に順に浸漬して作製する場合は、半導体に色素等を含ませる順序がどのようであっても本発明に記載の効果を得ることができる。また、前記色素を単独で吸着させた半導体の微粒子を混合する等することにより作製してもよい。
また、本発明に係る半導体の増感処理の詳細については、後述する光電変換素子のところで具体的に説明する。
また、空隙率の高い半導体の場合には、空隙に水分、水蒸気等により水が半導体薄膜上、並びに半導体薄膜内部の空隙に吸着する前に、色素等の吸着処理を完了することが好ましい。
次に本発明の光電変換素子について説明する。
〔光電変換素子〕
本発明の光電変換素子は、導電性支持体上に、少なくとも半導体に本発明の色素を担持させてなる半導体層、電荷輸送層及び対向電極を有する。以下、半導体、電荷輸送層、対向電極について順次説明する。
《半導体》
半導体電極に用いられる半導体としては、シリコン、ゲルマニウムのような単体、周期表(元素周期表ともいう)の第3族〜第5族、第13族〜第15族系の元素を有する化合物、金属のカルコゲニド(例えば、酸化物、硫化物、セレン化物等)、金属窒化物等を使用することができる。
好ましい金属のカルコゲニドとして、チタン、スズ、亜鉛、鉄、タングステン、ジルコニウム、ハフニウム、ストロンチウム、インジウム、セリウム、イットリウム、ランタン、バナジウム、ニオブ、またはタンタルの酸化物、カドミウム、亜鉛、鉛、銀、アンチモンまたはビスマスの硫化物、カドミウムまたは鉛のセレン化物、カドミウムのテルル化物等が挙げられる。他の化合物半導体としては、亜鉛、ガリウム、インジウム、カドミウム等のリン化物、ガリウム−ヒ素または銅−インジウムのセレン化物、銅−インジウムの硫化物、チタンの窒化物等が挙げられる。
具体例としては、TiO、SnO、Fe、WO、ZnO、Nb、CdS、ZnS、PbS、Bi、CdSe、CdTe、GaP、InP、GaAs、CuInS、CuInSe、Ti等が挙げられるが、好ましく用いられるのは、TiO、ZnO、SnO、Fe、WO、Nb、CdS、PbSであり、好ましく用いられるのは、TiOまたはNbであるが、中でも特に好ましく用いられるのはTiO(酸化チタン)である。
半導体層に用いる半導体は、上述した複数の半導体を併用して用いてもよい。例えば、上述した金属酸化物もしくは金属硫化物の数種類を併用することもできるし、また酸化チタン半導体に20質量%の窒化チタン(Ti)を混合して使用してもよい。また、J.Chem.Soc.Chem.Commun.,15(1999)に記載の酸化亜鉛/酸化錫複合としてもよい。このとき、半導体として金属酸化物もしくは金属硫化物以外に成分を加える場合、追加成分の金属酸化物もしくは金属硫化物半導体に対する質量比は30%以下であることが好ましい。
また、本発明に係る半導体は、有機塩基を用いて表面処理してもよい。前記有機塩基としては、ジアリールアミン、トリアリールアミン、ピリジン、4−t−ブチルピリジン、ポリビニルピリジン、キノリン、ピペリジン、アミジン等が挙げられるが、中でもピリジン、4−t−ブチルピリジン、ポリビニルピリジンが好ましい。
上記の有機塩基が液体の場合は、そのまま固体の場合は有機溶媒に溶解した溶液を準備し、本発明に係る半導体を液体アミンまたはアミン溶液に浸漬することで、表面処理を実施できる。
(導電性支持体)
本発明の光電変換素子や本発明の太陽電池に用いられる導電性支持体には、金属板のような導電性材料や、ガラス板やプラスチックフイルムのような非導電性材料に導電性物質を設けた構造のものを用いることができる。導電性支持体に用いられる材料の例としては金属(例えば白金、金、銀、銅、アルミニウム、ロジウム、インジウム)あるいは導電性金属酸化物(例えばインジウム−スズ複合酸化物、酸化スズにフッ素をドープしたもの)や炭素を挙げることができる。導電性支持体の厚さは特に制約されないが、0.3〜5mmが好ましい。
また、光を取り込む側の導電性支持体は実質的に透明であることが好ましく、実質的に透明であるとは光の透過率が10%以上であることを意味し、50%以上であることがさらに好ましく、80%以上であることが最も好ましい。透明な導電性支持体を得るためには、ガラス板またはプラスチックフイルムの表面に、導電性金属酸化物からなる導電性層を設けることが好ましい。透明な導電性支持体を用いる場合、光は支持体側から入射させることが好ましい。
導電性支持体の表面抵抗は、50Ω/cm以下であることが好ましく、10Ω/cm以下であることがさらに好ましい。
《半導体層の作製》
本発明に係る半導体層の作製方法について説明する。
本発明に係る半導体層の半導体が粒子状の場合には、半導体を導電性支持体に塗布あるいは吹き付けて、半導体層を作製するのがよい。また、本発明に係る半導体が膜状であって、導電性支持体上に保持されていない場合には、半導体を導電性支持体上に貼合して半導体層を作製することが好ましい。
本発明に係る半導体層の好ましい態様としては、上記導電性支持体上に半導体の微粒子を用いて焼成により形成する方法が挙げられる。
本発明に係る半導体が焼成により作製される場合には、色素を用いての該半導体の増感(吸着、多孔質層への充填等)処理は、焼成後に実施することが好ましい。焼成後、半導体に水が吸着する前に素早く化合物の吸着処理を実施することが特に好ましい。
以下、本発明に好ましく用いられる半導体電極を、半導体微粉末を用いて焼成により形成する方法について詳細に説明する。
(半導体微粉末含有塗布液の調製)
まず、半導体の微粉末を含む塗布液を調製する。この半導体微粉末はその1次粒子径が微細な程好ましく、その1次粒子径は1〜5000nmが好ましく、さらに好ましくは2〜50nmである。半導体微粉末を含む塗布液は、半導体微粉末を溶媒中に分散させることによって調製することができる。溶媒中に分散された半導体微粉末は、その1次粒子状で分散する。溶媒としては半導体微粉末を分散し得るものであればよく、特に制約されない。
前記溶媒としては、水、有機溶媒、水と有機溶媒との混合液が包含される。有機溶媒としては、メタノールやエタノール等のアルコール、メチルエチルケトン、アセトン、アセチルアセトン等のケトン、ヘキサン、シクロヘキサン等の炭化水素等が用いられる。塗布液中には、必要に応じ、界面活性剤や粘度調節剤(ポリエチレングリコール等の多価アルコール等)を加えることができる。溶媒中の半導体微粉末濃度の範囲は0.1〜70質量%が好ましく、さらに好ましくは0.1〜30質量%である。
(半導体微粉末含有塗布液の塗布と形成された半導体層の焼成処理)
上記のようにして得られた半導体微粉末含有塗布液を、導電性支持体上に塗布または吹き付け、乾燥等を行った後、空気中または不活性ガス中で焼成して、導電性支持体上に半導体層(半導体膜とも言う)が形成される。
導電性支持体上に半導体微粉末含有塗布液を塗布、乾燥して得られる皮膜は、半導体微粒子の集合体からなるもので、その微粒子の粒径は使用した半導体微粉末の1次粒子径に対応するものである。
このようにして導電性支持体等の導電層上に形成された半導体微粒子層は、導電性支持体との結合力や微粒子相互の結合力が弱く、機械的強度の弱いものであることから、機械的強度を高め、基板に強く固着した半導体層とするため前記半導体微粒子層の焼成処理が行われる。
本発明においては、この半導体層はどのような構造を有していてもよいが、多孔質構造膜(空隙を有する、ポーラスな層ともいう)であることが好ましい。
ここで、本発明に係る半導体層の空隙率は10体積%以下が好ましく、さらに好ましくは8体積%以下であり、特に好ましくは0.01〜5体積%である。なお、半導体層の空隙率は誘電体の厚み方向に貫通性のある空隙率を意味し、水銀ポロシメーター(島津ポアライザー9220型)等の市販の装置を用いて測定することができる。
多孔質構造を有する焼成物膜になった半導体層の膜厚は、少なくとも10nm以上が好ましく、さらに好ましくは500〜30000nmである。
焼成処理時、焼成膜の実表面積を適切に調製し、上記の空隙率を有する焼成膜を得る観点から、焼成温度は1000℃より低いことが好ましく、さらに好ましくは200〜800℃の範囲であり、特に好ましくは300〜800℃の範囲である。
また、見かけ表面積に対する実表面積の比は、半導体微粒子の粒径及び比表面積や焼成温度等によりコントロールすることができる。また、加熱処理後、半導体粒子の表面積を増大させたり、半導体粒子近傍の純度を高めたりして、色素から半導体粒子への電子注入効率を高める目的で、例えば、四塩化チタン水溶液を用いた化学メッキや三塩化チタン水溶液を用いた電気化学的メッキ処理を行ってもよい。
(半導体の増感処理)
半導体の増感処理は、前述のように本発明の色素を適切な溶媒に溶解し、その溶液に前記半導体を焼成した基板を浸漬することによって行われる。その際には半導体層(半導体膜ともいう)を焼成により形成させた基板を、予め減圧処理したり加熱処理したりして膜中の気泡を除去しおくことが好ましい。このような処理により、本発明の色素が半導体層(半導体膜)内部深くに進入できるようになり、半導体層(半導体膜)が多孔質構造膜である場合には特に好ましい。
本発明の色素を溶解するのに用いる溶媒は、前記化合物を溶解することができ、かつ半導体を溶解したり半導体と反応したりすることのないものであれば格別の制限はない。しかしながら、溶媒に溶解している水分及び気体が半導体膜に進入して、前記化合物の吸着等の増感処理を妨げることを防ぐために、予め脱気及び蒸留精製しておくことが好ましい。
前記化合物の溶解において、好ましく用いられる溶媒はアセトニトリル等のニトリル系溶媒、メタノール、エタノール、n−プロパノール等のアルコール系溶媒、アセトン、メチルエチルケトン等のケトン系溶媒、ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、1,4−ジオキサン等のエーテル系溶媒、塩化メチレン、1,1,2−トリクロロエタン等のハロゲン化炭化水素溶媒であり、複数の溶媒を混合してもよい。特に好ましくはアセトニトリル、アセトニトリル/メタノール混合溶媒、メタノール、エタノール、アセトン、メチルエチルケトン、テトラヒドロフラン、塩化メチレンである。
(増感処理の温度、時間)
半導体を焼成した基板を本発明の色素を含む溶液に浸漬する時間は、半導体層(半導体膜)に深く進入して吸着等を充分に進行させ、半導体を十分に増感させることが好ましい。また、溶液中での色素の分解等により生成して分解物が色素の吸着を妨害することを抑制する観点から、25℃条件下では3〜48時間が好ましく、さらに好ましくは4〜24時間である。この効果は、特に半導体膜が多孔質構造膜である場合において顕著である。ただし、浸漬時間については25℃条件での値であり、温度条件を変化させた場合には、上記の限りではない。
浸漬しておくに当たり本発明の色素を含む溶液は、前記色素が分解しない限りにおいて、沸騰しない温度にまで加熱して用いてもよい。好ましい温度範囲は5〜100℃であり、さらに好ましくは25〜80℃であるが、前記の通り溶媒が前記温度範囲で沸騰する場合はこの限りでない。
《電荷輸送層》
本発明に用いられる電荷輸送層について説明する。
電荷輸送層は色素の酸化体を迅速に還元し、色素との界面で注入された正孔を対極に輸送する機能を担う層である。
本発明に係る電荷輸送層は、レドックス電解質の分散物や正孔輸送材料としてのp型化合物半導体(電荷輸送剤)を主成分として構成されている。
レドックス電解質としては、I/I 系や、Br/Br 系、キノン/ハイドロキノン系等が挙げられる。このようなレドックス電解質は従来公知の方法によって得ることができ、例えば、I/I 系の電解質は、ヨウ素のアンモニウム塩とヨウ素を混合することによって得ることができる。これらの分散物は溶液である場合に液体電解質、常温において固体である高分子中に分散させた場合に固体高分子電解質、ゲル状物質に分散された場合にゲル電解質と呼ばれる。電荷輸送層として液体電解質が用いられる場合、その溶媒としては電気化学的に不活性なものが用いられ、例えば、アセトニトリル、炭酸プロピレン、エチレンカーボネート等が用いられる。固体高分子電解質の例としては特開2001−160427号公報記載の電解質が、ゲル電解質の例としては「表面科学」21巻、第5号288〜293頁に記載の電解質が挙げられる。
電荷輸送剤としては、色素吸収を妨げないために大きいバンドギャップを持つことが好ましい。本発明で使用する電荷輸送剤のバンドギャップは、2eV以上であることが好ましく、さらに2.5eV以上であることが好ましい。また、電荷輸送剤のイオン化ポテンシャルは色素ホールを還元するためには、色素吸着電極イオン化ポテンシャルより小さいことが必要である。使用する色素によって電荷輸送層に使用する電荷輸送剤のイオン化ポテンシャルの好ましい範囲は異なってくるが、一般に4.5eV以上5.5eV以下が好ましく、さらに4.7eV以上5.3eV以下が好ましい。
電荷輸送剤としては、正孔の輸送能力が優れている芳香族アミン誘導体が好ましい。このため、電荷輸送層を主として芳香族アミン誘導体で構成することにより、光電変換効率をより向上させることができる。芳香族アミン誘導体としては、特に、トリフェニルジアミン誘導体を用いるのが好ましい。トリフェニルジアミン誘導体は、芳香族アミン誘導体の中でも、特に正孔の輸送能力が優れている。また、このような芳香族アミン誘導体は、モノマー、オリゴマー、プレポリマー、ポリマーのいずれを用いてもよく、これらを混合して用いてもよい。また、モノマー、オリゴマーやプレポリマーは、比較的低分子量であることから、有機溶媒等の溶媒への溶解性が高い。このため、電荷輸送層を塗布法により形成する場合に、電荷輸送層材料の調製をより容易に行うことができるという利点がある。このうち、オリゴマーとしては、ダイマーまたはトリマーを用いるのが好ましい。
具体的な芳香族第3級アミン化合物としては、N,N,N′,N′−テトラフェニル−4,4′−ジアミノフェニル;N,N′−ジフェニル−N,N′−ビス(3−メチルフェニル)−〔1,1′−ビフェニル〕−4,4′−ジアミン(TPD);2,2−ビス(4−ジ−p−トリルアミノフェニル)プロパン;1,1−ビス(4−ジ−p−トリルアミノフェニル)シクロヘキサン;N,N,N′,N′−テトラ−p−トリル−4,4′−ジアミノビフェニル;1,1−ビス(4−ジ−p−トリルアミノフェニル)−4−フェニルシクロヘキサン;ビス(4−ジメチルアミノ−2−メチルフェニル)フェニルメタン;ビス(4−ジ−p−トリルアミノフェニル)フェニルメタン;N,N′−ジフェニル−N,N′−ジ(4−メトキシフェニル)−4,4′−ジアミノビフェニル;N,N,N′,N′−テトラフェニル−4,4′−ジアミノジフェニルエーテル;4,4′−ビス(ジフェニルアミノ)クオードリフェニル;N,N,N−トリ(p−トリル)アミン;4−(ジ−p−トリルアミノ)−4′−〔4−(ジ−p−トリルアミノ)スチリル〕スチルベン;4−N,N−ジフェニルアミノ−(2−ジフェニルビニル)ベンゼン;3−メトキシ−4′−N,N−ジフェニルアミノスチルベンゼン;N−フェニルカルバゾール、さらには米国特許第5,061,569号明細書に記載されている2個の縮合芳香族環を分子内に有するもの、例えば、4,4′−ビス〔N−(1−ナフチル)−N−フェニルアミノ〕ビフェニル(NPD)、特開平4−308688号公報に記載されているトリフェニルアミンユニットが3つスターバースト型に連結された4,4′,4″−トリス〔N−(3−メチルフェニル)−N−フェニルアミノ〕トリフェニルアミン(MTDATA)等が挙げられる。
さらにこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
芳香族アミン誘導体以外の電荷輸送剤としては、チオフェン誘導体、ピロール誘導体、スチルベン誘導体等が挙げられる。
以下に、電荷輸送剤の具体例を示すが、本発明はこれらに限定されるものではない。
Figure 2010257589
Figure 2010257589
Figure 2010257589
《対向電極》
本発明に用いられる対向電極について説明する。
対向電極は導電性を有するものであればよく、任意の導電性材料が用いられるが、I3−イオン等の酸化や他のレドックスイオンの還元反応を充分な速さで行わせる触媒能を持ったものの使用が好ましい。このようなものとしては、白金電極、導電材料表面に白金めっきや白金蒸着を施したもの、ロジウム金属、ルテニウム金属、酸化ルテニウム、カーボン等が挙げられる。
〔太陽電池〕
本発明の太陽電池について説明する。
本発明の太陽電池は、本発明の光電変換素子の一態様として、太陽光に最適の設計並びに回路設計が行われ、太陽光を光源として用いたときに最適な光電変換が行われるような構造を有する。即ち、色素増感された半導体に太陽光が照射されうる構造となっている。本発明の太陽電池を構成する際には、前記半導体電極、電荷輸送層及び対向電極をケース内に収納して封止するか、あるいはそれら全体を樹脂封止することが好ましい。
本発明の太陽電池に太陽光または太陽光と同等の電磁波を照射すると、半導体に担持された本発明に係る色素は照射された光もしくは電磁波を吸収して励起する。励起によって発生した電子は半導体に移動し、次いで導電性支持体を経由して対向電極に移動して、電荷移動層のレドックス電解質を還元する。一方、半導体に電子を移動させた本発明に係る色素は酸化体となっているが、対向電極から電荷輸送層のレドックス電解質を経由して電子が供給されることにより、還元されて元の状態に戻り、同時に電荷移動層のレドックス電解質は酸化されて、再び対向電極から供給される電子により還元されうる状態に戻る。このようにして電子が流れ、本発明の光電変換素子を用いた太陽電池を構成することができる。
以下、実施例により本発明を説明するが、本発明これらに限定されない。
実施例1
〔光電変換素子1の作製〕
酸化チタンペースト(アナターゼ型、1次平均粒径(顕微鏡観察平均)18nm、ポリエチレングリコール分散)を、フッ素ドープ酸化スズ(FTO)導電性ガラス基板へスクリーン印刷法(塗布面積5×5mm)により塗布した。塗布及び乾燥(120℃で3分間)を3回繰り返し、200℃で10分間及び500℃で15分間焼成を行い、厚さ15μmの酸化チタン薄膜を得た。この薄膜上に、さらに酸化チタンペースト(アナターゼ型、1次平均粒径(顕微鏡観察平均)400nm、ポリエチレングリコール分散)を同様の方法で塗布し、厚さ5μmの酸化チタン薄膜を京成した。
本発明の色素1をアセトニトリル:t−ブチルアルコール=1:1の混合溶媒に溶解し、5×10−4mol/lの溶液を調製した。酸化チタンを塗布焼結させたFTOガラス基板をこの溶液に室温で3時間浸漬して、色素の吸着処理を行い、酸化物半導体電極とした。
電荷移動層(電解液)にはヨウ化1−メチル−3−ブチルイミダゾリウム0.6mol/l、グアニジンチオシアネート0.1mol/l、ヨウ素0.05mol/l、4−(t−ブチル)ピリジン0.5mol/lを含むアセトニトリル:バレロニトリル=85:15の溶液を用いた。作製した半導体電極、対極に白金及びクロムを蒸着したガラス板を用い、電荷輸送層の層厚が20μmとなるようにクランプセルで組み立てることにより光電変換素子1を作製した。
〔光電変換素子2〜40の作製〕
光電変換素子1の作製において、色素1を表1に記載の本発明の色素に変更した以外は同様にして、光電変換素子2〜40を作製した。
〔光電変換素子41の作製〕
光電変換素子1の作製において、色素1をアセトニトリル:t−ブチルアルコール=1:1の混合溶媒に溶解した5×10−4mol/lの溶液の代わりに、色素1をアセトニトリル:t−ブチルアルコール=1:1の混合溶媒に溶解した5×10−4mol/lの溶液及び色素757をアセトニトリル:t−ブチルアルコール=1:1の混合溶媒に溶解した5×10−4mol/lの溶液を1:1の比で混合した色素溶液に変更した以外は同様にして、光電変換素子41を作製した。
Figure 2010257589
〔光電変換素子42の作製〕
光電変換素子1の作製において、色素1をアセトニトリル:t−ブチルアルコール=1:1の混合溶媒に溶解した5×10−4mol/lの溶液の代わりに、色素65をアセトニトリル:t−ブチルアルコール=1:1の混合溶媒に溶解した5×10−4mol/lの溶液及び色素76をアセトニトリル:t−ブチルアルコール=1:1の混合溶媒に溶解した5×10−4mol/lの溶液を1:1の比で混合した色素溶液に変更した以外は同様にして、光電変換素子42を作製した。
〔光電変換素子43の作製〕
光電変換素子1の作製において、色素1を色素801に変更し、電荷移動層(電解液)にはヨウ化1−メチル−3−ブチルイミダゾリウム0.6mol/l、ヨウ化リチウム0.1mol/l、ヨウ素0.05mol/l、4−(t−ブチル)ピリジン0.5mol/lを含む3−メトキシプロピオニトリルの溶液を用いた以外は同様にして、光電変換素子43を作製した。
Figure 2010257589
〔光電変換素子44の作製〕
光電変換素子43の作製において、色素801を色素802に変更した以外は同様にして、光電変換素子44を作製した。
Figure 2010257589
〔光電変換素子45の作製〕
酸化チタンペースト(アナターゼ型、1次平均粒径(顕微鏡観察平均)18nm、ポリエチレングリコール分散)を、フッ素ドープ酸化スズ(FTO)導電性ガラス基板へスクリーン印刷法(塗布面積5×5mm)により塗布し200℃で10分間及び450℃で15分間焼成を行い、厚さ1.5μmの酸化チタン薄膜を得た。
本発明の色素5をアセトニトリル:t−ブチルアルコール=1:1の混合溶媒に溶解し、5×10−4mol/lの溶液を調製した。上記酸化チタンを塗布焼結したFTOガラス基板を、この溶液に室温で3時間浸漬して色素の吸着処理を行い、半導体電極とした。
クロロベンゼン:アセトニトリル=19:1混合溶媒に、ホール輸送材料である芳香族アミン誘導体2,2’,7,7’−テトラキス(N,N’−ジ(4−メトキシフェニル)アミン)−9,9’−スピロビフルオレン(OMeTAD)を0.17mol/l、ホールドーピング剤としてN(PhBr)SbClを0.33mmol/l、Li[(CFSON]を15mmol/l、t−Butylpyridineを50mmol/lとなるように溶解したホール層形成用塗布液を調製した。そして、当該ホール層形成用塗布液を、前記光増感色素を吸着、結合させた半導体層の上面にスピンコート法により塗布し、層厚10μmの電荷輸送層を形成した。さらに真空蒸着法により金を90nm蒸着し、対極電極を作製し、光電変換素子45を作製した。前述したスピンコート法による塗布では、スピンコートの回転数を1000rpmに設定して行った。
〔光電変換素子46の作製〕
光電変換素子45の作製において、色素を色素801に変更した以外は同様にして、光電変換素子46を作製した。
〔光電変換素子の評価〕
作製した光電変換素子を、ソーラーシュミレータ(英弘精機製)を用い、AMフィルター(AM−1.5)を通したキセノンランプから100mW/cmの擬似太陽光を照射することにより行った。即ち、光電変換素子について、I−Vテスターを用いて室温にて電流−電圧特性を測定し、短絡電流(Isc)、開放電圧(Voc)、及び形状因子(F.F.)を求め、これらから光電変換効率(η(%))を求めた。
評価の結果を表1に示す。
Figure 2010257589
表1より、本発明のイミダゾロン骨格を有する色素を用いた光電変換素子38は、比較のローダニン骨格を有する色素を用いた光電変換素子44に比べ、短絡電流、開放電圧、変換効率において向上が見られた。本発明のイミダゾロン骨格を有する色素を用いた光電変換素子1〜40は、比較のローダニン骨格を有する色素を用いた光電変換素子43、44に比べ、変換効率において向上が見られた。また、光電変換素子45は光電変換素子46に比べ短絡電流、開放電圧、変換効率において向上が見られた。また、本発明の一部色素は、吸収波長が溶液吸収よりも半導体層に吸着した色素の吸収が長波シフトしていることから、分子間相互作用により凝集が発達し、より多くの波長の光を吸収していることも変換効率向上の要因と考えられる。
1、1′ 基板
2、7 透明導電膜
3 半導体
4 増感色素
5 電荷輸送層
6 対向電極
8 白金

Claims (9)

  1. 対向する一対の電極間に、少なくとも増感色素を半導体に担持してなる半導体層及び電荷輸送層が設けられている色素増感型光電変換素子において、前記増感色素が下記一般式(1)で表される化合物を含有することを特徴とする光電変換素子。
    Figure 2010257589
    (式中、Arは置換または未置換のアリーレン基または複素環基を表す。R、Rは置換または未置換のアルキル基、アルケニル基、アルキニル基、アリール基または複素環基を表し、R、R、Arは互いに連結して環状構造を形成してもよい。また、R、Rは水素、置換または未置換のアルキル基、アルケニル基、アルキニル基、アリール基、アミノ基、シアノ基または複素環基を表す。RはXで置換した、置換または未置換のアルキル基、アルケニル基、アルキニル基、アルコキシ基、チオアルコキシ基、セレノアルコキシ基、アミノ基、アリール基または複素環基を表す。Xは酸性基を表し、mは1以上の整数を表し、m≧2の場合、Xは同じでも異なってもよい。炭素−炭素二重結合は、シス体、トランス体のどちらでもよい。)
  2. 前記一般式(1)で表される化合物が、下記一般式(2)で表される化合物であることを特徴とする請求項1に記載の光電変換素子。
    Figure 2010257589
    (式中、Arは置換または未置換のアリーレン基または複素環基を表す。R、Rは置換または未置換のアルキル基、アルケニル基、アルキニル基、アリール基または複素環基を表し、R、R、Arは互いに連結して環状構造を形成してもよい。また、R、Rは水素原子、置換または未置換のアルキル基、アルケニル基、アルキニル基、アリール基、アミノ基、シアノ基または複素環基を表す。R、Rは水素原子、ハロゲン原子、水酸基、チオール基、シアノ基、置換または未置換のアルキル基、アリール基、アルケニル基、アルキニル基、アルコキシ基、アミノ基または複素環基を表し、互いに連結して環状構造を形成してもよい。nは0以上の整数を表し、n≧2の場合、R、Rは同じでも異なってもよい。Yは硫黄原子、酸素原子またはセレン原子を表し、Xは酸性基を表す。炭素−炭素二重結合は、シス体、トランス体のどちらでもよい。)
  3. 前記一般式(2)で表される化合物のYが硫黄原子、すなわち下記一般式(3)で表される化合物であることを特徴とする請求項2に記載の光電変換素子。
    Figure 2010257589
    (式中、Arは置換または未置換のアリーレン基または複素環基を表す。R、Rは置換または未置換のアルキル基、アルケニル基、アルキニル基、アリール基または複素環基を表し、R、R、Arは互いに連結して環状構造を形成してもよい。また、R、Rは水素原子、置換または未置換のアルキル基、アルケニル基、アルキニル基、アリール基、アミノ基、シアノ基または複素環基を表す。R、Rは水素原子、ハロゲン原子、水酸基、チオール基、シアノ基、置換または未置換のアルキル基、アリール基、アルケニル基、アルキニル基、アルコキシ基、アミノ基または複素環基を表し、互いに連結して環状構造を形成してもよい。nは0以上の整数を表し、n≧2の場合、R、Rは同じでも異なってもよい。Xは酸性基を表す。炭素−炭素二重結合は、シス体、トランス体のどちらでもよい。)
  4. 前記一般式(3)で表される化合物のRが水素原子、すなわち下記一般式(4)で表される化合物であることを特徴とする請求項3に記載の光電変換素子。
    Figure 2010257589
    (式中、Arは置換または未置換のアリーレン基または複素環基を表す。R、Rは置換または未置換のアルキル基、アルケニル基、アルキニル基、アリール基または複素環基を表し、R、R、Arは互いに連結して環状構造を形成してもよい。また、Rは水素原子、置換または未置換のアルキル基、アルケニル基、アルキニル基、アリール基、アミノ基、シアノ基または複素環基を表す。R、Rは水素原子、ハロゲン原子、水酸基、チオール基、シアノ基、置換または未置換のアルキル基、アリール基、アルケニル基、アルキニル基、アルコキシ基、アミノ基または複素環基を表し、互いに連結して環状構造を形成してもよい。nは0以上の整数を表し、n≧2の場合、R、Rは同じでも異なってもよい。Xは酸性基を表す。炭素−炭素二重結合は、シス体、トランス体のどちらでもよい。)
  5. 前記一般式(4)で表される化合物が、下記一般式(5)で表される化合物であることを特徴とする請求項4に記載の光電変換素子。
    Figure 2010257589
    (式中、R、Rはハロゲン原子、置換または未置換のアルキル基、アルケニル基、アルキニル基、アルコキシ基、チオアルコキシ基、セレノアルコキシ基、アリール基または複素環基を表し、n8、n9は1〜5の整数を表す。n8、n9≧2の場合は、R、Rは同じでも異なってもよい。また、Rは水素原子、置換または未置換のアルキル基、アルケニル基、アルキニル基、アリール基、アミノ基、シアノ基または複素環基を表す。R、Rは水素原子、ハロゲン原子、水酸基、チオール基、シアノ基、置換または未置換のアルキル基、アリール基、アルケニル基、アルキニル基、アルコキシ基、アミノ基または複素環基を表し、互いに連結して環状構造を形成してもよい。nは0以上の整数を表し、n≧2の場合、R、Rは同じでも異なってもよい。Xは酸性基を表す。炭素−炭素二重結合は、シス体、トランス体のどちらでもよい。)
  6. 6.前記一般式(4)で表される化合物が、下記一般式(6)で表される化合物であることを特徴とする請求項4に記載の光電変換素子。
    Figure 2010257589
    (式中、R、R10はハロゲン原子、置換または未置換のアルキル基、アルケニル基、アルキニル基、アルコキシ基、チオアルコキシ基、セレノアルコキシ基、アリール基または複素環基を表し、n9、n10はそれぞれ1〜5、1〜8の整数を表す。n9、n10≧2の場合は、R、R10は同じでも異なってもよい。また、Rは水素原子、置換または未置換のアルキル基、アルケニル基、アルキニル基、アリール基、アミノ基、シアノ基または複素環基を表す。R、Rは水素原子、ハロゲン原子、水酸基、チオール基、シアノ基、置換または未置換のアルキル基、アリール基、アルケニル基、アルキニル基、アルコキシ基、アミノ基または複素環基を表し、互いに連結して環状構造を形成してもよい。nは0以上の整数を表し、n≧2の場合、R、Rは同じでも異なってもよい。Xは酸性基を表す。炭素−炭素二重結合は、シス体、トランス体のどちらでもよい。)
  7. 前記増感色素として、前記一般式(1)〜(6)で表される化合物から選ばれた複数の化合物を含有することを特徴とする請求項1〜6のいずれか1項に記載の光電変換素子。
  8. 前記半導体層を形成する半導体が酸化チタンであることを特徴とする請求項1〜7のいずれか1項に記載の光電変換素子。
  9. 請求項1〜8のいずれか1項に記載の光電変換素子を有することを特徴とする太陽電池。
JP2009102812A 2009-04-21 2009-04-21 光電変換素子及び太陽電池 Expired - Fee Related JP5396987B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009102812A JP5396987B2 (ja) 2009-04-21 2009-04-21 光電変換素子及び太陽電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009102812A JP5396987B2 (ja) 2009-04-21 2009-04-21 光電変換素子及び太陽電池

Publications (2)

Publication Number Publication Date
JP2010257589A true JP2010257589A (ja) 2010-11-11
JP5396987B2 JP5396987B2 (ja) 2014-01-22

Family

ID=43318319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009102812A Expired - Fee Related JP5396987B2 (ja) 2009-04-21 2009-04-21 光電変換素子及び太陽電池

Country Status (1)

Country Link
JP (1) JP5396987B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011096436A (ja) * 2009-10-28 2011-05-12 Konica Minolta Business Technologies Inc 光電変換素子
JP2011150874A (ja) * 2010-01-21 2011-08-04 Konica Minolta Business Technologies Inc 光電変換素子及び太陽電池
US9401481B2 (en) 2012-01-03 2016-07-26 Samsung Display Co., Ltd. Compound and organic light-emitting device including the same
CN110078669A (zh) * 2019-05-30 2019-08-02 东莞暨南大学研究院 一种洛硝哒唑及其氘代衍生物的绿色合成方法
WO2020036069A1 (ja) * 2018-08-16 2020-02-20 東京化成工業株式会社 新規化合物及びペロブスカイト太陽電池用正孔輸送層形成組成物

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010267612A (ja) * 2009-04-17 2010-11-25 Konica Minolta Business Technologies Inc 光電変換素子及び太陽電池

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010267612A (ja) * 2009-04-17 2010-11-25 Konica Minolta Business Technologies Inc 光電変換素子及び太陽電池

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011096436A (ja) * 2009-10-28 2011-05-12 Konica Minolta Business Technologies Inc 光電変換素子
JP2011150874A (ja) * 2010-01-21 2011-08-04 Konica Minolta Business Technologies Inc 光電変換素子及び太陽電池
US9401481B2 (en) 2012-01-03 2016-07-26 Samsung Display Co., Ltd. Compound and organic light-emitting device including the same
WO2020036069A1 (ja) * 2018-08-16 2020-02-20 東京化成工業株式会社 新規化合物及びペロブスカイト太陽電池用正孔輸送層形成組成物
CN112513004A (zh) * 2018-08-16 2021-03-16 东京化成工业株式会社 新型芳香胺化合物以及用于形成钙钛矿太阳能电池空穴传输层的组分
JPWO2020036069A1 (ja) * 2018-08-16 2021-08-10 東京化成工業株式会社 新規化合物及びペロブスカイト太陽電池用正孔輸送層形成組成物
JP7138972B2 (ja) 2018-08-16 2022-09-20 東京化成工業株式会社 新規化合物及びペロブスカイト太陽電池用正孔輸送層形成組成物
CN110078669A (zh) * 2019-05-30 2019-08-02 东莞暨南大学研究院 一种洛硝哒唑及其氘代衍生物的绿色合成方法

Also Published As

Publication number Publication date
JP5396987B2 (ja) 2014-01-22

Similar Documents

Publication Publication Date Title
JP2010267612A (ja) 光電変換素子及び太陽電池
JP5206092B2 (ja) 光電変換素子及び太陽電池
JP2009269987A (ja) 新規化合物、光電変換素子及び太陽電池
JP2012084300A (ja) 光電変換素子および太陽電池
JP5396987B2 (ja) 光電変換素子及び太陽電池
US8471143B2 (en) Photoelectric conversion element and solar cell
JP2010277998A (ja) 光電変換素子及び太陽電池
JP2012084250A (ja) 光電変換素子及び太陽電池
JP2012084249A (ja) 光電変換素子及び太陽電池
JP5233318B2 (ja) 光電変換素子及び太陽電池
JP5217475B2 (ja) 光電変換素子及び太陽電池
JP5347329B2 (ja) 光電変換素子及び太陽電池
JP5353419B2 (ja) 光電変換素子及び太陽電池
JP5223362B2 (ja) 光電変換素子及び太陽電池
JP2010168511A (ja) 新規化合物、光電変換素子及び太陽電池
JP2010257741A (ja) 光電変換素子及び太陽電池
JP2010282780A (ja) 光電変換素子及び太陽電池
JP2011165597A (ja) 光電変換素子及び太陽電池
JP2008226582A (ja) 光電変換素子及び太陽電池
JP2010040280A (ja) 光電変換素子及び太陽電池
JP2012079645A (ja) 光電変換素子及び太陽電池
JP2010009830A (ja) 光電変換素子及びその製造方法、太陽電池
JP2010282779A (ja) 色素増感型光電変換素子及び太陽電池
JP2005019124A (ja) 光電変換材料用半導体、光電変換素子および太陽電池
JP2011108565A (ja) 光電変換素子及び太陽電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111018

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120130

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130709

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131007

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees