JP2010206565A - 固体撮像装置、固体撮像装置の駆動方法および電子機器 - Google Patents

固体撮像装置、固体撮像装置の駆動方法および電子機器 Download PDF

Info

Publication number
JP2010206565A
JP2010206565A JP2009050129A JP2009050129A JP2010206565A JP 2010206565 A JP2010206565 A JP 2010206565A JP 2009050129 A JP2009050129 A JP 2009050129A JP 2009050129 A JP2009050129 A JP 2009050129A JP 2010206565 A JP2010206565 A JP 2010206565A
Authority
JP
Japan
Prior art keywords
unit
charge
light receiving
receiving sensor
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009050129A
Other languages
English (en)
Inventor
Koichi Harada
耕一 原田
Yusuke Kikuchi
裕介 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2009050129A priority Critical patent/JP2010206565A/ja
Publication of JP2010206565A publication Critical patent/JP2010206565A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

【課題】電荷転送部に読み出された電荷の一部を基板側へ掃き捨てる技術を動画でも使用可能にする。
【解決手段】垂直転送部14にドレイン部43を形成し、好ましくはドレイン部43の下方に分離層44を形成し、ドレイン部43をオーバーフロードレインとする縦型オーバーフロードレイン構造の電荷排出構造を垂直転送部14に設ける。そして、縦型オーバーフロードレイン構造の電荷排出構造において、ドレイン部43に対して選択的に電荷排出パルスφNSUBを印加することで、垂直転送部14内の電荷の一部をドレイン部43に掃き出し、当該ドレイン部43を通して排出する。
【選択図】図4

Description

本発明は、固体撮像装置、固体撮像装置の駆動方法および電子機器に関する。
固体撮像装置において、高輝度レベルの光が受光センサ部に入射する高輝度時に受光センサ部で発生する余剰電荷や、電荷転送部で発生する余剰電荷が受光センサ部から溢れて他の画素へ漏れ込むとノイズとなってしまう。この余剰電荷の他の画素への漏込みを回避するために、電荷転送部の取扱電荷量Qvは受光センサ部の取扱電荷量Qsよりも多く、例えば1.5倍〜2倍程度に設定されている。
近年、セルサイズ(画素サイズ)の微細化が進められている。そして、セルサイズの微細化に伴って電荷転送部の領域(幅)が狭くならざるを得ない。電荷転送部の領域が狭くなると、当然のことながら、電荷転送部の取扱電荷量Qvが減少する。その結果、高輝度時に電荷転送部で発生する余剰電荷が他の画素へ漏れ込んでノイズとなってしまう。
そのため、従来は、高輝度レベルの光が受光センサ部に入射したときに、受光センサ部から電荷転送部へ読み出された信号電荷の一部を基板側に掃き捨てるようにしている(例えば、特許文献1参照)。より具体的には、電子シャッタ動作を行う第1のシャッタパルスよりも電圧値が低い第2のシャッタパルスを、受光センサ部からの信号電荷の読出しタイミングと同時もしくはそれよりも前に基板に印加することで、不要電荷の基板側への掃き捨てを実現している。
特開2007−142696号公報
しかしながら、上記従来技術は、基板をバイアスする電圧値と、電子シャッタ動作を行う電圧値との間の第3の電圧値を、不要電荷の掃き捨てに使う基板の3値駆動となっているために、静止画では有効であるものの、動画での使用は現実的ではない。すなわち、静止画の場合には、必要な露光時間が終了し、メカニカルシャッタが閉じた後に、第3の電圧値を基板に印加することで、不要電荷を基板側へ掃き捨てる動作となる。
これに対して、動画の場合、メカニカルシャッタを使わずに、常に露光している状態において、電子シャッタ動作によって受光センサ部内の電荷を基板側に掃き捨てることによって露光時間を制御している。したがって、受光センサ部から信号電荷を読み出す前に第3の電圧値を基板に印加すると、本来必要な信号電荷の一部を基板側に掃き捨てることになり、信号電荷が減ってしまうために動画での使用は現実的ではない。
そこで、本発明は、電荷転送部に読み出された電荷の一部を基板側へ掃き捨てる技術を動画でも使用可能とした固体撮像装置、当該固体撮像装置の駆動方法および当該固体撮像装置を有する電子機器を提供することを目的とする。
上記目的を達成するために、本発明は、
行列状に配列されて光電変換を行う受光センサ部と、当該受光センサ部に蓄積された電荷を読み出す読出しゲート部と、当該読出しゲート部によって読み出された電荷を転送する電荷転送部とが半導体基板上に形成されてなる固体撮像装置において、
前記電荷転送部に前記半導体基板および前記受光センサ部とは電気的に分離された電荷排出部を設け、当該電荷排出部に対して前記半導体基板に印加する電圧とは別の電圧を選択的に印加することによって前記電荷転送部内の電荷を前記電荷排出部に掃き出し、当該電荷排出部を通して排出する
構成を採っている。
上記構成の固体撮像装置において、電荷転送部に設けられた電荷排出部に対して電圧を印加して電荷の掃き捨て動作を行うことで、受光センサ部内の蓄積電荷を確保しつつ、受光センサ部から電荷転送部に読み出された電荷の一部だけを掃き捨てることができる。これにより、半導体基板に電圧を印加することによって行う電荷排出構造の場合には現実的でなかった動画での電荷の掃き捨て動作の使用が可能になる。
本発明によれば、受光センサ部内の蓄積電荷を確保しつつ、受光センサ部から電荷転送部に読み出された電荷の一部だけを掃き捨てることができるために、当該電荷の掃き捨て動作を静止画のみならず、動画のときにも行いことができることになる。
本発明が適用されるインターライン転送方式のCCDイメージセンサの一例を示す概略構成図である。 4相の垂直転送パルスφV1〜φV4および読出しパルスφROPのタイミング関係を示すタイミング波形図である。 読出しパルスφROPとシャッタパルスφSUBのタイミング関係を示すタイミング波形図である。 実施例1に係る電荷排出構造を示す断面図であり、図1のA−A´線に沿った受光センサ部周辺の基板深さ方向の断面構造を示している。 ドレイン部に対して電荷排出パルスφNSUBを印加するドレイン配線の配線構造の一例を示す概略平面図である。 電荷排出パルスφNSUBの波形の一例を示す波形図である。 読出しパルスφROPに対する電荷排出パルスφNSUBのタイミング関係の一例を示すタイミング波形図である。 実施例1に係る電荷排出構造の基板深さ方向におけるポテンシャル分布を示すポテンシャル図である。 読出しパルスφROPに対する電荷排出パルスφNSUBのタイミング関係の他の例を示すタイミング波形図である。 実施例2に係る電荷排出構造を示す断面図であり、図1のA−A´線に沿った受光センサ部周辺の基板深さ方向の断面構造を示している。 ドレイン部に対して電荷排出パルスφNSUBを印加するドレイン配線の配線構造の変形例を示す概略平面図である。 本発明による電子機器の一例である撮像装置の構成例を示すブロック図である。
以下、発明を実施するための形態(以下、「実施形態」と記述する)について図面を用いて詳細に説明する。なお、説明は以下の順序で行う。

1.本発明が適用される固体撮像装置(CCDイメージセンサの例)
2.本実施形態の特徴部分
2−1.実施例1
2−2.実施例2
3.変形例
4.電子機器(撮像装置の例)
<1.本発明が適用される固体撮像装置>
図1は、本発明が適用される固体撮像装置、例えば電荷転送型固体撮像装置の一種であるCCDイメージセンサの一例を示す概略構成図である。ここでは、インターライン転送方式のCCDイメージセンサを例に挙げて説明する。ただし、本発明はこの適用例に限られるものではない。
図1において、撮像部11は、複数の受光センサ部(画素)12、読出しゲート部13および垂直転送部14を有する構成となっている。複数の受光センサ部12は、行列状に2次元配置されている。読出しゲート部13は、複数の受光センサ部12の各々に隣接して設けられている。垂直転送部14はCCD(Charge Coupled Device)によって構成され、行列状の画素配列に対して画素列ごとに設けられている。
この撮像部11において、1つの受光センサ部12、当該受光センサ部12に隣接した読出しゲート部13および1つの受光センサ部12に対応した垂直転送部14のパケットからなる1単位が単位セル15となる。ここで、垂直転送部14のパケットとは、垂直転送部14において1画素分の信号電荷を扱う単位を言う。そして、このパケットが連続して連なることで垂直転送部14の転送チャネルが形成される。
受光センサ部12は、例えばPN接合のフォトダイオードからなり、入射光をその輝度レベルに応じた電荷量の信号電荷に光電変換して蓄積する。読出しゲート部13は、読出しパルスφROPが印加されることにより、受光センサ部12に蓄積された信号電荷を垂直転送部14へ読み出す。
垂直転送部14は、例えば4相の垂直転送パルスφV1〜φV4によって駆動され、読出しゲート部13によって受光センサ部12から読み出された信号電荷を、水平ブランキング期間の一部にて1走査線(1ライン)に相当する部分ずつ順に垂直方向に転送する。ここで、垂直転送部14において、パケットが連なってなる転送チャネルの上方には、4相の垂直転送パルスφV1〜φV4に対応した4つの転送電極が転送方向に沿って繰り返して配置されている。
そして、例えば1相目と3相目に対応する各転送電極が、読出しゲート部13のゲート電極を兼ねている。このことから、4相の垂直転送パルスφV1〜φV4のうち、1相目と3相目の垂直転送パルスφV1,φV3が低レベル、中間レベルおよび高レベルの3値をとり、その3値目の高レベルのパルスが読出しゲート部13に印加される読出しパルスφROPとなる。
すなわち、1相目と3相目の垂直転送パルスφV1,φV3の3値目の読出しパルスφROPが1相目と3相目に対応する転送電極(読出しゲート部13のゲート電極)に印加されることで、受光センサ部12に蓄積された電荷が垂直転送部14に読み出される。2相目と4相目の垂直転送パルスφV2,φV3は、低レベルと中間レベルの2値をとる。そして、4相の垂直転送パルスφV1〜φV4が低レベルと中間レベルとの間で周期的に遷移することで垂直転送部14の転送駆動が行われ、受光センサ部12から読み出された信号電荷が当該垂直転送部14によって垂直転送される。
垂直転送部14の一方の端部側には、CCDからなる水平転送部16が配されている。この水平転送部16には、複数本の垂直転送部14から1ラインに相当する信号電荷が順にシフト(転送)される。水平転送部16は、例えば2相の水平転送パルスφH1,φH2によって転送駆動され、複数本の垂直転送部14からシフトされる1ライン分の信号電荷を、水平ブランキング期間後の水平走査期間において順次水平方向に転送する。
水平転送部16の転送先側の端部には、例えばフローティング・ディフュージョン・アンプ構成の電荷電圧変換部17が設けられている。この電荷電圧変換部17は、水平転送部16によって水平転送される信号電荷を順次信号電圧に変換して出力する。この信号電圧は、被写体を経て撮像部11に入射し、受光センサ部12でその輝度レベルに応じて光電変換されて得られる撮像信号OUTとして出力される。
上述した受光センサ部12、読出しゲート部13、垂直転送部14、水平転送部16および電荷電圧変換部17等の構成要素は、半導体基板18上に形成されている。半導体基板18は、基板バイアス電圧Vsubによってバイアスされている。以上により、インターライン転送方式のCCDイメージセンサ10が構成される。
このCCDイメージセンサ10の駆動制御は、タイミング制御回路21によるタイミング制御によって行われる。タイミング制御回路21は、垂直同期信号VD、水平同期信号HDおよびマスタークロックMCKを基に、CCD駆動回路22およびシャッタ駆動回路23を制御する。このタイミング制御回路21による制御の下に、受光センサ部12での信号電荷の蓄積期間(露光期間)の制御、受光センサ部12から垂直転送部14への信号電荷の読出し、垂直転送部14での垂直転送、水平転送部16での水平転送などの各種動作が行なわれる。
具体的には、タイミング制御回路21は、フィールド読出しを行うために、2つのフィールドで1コマ(フレーム)の映像が得られるようにCCD駆動回路22の駆動制御を行う。このタイミング制御回路21によるタイミング制御の下に、CCD駆動回路22は、4相の垂直転送パルスφV1〜φV4(1相目と3相目の垂直転送パルスφV1,φV3は読出しパルスφROPを含む)および2相の水平転送パルスφH1,φH2によって垂直転送部14および水平転送部16を駆動する。
シャッタ駆動回路22は、タイミング制御回路21によるタイミング制御の下に、シャッタパルスφSUBを半導体基板18に所定のタイミングで印加することにより、受光センサ部12に蓄積された信号電荷を半導体基板18側に掃き捨てる電子シャッタ動作を行う。
タイミング制御回路21およびシャッタ駆動回路23の駆動制御による電子シャッタ動作により、受光センサ部12に信号電荷を蓄積する蓄積期間、即ち露光期間の制御が行われる。このとき、シャッタパルスφSUBは、半導体基板18をバイアスする基板バイアス電圧Vsubに重畳される形で印加される。
図2に、4相の垂直転送パルスφV1〜φV4および読出しパルスφROPのタイミング関係を示す。ここでは、一例として、垂直転送パルスφV1〜φV4の低レベルを−8.5V、高レベル(中間レベル)を0V、読出しパルスφROPの電圧値(高レベル)を15Vとした場合を例に挙げている。
図2から明らかなように、各フィールドの垂直ブランキング期間(V−Blk)に読出しパルスφROPがアクティブ(高レベル)になる。これにより、読出しゲート部13による受光センサ部12から垂直転送部14への信号電荷の読出しが行われる。また、水平ブランキング期間(H−Blk)に4相の垂直転送パルスφV1〜φV4が低レベル(−8.5V)と中間レベル(0V)との間で周期的に遷移する。これにより、垂直転送部14が信号電荷を垂直転送する。
図3に、読出しパルスφROPとシャッタパルスφSUBのタイミング関係を示す。電子シャッタ動作を行わない場合は、受光センサ部12に蓄積される信号電荷は1フィールド期間の間増加していく。
電子シャッタ動作を行う場合は、図3に示すように、1フィールドのある適当なタイミングでシャッタパルスφSUBをアクティブ(高レベル)にし、それまでに受光センサ部12に蓄積された信号電荷を一旦半導体基板18側に掃き捨てる。そして、半導体基板18側に掃き捨てた後再度そのフィールドの終わりまで光電変換した信号電荷を蓄積し、読出しパルスφROPをアクティブにすることによって垂直転送部14へ読み出す。したがって、この有効となる光電変換の期間(露光期間)が電子シャッタのシャッタスピードになる。
<2.本実施形態の特徴部分>
上記構成のCCDイメージセンサ10において、本実施形態では、高輝度レベルの光が受光センサ部12に入射したときに、受光センサ部12から垂直転送部14へ読み出された信号電荷の一部を基板側に掃き捨てるための電荷排出構造を特徴としている。
具体的には、電荷排出構造として、垂直転送部14に半導体基板18および受光センサ部12とは電気的に分離された電荷排出部を設ける。そして、当該電荷排出部に対して半導体基板18に印加する電圧とは別の電圧を選択的に印加することによって垂直転送部14内の電荷を電荷排出部に掃き出し、当該電荷排出部を通して排出するようにする。
このような電荷排出構造にて電荷の掃き捨て動作を行うことで、受光センサ部12内の蓄積電荷を確保しつつ、受光センサ部12から垂直転送部14に読み出された電荷の一部だけを掃き捨てることができる。これにより、半導体基板に電圧を印加することによって行う電荷排出構造の場合には現実的でなかった動画での電荷の掃き捨て動作の使用が可能になる。すなわち、垂直転送部14に読み出された電荷の一部を掃き捨てるための動作を、静止画のみならず、動画のときにも行うことができることになる。
以下に、本実施形態に係る電荷排出構造の具体的な実施例について説明する。この電荷排出構造は、上述したように、垂直転送部14に受光センサ部12とは電気的に分離された電荷排出部であるドレイン部を設けた縦型オーバーフロードレイン構造となる。
(2−1.実施例1)
図4は、実施例1に係る電荷排出構造を示す断面図である。この断面図は、図1のA−A´線に沿った受光センサ部12周辺の基板深さ方向の断面構造を示している。
図4において、第1導電型、例えばN型の半導体基板30(図1の半導体基板18に相当する)上に第2導電型であるP型のウェル領域31が形成されている。そして、ウェル領域31の上にN+ の電荷蓄積領域32が形成され、その上にさらにP++の正孔蓄積領域33が形成されることにより、いわゆるHAD(Hole Accumulated Diode;正孔蓄積ダイオード)構造の受光センサ部12が構成されている。
この受光センサ部12に蓄積される信号電荷eの電荷量は、P型のウェル領域31で形成されるオーバーフローバリアOFBの高さ(ポテンシャル)によって決定される。このオーバーフローバリアOFBは、受光センサ部12の取扱電荷量(飽和電荷量)Qsを決める。そして、飽和信号電荷量Qsを超えた信号電荷は、オーバーフローバリアOFBを超えて半導体基板30側へオーバーフローする。これが、半導体基板30をオーバーフロードレインとする、受光センサ部12の縦型オーバーフロードレイン構造である。
受光センサ部12の横方向には、読出しゲート部13のチャネル領域34を介してN+ の電荷転送領域35およびチャネルストップ領域36が形成されている。電荷転送領域35の下には、スミア成分の混入を防止するためのP+ の不純物拡散領域37が形成されている。さらに、電荷転送領域35の上方には、ゲート酸化膜38を介して例えば多結晶シリコンからなる転送電極39が配されることによって垂直転送部14が構成されている。転送電極39は、チャネル領域34の上方に位置する部分が、読出しゲート部13のゲート電極を兼ねている。
垂直転送部14の上方には、層間膜40を介してAl(アルミニウム)遮光膜41が転送電極39を覆うようにして形成されている。このAl遮光膜41は、受光センサ部12において選択的にエッチングされており、外部からの光はこのエッチングによって形成された開口42を介して受光センサ部12内に入射する。そして、半導体基板30には、受光センサ部12に蓄積される信号電荷の電荷量を決定する、即ちオーバーフローバリアOFBのポテンシャルを決める基板バイアス電圧Vsubが印加される。
垂直転送部14、具体的には不純物拡散領域37の下方には、電荷排出部であるN型のドレイン部43が半導体基板18および受光センサ部12とは電気的に分離されて垂直転送部14の転送方向に沿って形成されている。このドレイン部43は、例えば1.00E+16〜1.00E+18[atoms/cm3 ]程度の不純物濃度でのイオン注入によって形成される。
ドレイン部43の下方には、当該ドレイン43の半導体基板18に対する電気的分離をより確実にするためのP++の分離層44がドレイン部43に沿って形成されている。この分離層44は、例えば2.00E+16〜2.00E+18[atoms/cm3 ]程度の不純物濃度でのイオン注入によって形成される。分離層44の下方にはさらに、混色防止バリアとして機能するP型の領域45が形成される。
このように、垂直転送部14、具体的には不純物拡散領域37の下方にドレイン部43を形成し、好ましくはドレイン部43の下方に分離層44を形成した構造が、実施例1に係る電荷排出構造となる。この電荷排出構造は、ドレイン部43をオーバーフロードレインとする、受光センサ部12の縦型オーバーフロードレイン構造とは独立した垂直転送部14の縦型オーバーフロードレイン構造である。
図5は、実施例1に係る電荷排出構造を有するCCDイメージセンサ10Aを示す概略平面図であり、図中、図1と同等部分には同一符号を付して示している。
図5に示すように、垂直転送部14に設けられるドレイン部43は、垂直転送部14ごとにその転送方向に沿って撮像部11の領域の外まで延在した形で形成されている。撮像部11の領域外には、垂直転送部14の配列方向(水平方向)に沿ってドレイン配線51が設けられている。このドレイン配線51は、撮像部11上の垂直転送部14についての配線層と同じ層にタングステン(W)やアルミニウム(Al)等の金属によって形成されている。
ドレイン配線51には、半導体基板18の外部から、当該基板18に印加されるバイアス電圧Vsubとは異なる電圧の電荷排出パルスφNSUBが、例えば図1に示すCCD駆動回路22から選択的に与えられる。そして、このドレイン配線51に対して、垂直転送部14ごとに形成されたドレイン部43の各々が各一端にてコンタクト部52を介して電気的に接続されている。これにより、ドレイン部43の各々には、ドレイン配線51を通して電荷排出パルスφNSUBが選択的に印加される。
図6に、電荷排出パルスφNSUBの波形の一例を示す。本例では、電荷排出パルスφNSUBの高レベルVHは、垂直転送部14内の電荷の一部を基板方向に掃き捨て可能な電圧、例えば0V〜25V程度に設定されている。また、電荷排出パルスφNSUBの低レベルVLは、垂直転送部14がオーバーフローしない程度の電圧、例えば−10V〜5V程度に設定されている。因みに、本例では、垂直転送パルスφV1〜φV4の低レベルを−8.5V、高レベル(中間レベル)を0V、読出しパルスφROPの電圧値を15Vとしている。
電荷排出パルスφNSUBのパルス幅、即ち電荷排出電圧φNSUBの印加時間は、1ビット〜400ビット程度に設定される。ここで言うビット(bit)とは、水平転送部16の駆動周波数(水平駆動周波数)に対して割り当てられる時間の単位のことである。具体的には、水平転送部16の駆動周波数をfHとすると、1ビットは1/fHとなる。因みに、読出しパルスφROPのパルス幅は、100ビット〜200ビット程度に設定されている。
図7は、読出しパルスφROPに対する電荷排出パルスφNSUBのタイミング関係の一例を示すタイミング波形図である。
本例の場合には、電荷排出パルスφNSUBは、読出しパルスφROPが低レベルから高レベルに遷移する前にアクティブ(高レベル)状態になり、読出しパルスφROPが再び低レベルに遷移した後に非アクティブ(低レベル)状態になる。すなわち、電荷排出パルスφNSUBは、受光センサ部12から垂直転送部14に電荷が読み出される前にアクティブ状態になり、その読出しが完了した後に非アクティブ状態になる。
上述したように、垂直転送部14にドレイン部43を形成し、好ましくはドレイン部43の下方に分離層44を形成し、ドレイン部43をオーバーフロードレインとする縦型オーバーフロードレイン構造としたことで、次のような作用効果を得ることができる。すなわち、ドレイン部43に対して選択的に電荷排出パルスφNSUBを印加することで、垂直転送部14内の電荷をドレイン部43に掃き出し、当該ドレイン部43を通して排出することができる。
この電荷掃き捨て動作では、半導体基板18に印加する電圧とは異なる電圧の電荷排出パルスφNSUBが用いられるので、受光センサ部12側の縦型オーバーフロードレイン構造に対して何ら影響が及ぶことはない。したがって、受光センサ部12内の蓄積電荷を確保しつつ、受光センサ部12から垂直転送部14に読み出された電荷の一部だけを掃き捨てることができる。
その結果、従来技術の説明で述べた半導体基板18に対して3値目の電圧を印加することによって行う電荷排出構造の場合には現実的でなかった動画での電荷の掃き捨て動作の使用が可能になる。すなわち、垂直転送部14に縦型オーバーフロードレイン構造を形成し、半導体基板18に印加する電圧とは異なる電圧の電荷排出パルスφNSUBを用いることで、垂直転送部14内の電荷の一部を掃き捨てるための動作を、動画のときにも行うことができる。
このように、垂直転送部14内の電荷の掃き捨て動作を動画時にも行えることで、垂直転送部14内の電荷が他の画素へ漏れ込むことがなくなるために、垂直転送部14内の電荷の漏れ込みに起因するノイズを低減できる。したがって、静止画撮像時と同様に、動画撮像時の撮像画像の画質を向上できる。
また、垂直転送部14内の電荷の一部の選択的な掃き捨てが可能であることで、垂直転送部14に電荷排出構造を形成しない場合に比べて垂直転送部14の取扱電荷量Qvを少なく設定できる。これにより、周知のフィールド読出しにおけるフィールド数を低減できるために、フレームレートを向上できる。
すなわち、フィールド読出しにおけるフィールド数と1つの画素(受光センサ部12)に対する垂直転送部14のパケット数との間に対応関係にある。具体的には、例えば4フィールド読出しの場合を例に挙げると、4画素分のパケットを使って1つの画素の信号電荷を読み出して1フィールド分の情報とする読出し駆動が行われる。5フィールド読出しの場合には、5画素分のパケットを使うことになる。
このような多フィールド読出しを行うことで、垂直転送部14の取扱電荷量Qvを受光センサ部12の取扱電荷量Qsの例えば1.5倍〜2倍程度に設定するようにしている。このとき、垂直転送部14の取扱電荷量Qvを少なく設定できるということは、1つの画素の信号電荷を読み出す際に使用するパケット数を削減できるということである。
したがって、垂直転送部14の取扱電荷量Qvを少なく設定できることで、フィールド読出しにおけるフィールド数を低減できるために、フレームレートを向上できることになる。また、フレームレートを向上できることで、垂直転送部14や水平転送部16における電荷転送の時間を短縮できるために、その短縮できる分だけ垂直転送部14や水平転送部16における暗電流を改善できることにもなる。
また、垂直転送部14の取扱電荷量Qvを少なく設定できることで、垂直転送部14の転送チャネルの幅を狭くできるために、単位セル15のサイズを一定とした場合、チャネル幅を狭くできる分だけ受光センサ部12のサイズを拡大できる。これにより、受光センサ部12への入射光量を増やすことができるために感度を向上できるとともに、スミアを改善できる。
図8は、実施例1に係る電荷排出構造の基板深さ方向におけるポテンシャル分布を示すポテンシャル図である。図8において、実線(A)が実施例1に係る電荷排出構造の場合のポテンシャル分布を、点線(B)が垂直転送部14に電荷排出構造を形成しない従来構造の場合のポテンシャル分布をそれぞれ示している。
実施例1に係る電荷排出構造では、ドレイン部43の下方に当該ドレイン部43の導電型と逆導電型(本例では、P型)の分離層44を設けた構成を採っている。そして、分離層44を設けることで、図8のポテンシャル図から明らかなように、ドレイン部43の下のポテンシャルを0V以下(負のポテンシャル)にしている。
このように、ドレイン部43の下のポテンシャルを0V以下に設定することで、電子シャッタ動作時に例えば25V程度の高いシャッタパルスφSUBが基板18に印加されても、垂直転送部14のポテンシャルが影響を受けることはない。したがって、電子シャッタ動作時に垂直転送部14内の電荷が掃き捨てられるのを確実に防止できる。しかも、垂直転送部14の裏を空乏化可能となるために、転送電極39に印加される電圧に対するゲインを上げることができる、即ち転送電極39に印加される電圧に対するポテンシャルの追従性を高くできる。
また、実施例1に係る電荷排出構造では、図7のタイミング波形図に示すように、読出しパルスφROPの高レベル(アクティブ)への遷移前から低レベル(非アクティブ)への遷移後までの期間に亘って電荷排出パルスφNSUBがアクティブ状態になるにようにしている。これにより、読出しパルスφROPに対する電荷排出パルスφNSUBの遷移による影響を少なくできる。
ただし、電荷排出パルスφNSUBがアクティブ状態になる期間、即ちドレイン部44に対して選択的に電圧を印加する期間は、読出しパルスφROPの高レベルへの遷移前から低レベルへの遷移後までの期間に限られるものではない。具体的には、読出しパルスφROPの高レベルへの遷移前から低レベルへの遷移後までの期間において、読出しパルスφROPの高レベル期間(信号電荷の読出し期間)の少なくとも一部を含む一部の期間であれば良い。
より具体的には、図9のタイミング波形図において、読出しパルスφROPの高レベル期間と同じ期間で電荷排出パルスφNSUBがアクティブ(高レベル)状態になる場合(A)が考えられる。この場合は、フレームレートを同等にできるメリットがある。また、読出しパルスφROPの高レベルへの遷移前から低レベルへの遷移タイミングまでの期間で電荷排出パルスφNSUBがアクティブ状態になる場合(B)が考えられる。この場合は、読出しパルスφROPに対する電荷排出パルスφNSUBの遷移による影響を少なくできるメリットがある。
また、読出しパルスφROPの高レベル期間の途中から低レベルへの遷移タイミングまでの期間で電荷排出パルスφNSUBがアクティブ状態になる場合(C)が考えられる。この場合は、フレームレートを同等にできるメリットがある。さらに、読出しパルスφROPの高レベル期間の途中から低レベルへの遷移後までの期間で電荷排出パルスφNSUBがアクティブ状態になる場合(D)なども考えられる。
(2−2.実施例2)
図10は、実施例2に係る電荷排出構造を示す断面図であり、図中、図4と同等部分には同一符号を付して示している。図10の断面図は、図1のA−A´線に沿った受光センサ部12周辺の基板深さ方向の断面構造を示している。
本実施例に係る電荷排出構造は、基本的な構造については、実施例1に係る電荷排出構造と同様である。すなわち、本実施例に係る電荷排出構造も、垂直転送部14にドレイン部43を形成し、好ましくはドレイン部43の下方に分離層44を形成し、ドレイン部43をオーバーフロードレインとする縦型オーバーフロードレイン構造となっている。
加えて、本実施例に係る電荷排出構造は、ドレイン部43と自画素の受光センサ部12との間に分離層46を有するとともに、ドレイン部43と隣接画素の受光センサ部12との間に分離層47を有する構成となっている。分離層46,47は、ドレイン部44と逆導電型(本例では、P++)の不純物によってドレイン部43の長手方向に沿って形成されている。
ドレイン部43に対して電荷排出パルスφNSUBを印加する配線構造については、図5に示す実施例1の場合と同様に、撮像部11の上側に配線されたドレイン配線51を通して半導体基板18の外部から与える配線構造を採ることができる。
このように、ドレイン部43と自画素の受光センサ部12との間および隣接画素の受光センサ部12との間に分離層46,47をそれぞれ設けることで、自画素および隣接画素の受光センサ部12内の信号電荷がドレイン部43に掃き捨てられるのを防止できる。すなわち、ドレイン部43に電荷排出パルスφNSUBを印加した際に、自画素および隣接画素の受光センサ部12内の信号電荷に対して何ら影響を及ぼすことなく、垂直転送部14内の電荷の一部だけをドレイン部43に掃き捨てることができる。
<3.変形例>
上記実施形態では、ドレイン部43に対して電荷排出パルスφNSUBを、撮像部11の上側(水平転送部16と反対側)に配線されたドレイン配線51を通して与える構成としたが、この配線構造に限られるものではない。例えば、図11に示すように、撮像部11の下側(水平転送部16側)にもドレイン配線53を設けて、ドレイン部43に対してその両端側から電荷排出パルスφNSUBを与えるようにしても良い。
このように、ドレイン部43に対してその両端側から電荷排出パルスφNSUBを与える構成を採ることで、一端側から与える場合に比べて画素列の画素配列方向における各画素に対する電荷排出パルスφNSUBの伝搬遅延を小さくできる利点がある。またこのとき、撮像部11の周辺部においてドレイン配線53をドレイン配線53に対してドレイン配線54によって電気的に接続することで、半導体基板19の外部から電荷排出パルスφNSUBを入力するための端子55が1つで済むメリットがある。
また、上記実施形態では、第1導電型をN型、第2導電型をP型とするCCDイメージセンサを例に挙げて説明したが、第1導電型をP型、第2導電型をN型とするCCDイメージセンサに対しても同様のことが言える。
また、上記実施形態では、本発明が適用される固体撮像装置として、CCDイメージセンサを例に挙げたが、本発明はCCDイメージセンサへの適用に限られるものではない。すなわち、可視光の光量に応じた電荷を物理量として検知して電気信号として出力する単位画素が行列状に配置されてなる電荷転送型の固体撮像装置全般に適用可能である。
なお、固体撮像装置はワンチップとして形成された形態であってもよいし、撮像部と、信号処理部または光学系とがまとめてパッケージングされた撮像機能を有するモジュール状の形態であってもよい。
<4.電子機器>
本発明は、固体撮像装置への適用に限られるものではなく、撮像装置などの電子機器にも適用可能である。ここで、電子機器とは、デジタルスチルカメラやビデオカメラ等の撮像装置(カメラシステム)や、撮像機能を有する携帯電話機やPDA(Personal Digital Assistant)などのモバイル機器などのことを言う。なお、電子機器に搭載される上記モジュール状の形態、即ちカメラモジュールを撮像装置とする場合もある。
[撮像装置]
図12は、本発明による電子機器の一例である撮像装置の構成例を示すブロック図である。図12に示すように、本発明に係る撮像装置100は、レンズ群101等を含む光学系、撮像素子102、カメラ信号処理部であるDSP回路103、フレームメモリ104、表示装置105、記録装置106、操作系107および電源系108等を有している。そして、DSP回路103、フレームメモリ104、表示装置105、記録装置106、操作系107および電源系108がバスライン109を介して相互に接続された構成となっている。
レンズ群101は、被写体からの入射光(像光)を取り込んで撮像素子102の撮像面上に結像する。撮像素子102は、レンズ群101によって撮像面上に結像された入射光の光量を画素単位で電気信号に変換して画素信号として出力する。この撮像素子102として、先述した実施形態に係る、垂直転送部に縦型オーバーフロードレイン構造を有するCMOSイメージセンサが用いられる。
表示装置105は、液晶表示装置や有機EL(electro luminescence)表示装置等のパネル型表示装置からなり、撮像素子102で撮像された動画または静止画を表示する。記録装置106は、撮像素子102で撮像された動画または静止画を、ビデオテープやDVD(Digital Versatile Disk)等の記録媒体に記録する。
操作系107は、ユーザによる操作の下に、本撮像装置が持つ様々な機能について操作指令を発する。電源系108は、DSP回路103、フレームメモリ104、表示装置105、記録装置106および操作系107の動作電源となる各種の電源を、これら供給対象に対して適宜供給する。
このような撮像装置100は、ビデオカメラやデジタルスチルカメラ、さらには携帯電話機等のモバイル機器向けのカメラモジュールに適用される。この撮像装置100において、撮像素子102として先述したCMOSイメージセンサを用いることで、当該CMOSイメージセンサは垂直転送部内の電荷の一部の掃き捨て動作を動画時にも行えるため、特に動画撮像時の画質の向上に寄与できることになる。
10…CMOSイメージセンサ、12…受光センサ部(画素)、13…読出しゲート部、14…垂直転送部、15…単位セル、16…水平転送部、17…電荷電圧変換部、18…半導体基板、21…タイミング制御部、22…CCD駆動回路、23…シャッタ駆動回路、30…半導体基板、32…電荷蓄積領域、33…正孔蓄積領域、35…電荷転送領域、36…チャネルストップ領域、39…転送電極、43…ドレイン部、44,46,47…分離層

Claims (10)

  1. 行列状に配列されて光電変換を行う受光センサ部と、当該受光センサ部に蓄積された電荷を読み出す読出しゲート部と、当該読出しゲート部によって読み出された電荷を転送する電荷転送部とが半導体基板上に形成され、
    前記電荷転送部に前記半導体基板および前記受光センサ部とは電気的に分離されて設けられ、前記半導体基板に印加される電圧とは別の電圧が選択的に印加されることによって前記電荷転送部内の電荷を排出する電荷排出部を備えた
    固体撮像装置。
  2. 前記電荷排出部は、前記電荷転送部の転送方向に沿って形成されている
    請求項1記載の固体撮像装置。
  3. 前記電荷排出部に対する選択的な電圧印加は、前記読出しゲート部に印加される読出しパルスがアクティブ状態になる前から非アクティブ状態になった後までの期間内において行う
    請求項1記載の固体撮像装置。
  4. 前記電荷排出部の前記半導体基板側に、前記電荷排出部と逆導電型の分離層を有する
    請求項1記載の固体撮像装置。
  5. 前記電荷排出部と自画素および隣接画素の前記受光センサ部との間に、前記電荷排出部と逆導電型の分離層を有する
    請求項4記載の固体撮像装置。
  6. 前記受光センサ部が行列状に配列された撮像部の周辺部に設けられた配線を通して、前記半導体基板の外部から前記電荷排出部に対して前記別の電圧を与える
    請求項1記載の固体撮像装置。
  7. 前記別の電圧を与える配線は、前記電荷転送部の転送方向において前記撮像部を挟んで両側に設けられている
    請求項6記載の固体撮像装置。
  8. 前記撮像部を挟んで両側に設けられる前記配線は電気的に接続されている
    請求項7記載の固体撮像装置。
  9. 行列状に配列されて光電変換を行う受光センサ部と、当該受光センサ部に蓄積された電荷を読み出す読出しゲート部と、当該読出しゲート部によって読み出された電荷を転送する電荷転送部とが半導体基板上に形成されてなる固体撮像装置の駆動に当たって、
    前記電荷転送部に前記半導体基板および前記受光センサ部とは電気的に分離されて設けられた電荷排出部に対して、前記半導体基板に印加する電圧とは別の電圧を選択的に印加することによって前記電荷転送部内の電荷を前記電荷排出部を通して排出する
    固体撮像装置の駆動方法。
  10. 行列状に配列されて光電変換を行う受光センサ部と、当該受光センサ部に蓄積された電荷を読み出す読出しゲート部と、当該読出しゲート部によって読み出された電荷を転送する電荷転送部とが半導体基板上に形成され、
    前記電荷転送部に前記半導体基板および前記受光センサ部とは電気的に分離されて設けられ、前記半導体基板に印加される電圧とは別の電圧が選択的に印加されることによって前記電荷転送部内の電荷を排出する電荷排出部を備えた
    固体撮像装置を有する電子機器。
JP2009050129A 2009-03-04 2009-03-04 固体撮像装置、固体撮像装置の駆動方法および電子機器 Pending JP2010206565A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009050129A JP2010206565A (ja) 2009-03-04 2009-03-04 固体撮像装置、固体撮像装置の駆動方法および電子機器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009050129A JP2010206565A (ja) 2009-03-04 2009-03-04 固体撮像装置、固体撮像装置の駆動方法および電子機器

Publications (1)

Publication Number Publication Date
JP2010206565A true JP2010206565A (ja) 2010-09-16

Family

ID=42967579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009050129A Pending JP2010206565A (ja) 2009-03-04 2009-03-04 固体撮像装置、固体撮像装置の駆動方法および電子機器

Country Status (1)

Country Link
JP (1) JP2010206565A (ja)

Similar Documents

Publication Publication Date Title
US8810703B2 (en) Solid-state image pickup device, driving method of solid-state image pickup device, and electronic device
US7944495B2 (en) Solid-state image pickup element including a thinning method to discharge unnecessary image data
JP5251736B2 (ja) 固体撮像装置、固体撮像装置の駆動方法および電子機器
JP5458582B2 (ja) 固体撮像装置、固体撮像装置の駆動方法および電子機器
JP2009278241A (ja) 固体撮像装置の駆動方法および固体撮像装置
JP2010213140A (ja) 固体撮像装置、固体撮像装置の駆動方法および電子機器
JP2010182887A (ja) 固体撮像装置、固体撮像装置の製造方法、固体撮像装置の駆動方法、電子機器
JP2000307961A (ja) 固体撮像装置およびその駆動方法並びにカメラシステム
JP2006093517A (ja) 固体撮像装置
US8373780B2 (en) Solid-state image sensor and camera
JP4285388B2 (ja) 固体撮像装置
JP2001148809A (ja) 固体撮像素子の駆動方法および撮像システム
JP3317248B2 (ja) 固体撮像装置
JP2006210680A (ja) 固体撮像素子
JP2007201092A (ja) 固体撮像素子及びその駆動方法
JP2010206565A (ja) 固体撮像装置、固体撮像装置の駆動方法および電子機器
JP2011182360A (ja) 固体撮像装置、固体撮像装置の駆動方法、及び、電子機器
JP2008311970A (ja) 固体撮像装置の駆動方法、固体撮像装置
JP4593751B2 (ja) リニアセンサ及びその駆動方法
JP2006319184A (ja) 固体撮像装置およびカメラ
JPH10271395A (ja) 固体撮像装置およびその駆動方法
JP2007142696A (ja) 固体撮像装置、固体撮像装置の駆動方法および撮像装置
JP5211072B2 (ja) 固体撮像装置の駆動方法
JP2010067656A (ja) 固体撮像装置、固体撮像装置の駆動方法および撮像装置
JP2003060188A (ja) 固体撮像素子及びその駆動方法