JP5233318B2 - 光電変換素子及び太陽電池 - Google Patents

光電変換素子及び太陽電池 Download PDF

Info

Publication number
JP5233318B2
JP5233318B2 JP2008045663A JP2008045663A JP5233318B2 JP 5233318 B2 JP5233318 B2 JP 5233318B2 JP 2008045663 A JP2008045663 A JP 2008045663A JP 2008045663 A JP2008045663 A JP 2008045663A JP 5233318 B2 JP5233318 B2 JP 5233318B2
Authority
JP
Japan
Prior art keywords
group
photoelectric conversion
semiconductor
conversion element
dye
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008045663A
Other languages
English (en)
Other versions
JP2009205890A (ja
Inventor
英也 三輪
一国 西村
和也 磯部
真優子 鵜城
明彦 伊丹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Business Technologies Inc
Original Assignee
Konica Minolta Business Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Business Technologies Inc filed Critical Konica Minolta Business Technologies Inc
Priority to JP2008045663A priority Critical patent/JP5233318B2/ja
Publication of JP2009205890A publication Critical patent/JP2009205890A/ja
Application granted granted Critical
Publication of JP5233318B2 publication Critical patent/JP5233318B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Description

本発明は、光電変換素子及び太陽電池に関する。
近年、無限で有害物質を発生しない太陽光の利用が精力的に検討されている。このクリーンエネルギー源である太陽光を利用して現在実用化されているものは、住宅用の単結晶シリコン、多結晶シリコン、アモルファスシリコン及びテルル化カドミウムやセレン化インジウム銅等の無機系太陽電池が挙げられる。
しかしながら、これらの無機系太陽電池の欠点としては、例えば、シリコン系では、非常に純度の高いものが要求され、精製の工程は複雑でプロセス数が多く、製造コストが高いことが挙げられる。
その一方で、有機材料を使う太陽電池も多く提案されている。有機太陽電池としては、p型有機半導体と仕事関数の小さい金属を接合させるショットキー型光電変換素子、p型有機半導体とn型無機半導体、あるいはp型有機半導体と電子受容性有機化合物を接合させるヘテロ接合型光電変換素子等があり、利用される有機半導体は、クロロフィル、ペリレン等の合成色素や顔料、ポリアセチレン等の導電性高分子材料、またはそれらの複合材料等である。これらを真空蒸着法、キャスト法、またはディッピング法等により、薄膜化し電池材料が構成されている。有機材料は低コスト、大面積化が容易等の長所もあるが、変換効率は1%以下と低いものが多く、また耐久性も悪いという問題もあった。
こうした状況の中で、良好な特性を示す太陽電池がスイスのグレッツェル博士らによって報告された(非特許文献1参照)。提案された電池は色素増感型太陽電池であり、ルテニウム錯体で分光増感された酸化チタン多孔質薄膜を作用電極とする湿式太陽電池である。この方式の利点は、酸化チタン等の安価な金属化合物半導体を高純度まで精製する必要がないこと、従って安価で、さらに利用できる光は広い可視光領域にまでわたっており、可視光成分の多い太陽光を有効に電気へ変換できることである。
反面、資源的制約があるルテニウム錯体が使われているため、この太陽電池が実用化された場合に、ルテニウム錯体の供給が危ぶまれている。また、このルテニウム錯体は高価であることと、経時での安定性に問題があり、安価で安定な有機色素へ変更することができれば、この問題は解決できる。
電子供与能を有するπ電子共役系及び電子吸引性を有する酸性吸着基を併せ持つ色素分子が、光電変換効率の高い素子を与えることが知られている。電子供与性のπ電子系としては、トリアリールアミン誘導体が広く用いられている(例えば、特許文献1〜4参照)。酸性吸着基周辺に強い電子吸引性を有する置換基あるいは環構造が存在すると、励起された電子は酸性吸着基周辺により偏在して分布するので、酸化物半導体電極への電荷注入に対して有利となり、より優れた光電変換素子を与えることが期待される。しかし、従来知られていたこれらの色素では、前記酸性吸着基周辺に強い電子吸引性を有する置換基あるいは環構造が存在させ初期の光電変換効率が高いものが得られたとしても、長期にわたる使用において効率低下が発生し、光電変換素子としては不十分であった。
特開2005−123033号公報 特開2006−079898号公報 特開2006−134649号公報 特開2006−156212号公報 B.O’Regan,M.Gratzel,Nature,353,737(1991)
本発明の目的は、新規で、変換効率が高く、高耐久性の色素を用いた光電変換素子及びそれを用いた太陽電池を提供することにある。
本発明の上記課題は、以下の構成により達成される。
1.導電性支持体上の酸化物半導体に色素を担持させてなる色素担持半導体電極と対向電極とを有する光電変換素子において、前記色素が下記一般式(1)で表される化合物を含有することを特徴とする光電変換素子。
Figure 0005233318
(式中、nは1以上の整数を表す。Xは電子求引性基及び酸性基を有する有機残基を表す。は置換基を表し、Zは水素原子または置換基を表し、Y及びZの少なくとも一方は電子求引性基を有する置換基を表す。R1 〜R3 は置換基を表し、R1 〜R3 のうち少なくとも2つは置換基を有していてもよい芳香族炭化水素基または芳香族複素環基を表し、R 1 〜R 3 の少なくとも1つは下記一般式(2)で表される基を示す。X、Y、Z、R1 〜R3 は、直接あるいは他の原子を介して環状構造を成してもよい。)
Figure 0005233318

(式中、mは0または1を表す。Ar 1 は置換基を有していてもよい芳香族炭化水素基または芳香族複素環基を表す。Q 1 、Q 2 はそれぞれ独立して水素原子または置換基を有してもよい有機残基を表す。P 1 〜P 3 はそれぞれ独立して水素原子または置換基を有してもよい有機残基を表し、P 1 〜P 3 のうち少なくとも一つは置換基を有していてもよい芳香族炭化水素基または芳香族複素環基を表す。Ar 1 、Q 1 、Q 2 、P 1 〜P 3 は、直接あるいは他の原子を介して環状構造を成してもよい。)
2.前記一般式(1)において、R1 〜R3 は芳香族炭化水素基または芳香族複素環基であることを特徴とする前記1記載の光電変換素子。
3.前記一般式(1)において、Xがカルボキシル基を有することを特徴とする前記1または2記載の光電変換素子。
4.前記一般式(1)において、X、YまたはZはシアノ基を有することを特徴とする前記1乃至3のいずれか1項に記載の光電変換素子。
5.前記酸化物半導体が酸化チタンであることを特徴とする前記1乃至のいずれか1項に記載の光電変換素子。
.前記1乃至のいずれか1項に記載の光電変換素子を有することを特徴とする太陽電池。
本発明により、新規で、変換効率が高く、高耐久性の色素を用いた光電変換素子及びそれを用いた太陽電池を提供することができた。
光電変換素子及び太陽電池は、光照射による電荷発生と、それに続く電気伝導が繰り返し行われるが、本発明者らは、これら電荷発生、電気伝導の特性が、π電子共役構造や孤立電子対を持つヘテロ原子に影響されると予想し、特に窒素、酸素、或いは硫黄原子を含む複素環の構造を有する場合に、電気的特性の向上ができることを見出し、本願発明を完成させた。
以下、本発明をさらに詳細に説明する。
本発明の光電変換素子について、図をもって説明する。
図1は、本発明の光電変換素子の一例を示す構成断面図である。
図1に示すように、基板1、1′、透明導電膜2、7、酸化物半導体3、色素4、電解質5、隔壁9等から構成されている。
光電極として、透明導電膜2を付けた基板1(導電性支持体とも言う。)上に、酸化物半導体3の粒子を焼結して形成した空孔を有する半導体層を有し、その空孔表面に色素4を吸着させたものが用いられる。
対向電極6としては、基板1′上に透明導電膜7が形成され、その上に白金8を蒸着したものが用いられ、両極間には電解質層として電解質5が充填されている。
本発明は、新規の増感色素を用いたこの光電変換素子に関するものである。
《一般式(1)で表される化合物》
以下に、前記一般式(1)で表される化合物(以下、本発明の色素とも言う。)について説明する。
一般式(1)において、Xは電子求引性基を有し、かつ酸性基を有する有機残基を表す。電子求引性基としては、フルオロ基、クロロ基、ブロモ基、ニトロ基、シアノ基、アルキルスルホニル基、アリールスルホニル基、パーフルオロアルキルスルホニル基、パーフルオロアリールスルホニル基、ローダニン環等が挙げられる。
酸性基としては、カルボキシル基、スルホ基、スルフィノ基、スルフィニル基、ホスホリル基、ホスフィニル基、ホスホノ基、チオール基、ヒドロキシ基、ホスホニル基、スルホニル基等が挙げられる。酸性基としては、カルボキシル基またはシアノ基が好ましい。
有機残基としては、アルキレン基、アルケニレン基、アリーレン基、ヘテロ環基等あるいはそれらの組合せが挙げられる。
Xの好ましい具体例を下記に示す。Xは特に酸化物半導体に吸着能の高いカルボキシル基を有する化合物の場合、酸化物半導体への電荷の流れがスムーズとなり、良好な特性を示し、好ましい。また、Xの電子吸引性基としては、置換基の電子吸引力の高いシアノ基が特に好ましい。
Figure 0005233318
Y、Zは置換基を表し、Y及びZの少なくとも一方は電子求引性基を有する置換基を表す。電子求引性基としては、前記Xで述べた電子求引性基と同義である。YまたはZはシアノ基を有することが好ましい。
1〜R3は置換基を表し、R1〜R3のうち少なくとも2つは置換基を有していてもよい芳香族炭化水素基または芳香族複素環基を表す。ここで、芳香族炭化水素基としては、例えばフェニル基、ナフチル基、ビフェニル基、アンスリル基、ヘナンスリル基等を表し、芳香族複素環基としては、例えばチエニル基、フリル基、インドリル基等を挙げることができる。R1〜R3は芳香族炭化水素基または芳香族複素環基が好ましい。
1〜R3の好ましい具体例を下記に示す。
Figure 0005233318
nは1以上の整数を表す。X、Y、Z、R1〜R3は、直接あるいは他の原子を介して環状構造を成してもよい。化合物全体で一つのπ共役系を構成していることが好ましい。
上記のX、Y、Z部分は、本発明の色素の重要な特徴である。Xは従来酸化物半導体への吸着機能を有する基として考えられてきた部分であるが、本願では置換基として電子吸引性基を有する。本願では、Xと芳香族アミンまたは芳香族複素環アミン間にさらに電子吸引性の基である、YまたはZを有することにより、強い電子吸引性が発現し、電子供与性の部分から、酸化物半導体に安定に電荷の移動が起こり、長期にわたり安定した光電変換効率が維持されたものと推定している。
また、R1〜R3の少なくとも1つは前記一般式(2)で表されることが好ましい。
一般式(2)において、mは0または1を表す。Ar1は置換基を有していてもよい芳香族炭化水素基または芳香族複素環基を表す。Q1、Q2はそれぞれ独立して水素原子または置換基を有してもよい有機残基を表す。P1〜P3はそれぞれ独立して水素原子または置換基を有してもよい有機残基を表し、P1〜P3のうち少なくとも一つは置換基を有していてもよい芳香族炭化水素基または芳香族複素環基を表す。Ar1、Q1、Q2、P1〜P3は、直接あるいは他の原子を介して環状構造を成してもよい。
一般式(2)において、Ar1、P1〜P3で表される芳香族炭化水素基、芳香族複素環基、有機残基は、前記一般式(1)における芳香族炭化水素基、芳香族複素環基、有機残基と同義である。
一般式(1)で表される化合物の具体例を下記に示すが、本発明はこれらに限定されるものではない。
Figure 0005233318
Figure 0005233318
Figure 0005233318
Figure 0005233318
Figure 0005233318
本発明の色素は、特開平7−5709号公報、特開平7−5706号公報等の公知の方法を用いて製造することができる。
合成例1(例示化合物A−10の合成)
4−メチルトリフェニルアミン25.9g(0.1モル)を塩化メチレン250mlに溶解し、N,N−ジメチルホルムアミド31mlを加え、氷冷下5℃でオキシ塩化リン30mlを滴下した。次いで、室温で2時間撹拌した後、約40℃で還流し、放冷後、塩化メチレン200mlで希釈し、炭酸カリウム水溶液で中和した。中和液の有機相を分取し、無水硫酸ナトリウムを加えて乾燥した後、減圧濃縮し、得られた残査をカラムクロマトグラフィーにより精製して、ホルミル化された中間体1(4,4′−ジホルミル−4″−メチルトリフェニルアミン)20gを得た。
上記中間体1(4.0g)、チオフェン−2−アセトニトリル(4.0g)、ピペリジン(4ml)をDMF9ml、酢酸2mlに溶解し、90℃で加熱攪拌した。2時間後、加熱を停止し、室温まで冷却後、水50mlを加えて攪拌し、結晶を濾取した。カラム処理し、下記中間体2を4.3g得た。
Figure 0005233318
上記中間体2(1.3g)をDMF5mlに溶解し、氷冷下5℃でオキシ塩化リン5mlを滴下した。次いで、室温で30分間撹拌した後、約50℃で6時間、加熱撹拌。放冷後、塩化メチレン50mlで希釈し、炭酸カリウム水溶液で中和した。中和液の有機相を分取し、無水硫酸ナトリウムを加えて乾燥した後、減圧濃縮し、得られた残査をカラムクロマトグラフィーにより精製して、ホルミル化された中間体3を1.2g得た。
上記中間体3(0.32g)、シアノ酢酸(0.15g)、ピペリジン(0.2ml)をクロロホルム10mlに溶解し、10時間、加熱還流した。減圧濃縮し、得られた残査を水で洗浄し、次いでトルエンで洗浄し、酢酸エチルとトルエンから再沈し、例示化合物A−10を0.2g得た。得られた色素A−10は、核磁気共鳴スペクトル、マススペクトルで構造を確認した。
他の化合物も同様にして合成することができる。
このようにして得られた本発明の色素を酸化物半導体(以下、単に半導体ともいう)に担持させることにより増感し、本発明に記載の効果を奏することが可能となる。ここで、半導体に色素を担持させるとは、半導体表面への吸着、半導体が多孔質等のポーラスな構造を有する場合には、半導体の多孔質構造に前記色素を充填する等の種々の態様が挙げられる。
また、半導体層(半導体でもよい)1m2当たりの本発明の色素の総担持量は0.01〜100ミリモルの範囲が好ましく、さらに好ましくは0.1〜50ミリモルであり、特に好ましくは0.5〜20ミリモルである。
本発明の色素を用いて増感処理を行う場合、色素を単独で用いてもよいし、複数を併用してもよく、また他の化合物(例えば、米国特許第4,684,537号明細書、同4,927,721号明細書、同5,084,365号明細書、同5,350,644号明細書、同5,463,057号明細書、同5,525,440号明細書、特開平7−249790号公報、特開2000−150007号公報等に記載の化合物)と混合して用いることもできる。
特に、本発明の光電変換素子の用途が後述する太陽電池である場合には、光電変換の波長域をできるだけ広くして太陽光を有効に利用できるように吸収波長の異なる二種類以上の色素を混合して用いることが好ましい。
半導体に本発明の色素を担持させるには、前記化合物を適切な溶媒(エタノール等)に溶解し、その溶液中によく乾燥した半導体を長時間浸漬する方法が一般的である。
本発明の色素を複数種併用したり、その他の色素とを併用して増感処理する際には、各々の色素の混合溶液を調製して用いてもよいし、それぞれの色素について別々の溶液を用意して、各溶液に順に浸漬して作製することもできる。各色素について別々の溶液を用意し、各溶液に順に浸漬して作製する場合は、半導体に色素等を含ませる順序がどのようであっても本発明に記載の効果を得ることができる。また、前記色素を単独で吸着させた半導体の微粒子を混合する等することにより作製してもよい。
また、本発明に係る半導体の増感処理の詳細については、後述する光電変換素子のところで具体的に説明する。
また、空隙率の高い半導体の場合には、空隙に水分、水蒸気等により水が半導体薄膜上、並びに半導体薄膜内部の空隙に吸着する前に、色素等の吸着処理を完了することが好ましい。
次に本発明の光電変換素子について説明する。
〔光電変換素子〕
本発明の光電変換素子は、導電性支持体上の半導体に色素を含ませてなる光電極と対向電極を電解質層を介して対向配置してなる。以下、半導体、光電極、電解質、対向電極について順次説明する。
《半導体》
光電極に用いられる半導体としては、シリコン、ゲルマニウムのような単体、周期表(元素周期表ともいう)の第3族〜第5族、第13族〜第15族系の元素を有する化合物、金属のカルコゲニド(例えば、酸化物、硫化物、セレン化物等)、金属窒化物等を使用することができる。
好ましい金属のカルコゲニドとして、チタン、スズ、亜鉛、鉄、タングステン、ジルコニウム、ハフニウム、ストロンチウム、インジウム、セリウム、イットリウム、ランタン、バナジウム、ニオブ、またはタンタルの酸化物、カドミウム、亜鉛、鉛、銀、アンチモンまたはビスマスの硫化物、カドミウムまたは鉛のセレン化物、カドミウムのテルル化物等が挙げられる。他の化合物半導体としては、亜鉛、ガリウム、インジウム、カドミウム等のリン化物、ガリウム−ヒ素または銅−インジウムのセレン化物、銅−インジウムの硫化物、チタンの窒化物等が挙げられる。
具体例としては、TiO2、SnO2、Fe23、WO3、ZnO、Nb25、CdS、ZnS、PbS、Bi23、CdSe、CdTe、GaP、InP、GaAs、CuInS2、CuInSe2、Ti34等が挙げられるが、好ましく用いられるのは、TiO2、ZnO、SnO2、Fe23、WO3、Nb25、CdS、PbSであり、好ましく用いられるのは、TiO2またはNb25であるが、中でも特に好ましく用いられるのはTiO2(酸化チタン)である。
光電極に用いる半導体は、上述した複数の半導体を併用して用いてもよい。例えば、上述した金属酸化物もしくは金属硫化物の数種類を併用することもできるし、また酸化チタン半導体に20質量%の窒化チタン(Ti34)を混合して使用してもよい。また、J.Chem.Soc.,Chem.Commun.,15(1999)記載の酸化亜鉛/酸化錫複合としてもよい。このとき、半導体として金属酸化物もしくは金属硫化物以外に成分を加える場合、追加成分の金属酸化物もしくは金属硫化物半導体に対する質量比は30%以下であることが好ましい。
また、本発明に係る半導体は、有機塩基を用いて表面処理してもよい。前記有機塩基としては、ジアリールアミン、トリアリールアミン、ピリジン、4−t−ブチルピリジン、ポリビニルピリジン、キノリン、ピペリジン、アミジン等が挙げられるが、中でもピリジン、4−t−ブチルピリジン、ポリビニルピリジンが好ましい。
上記の有機塩基が液体の場合は、そのまま固体の場合は有機溶媒に溶解した溶液を準備し、本発明に係る半導体を液体アミンまたはアミン溶液に浸漬することで、表面処理を実施できる。
(導電性支持体)
本発明の光電変換素子や本発明の太陽電池に用いられる導電性支持体には、金属板のような導電性材料や、ガラス板やプラスチックフイルムのような非導電性材料に導電性物質を設けた構造のものを用いることができる。導電性支持体に用いられる材料の例としては金属(例えば白金、金、銀、銅、アルミニウム、ロジウム、インジウム)あるいは導電性金属酸化物(例えばインジウム−スズ複合酸化物、酸化スズにフッ素をドープしたもの)や炭素を挙げることができる。導電性支持体の厚さは特に制約されないが、0.3〜5mmが好ましい。
また、導電性支持体は実質的に透明であることが好ましく、実質的に透明であるとは光の透過率が10%以上であることを意味し、50%以上であることがさらに好ましく、80%以上であることが最も好ましい。透明な導電性支持体を得るためには、ガラス板またはプラスチックフイルムの表面に、導電性金属酸化物からなる導電性層を設けることが好ましい。透明な導電性支持体を用いる場合、光は支持体側から入射させることが好ましい。
導電性支持体の表面抵抗は、50Ω/cm2以下であることが好ましく、10Ω/cm2以下であることがさらに好ましい。
《光電極の作製》
本発明に係る光電極の作製方法について説明する。
本発明に係る光電極の半導体が粒子状の場合には、半導体を導電性支持体に塗布あるいは吹き付けて、光電極を作製するのがよい。また、本発明に係る半導体が膜状であって、導電性支持体上に保持されていない場合には、半導体を導電性支持体上に貼合して光電極を作製することが好ましい。
本発明に係る光電極の好ましい態様としては、上記導電性支持体上に半導体の微粒子を用いて焼成により形成する方法が挙げられる。
本発明に係る半導体が焼成により作製される場合には、色素を用いての該半導体の増感(吸着、多孔質層への充填等)処理は、焼成後に実施することが好ましい。焼成後、半導体に水が吸着する前に素早く化合物の吸着処理を実施することが特に好ましい。
以下、本発明に好ましく用いられる、光電極を半導体微粉末を用いて焼成により形成する方法について詳細に説明する。
(半導体微粉末含有塗布液の調製)
まず、半導体の微粉末を含む塗布液を調製する。この半導体微粉末はその1次粒子径が微細な程好ましく、その1次粒子径は1〜5000nmが好ましく、さらに好ましくは2〜50nmである。半導体微粉末を含む塗布液は、半導体微粉末を溶媒中に分散させることによって調製することができる。溶媒中に分散された半導体微粉末は、その1次粒子状で分散する。溶媒としては半導体微粉末を分散し得るものであればよく、特に制約されない。
前記溶媒としては、水、有機溶媒、水と有機溶媒との混合液が包含される。有機溶媒としては、メタノールやエタノール等のアルコール、メチルエチルケトン、アセトン、アセチルアセトン等のケトン、ヘキサン、シクロヘキサン等の炭化水素等が用いられる。塗布液中には、必要に応じ、界面活性剤や粘度調節剤(ポリエチレングリコール等の多価アルコール等)を加えることができる。溶媒中の半導体微粉末濃度の範囲は0.1〜70質量%が好ましく、さらに好ましくは0.1〜30質量%である。
(半導体微粉末含有塗布液の塗布と形成された半導体層の焼成処理)
上記のようにして得られた半導体微粉末含有塗布液を、導電性支持体上に塗布または吹きつけ、乾燥等を行った後、空気中または不活性ガス中で焼成して、導電性支持体上に半導体層(半導体膜とも言う)が形成される。
導電性支持体上に半導体微粉末含有塗布液を塗布、乾燥して得られる皮膜は、半導体微粒子の集合体からなるもので、その微粒子の粒径は使用した半導体微粉末の1次粒子径に対応するものである。
このようにして導電性支持体等の導電層上に形成された半導体微粒子層は、導電性支持体との結合力や微粒子相互の結合力が弱く、機械的強度の弱いものであることから、機械的強度を高め、基板に強く固着した半導体層とするため前記半導体微粒子層の焼成処理が行われる。
本発明においては、この半導体層はどのような構造を有していてもよいが、多孔質構造膜(空隙を有する、ポーラスな層ともいう)であることが好ましい。
ここで、本発明に係る半導体層の空隙率は10体積%以下が好ましく、さらに好ましくは8体積%以下であり、特に好ましくは0.01〜5体積%である。なお、半導体層の空隙率は誘電体の厚み方向に貫通性のある空隙率を意味し、水銀ポロシメーター(島津ポアライザー9220型)等の市販の装置を用いて測定することができる。
多孔質構造を有する焼成物膜になった半導体層の膜厚は、少なくとも10nm以上が好ましく、さらに好ましくは100〜10000nmである。
焼成処理時、焼成膜の実表面積を適切に調製し、上記の空隙率を有する焼成膜を得る観点から、焼成温度は1000℃より低いことが好ましく、さらに好ましくは200〜800℃の範囲であり、特に好ましくは300〜800℃の範囲である。
また、見かけ表面積に対する実表面積の比は、半導体微粒子の粒径及び比表面積や焼成温度等によりコントロールすることができる。また、加熱処理後、半導体粒子の表面積を増大させたり、半導体粒子近傍の純度を高め、色素から半導体粒子への電子注入効率を高める目的で、例えば、四塩化チタン水溶液を用いた化学メッキや三塩化チタン水溶液を用いた電気化学的メッキ処理を行ってもよい。
(半導体の増感処理)
半導体の増感処理は、前述のように本発明の色素を適切な溶媒に溶解し、その溶液に前記半導体を焼成した基板を浸漬することによって行われる。その際には半導体層(半導体膜ともいう)を焼成により形成させた基板を、予め減圧処理したり加熱処理したりして膜中の気泡を除去しおくことが好ましい。このような処理により、本発明の色素が半導体層(半導体膜)内部深くに進入できるようになり、半導体層(半導体膜)が多孔質構造膜である場合には特に好ましい。
本発明の色素を溶解するのに用いる溶媒は、前記化合物を溶解することができ、かつ半導体を溶解したり半導体と反応したりすることのないものであれば格別の制限はない。しかしながら、溶媒に溶解している水分及び気体が半導体膜に進入して、前記化合物の吸着等の増感処理を妨げることを防ぐために、予め脱気及び蒸留精製しておくことが好ましい。
前記化合物の溶解において、好ましく用いられる溶媒はメタノール、エタノール、n−プロパノール等のアルコール系溶媒、アセトン、メチルエチルケトン等のケトン系溶媒、ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、1,4−ジオキサン等のエーテル系溶媒、塩化メチレン、1,1,2−トリクロロエタン等のハロゲン化炭化水素溶媒であり、特に好ましくはメタノール、エタノール、アセトン、メチルエチルケトン、テトラヒドロフラン、塩化メチレンである。
(増感処理の温度、時間)
半導体を焼成した基板を本発明の色素を含む溶液に浸漬する時間は、半導体層(半導体膜)に深く進入して吸着等を充分に進行させ、半導体を十分に増感させることが好ましい。また、溶液中での色素の分解等により生成して分解物が色素の吸着を妨害することを抑制する観点から、25℃条件下では3〜48時間が好ましく、さらに好ましくは4〜24時間である。この効果は、特に半導体膜が多孔質構造膜である場合において顕著である。但し、浸漬時間については25℃条件での値であり、温度条件を変化させた場合には、上記の限りではない。
浸漬しておくに当たり本発明の色素を含む溶液は、前記色素が分解しないかぎりにおいて、沸騰しない温度にまで加熱して用いてもよい。好ましい温度範囲は10〜100℃であり、さらに好ましくは25〜80℃であるが、前記の通り溶媒が前記温度範囲で沸騰する場合はこの限りでない。
《電解質》
本発明に用いられる電解質について説明する。
本発明の光電変換素子においては、対向電極間に電解質が充填され、電解質層が形成される。電解質としてはレドックス電解質が好ましく用いられる。ここで、レドックス電解質としては、I-/I3 -系や、Br-/Br3 -系、キノン/ハイドロキノン系等が挙げられる。このようなレドックス電解質は従来公知の方法によって得ることができ、例えば、I-/I3 -系の電解質は、ヨウ素のアンモニウム塩とヨウ素を混合することによって得ることができる。電解質層はこれらレドックス電解質の分散物で構成され、それら分散物は溶液である場合に液体電解質、常温において固体である高分子中に分散させた場合に固体高分子電解質、ゲル状物質に分散された場合にゲル電解質と呼ばれる。電解質層として液体電解質が用いられる場合、その溶媒としては電気化学的に不活性なものが用いられ、例えば、アセトニトリル、炭酸プロピレン、エチレンカーボネート等が用いられる。固体高分子電解質の例としては特開2001−160427号公報記載の電解質が、ゲル電解質の例としては「表面科学」21巻、第5号288〜293頁に記載の電解質が挙げられる。
上記電解層に替え、以下の固体電荷輸送層としてもよい。
電荷輸送層としては、固体ホールもしくは電子移動材料等も適用でき、各種金属フタロシアニン、ペリレンテトラカルボン酸、ペリレンやコロネン等多環芳香族、テトラチアフルバレン、テトラシアノキノジメタン等電荷移動錯体等の結晶性材料、あるいはAlq3、ジアミン、各種オキサジアゾール、ポリピロール、ポリアニリン、ポリフェニレンビニレン等のアモルファス導電性高分子等も適用可能である。固体電荷輸送材料の原料は、室温では粉末状もしくは粒状もしくは板状の固体である。n型半導体電極との接合時には常圧下で固体材料の原料を半導体電極表面上に配置した後減圧する、あるいは減圧下で固体状態の原料を半導体電極表面上に配置する。引き続き固体電荷輸送材料のガラス転移温度あるいは融点以上まで加熱し、固体電荷輸送材料とn型半導体電極の接合を行うことで、良好なn型半導体電極と固体電荷輸送材料の接合を実現する。
また、電荷輸送材料を、バインダー樹脂に溶解または分散させた膜を形成してもよい。本発明に用いられる電荷輸送材料としては、下記の化合物等が挙げられる。
Figure 0005233318
《対向電極》
本発明に用いられる対向電極について説明する。
対向電極は導電性を有するものであればよく、任意の導電性材料が用いられるが、I3 -イオン等の酸化や他のレドックスイオンの還元反応を充分な速さで行わせる触媒能を持ったものの使用が好ましい。このようなものとしては、白金電極、導電材料表面に白金めっきや白金蒸着を施したもの、ロジウム金属、ルテニウム金属、酸化ルテニウム、カーボン等が挙げられる。
〔太陽電池〕
本発明の太陽電池について説明する。
本発明の太陽電池は、本発明の光電変換素子の一態様として、太陽光に最適の設計並びに回路設計が行われ、太陽光を光源として用いたときに最適な光電変換が行われるような構造を有する。即ち、色素増感された半導体に太陽光が照射されうる構造となっている。本発明の太陽電池を構成する際には、前記光電極、電解質層及び対向電極をケース内に収納して封止するか、あるいはそれら全体を樹脂封止することが好ましい。
本発明の太陽電池に太陽光または太陽光と同等の電磁波を照射すると、半導体に担持された本発明に係る色素は照射された光もしくは電磁波を吸収して励起する。励起によって発生した電子は半導体に移動し、次いで導電性支持体を経由して対向電極に移動して、電荷移動層のレドックス電解質を還元する。一方、半導体に電子を移動させた本発明に係る色素は酸化体となっているが、対向電極から電解質層のレドックス電解質を経由して電子が供給されることにより、還元されて元の状態に戻り、同時に電荷移動層のレドックス電解質は酸化されて、再び対向電極から供給される電子により還元されうる状態に戻る。このようにして電子が流れ、本発明の光電変換素子を用いた太陽電池を構成することができる。
以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
実施例
《光電変換素子の作製》
(光電変換素子SC−1の作製:本発明)
下記に記載の手順にて、光電変換素子1を作製した。
〈液体電解質セルの作製〉
市販の酸化チタンペースト(粒径18nm)をフッ素ドープ酸化スズ(FTO)導電性ガラス基板へドクターブレード法により塗布した。60℃で10分間加熱してペーストを乾燥した後、500℃で30分間焼成を行い、厚さ5μmの酸化チタン薄膜を得た。
前記合成例で示した方法で得た例示化合物A−10をエタノールに溶解し、3×10-4Mの溶液を作製した。酸化チタンを塗布焼結したFTOガラス基板を、この溶液に室温で16時間浸漬して色素の吸着処理を行った後、クロロホルムで洗浄、真空乾燥し、光電変換電極とした。
電解液にはヨウ化リチウム0.4M、ヨウ素0.05M、4−(t−ブチル)ピリジン0.5Mを含む3−メチルプロピオニトリル溶液を用いた。
対極に白金板を用い、先に作製した光電変換電極ならびに電解液とクランプセルで組み立てることにより光電変換素子(太陽電池)SC−1を得た。
(光電変換素子SC−2〜の作製:本発明)
光電変換素子SC−1の作製において、例示化合物A−10を例示化合物A−2、A−6、A−11、A−13,A−16,A−17に変更した以外は同様にして、光電変換素子SC−2〜を得た。
(光電変換素子SC−9、SC−10の作製:比較)
光電変換素子SC−1の作製において、例示化合物A−10を下記R1、R2に変更した以外は同様にして、光電変換素子SC−9、SC−10を得た。
Figure 0005233318
〈固体電解質セルの作製〉
(光電変換素子SE−R1の作製:比較例)
FTO電極に、アルコキシチタン溶液(松本交商:TA−25/IPA希釈)をスピンコート法にて塗布した。室温で30分放置後、450℃で間焼成を行い、短絡防止層とした。続いて、市販の酸化チタンペースト(粒径18nm)を上記基版へドクターブレード法により塗布した後、60℃で10分間加熱処理後、500℃で30分間焼成を行い、厚さ5μmの酸化チタン薄膜を有する半導体電極基盤を得た。
R2をエタノールに溶解させ、3×10-4mol/Lの溶液を調製した。上記半導体電極基盤を、この溶液に室温で16時間浸漬させて、色素の吸着処理を行った後、クロロホルムで洗浄、真空乾燥し、光電変換電極とした。
次に、トルエン溶媒中に、ホール輸送剤として、例示化合物(下記spiro−MeO TAD)0.17M、ホールドーピング剤としてN(PhBr)3SbCl6を0.33mM、Li[(CF3SO22N]を15mMを溶解させ、色素吸着後の上記光電変換電極上にスピンコートし、ホール移動層を形成した。さらに真空蒸着法により金を30nm蒸着し、対極を作製し、光電変換素子SE−R1を得た。
Figure 0005233318
(光電変換素子SE−1の作製:本発明)
本発明:光電変換素子SE−1の作製
光電変換素子SE−R1の作製において、R2を例示化合物A−10に変更した以外は同様にして、光電変換素子SE−1を得た。
《光電変換素子の評価》
作製した光電変換素子を、ソーラーシミュレータ(ワコム電創株式会社製、商品名;「WXS−85−H型」)を用い、AMフィルター(AM−1.5)を通したキセノンランプから100mW/cm2の擬似太陽光を照射することにより行った。即ち、光電変換素子について、I−Vテスターを用いて室温にて電流−電圧特性を測定し、短絡電流(Jsc)、開放電圧(Voc)、及び形状因子(F.F.)を求め、これらから光電変換効率(η(%))を求めた。さらに、擬似太陽光を100時間曝露させた前後での変換効率の変化を比較した。
なお、光電変換効率(η(%))は、下記式(A)に基づいて算出した。
式(A) η=100×(Voc×Jsc×F.F.)/P
ここで、Pは入射光強度[mW/cm-2]、Vocは開放電圧[V]、Jscは短絡電流密度[mA・cm-2]、F.F.は形状因子を示す。
評価の結果を表1に示す。
Figure 0005233318
表1より、擬似太陽光照射において、本発明の色素を用いた光電変換素子SC−1〜SC−3は、いずれも比較色素(R1:Ru錯体色素及びR2:トリフェニルアミン系色素)を用いた光電変換素子SC−4、SC−5に比べ、高い耐光性を有することが分かる。
本発明に用いられる光電変換素子の一例を示す構成断面図である。
符号の説明
1、1′ 基板
2、7 透明導電膜
3 酸化物半導体
4 色素
5 電解質
6 対向電極
7 透明導電膜
8 Pt

Claims (6)

  1. 導電性支持体上の酸化物半導体に色素を担持させてなる色素担持半導体電極と対向電極とを有する光電変換素子において、前記色素が下記一般式(1)で表される化合物を含有することを特徴とする光電変換素子。
    Figure 0005233318

    (式中、nは1以上の整数を表す。Xは電子求引性基及び酸性基を有する有機残基を表す。は置換基を表し、Zは水素原子または置換基を表し、Y及びZの少なくとも一方は電子求引性基を有する置換基を表す。R1 〜R3 は置換基を表し、R1 〜R3 のうち少なくとも2つは置換基を有していてもよい芳香族炭化水素基または芳香族複素環基を表し、R 1 〜R 3 の少なくとも1つは下記一般式(2)で表される基を示す。X、Y、Z、R1 〜R3 は、直接あるいは他の原子を介して環状構造を成してもよい。)
    Figure 0005233318

    (式中、mは0または1を表す。Ar 1 は置換基を有していてもよい芳香族炭化水素基または芳香族複素環基を表す。Q 1 、Q 2 はそれぞれ独立して水素原子または置換基を有してもよい有機残基を表す。P 1 〜P 3 はそれぞれ独立して水素原子または置換基を有してもよい有機残基を表し、P 1 〜P 3 のうち少なくとも一つは置換基を有していてもよい芳香族炭化水素基または芳香族複素環基を表す。Ar 1 、Q 1 、Q 2 、P 1 〜P 3 は、直接あるいは他の原子を介して環状構造を成してもよい。)
  2. 前記一般式(1)において、R1 〜R3 は芳香族炭化水素基または芳香族複素環基であることを特徴とする請求項1記載の光電変換素子。
  3. 前記一般式(1)において、Xがカルボキシル基を有することを特徴とする請求項1または2記載の光電変換素子。
  4. 前記一般式(1)において、X、YまたはZはシアノ基を有することを特徴とする請求項1乃至3のいずれか1項に記載の光電変換素子。
  5. 前記酸化物半導体が酸化チタンであることを特徴とする請求項1乃至4のいずれか1項に記載の光電変換素子。
  6. 請求項1乃至5のいずれか1項に記載の光電変換素子を有することを特徴とする太陽電池。
JP2008045663A 2008-02-27 2008-02-27 光電変換素子及び太陽電池 Expired - Fee Related JP5233318B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008045663A JP5233318B2 (ja) 2008-02-27 2008-02-27 光電変換素子及び太陽電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008045663A JP5233318B2 (ja) 2008-02-27 2008-02-27 光電変換素子及び太陽電池

Publications (2)

Publication Number Publication Date
JP2009205890A JP2009205890A (ja) 2009-09-10
JP5233318B2 true JP5233318B2 (ja) 2013-07-10

Family

ID=41147969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008045663A Expired - Fee Related JP5233318B2 (ja) 2008-02-27 2008-02-27 光電変換素子及び太陽電池

Country Status (1)

Country Link
JP (1) JP5233318B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009269987A (ja) * 2008-05-07 2009-11-19 Konica Minolta Business Technologies Inc 新規化合物、光電変換素子及び太陽電池
JP5520560B2 (ja) * 2009-09-29 2014-06-11 富士フイルム株式会社 光電変換素子、光電変換素子材料、光センサ、及び撮像素子
KR102448440B1 (ko) * 2016-09-27 2022-09-27 호도가야 가가쿠 고교 가부시키가이샤 증감 색소, 광전 변환용 증감 색소 및 그것을 사용한 광전 변환 소자 그리고 색소 증감 태양 전지
US10937970B2 (en) 2017-10-31 2021-03-02 Samsung Electronics Co., Ltd. Compound and photoelectric device, image sensor and electronic device including the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4299525B2 (ja) * 2002-10-22 2009-07-22 祥三 柳田 光電変換素子及び太陽電池
JP2005123013A (ja) * 2003-10-16 2005-05-12 Konica Minolta Holdings Inc 光電変換材料用半導体、光電変換素子及び太陽電池

Also Published As

Publication number Publication date
JP2009205890A (ja) 2009-09-10

Similar Documents

Publication Publication Date Title
JP5181814B2 (ja) 光電変換素子、及び太陽電池
JP5206092B2 (ja) 光電変換素子及び太陽電池
JP5135774B2 (ja) 光電変換素子、及び太陽電池
JP2009272296A (ja) 光電変換素子及び太陽電池
JP2008186752A (ja) 光電変換素子及び太陽電池
JP2009269987A (ja) 新規化合物、光電変換素子及び太陽電池
JP2010267612A (ja) 光電変換素子及び太陽電池
JP5239262B2 (ja) 太陽電池
JP5396987B2 (ja) 光電変換素子及び太陽電池
JP5233318B2 (ja) 光電変換素子及び太陽電池
EP2246916A2 (en) Amine dye for a dye sensitized solar cell
JP5347329B2 (ja) 光電変換素子及び太陽電池
JP2010277998A (ja) 光電変換素子及び太陽電池
JP5217475B2 (ja) 光電変換素子及び太陽電池
JP5223362B2 (ja) 光電変換素子及び太陽電池
JP2012084249A (ja) 光電変換素子及び太陽電池
JP2008234902A (ja) 光電変換素子及び太陽電池
JP2010168511A (ja) 新規化合物、光電変換素子及び太陽電池
JP2010282780A (ja) 光電変換素子及び太陽電池
JP2008226582A (ja) 光電変換素子及び太陽電池
JP5332114B2 (ja) 光電変換素子及び太陽電池
JP2008226688A (ja) 光電変換素子及び太陽電池
JP5353419B2 (ja) 光電変換素子及び太陽電池
JP2010040280A (ja) 光電変換素子及び太陽電池
JP2010009830A (ja) 光電変換素子及びその製造方法、太陽電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100819

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130311

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees