JP2010234977A - 電動パワーステアリング装置およびその制御方法 - Google Patents

電動パワーステアリング装置およびその制御方法 Download PDF

Info

Publication number
JP2010234977A
JP2010234977A JP2009085705A JP2009085705A JP2010234977A JP 2010234977 A JP2010234977 A JP 2010234977A JP 2009085705 A JP2009085705 A JP 2009085705A JP 2009085705 A JP2009085705 A JP 2009085705A JP 2010234977 A JP2010234977 A JP 2010234977A
Authority
JP
Japan
Prior art keywords
steering
resonance
electric motor
torque
electric power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009085705A
Other languages
English (en)
Other versions
JP5265436B2 (ja
Inventor
Hideyuki Murakami
秀幸 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Corp
Original Assignee
Showa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2009085705A priority Critical patent/JP5265436B2/ja
Application filed by Showa Corp filed Critical Showa Corp
Priority to EP11185401.4A priority patent/EP2409897B1/en
Priority to EP09170991A priority patent/EP2221235B1/en
Priority to AT09170991T priority patent/ATE535431T1/de
Priority to EP11185402A priority patent/EP2409898B1/en
Priority to US12/565,271 priority patent/US8260500B2/en
Publication of JP2010234977A publication Critical patent/JP2010234977A/ja
Priority to US13/561,246 priority patent/US20120290176A1/en
Priority to US13/561,239 priority patent/US8818636B2/en
Application granted granted Critical
Publication of JP5265436B2 publication Critical patent/JP5265436B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Steering Control In Accordance With Driving Conditions (AREA)
  • Power Steering Mechanism (AREA)

Abstract

【課題】制御系における発振を抑制し、安定性と応答性を向上させることができる技術を提供する。
【解決手段】ステアリングホイールに連結される第1の回転軸と、転舵輪を転舵させるラック軸と、ラック軸を直線移動させる第2の回転軸と、トーションバーと、ステアリングホイールの操作に対するアシスト力を付与する電動モータと、ステアリングホイールの操舵トルクを検出する操舵トルク検出手段と、操舵トルク検出手段が検出した操舵トルクに基づいて電動モータに供給する目標電流を設定する目標電流算出部20とを備え、目標電流算出部20は、トーションバーをバネ要素として、電動モータ、第2の回転軸およびラック軸を慣性要素として含む制御系の共振周波数成分を抑制する共振補償部27を操舵トルク検出手段の出力側に有し、共振補償部27にて共振周波数成分が抑制された操舵トルクに応じて目標電流を設定する。
【選択図】図3

Description

本発明は、電動パワーステアリング装置およびその制御方法に関する。
近年、車両のステアリング系に電動モータを備え、電動モータの動力にてドライバの操舵力をアシストする電動パワーステアリング装置が提案されている。この電動パワーステアリング装置を制御する制御装置は、電動モータの駆動を制御するために、検出した操舵トルクに基づいて電動モータに供給する電流を定める。
そして、検出した操舵トルクに基づいて電動モータに供給する電流を定める際に、操舵系の安定性を高めるために検出した操舵トルクを位相補償器で位相補償し、位相補償された操舵トルクに応じた電流を電動モータに供給する技術が提案されている(例えば、特許文献1参照)。
また、特許文献2には以下の技術が提案されている。すなわち、トルクセンサを構成するバネ要素とハンドル慣性とによる共振系における共振周波数で発振が生じることに鑑み、トルクセンサの出力側に、モータ駆動制御系の信号の共振周波数成分を除去する帯域除去フィルタを設けている。
特開平10−167086号公報 特開平2−164665号公報
ここで、電動パワーステアリング装置では、ステアリングホイールに加えられた操舵トルクに応じて電動モータを駆動し、電動モータの駆動力を、ピニオンラック機構を構成するピニオンシャフトに伝達する。さらに、ピニオンシャフトを介してラック軸に電動モータの駆動力を伝達し、このラック軸を直線運動させることにより転舵輪の向きを変えている。
それゆえ、電動パワーステアリング装置の制御系における発振を抑制するためには、電動モータ、ピニオンシャフトおよびラック軸をも慣性要素として考慮することが重要である。
かかる目的のもと、本発明は、ステアリングホイールに連結される第1の回転軸と、直線移動によって転舵輪を転舵させるラック軸と、前記ラック軸を直線移動させる第2の回転軸と、前記第1の回転軸と前記第2の回転軸とを連結し、前記ステアリングホイールの操作によって捩れるトーションバーと、前記ステアリングホイールの操作に対するアシスト力を付与する電動モータと、前記ステアリングホイールの操舵トルクを検出する操舵トルク検出手段と、前記操舵トルク検出手段が検出した操舵トルクに基づいて前記電動モータに供給する目標電流を設定する目標電流設定手段と、を備えた電動パワーステアリング装置において、前記目標電流設定手段は、前記トーションバーをバネ要素として、前記電動モータ、前記第2の回転軸および前記ラック軸を慣性要素として含む制御系の共振周波数成分を抑制する共振補償手段を前記操舵トルク検出手段の出力側に有し、前記共振補償手段にて共振周波数成分が抑制された操舵トルクに応じて前記目標電流を設定することを特徴とする電動パワーステアリング装置である。
ここで、前記共振補償手段は、前記制御系の反共振要素を持つフィルタ機能とローパスフィルタ機能とを有することが好適である。
また、前記共振補償手段の伝達関数は、前記制御系の伝達関数の分母の要素と同じ要素を分子に含むことが好適である。
また、前記共振補償手段の伝達関数の分母は、分子の次数と同等以上の次数を有することが好適である。
他の観点から捉えると、本発明は、ステアリングホイールに連結される第1の回転軸と、直線移動によって転舵輪を転舵させるラック軸と、前記ラック軸を直線移動させる第2の回転軸と、前記第1の回転軸と前記第2の回転軸とを連結し、前記ステアリングホイールの操作によって捩れるトーションバーと、前記ステアリングホイールの操作に対するアシスト力を付与する電動モータと、を備えた電動パワーステアリング装置の制御方法であって、前記ステアリングホイールの操舵トルクを検出し、検出した操舵トルクにおける、前記トーションバーをバネ要素として、前記電動モータ、前記第2の回転軸および前記ラック軸を慣性要素として含む制御系の共振周波数成分を抑制し、共振周波数成分が抑制された操舵トルクに応じて前記電動モータに供給する目標電流を設定することを特徴とする電動パワーステアリング装置の制御方法である。
ここで、前記制御系の共振周波数成分を抑制する際には、当該制御系の反共振要素を持つフィルタ機能とローパスフィルタ機能とを用いることが好適である。
本発明によれば、トーションバーをバネ要素として、電動モータ、第2の回転軸およびラック軸を慣性要素として含む制御系の共振周波数成分を抑制するので、発振が生じることを精度高く抑制することができる。これにより、制御系における安定性を向上させることができる。
第1の実施形態に係る電動パワーステアリング装置の概略構成を示す図である。 電動パワーステアリング装置の制御装置の概略構成図である。 目標電流算出部の概略構成図である。 制御部の概略構成図である。 共振補償部を設ける場合と設けない場合の制御系の周波数特性を比較したボード線図である。 第2の実施形態に係る電動パワーステアリング装置の概略構成を示す図である。 第2の実施形態に係る制御装置の概略構成図である。 第3の実施形態に係る電動パワーステアリング装置の概略構成を示す図である。 第3の実施形態に係る制御装置の概略構成図である。 補正係数αと、前輪の重さの基準値に対する変化量との関係を示す図である。 補正係数αと車速との関係を示す図である。 補正係数αと舵角の絶対値との関係を示す図である。 補正係数βと、前輪の重さの基準値に対する変化量との関係を示す図である。 補正係数βと車速との関係を示す図である。 補正係数βと舵角の絶対値との関係を示す図である。
以下、添付図面を参照して、本発明の実施の形態について詳細に説明する。
<第1の実施形態>
図1は、第1の実施形態に係る電動パワーステアリング装置100の概略構成を示す図である。
電動パワーステアリング装置100(以下、単に「ステアリング装置100」と称する場合もある。)は、乗り物の進行方向を任意に変えるためのかじ取り装置であり、本実施形態においては自動車に適用した構成を例示している。
ステアリング装置100は、ドライバが操作する車輪(ホイール)状のステアリングホイール(ハンドル)101と、ステアリングホイール101に一体的に設けられたステアリングシャフト102とを備えている。ステアリングシャフト102と上部連結シャフト103とが自在継手103aを介して連結されており、上部連結シャフト103と下部連結シャフト108とが自在継手103bを介して連結されている。
また、ステアリング装置100は、転舵輪としての左右の前輪150のそれぞれに連結されたタイロッド104と、タイロッド104に連結されたラック軸105とを備えている。また、ステアリング装置100は、ラック軸105に形成されたラック歯105aとともにラック・ピニオン機構を構成するピニオン106aを備えている。ピニオン106aは、ピニオンシャフト106の下端部に形成されている。
また、ステアリング装置100は、ピニオンシャフト106を収納するステアリングギアボックス107を有している。ピニオンシャフト106は、ステアリングギアボックス107にてトーションバー(不図示)を介して下部連結シャフト108と連結されている。ステアリングギアボックス107の内部には、下部連結シャフト108とピニオンシャフト106との相対角度に基づいてステアリングホイール101の操舵トルクを検出する操舵トルク検出手段の一例としてのトルクセンサ109が設けられている。
また、ステアリング装置100は、ステアリングギアボックス107に支持された電動モータ110と、電動モータ110の駆動力を減速してピニオンシャフト106に伝達する減速機構111とを有している。
また、ステアリング装置100は、電動モータ110に実際に流れる実電流の大きさおよび方向を検出する電流検出手段の一例としてのモータ電流検出部33(図4参照)と、電動モータ110の端子間電圧を検出するモータ電圧検出部160を有している。
そして、ステアリング装置100は、電動モータ110の作動を制御する制御装置10を備えている。制御装置10には、上述したトルクセンサ109の出力値、自動車の車速を検出する車速センサ170の出力値、モータ電流検出部33の出力値、モータ電圧検出部160の出力値が入力される。
以上のように構成された電動パワーステアリング装置100は、ステアリングホイール101に加えられた操舵トルクをトルクセンサ109にて検出し、その検出トルクに応じて電動モータ110を駆動し、電動モータ110の発生トルクをピニオンシャフト106に伝達する。これにより、電動モータ110の発生トルクが、ステアリングホイール101に加える運転者の操舵力をアシストする。
次に、制御装置10について説明する。
制御装置10は、CPU、ROM、RAM、バックアップRAM等からなる算術論理演算回路である。
図2は、電動パワーステアリング装置100の制御装置10の概略構成図である。
制御装置10には、上述したトルクセンサ109にて検出された操舵トルクが出力信号に変換されたトルク信号Tdと、車速センサ170にて検出された車速が出力信号に変換された車速信号vとが入力される。
また、制御装置10には、モータ電流検出部33にて検出された実電流が出力信号に変換されたモータ電流信号Imと、モータ電圧検出部160にて検出された電圧が出力信号に変換されたモータ端子間電圧信号Vmとが入力される。
なお、制御装置10は、トルクセンサ109などからの検出信号がアナログ信号として入力されるので、図示しないA/D変換部によりアナログ信号をデジタル信号に変換し、CPUに取り込んでいる。
そして、制御装置10は、トルク信号Tdに基づいて目標補助トルクを算出し、この目標補助トルクを電動モータ110が供給するのに必要となる目標電流を算出する目標電流算出部20と、目標電流算出部20が算出した目標電流に基づいてフィードバック制御などを行う制御部30とを有している。
次に、目標電流算出部20について詳述する。図3は、目標電流算出部20の概略構成図である。
目標電流算出部20は、目標電流を設定する上で基準となるベース電流を算出するベース電流算出部21と、電動モータ110の慣性モーメントを打ち消すための電流を算出するイナーシャ補償電流算出部22とを備えている。また、目標電流算出部20は、モータの回転を制限する電流を算出するダンパー補償電流算出部23と、モータ電流信号Imおよびモータ端子間電圧信号Vmに基づいて電動モータ110の回転速度信号Nmを推定するモータ回転速度推定部24とを備えている。
また、目標電流算出部20は、ベース電流算出部21、イナーシャ補償電流算出部22、ダンパー補償電流算出部23などからの出力に基づいて最終的な目標電流を決定する最終目標電流決定部25を備えている。
さらに、目標電流算出部20は、トルクセンサ109にて検出された操舵トルクの位相補償を行う位相補償部26と、位相補償部26にて位相補償された操舵トルクの共振周波数成分を除去する共振補償を行う共振補償部27とを有している。
位相補償部26は、トルクセンサ109からの出力値であるトルク信号Tdに対して位相補償のためのフィルタリング処理を施し、その処理後のトルク信号Tsを出力する。共振補償部27は、トルク信号Tsの共振周波数成分を除去し、共振周波数成分が除去されたトルク信号Tpを出力する。この共振補償部27については後で詳述する。
ベース電流算出部21は、トルクセンサ109にて検出された操舵トルクと車速センサ170にて検出された車速とに基づいてベース電流を算出する。より具体的には、共振補償部27からの出力値であるトルク信号Tpと、車速センサ170からの車速信号vとに基づいてベース電流を算出し、このベース電流の情報を含むベース電流信号Imsを出力する。なお、ベース電流算出部21は、例えば、予め経験則に基づいて作成しROMに記憶しておいた、トルク信号Tpおよび車速信号vとベース電流との対応を示すマップに、トルク信号Tpおよび車速信号vを代入することによりベース電流を算出する。
イナーシャ補償電流算出部22は、トルク信号Tdと車速信号vとに基づいて電動モータ110およびシステムの慣性モーメントを打ち消すためのイナーシャ補償電流を算出し、この電流の情報を含むイナーシャ補償電流信号Isを出力する。なお、イナーシャ補償電流算出部22は、例えば、予め経験則に基づいて作成しROMに記憶しておいた、トルク信号Tdおよび車速信号vとイナーシャ補償電流との対応を示すマップに、トルク信号Tdおよび車速信号vを代入することによりイナーシャ補償電流を算出する。
ダンパー補償電流算出部23は、トルク信号Tdと、車速信号vと、電動モータ110の回転速度信号Nmとに基づいて、電動モータ110の回転を制限するダンパー補償電流を算出し、この電流の情報を含むダンパー補償電流信号Idを出力する。なお、ダンパー補償電流算出部23は、例えば、予め経験則に基づいて作成しROMに記憶しておいた、トルク信号Td、車速信号vおよび回転速度信号Nmと、ダンパー補償電流との対応を示すマップに、トルク信号Tdと車速信号vと回転速度信号Nmとを代入することによりダンパー補償電流を算出する。
モータ回転速度推定部24は、モータ電流検出部33にて検出された実電流と、モータ電圧検出部160にて検出された電圧とに基づいて電動モータ110の回転速度を推定する。詳しくは後で説明する。
最終目標電流決定部25は、ベース電流算出部21から出力されたベース電流信号Ims、イナーシャ補償電流算出部22から出力されたイナーシャ補償電流信号Isおよびダンパー補償電流算出部23から出力されたダンパー補償電流信号Idに基づいて最終的な目標電流を決定し、この電流の情報を含む目標電流信号ITを出力する。最終目標電流決定部25は、例えば、ベース電流に、イナーシャ補償電流を加算するとともにダンパー補償電流を減算して得た補償電流を、予め経験則に基づいて作成しROMに記憶しておいた、補償電流と最終的な目標電流との対応を示すマップに代入することにより最終的な目標電流を算出する。
このように、目標電流算出部20は、トルクセンサ109が検出した操舵トルクに基づいて電動モータ110に供給する目標電流を設定する目標電流設定手段の一例として機能する。
次に、制御部30について詳述する。図4は、制御部30の概略構成図である。
制御部30は、電動モータ110の作動を制御するモータ駆動制御部31と、電動モータ110を駆動させるモータ駆動部32と、電動モータ110に実際に流れる実電流を検出するモータ電流検出部33とを有している。
モータ駆動制御部31は、目標電流算出部20にて算出された目標電流と、モータ電流検出部33にて検出される電動モータ110へ供給される実電流との偏差に基づいてフィードバック制御を行うフィードバック(F/B)制御部40と、電動モータ110をPWM駆動するためのPWM(パルス幅変調)信号を生成するPWM信号生成部60とを有している。
フィードバック制御部40は、目標電流算出部20にて算出された目標電流とモータ電流検出部33にて検出された実電流との偏差を求める偏差演算部41と、その偏差がゼロとなるようにフィードバック処理を行うフィードバック(F/B)処理部42とを有している。
偏差演算部41は、目標電流算出部20からの出力値ITとモータ電流検出部33からの出力値Imとの偏差の値を偏差信号41aとして出力する。
フィードバック(F/B)処理部42は、目標電流と実電流とが一致するようにフィードバック制御を行うものであり、例えば、入力された偏差信号41aに対して、比例要素で比例処理した信号を出力し、積分要素で積分処理した信号を出力し、加算演算部でこれらの信号を加算してフィードバック処理信号42aを生成・出力する。
PWM信号生成部60は、フィードバック制御部40からの出力値に基づいてPWM信号60aを生成し、生成したPWM信号60aを出力する。
モータ駆動部32は、4個の電力用電界効果トランジスタをH型ブリッジ回路の構成で接続したモータ駆動回路70と、4個の中から選択した2個の電界効果トランジスタのゲートを駆動してこれらの電界効果トランジスタをスイッチング動作させるゲート駆動回路部80とを有している。ゲート駆動回路部80は、PWM信号生成部60から出力された駆動制御信号(PWM信号)60aに基づいて、ステアリングホイール101の操舵方向に応じて2個の電界効果トランジスタを選択し、選択した2個の電界効果トランジスタをスイッチング動作させる。
モータ電流検出部33は、モータ駆動回路70に直列に接続されたシャント抵抗71の両端に生じる電圧から電動モータ110に流れるモータ電流(電機子電流)の値を検出してモータ電流信号Imを出力する。
次に、共振補償部27について説明する。
ステアリング装置100は、操舵トルクの検出に用いるトーションバー(不図示)をバネ要素とし、電動モータ110、ピニオンシャフト106およびラック軸105を慣性要素として含む制御系である。そのため、例えば、フィードバック処理部42が比例要素と積分要素とを含んでいる場合に、フィードバック処理部42の比例ゲインおよび積分ゲインの値をシステム全体の応答性を上げるべく高くすると、その制御系の共振周波数の近傍でシステムが不安定(振動的)となりやすくなる。
共振補償部27は、制御系の共振周波数帯域でのピークを除去又は抑制するために設けている。
共振補償部27の特性を示す伝達関数H(s)は、ステアリング装置100の制御系の特性を示す伝達関数G(s)に対して以下のように定義する。すなわち、H(s)は、G(s)の分母と同じ要素を分子に有するとともに、分母の次数を、共振補償部27の実現性を確保するため、分子以上である2次の次数とする。言い換えれば、共振補償部27は、制御系の反共振要素を持つフィルタ機能とローパスフィルタ機能とを有するように、その伝達関数を定める。
先ず、伝達関数G(s)について考える。
ステアリング装置100の減速機構111は、ピニオンシャフト106に取り付けられたウォームホイール(不図示)と、電動モータ110の出力軸に取り付けられたウォームギヤ(不図示)とから構成されている。
かかる場合、電動モータ110のトルクをτ(N・m)、回転角度をθ(rad)、ウォームギヤのトルクをτ(N・m)、モータ軸イナーシャをJ(kg・m)とすると、電動モータ110についての運動方程式は以下に示す式(1)で表される。
Figure 2010234977
ここで、モータ軸イナーシャJは、モータイナーシャをJ(kg・m)、ウォームギヤのイナーシャをJT1(kg・m)とすると、J=J+JT1である。
また、ピニオンシャフト106の回転角度をθ(rad)、ウォームホイールのトルクをτ(N・m)、ピニオン106aのトルクをτ(N・m)、ピニオン軸イナーシャをJ(kg・m)、トーションバーのバネ定数をktb(N・m/rad)とすると、ピニオンシャフト106についての運動方程式は以下に示す式(2)で表される。
Figure 2010234977
ここで、ピニオン軸イナーシャをJは、ウォームホイールのイナーシャをJT2(kg・m)、ピニオン106aのイナーシャをJT3(kg・m)とすると、J=JT2+JT3である。
また、ラック軸105の変位をx(m)、質量をm(kg)、ピニオン106aの回転半径をr(m)とすると、ラック軸105についての運動方程式は以下に示す式(3)で表される。
Figure 2010234977
ここで、ラック軸105の変位xは、以下の式(4)で表される。
x=r・θ・・・(4)
また、ウォーム減速比をγ、ラック・ピニオンレシオをγ(m/rev)とすると、それぞれ以下の式(5)、(6)で表される。
γ=θ/θ=τ/τ・・・(5)
γ=2・π・r・・・(6)
式(3)、(4)、(6)より、式(7)を導き出せる。
Figure 2010234977
式(1)、(2)、(5)より、式(8)を導き出せる。
Figure 2010234977
式(7)に式(8)を代入して整理すると式(9)を導き出せる。
Figure 2010234977
式(9)をラプラス変換して整理すると式(10)を導き出せる。
Figure 2010234977
なお、sはラプラス変換の演算子である。また、電動モータ110のトルクτのラプラス変換をΤ(s)、ピニオンシャフト106の回転角度をθのラプラス変換をΘ(s)とする。
式(10)により、上述した伝達関数G(s)は式(11)で表される。
Figure 2010234977
また、式(11)により、共振角周波数ωは式(12)で表される。
Figure 2010234977
したがって、共振補償部27の特性を示す伝達関数H(s)を「a・((2πfc1)・(2πfc2))/((s+2πfc1)・(s+2πfc2))」とする。なお、aは、式(13)で表される値である。
Figure 2010234977
そして、伝達関数H(s)の分母の次数を共振補償部27の実現性を確保する最低の次数である2次の次数とし、ローパスフィルタ(LPF)の2段重ねとする。fc1、fc2はLPFのカットオフ周波数である。
図5は、共振補償部27を設ける場合と設けない場合の制御系の周波数特性を比較したボード線図である。
図5は、ステアリングホイール101の操作を入力、ピニオン106aの回転角を出力とする制御系のシミュレーション(数値実験)の結果を示す図であり、(a)はゲイン特性図、(b)は位相特性図である。図5において、共振補償部27を設ける場合を実線で、共振補償部27を設けない場合を破線で示した。なお、伝達関数H(s)の分母は、カットオフ周波数が100(Hz)であるローパスフィルタを2段重ねるのに相当する値にした。
図5(a)に示すように、共振補償部27を設けることにより、共振周波数成分のピークを低減または打ち消すことができる。また、図5(b)に示すように、共振補償部27を設けない場合と比較して位相遅れを大幅に改善することができる。これらにより、共振補償部27を設けることで安定性が向上することがわかる。また、共振補償部27を設けることにより、ゲイン交差周波数を高くすることができるので、応答性も向上させることができる。
なお、これまではピニオン式の電動パワーステアリング装置100について述べたが、コラム式の電動パワーステアリング装置においても、同様に、伝達関数が上記したH(s)となる共振補償部を有することが好適である。
<第2の実施形態>
図6は、第2の実施形態に係る電動パワーステアリング装置200の概略構成を示す図である。
以下では、第1の実施形態との差異点について述べ、同じ構成要素については同一の符号を付してその詳細な説明は省略する。
第2の実施形態に係る電動パワーステアリング装置200(以下、単に「ステアリング装置200」と称する場合もある。)は、いわゆるラックアシストタイプの電動パワーステアリング装置であり、電動モータ201の発生トルクをラック軸105に付与する点に特徴がある。
すなわち、第2の実施形態に係る電動モータ201は、ハウジング(不図示)に組み付けられたステータ(不図示)と、ラック軸105の軸心を回転中心としてハウジングに対して回転可能かつラック軸105の軸方向には移動不能に組み付けられたロータ(不図示)とを有している。ロータは、ボールスクリューナットに弾性体を介して係合されており、ロータは弾性体を介してボールスクリューナットを回転させてラック軸105を軸方向に移動させるアシスト力を発生させる。また、その出力は、第2の実施形態に係る制御装置210によって制御されるようになっている。これにより、制御装置210の制御の下、電動モータ201の発生トルクが、ラック軸105に伝達され、ステアリングホイール101に加える運転者の操舵力がアシストされる。
図7は、第2の実施形態に係る制御装置210の概略構成図である。
制御装置210は、第1の実施形態に係る制御装置10と同様に、トルク信号Tdに基づいて目標補助トルクを算出し、この目標補助トルクを電動モータ201が供給するのに必要となる目標電流を算出する目標電流算出部220と、目標電流算出部220が算出した目標電流に基づいてフィードバック制御などを行う制御部230とを有している。
制御部230は、第1の実施形態に係る制御装置10の制御部30と同じ機能・構成である。目標電流算出部220は、第1の実施形態に係る目標電流算出部20に対して、共振補償部27とは異なる共振補償部271を有する点が異なり、その他は第1の実施形態に係る目標電流算出部20と同じ機能・構成である。
共振補償部271は、第2の実施形態に係るパワーステアリング装置200の、トーションバー(不図示)をバネ要素とし、電動モータ201、ピニオンシャフト106およびラック軸105を慣性要素として含む制御系の共振周波数の近傍でのピークを除去又は抑制するために設けている。それゆえ、共振補償部271の特性を示す伝達関数H(s)は、ステアリング装置200の制御系の特性を示す伝達関数G(s)に対して以下のように定義する。すなわち、H(s)は、G(s)の分母と同じ要素を分子に有するとともに、分母の次数を、共振補償部271の実現性を確保する最低の次数である2次の次数とし、LPFの2段重ねとする。
先ず、伝達関数G(s)について考える。
電動モータ201のトルクをτ(N・m)、回転角度をθ(rad)、ボールスクリューナットのトルクをτ(N・m)、モータ軸イナーシャをJ(kg・m)とすると、電動モータ201についての運動方程式は以下に示す式(14)で表される。
Figure 2010234977
ここで、モータ軸イナーシャJは、モータイナーシャをJ(kg・m)、ボールスクリューナットのイナーシャをJT1(kg・m)とすると、J=J+JT1である。
また、ピニオンシャフト106のトルクをτ(N・m)、回転角度をθ(rad)、ピニオン軸イナーシャをJ(kg・m)、トーションバーのバネ定数をktb(N・m/rad)とすると、ピニオンシャフト106についての運動方程式は以下に示す式(15)で表される。
Figure 2010234977
また、ラック軸105の変位をx(m)、質量をm(kg)、ボールスクリューナットの回転半径をr、ピニオン106aの回転半径をr(m)とすると、ラック軸105についての運動方程式は以下に示す式(16)で表される。
Figure 2010234977
ここで、ラック軸105の変位xは、以下の式(17)あるいは式(18)で表される。
x=r・θ=γ/(2・π)×θ・・・(17)
x=r・θ=γ/(2・π)×θ・・・(18)
なお、γは、ボールスクリューナットが1回転する間のラック軸105の移動距離を示すレシオ(m/rev)であり、γ=2・π・rで表される。また、γは、ピニオンシャフト106が1回転する間のラック軸105の移動距離を示すレシオ(m/rev)であり、γ=2・π・rで表される。
また、式(17)、(18)より、式(19)を導き出せる。
θ=γ/γ×θ・・・(19)
また、式(16)、(17)より、式(20)を導き出せる。
Figure 2010234977
そして、式(14)〜(20)より、式(21)を導き出せる。
Figure 2010234977
式(21)をラプラス変換して整理すると式(22)を導き出せる。
Figure 2010234977
なお、sはラプラス変換の演算子である。また、電動モータ201のトルクτのラプラス変換をΤ(s)、ピニオンシャフト106の回転角度をθのラプラス変換をΘ(s)とする。
式(22)により、上述した伝達関数G(s)は式(23)で表される。
Figure 2010234977
また、式(23)により、共振角周波数ωは式(24)で表される。
Figure 2010234977
したがって、共振補償部271の特性を示す伝達関数H(s)の分母の次数を共振補償部271の実現性を確保する最低の次数である2次の次数とし、LPFの2段重ねとする。すなわち、「H(s)=a・((2πfc1)・(2πfc2))/((s+2πfc1)・(s+2πfc2))」とする。なお、aは、式(25)で表される値である。また、fc1、fc2はLPFのカットオフ周波数である。
Figure 2010234977
そして、伝達関数がH(s)である共振補償部271を設けることにより、本実施形態に係るパワーステアリング装置200においても、共振周波数成分のピークを低減または打ち消すことができる。また、共振補償部271を設けない場合と比較して位相遅れを大幅に改善することができる。これらにより、共振補償部271を設けることで安定性を向上させることができる。また、共振補償部271を設けることにより、ゲイン交差周波数を高くすることができるので、応答性も向上させることができる。
<第3の実施形態>
図8は、第3の実施形態に係る電動パワーステアリング装置300の概略構成を示す図である。
以下では、第1の実施形態との差異点について述べ、同じ構成要素については同一の符号を付してその詳細な説明は省略する。
第3の実施形態に係る電動パワーステアリング装置300(以下、単に「ステアリング装置300」と称する場合もある。)は、いわゆるダブルピニオンタイプの電動パワーステアリング装置であり、電動モータ301の発生トルクを、第2のピニオンシャフト302のピニオン302aを介してラック軸105に付与する点に特徴がある。第2のピニオンシャフト302は、図8に示すように、トーションバーを介してステアリングホイール101と連結されたピニオンシャフト106とは別に設けられた部材である。
このように、第3の実施形態に係るステアリング装置300は、第2のピニオンシャフト302を有しており、第2のピニオンシャフト302に取り付けられたウォームホイール303と、電動モータ301の出力軸に取り付けられたウォームギヤ(不図示)とが連結されている。そして、電動モータ301の出力は、第3の実施形態に係る制御装置310によって制御されるようになっている。これにより、制御装置310の制御の下、電動モータ301の発生トルクが、ラック軸105に伝達され、ステアリングホイール101に加える運転者の操舵力がアシストされる。
図9は、第3の実施形態に係る制御装置310の概略構成図である。
制御装置310は、第1の実施形態に係る制御装置10と同様に、トルク信号Tdに基づいて目標補助トルクを算出し、この目標補助トルクを電動モータ301が供給するのに必要となる目標電流を算出する目標電流算出部320と、目標電流算出部320が算出した目標電流に基づいてフィードバック制御などを行う制御部330とを有している。
制御部330は、第1の実施形態に係る制御装置10の制御部30と同じ機能・構成である。目標電流算出部320は、第1の実施形態に係る目標電流算出部20に対して、共振補償部27とは異なる共振補償部272を有する点が異なり、その他は第1の実施形態に係る目標電流算出部20と同じ機能・構成である。
共振補償部272は、第3の実施形態に係るパワーステアリング装置300の、トーションバー(不図示)をバネ要素とし、電動モータ301、ピニオンシャフト106、第2のピニオンシャフト302およびラック軸105を慣性要素として含む制御系の共振周波数の近傍でのピークを除去又は抑制するために設けている。それゆえ、共振補償部272の特性を示す伝達関数H(s)は、ステアリング装置300の機械的な共振系の特性を示す伝達関数G(s)に対して以下のように定義する。すなわち、H(s)は、G(s)の分母と同じ要素を分子に有するとともに、分母の次数を、共振補償部272の実現性を確保する最低の次数である2次の次数とし、LPFの2段重ねとする。
先ず、伝達関数G(s)について考える。
電動モータ301のトルクをτ(N・m)、回転角度をθ(rad)、ウォームギヤのトルクをτ(N・m)、モータ軸イナーシャをJ(kg・m)とすると、電動モータ301についての運動方程式は以下に示す式(26)で表される。
Figure 2010234977
ここで、モータ軸イナーシャJは、モータイナーシャをJ(kg・m)、ウォームギヤのイナーシャをJT1(kg・m)とすると、J=J+JT1である。
また、第2のピニオンシャフト302の回転角度をθ(rad)、ウォームホイール303のトルクをτ(N・m)、第2のピニオンシャフト302のピニオン302aのトルクをτ(N・m)、ピニオン軸イナーシャをJ(kg・m)とすると、第2のピニオンシャフト302についての運動方程式は以下に示す式(27)で表される。
Figure 2010234977
ここで、ピニオン軸イナーシャをJは、ウォームホイールのイナーシャをJT2(kg・m)、第2のピニオンシャフト302のイナーシャをJT3(kg・m)とすると、J=JT2+JT3である。
また、ピニオンシャフト106の回転角度をθ(rad)、ピニオンシャフト106のピニオン106aのトルクをτ(N・m)、ピニオン軸イナーシャをJ(kg・m)、トーションバーのバネ定数をktb(N・m/rad)とすると、ピニオンシャフト106についての運動方程式は以下に示す式(28)で表される。
Figure 2010234977
また、ラック軸105の変位をx(m)、質量をm(kg)、第2のピニオンシャフト302のピニオン302aの回転半径をr(m)、ピニオンシャフト106のピニオン106aの回転半径をr(m)、とすると、ラック軸105についての運動方程式は以下に示す式(29)で表される。
Figure 2010234977
ここで、ラック軸105の変位xは、以下の式(30)で表される。
x=r・θ=r・θ・・・(30)
また、ウォーム減速比をγ、第2のピニオンシャフト302が1回転する間のラック軸105の移動距離を示すレシオをγ(m/rev)、ピニオンシャフト106が1回転する間のラック軸105の移動距離を示すレシオをγ(m/rev)とすると、それぞれ以下の式(31)、(32)、(33)で表される。
γ=θ/θ=τ/τ・・・(31)
γ=2・π・r・・・(32)
γ=2・π・r・・・(33)
式(26)、(30)、(31)より、式(34)を導き出せる。
Figure 2010234977
また、式(27)、(30)より、式(35)を導き出せる。
Figure 2010234977
ゆえに、式(34)、(35)より、式(36)を導き出せる。
Figure 2010234977
また、式(28)、(29)、(30)より、式(37)を導き出せる。
Figure 2010234977
そして、式(36)、(37)より、式(38)を導き出せる。
Figure 2010234977
式(38)に、式(32)、(33)を代入して得た式をラプラス変換して整理すると式(39)を導き出せる。
Figure 2010234977
なお、sはラプラス変換の演算子である。また、電動モータ301のトルクτのラプラス変換をΤ(s)、ピニオンシャフト106の回転角度をθのラプラス変換をΘ(s)とする。
式(39)により、上述した伝達関数G(s)は式(40)で表される。
Figure 2010234977
また、式(40)により、共振角周波数ωは式(41)で表される。
Figure 2010234977
そして、共振補償部272の特性を示す伝達関数H(s)の分母の次数を共振補償部272の実現性を確保する最低の次数である2次の次数とし、LPFの2段重ねとする。すなわち、「H(s)=a・((2πfc1)・(2πfc2))/((s+2πfc1)・(s+2πfc2))」とする。なお、aは、式(42)で表される値である。また、fc1、fc2はLPFのカットオフ周波数である。
Figure 2010234977
そして、伝達関数がH(s)である共振補償部272を設けることにより、本実施形態に係るパワーステアリング装置300においても、共振周波数成分のピークを低減または打ち消すことができる。また、共振補償部272を設けない場合と比して位相遅れを大幅に改善することができる。これらにより、共振補償部272を設けることで安定性を向上させることができる。また、共振補償部272を設けることにより、ゲイン交差周波数を高くすることができるので、応答性も向上させることができる。
なお、上述した第1〜第3の実施形態における共振補償部27,271,272の伝達関数を、状況に応じて変化する補正係数を用いて補正することが好適である。
すなわち、補正係数をαとして、上述した第1〜第3の実施形態における共振補償部27,271,272の伝達関数H(s)=a・((2πfc1)・(2πfc2))/((s+2πfc1)・(s+2πfc2))、n=1,2,3において、aの中のラプラス変換の演算子「s」を「α×s」と置き換えて、共振補償部27,271,272の伝達関数として用いることが好適である。
例えば、第1の実施形態における共振補償部27の伝達関数H(s)を式(43)に示すように補正する。
Figure 2010234977
図10は、補正係数αと、前輪150の重さの基準値に対する変化量(重くなった場合はプラスの変化量、軽くなった場合はマイナスの変化量とする)との関係を示す図である。例えば、予め経験則に基づいて前輪150の重さの変化量に応じた最適な補正係数αを図10に示すように導き出しておく。そして、共振補償部27,271,272は、予め作成しROMに記憶しておいた、前輪150の重さの変化量と補正係数αとの対応を示すマップ、あるいは前輪150の重さの変化量と補正係数αとの関係式に、前輪150の重さの変化量を代入することにより補正係数αを算出し、伝達関数に用いる。
なお、前輪150の重さが基準値に対して重くなった場合には、ステアリング装置100を車両に搭載した状態での前輪150をも含めた制御系の共振周波数がω(n=1,2,3)よりも低くなり、前輪150の重さが基準値に対して軽くなった場合には共振周波数がωよりも高くなる。それゆえ、図10に示すように、補正係数αは、前輪150の重さが基準値である場合には1であり、重くなるにつれて0.8まで減少し、重さがある重さ以上重い場合には0.8とする。また、前輪150の重さが基準値よりも軽くなるにつれて1.2まで増加し、重さがある重さ以上軽い場合には1.2とすることが好適である。
また、補正係数αを車速に応じて変化させることも好適である。図11は、補正係数αと車速との関係を示す図である。例えば、予め経験則に基づいて車速に応じた最適な補正係数αを図11に示すように導き出しておく。そして、共振補償部27,271,272は、予め作成しROMに記憶しておいた、車速信号vと補正係数αとの対応を示すマップ、あるいは車速信号vと補正係数αとの関係式に、車速信号vを代入することにより補正係数αを算出し、伝達関数に用いる。
なお、車速が大きくなるにつれて共振周波数は低くなると考えられることから、図11に示すように、補正係数αは、車速がゼロのときには1であり、車速が大きくなるにつれて0.8まで減少し、車速がある速度以上である場合には0.8であることが好適である。
また、補正係数αをステアリングホイール101の回転角度(舵角)に応じて変化させることが好適である。図12は、補正係数αと舵角の絶対値との関係を示す図である。例えば、予め経験則に基づいて舵角の絶対値に応じた最適な補正係数αを図12に示すように導き出しておく。そして、共振補償部27,271,272は、予め作成しROMに記憶しておいた、舵角の絶対値と補正係数αとの対応を示すマップ、あるいは舵角の絶対値と補正係数αとの関係式に、検出した舵角を代入することにより補正係数αを算出し、伝達関数に用いる。
なお、舵角の絶対値が大きくなるにつれて共振周波数は低くなると考えられることから、図12に示すように、補正係数αは、舵角の絶対値がゼロのときには1であり、舵角の絶対値が大きくなるにつれて0.8まで減少し、舵角の絶対値がある値以上である場合には0.8であることが好適である。
そして、このように、状況に応じて補正した共振角周波数を、共振補償部27,271,272の伝達関数に用いることでより精度高く安定性を向上させることができるとともに応答性をも向上させることができる。
また、補正係数をβとして、上述した第1〜第3の実施形態における共振補償部27,271,272の伝達関数H(s)、(n=1,2,3)にβを乗じて補正した伝達関数をそれぞれの伝達関数として用いることが好適である。すなわち、Hng(s)=β×H(s)、(n=1,2,3)と補正して用いる。
図13は、補正係数βと、前輪150の重さの基準値に対する変化量(重くなった場合はプラスの変化量、軽くなった場合はマイナスの変化量とする)との関係を示す図である。例えば、予め経験則に基づいて前輪150の重さの変化量に応じた最適な補正係数βを図13に示すように導き出しておく。そして、共振補償部27,271,272は、予め作成しROMに記憶しておいた、前輪150の重さの変化量と補正係数βとの対応を示すマップ、あるいは前輪150の重さの変化量と補正係数βとの関係式に、前輪150の重さの変化量を代入することにより補正係数βを算出し、伝達関数に用いる。
なお、前輪150の重さが基準値に対して重くなった場合には、ステアリング装置100を車両に搭載した状態での振動が大きくなり、前輪150の重さが基準値に対して軽くなった場合には振動が小さくなる。それゆえ、図13に示すように、補正係数βは、前輪150の重さが基準値である場合には1であり、重くなるにつれて1.2まで増加し、重さがある重さ以上重い場合には1.2とする。また、前輪150の重さが基準値よりも軽くなるにつれて0.8まで減少し、重さがある重さ以上軽い場合には0.8とすることが好適である。
また、補正係数βを車速に応じて変化させることも好適である。図14は、補正係数βと車速との関係を示す図である。例えば、予め経験則に基づいて車速に応じた最適な補正係数βを図14に示すように導き出しておく。そして、共振補償部27,271,272は、予め作成しROMに記憶しておいた、車速信号vと補正係数βとの対応を示すマップ、あるいは車速信号vと補正係数βとの関係式に、車速信号vを代入することにより補正係数βを算出し、伝達関数に用いる。
なお、車速が小さいときほど振動を抑制すべきであることから、図14に示すように、補正係数βは、車速がゼロのときには1.2であり、車速が大きくなるにつれて1まで減少し、車速がある速度以上である場合には1であることが好適である。
また、補正係数βをステアリングホイール101の回転角度(舵角)に応じて変化させることが好適である。図15は、補正係数βと舵角の絶対値との関係を示す図である。例えば、予め経験則に基づいて舵角の絶対値に応じた最適な補正係数βを図15に示すように導き出しておく。そして、共振補償部27,271,272は、予め作成しROMに記憶しておいた、舵角の絶対値と補正係数βとの対応を示すマップ、あるいは舵角の絶対値と補正係数βとの関係式に、検出した舵角を代入することにより補正係数βを算出し、伝達関数に用いる。
なお、舵角の絶対値が小さいときほど振動を抑制すべきであることから、図15に示すように、補正係数βは、舵角の絶対値がゼロのときには1.2であり、舵角の絶対値が大きくなるにつれて1まで減少し、舵角の絶対値がある値以上である場合には1であることが好適である。
また、上述した補正係数をα,βを共に用いることも好適である。すなわち、上述した第1〜第3の実施形態における共振補償部27,271,272の伝達関数H(s)=a・((2πfc1)・(2πfc2))/((s+2πfc1)・(s+2πfc2))、n=1,2,3において、aのβを乗じるとともにaの中のラプラス変換の演算子「s」を「α×s」と置き換えて、共振補償部27,271,272の伝達関数として用いることが好適である。
かかる場合も、共振補償部27,271,272は、予め作成しROMに記憶しておいた、前輪150の重さの変化量と補正係数α,βとの対応を示すマップ、あるいは前輪150の重さの変化量と補正係数α,βとの関係式に、前輪150の重さの変化量を代入することにより補正係数α,βを算出し、伝達関数に用いる。なお、補正係数α,βは、それぞれ図10,図13に示す関係であることが好適である。
また、共振補償部27,271,272は、予め作成しROMに記憶しておいた、車速信号vと補正係数α,βとの対応を示すマップ、あるいは車速信号vと補正係数α,βとの関係式に、車速信号vを代入することにより補正係数α,βを算出し、伝達関数に用いる。なお、補正係数α,βは、それぞれ図11,図14に示す関係であることが好適である。
また、共振補償部27,271,272は、予め作成しROMに記憶しておいた、舵角の絶対値と補正係数α,βとの対応を示すマップ、あるいは舵角の絶対値と補正係数α,βとの関係式に、検出した舵角を代入することにより補正係数α,βを算出し、伝達関数に用いる。なお、補正係数α,βは、それぞれ図12,図15に示す関係であることが好適である。
なお、上述した第1,第2,第3の実施形態においては、共振補償部27,271,272は、位相補償部26にて位相補償された後の信号であるトルク信号Tsの共振周波数成分を除去し、共振周波数成分が除去されたトルク信号Tpを出力する構成について説明したが、特にかかる構成に限定されるものではない。
例えば、共振補償部27,271,272は、トルクセンサ109からの出力値であるトルク信号Tdの共振周波数成分を除去してトルク信号Tpを出力し、位相補償部26は、共振周波数成分が除去されたトルク信号Tpに対して位相補償のためのフィルタリング処理を施し、トルク信号Tsを出力してもよい。かかる場合、ベース電流算出部21は、位相補償部26からの出力値であるトルク信号Tsと、車速センサ170からの車速信号vとに基づいてベース電流を算出するようにする。
10,210,310…制御装置、20,220,320…目標電流算出部、26…位相補償部、27,271,272…共振補償部、30,230,330…制御部、33…モータ電流検出部、40…フィードバック制御部、100,200,300…電動パワーステアリング装置、101…ステアリングホイール、102…ステアリングシャフト、109…トルクセンサ、110,201,301…電動モータ

Claims (6)

  1. ステアリングホイールに連結される第1の回転軸と、
    直線移動によって転舵輪を転舵させるラック軸と、
    前記ラック軸を直線移動させる第2の回転軸と、
    前記第1の回転軸と前記第2の回転軸とを連結し、前記ステアリングホイールの操作によって捩れるトーションバーと、
    前記ステアリングホイールの操作に対するアシスト力を付与する電動モータと、
    前記ステアリングホイールの操舵トルクを検出する操舵トルク検出手段と、
    前記操舵トルク検出手段が検出した操舵トルクに基づいて前記電動モータに供給する目標電流を設定する目標電流設定手段と、
    を備えた電動パワーステアリング装置において、
    前記目標電流設定手段は、
    前記トーションバーをバネ要素として、前記電動モータ、前記第2の回転軸および前記ラック軸を慣性要素として含む制御系の共振周波数成分を抑制する共振補償手段を前記操舵トルク検出手段の出力側に有し、
    前記共振補償手段にて共振周波数成分が抑制された操舵トルクに応じて前記目標電流を設定することを特徴とする電動パワーステアリング装置。
  2. 前記共振補償手段は、前記制御系の反共振要素を持つフィルタ機能とローパスフィルタ機能とを有することを特徴とする請求項1に記載の電動パワーステアリング装置。
  3. 前記共振補償手段の伝達関数は、前記制御系の伝達関数の分母の要素と同じ要素を分子に含むことを特徴とする請求項1又は2に記載の電動パワーステアリング装置。
  4. 前記共振補償手段の伝達関数の分母は、分子の次数と同等以上の次数を有することを特徴とする請求項3に記載の電動パワーステアリング装置。
  5. ステアリングホイールに連結される第1の回転軸と、
    直線移動によって転舵輪を転舵させるラック軸と、
    前記ラック軸を直線移動させる第2の回転軸と、
    前記第1の回転軸と前記第2の回転軸とを連結し、前記ステアリングホイールの操作によって捩れるトーションバーと、
    前記ステアリングホイールの操作に対するアシスト力を付与する電動モータと、
    を備えた電動パワーステアリング装置の制御方法であって、
    前記ステアリングホイールの操舵トルクを検出し、
    検出した操舵トルクにおける、前記トーションバーをバネ要素として、前記電動モータ、前記第2の回転軸および前記ラック軸を慣性要素として含む制御系の共振周波数成分を抑制し、
    共振周波数成分が抑制された操舵トルクに応じて前記電動モータに供給する目標電流を設定することを特徴とする電動パワーステアリング装置の制御方法。
  6. 前記制御系の共振周波数成分を抑制する際には、当該制御系の反共振要素を持つフィルタ機能とローパスフィルタ機能とを用いることを特徴とする請求項5に記載の電動パワーステアリング装置の制御方法。
JP2009085705A 2009-02-23 2009-03-31 電動パワーステアリング装置およびその制御方法 Expired - Fee Related JP5265436B2 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2009085705A JP5265436B2 (ja) 2009-03-31 2009-03-31 電動パワーステアリング装置およびその制御方法
EP09170991A EP2221235B1 (en) 2009-02-23 2009-09-22 Electric power steering apparatus, control method thereof and program
AT09170991T ATE535431T1 (de) 2009-02-23 2009-09-22 Elektrische servolenkvorrichtung, steuerungsverfahren dafür und programm
EP11185402A EP2409898B1 (en) 2009-02-23 2009-09-22 Electric power steering apparatus
EP11185401.4A EP2409897B1 (en) 2009-02-23 2009-09-22 Electric Power Steering Apparatus and Control Method thereof
US12/565,271 US8260500B2 (en) 2009-02-23 2009-09-23 Electric power steering apparatus, control method thereof and computer readable medium
US13/561,246 US20120290176A1 (en) 2009-02-23 2012-07-30 Electric power steering apparatus, control method thereof and computer readable medium
US13/561,239 US8818636B2 (en) 2009-02-23 2012-07-30 Electric power steering apparatus, control method thereof and computer readable medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009085705A JP5265436B2 (ja) 2009-03-31 2009-03-31 電動パワーステアリング装置およびその制御方法

Publications (2)

Publication Number Publication Date
JP2010234977A true JP2010234977A (ja) 2010-10-21
JP5265436B2 JP5265436B2 (ja) 2013-08-14

Family

ID=43089733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009085705A Expired - Fee Related JP5265436B2 (ja) 2009-02-23 2009-03-31 電動パワーステアリング装置およびその制御方法

Country Status (1)

Country Link
JP (1) JP5265436B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013052792A (ja) * 2011-09-05 2013-03-21 Denso Corp 電動パワーステアリング制御装置
WO2016038736A1 (ja) * 2014-09-12 2016-03-17 三菱電機株式会社 操舵制御装置
JP2016088434A (ja) * 2014-11-10 2016-05-23 株式会社デンソー モータ制御装置
JP2016088435A (ja) * 2014-11-10 2016-05-23 株式会社デンソー モータ制御装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06183355A (ja) * 1992-12-16 1994-07-05 Omron Corp 電動式パワーステアリング装置
JPH08290778A (ja) * 1995-04-21 1996-11-05 Nippon Seiko Kk 電動パワ−ステアリング装置の制御装置
JP2002059860A (ja) * 2000-06-07 2002-02-26 Mitsubishi Electric Corp 電動パワーステアリング装置
JP2007176457A (ja) * 2005-12-28 2007-07-12 Jtekt Corp 車両制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06183355A (ja) * 1992-12-16 1994-07-05 Omron Corp 電動式パワーステアリング装置
JPH08290778A (ja) * 1995-04-21 1996-11-05 Nippon Seiko Kk 電動パワ−ステアリング装置の制御装置
JP2002059860A (ja) * 2000-06-07 2002-02-26 Mitsubishi Electric Corp 電動パワーステアリング装置
JP2007176457A (ja) * 2005-12-28 2007-07-12 Jtekt Corp 車両制御装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013052792A (ja) * 2011-09-05 2013-03-21 Denso Corp 電動パワーステアリング制御装置
WO2016038736A1 (ja) * 2014-09-12 2016-03-17 三菱電機株式会社 操舵制御装置
JPWO2016038736A1 (ja) * 2014-09-12 2017-04-27 三菱電機株式会社 操舵制御装置
US10000235B2 (en) 2014-09-12 2018-06-19 Mitsubishi Electric Corporation Steering control device
JP2016088434A (ja) * 2014-11-10 2016-05-23 株式会社デンソー モータ制御装置
JP2016088435A (ja) * 2014-11-10 2016-05-23 株式会社デンソー モータ制御装置

Also Published As

Publication number Publication date
JP5265436B2 (ja) 2013-08-14

Similar Documents

Publication Publication Date Title
JP5862808B2 (ja) 電動パワーステアリング装置
EP2409898B1 (en) Electric power steering apparatus
US9610973B2 (en) Motor-driven power steering apparatus
JP5003228B2 (ja) 電動パワーステアリング装置
JP6252027B2 (ja) ステアリング制御装置
JP6299087B2 (ja) ステアリング制御装置
JP5265436B2 (ja) 電動パワーステアリング装置およびその制御方法
JP6326171B1 (ja) 操舵制御装置、電動パワーステアリング装置
JP6222895B2 (ja) 電動パワーステアリング装置
JP2009214711A (ja) 電動パワーステアリング装置
JP5265410B2 (ja) 電動パワーステアリング装置とその制御方法およびプログラム
JP6252059B2 (ja) ステアリング制御装置
JP2017043114A (ja) 電動パワーステアリング装置
JP2009166715A (ja) 電動パワーステアリング装置
JP5265413B2 (ja) 電動パワーステアリング装置
JP6291310B2 (ja) 電動パワーステアリング装置、プログラム
JP6059051B2 (ja) 電動パワーステアリング装置およびプログラム
JP6059063B2 (ja) 電動パワーステアリング装置
JP5323531B2 (ja) 電動パワーステアリング装置とその制御方法およびプログラム
JP2007118785A (ja) 車両の操舵アシスト装置
JP2005170283A (ja) 電動パワーステアリング装置
JP2014189096A (ja) 電動パワーステアリング装置
JP6011458B2 (ja) ステアリング制御装置
JP6031878B2 (ja) 電動パワーステアリング制御装置
JP2013226935A (ja) 電動パワーステアリング装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120125

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130328

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130501

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5265436

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees