JP2010206014A - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP2010206014A
JP2010206014A JP2009051048A JP2009051048A JP2010206014A JP 2010206014 A JP2010206014 A JP 2010206014A JP 2009051048 A JP2009051048 A JP 2009051048A JP 2009051048 A JP2009051048 A JP 2009051048A JP 2010206014 A JP2010206014 A JP 2010206014A
Authority
JP
Japan
Prior art keywords
electrode
semiconductor device
region
drift region
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009051048A
Other languages
English (en)
Other versions
JP5621198B2 (ja
Inventor
Tetsuya Hayashi
林  哲也
Masakatsu Hoshi
星  正勝
Hideaki Tanaka
秀明 田中
Shigeharu Yamagami
滋春 山上
Tatsuhiro Suzuki
達広 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2009051048A priority Critical patent/JP5621198B2/ja
Publication of JP2010206014A publication Critical patent/JP2010206014A/ja
Application granted granted Critical
Publication of JP5621198B2 publication Critical patent/JP5621198B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

【課題】強度を保持しつつ、導通時の抵抗を低減可能な電力用の半導体装置を提供する。
【解決手段】半導体装置10は、基板領域1と、基板領域1上に設けられ、炭化珪素を含む半導体材料からなり、複数の凹部が形成されたドリフト領域2と、側壁に配設されたアノード電極3と、凹部の側壁を挟んでアノード電極3と互いに対面するように側壁に配設され、かつ、アノード電極3と絶縁されたカソード電極4とを有する。
【選択図】図1

Description

本発明は、電力用等に用いられる半導体装置に関する。
電力エネルギーの変換に使用される電力用半導体装置には、使用用途に応じた耐圧を保持し、かつ低損失であることが求められており、材料物性として耐圧とオン抵抗の関係が優れる炭化珪素を材料とした半導体装置、例えばショットキーバリアダイオードなどが検討されている(例えば、特許文献1参照)。
炭化珪素材料は、非特許文献1に記載されているように、非常に大きい絶縁破壊電界を有するので、他の材料で同耐圧の半導体装置を作成する場合に、電圧を保持するためにドリフト領域中に形成される空乏層の幅を小さくし、ドリフト領域の不純物密度を大きくすることができる。
一例として、電力用の半導体装置(例えば、ダイオード)を実現するのに必要なドリフト領域の条件を比較してみると、他の材料では不純物密度が小さくなり、大きい厚みが必要となるのに対し、炭化珪素材料を用いた場合では、不純物密度を大きくして、厚みを小さくすることができる。その結果、ドリフト領域の抵抗を小さくできることから、オン抵抗の小さい電力用半導体装置の実現が期待される。
特開平6−252380号公報
松内弘之編著 「半導体SiC技術と応用」 日刊工業新聞社 2003年3月31日 初版(p.9〜14)
しかしながら、炭化珪素材料は硬度が高くもろい性質を有するため、上記半導体装置を半導体チップとして実現する場合、構造体としての強度を確保するために、支持基体として一定の厚みが必要であるという問題がある。
即ち、炭化珪素を半導体材料として利用する場合、高い絶縁破壊強度を有するため、シリコンを利用したショットキーダイオードに比べて、理論的に基板(抵抗領域)の厚みを薄くすることができる。しかし、その反面、炭化珪素材料は強度がシリコンに比べて小さいため、基板の厚みを薄くすると、機械的な強度がシリコンを利用した半導体装置に比べて弱くなる。このため、炭化珪素を半導体材料として利用する場合、機械的強度を保持しつつ、オン抵抗を低減するには限界があった。
本発明は、上記のような従来技術の問題を解決するためになされたものであり、強度を保持しつつ、導通時の抵抗を低減可能な電力用の半導体装置を提供する。
上記目的を達成するために、本発明では、ドリフト領域に形成された複数の凹部の側壁に第1の電極及び第2の電極を互いに対向するように、かつ、互いに絶縁された状態で配設されている。
本発明によれば、凹部に配設された第1の電極と第2の電極により、凹部の側壁に対してほぼ垂直に電流が流れるようにしているので、強度が保持できる厚みで支持基板及びドリフト領域を構成しつつ、導通時の抵抗を低減することができる。
本発明の第1実施形態を示す断面図。 本発明の第1実施形態の製造方法を示す断面図。 本発明の第1実施形態の製造方法を示す断面図。 本発明の第1実施形態の製造方法を示す断面図。 本発明の第2実施形態を示す断面図。 本発明の第2実施形態の製造方法を示す断面図。 本発明の第2実施形態の製造方法を示す断面図。 本発明の第2実施形態の製造方法を示す断面図。 本発明の第2実施形態の製造方法を示す断面図。 本発明の第2実施形態の別の断面図。 本発明の第2実施形態の別の断面図。 本発明の第2実施形態の別の断面図。 本発明の第3実施形態を示す断面図。 本発明の第3実施形態の別の断面図。 本発明の第3実施形態の別の断面図。 本発明の第4実施形態を示す断面図。 本発明の第4実施形態の別の断面図。 本発明の第4実施形態の製造方法を示す断面図。 本発明の第4実施形態の製造方法を示す断面図。 本発明の第4実施形態の製造方法を示す断面図。 本発明の第4実施形態の製造方法を示す断面図。 本発明の第4実施形態の別の製造方法を示す断面図。 本発明の第4実施形態の別の製造方法を示す断面図。 本発明の第4実施形態の別の製造方法を示す断面図。 本発明の第4実施形態の別の製造方法を示す断面図。 本発明の第4実施形態の別の断面図。 本発明の第4実施形態の別の断面図。 本発明の第5実施形態を示す断面図。 本発明の第5実施形態の製造方法を示す断面図。 本発明の第5実施形態の製造方法を示す断面図。 本発明の第5実施形態の製造方法を示す断面図。 本発明の第5実施形態の製造方法を示す断面図。 本発明の第5実施形態の別の断面図。 本発明の第5実施形態の別の断面図。 本発明の第5実施形態の別の断面図。 本発明の第5実施形態の別の断面図。 本発明の第5実施形態の別の断面図。 本発明の第5実施形態の別の断面図。 本発明の第5実施形態の別の断面図。 本発明の第6実施形態を示す断面図。 本発明の第6実施形態の別の断面図。 本発明の第6実施形態の別の断面図。 本発明の第7実施形態を示す断面図。 本発明の第7実施形態を示す別の断面図。 本発明の第7実施形態を示す表面図。 本発明の第7実施形態の製造方法を示す図43に対応する断面図。 本発明の第7実施形態の製造方法を示す図44に対応する断面図。 本発明の第7実施形態の製造方法を示す図43に対応する断面図。 本発明の第7実施形態の製造方法を示す図44に対応する断面図。 本発明の第7実施形態の製造方法を示す図43に対応する断面図。 本発明の第7実施形態の製造方法を示す図44に対応する断面図。 本発明の第7実施形態の製造方法を示す図43に対応する断面図。 本発明の第7実施形態の製造方法を示す図44に対応する断面図。 本発明の第7実施形態の製造方法を示す図43に対応する断面図。 本発明の第7実施形態の製造方法を示す図44に対応する断面図。 本発明の第7実施形態の製造方法を示す図43に対応する断面図。 本発明の第7実施形態の製造方法を示す図44に対応する断面図。
(第1実施形態)
図1を用いて、本発明における半導体装置の第1実施形態を説明する。図1は本発明の実施形態を説明する断面図の一例である。
図1に示すように、本発明の半導体装置10は、例えば、炭化珪素のポリタイプが4HタイプのP型である基板領域1上にN型のドリフト領域2が形成された基板材料で構成されている。本実施形態においては、基板領域1には支持基体としての強度を満たす必要があるため、厚さが数10μm〜数100μm程度の厚さを有している。ドリフト領域2としては、例えばN型の不純物密度が1015cm-3〜1018cm-3、厚みが0.1μm〜数10μmのものを用いることができる。なお、素子構造や所要の耐圧により、ドリフト領域2は不純物密度や厚みが前記範囲外となってももちろん良い。本実施形態では例えば不純物密度が1016cm-3、厚みが12μmのものを用いた場合で説明する。
なお、本実施形態では、半導体基体が、基板領域1とドリフト領域2の2層からなる基板の場合について説明するが、ドリフト領域2のみで形成された基板を使用してもかまわないし、反対に多層の基板を使用してもかまわない。また、本実施形態においては、基板材料を炭化珪素材料で形成した場合を説明しているがシリコンなど他の半導体材料で構成されていてもかまわない。また、本実施形態においては、後述するようにP型の基板領域1を用いることで、逆バイアス時のパンチスルーが起こりにくくしているが、基板領域1がN型であったとしてもドリフト領域2の厚みの低減に制限はあるものの用いることは可能である。
ドリフト領域2の基板領域1との接合面に対向する主面には、U字型の溝が複数形成されており、溝の側壁を介して互いに対向するようにアノード電極3とカソード電極4が形成されている。なお、図1においては、溝の底部が垂直形状をした場合を示しているが、溝の底部全体が湾曲していてもよく、底部の端部のみが湾曲していてももちろんよい。また、本実施形態における説明では、図1の断面構造に対して、奥行き方向に溝が形成されたストライプ型の場合を一例とするが、四角や六角もしくは丸型の環状構造としてもよい。
本実施形態においては、アノード電極3とカソード電極4に挟まれた溝の側壁間の距離、つまり、アノード電極3とカソード電極4に挟まれたドリフト領域2の厚みによって、耐圧の大きさが決まる。また、本発明においては、耐圧クラスは限定されず効果を得ることができるが、一例として600Vクラスの場合で説明することとし、本実施形態においては溝の側壁間の距離を5μmとする。
本実施形態においては、アノード電極3及びカソード電極4がドリフト領域2の主面側を覆うように溝からはみ出すような構成をしているが、この場合は、ドリフト領域2の主面部を介してアノード電極3とカソード電極4との間の耐圧が低下しないように、絶縁膜5を形成している。本実施形態では図示していないが、アノード電極3及びカソード電極4が溝からはみ出さないように埋め込まれた形状をしていても良い。その場合は、絶縁膜5は必須ではない。
アノード電極3は、ドリフト領域2との間にショットキー障壁を形成する金属材料を少なくとも含む単層もしくは多層の金属材料から構成されており、例えば、ショットキー障壁を形成する金属材料としては、チタン、ニッケル、モリブデン、金、白金などの材料を用いることができる。また、アノード電極3はアノード端子として外部電極との接続をするために、最表面にアルミ、銅、金、ニッケル、銀などの金属材料を用いて多層の構造としても良い。
一方、カソード電極4は、ドリフト領域2とオーミック接続するような電極材料から構成されている。オーミック接続する電極材料の一例としてはニッケルシリサイドやチタン材料などが挙げられ、カソード電極4はカソード端子として外部電極との接続をするために、最表面にアルミ、銅、金、ニッケル、銀などの金属材料を用いて多層の構造としても良い。
なお、図1に示す断面図では、アノード電極3及びカソード電極4がそれぞれ溝ごとに独立しているように見えるが、紙面奥行き方向もしくは手前方向等で溝中もしくは溝上で、アノード電極3同士及びカソード電極4同士が接続されている。
このように、図1に示す半導体装置10は、アノード電極3とカソード電極4の2端子からなるショットキー接合ダイオードとして動作する。
次に、本実施形態の製造方法の一例を図2〜図4を使って説明する。
まず、図2に示すように、P型の基板領域1の上にN型のドリフト領域2をエピタキシャル成長させて形成したN型の炭化珪素半導体基体上に、例えば、熱酸化法もしくはCVD法によって形成された絶縁膜5を形成する。
次に、図3に示すように、絶縁膜5上には、フォトリソグラフィによって所定形状に開口した例えばフォトレジスト膜からなる第1のマスク材51を形成する。マスク材の材料としては、フォトレジスト膜以外にもSiN膜や金属材料膜などの材料を用いることができる。
第1のマスク材51が開口した部分において、絶縁膜5層並びにドリフト領域2を、例えば反応性イオンエッチング(ドライエッチング)によりエッチングする。
次に、図4に示すように、第1のマスク材51を、例えば硫酸と過酸化水素水の混合液などでウエットエッチングして除去する。そして、カソード電極4として、ニッケル、チタンなど金属材料をリフトオフ法もしくは成膜及びエッチングによって形成する。その後、アノード電極3としてチタン、モリブデン、ニッケル、アルミニウムなどのドリフト領域2とショットキー接合をする金属材料を、同じくリフトオフ法もしくは成膜及びエッチングによって形成する。
なお、本実施形態においては、アノード電極3とカソード電極4が同一主面上に形成されるため、ともに同一の金属材料を用いる部分については、同時に形成してもよい。このようにして、図1に示した本発明の第1実施形態による半導体装置10が完成する。
以上のように、本実施形態においては、一般的な半導体製造方法を用いて、容易に実現することができる。
次に、本実施形態の動作について説明する。
まず、アノード電極3とカソード電極4との間に逆バイアス電圧が印加されている場合、ダイオードは遮断状態を維持する。つまり、図1に示すショットキー接合ダイオードにおいては、溝の側壁及び底部に形成されるアノード電極3とドリフト領域2のショットキー接合部からドリフト領域2中に空乏層が伸張するためである。本実施形態においては、アノード電極3とカソード電極4が溝の側壁を介してほぼ対向するように形成されているため、側壁にほぼ平行に空乏層は伸張する。このため、本実施形態の耐圧はアノード電極3とカソード電極4とで挟まれた側壁の厚みと不純物濃度でほぼ決まる。このため、一般的な縦型構造と同様の耐圧を得るためには、ドリフト領域2の側壁の厚みを、縦型構造におけるドリフト領域層の膜厚と同程度としている。
なお、本実施形態においては、基板領域1の導電型をドリフト領域2とは反対導電型のP型としているため、例えば、アノード電極3が形成されている溝底部から延びた空乏層が到達しても、パンチスルーせずに耐圧を保持することができる。
このように、本実施形態においては、従来構造と同様の耐圧を保持することができる。
次に、アノード電極3とカソード電極4との間に順バイアス電圧が印加された場合、ダイオードは導通状態となる。つまり、ドリフト領域2中に広がっていた空乏層が後退し、アノード電極3とドリフト領域2との間に形成されているショットキー接合部にショットキー障壁高さに応じた順バイアス電圧に到達すると、カソード電極4から供給される電子電流が流れるためである。このとき、本実施形態においては、ダイオードの2端子となるアノード電極3とカソード電極4間に生じる抵抗成分が、耐圧を保持するべく溝間に形成されたドリフト領域2の厚み部分のみで構成されているため、従来の縦型構造に比べて、基板領域1で生じる抵抗を削減できるため、より低抵抗で電流を導通することができる。
さらに本実施形態においては、溝中にアノード電極3及びカソード電極4が、それぞれが形成されているため、従来の横型構造では限界があった単位面積あたりに形成できる素子領域の高密度化を両立することができる。つまり、溝同士が対面する側壁面に対して垂直方向に電流を流すことで、側壁の表面積にほぼ比例した高密度化を実現することができる。
そして、図1中、ドリフト領域2中に形成される溝の深さdが、アノード電極3とカソード電極4とが繰り返し形成されるピッチp(アノード電極3とカソード電極4とが形成された凹部の中心間距離)以上とすることで、従来の縦型構造以上の高密度化が実現できる。例えば、本実施形態において、溝の深さを8μm、溝の幅を2μmとしてアノード電極3とカソード電極4を形成した場合、ドリフト領域2の側壁厚みは5μmのため、溝の深さdは8μm、アノード電極3とカソード電極4とが繰り返し形成されるピッチpは7μmとなる。縦型構造の場合は、ダイオードとして働く面積はドリフト領域主面の表面積に比例するのに対し、本実施形態においては、ダイオードとして働く面積はd/p倍となるため、上記の例では約1.14倍の高密度化が可能となる。さらに、溝の幅を1μmとすれば、1.33倍となり、溝の幅及び深さを変えることで更なる向上が可能となる。このことから、本実施形態で示す構造により、一般的な縦型構造で得ることができるオン抵抗の物理リミットを越えた低抵抗を達成することができる。
また、本実施形態においては、ドリフト領域2の材料として炭化珪素を用いているため、例えば600V程度の耐圧でもドリフト領域2の側壁厚みが5μm程度とシリコンを使用した場合より一桁以上小さくできるため、数μm〜10数μm程度の深さの溝を形成するだけで、一般的な縦型構造よりも低いオン抵抗を達成することができる。つまり、実現性が容易で、より高密度化しやすいという特徴をもつ。
以上、本実施形態においては、溝中にアノード電極3とカソード電極4をそれぞれ形成し、溝の側壁に対してほぼ垂直に電流が流れるようにしているため、基板領域1及びドリフト領域2の厚みを支持基体としての強度を保持できる厚みで構成しつつ、縦型構造では制限が生じていた基板領域1の抵抗分を削減できると共に、横型構造では制限が生じていたダイオード領域の高密度化を実現することができる。このため、従来の横型構造及び縦型構造と比べても、導通時の抵抗を低減することができる。
(第2実施形態)
図5〜図12を用いて、本発明における半導体装置10の第2実施形態を説明する。本実施形態においては、第1実施形態と同様の動作をする部分の説明は省略し、異なる特徴ついて詳しく説明する。
図5は図1に対応する本発明の実施形態を説明する断面構造図の一例である。図5はアノード電極3が形成される溝の表層部に接するように、例えばP型の電界緩和領域6が形成されている。
次に、本実施形態の製造方法の一例を図6〜図9を使って説明する。
まず、図6に示すように、P型の基板領域1の上にN型のドリフト領域2をエピタキシャル成長させて形成したN型の炭化珪素半導体基体上に、フォトリソグラフィによって所定形状に開口した例えばフォトレジスト膜からなる第2のマスク材52を形成する。マスク材の材料としては、フォトレジスト膜以外にも酸化膜やSiN膜や金属材料膜などの材料を用いることができる。そして、第2のマスク材52が開口した部分において、ドリフト領域2中に、例えばイオン注入法を用いて、例えばボロンもしくはアルミなどを不純物導入し所定の熱処理による不純物の活性化をへて電界緩和領域6を形成する。不純物導入法としては、少なくともドリフト領域2中に不純物導入できれば、イオン注入法以外にも固相拡散法など別のどの方法を用いても良い。
これ以降は、第1実施形態で示した図2〜図4の製造方法と同じプロセスで図5の構造を実現することができるが、以下に詳細を示す。
次に、図7は、図2に対応しており、ドリフト領域2の上面に、熱酸化法もしくはCVD法によって形成された絶縁膜5を形成する。
次に、図8は図3に対応しており、絶縁膜5上には、フォトリソグラフィによって所定形状に開口した例えばフォトレジスト膜からなる第1のマスク材51を形成する。マスク材の材料としては、フォトレジスト膜以外にもSiN膜や金属材料膜などの材料を用いることができる。第1のマスク材51が開口した部分において、絶縁膜5層並びにドリフト領域2を、例えば反応性イオンエッチング(ドライエッチング)によりエッチングする。
次に、図9は、図4に対応しており、第1のマスク材51を、例えば硫酸と過酸化水素水の混合液などでウエットエッチングして除去する。そして、カソード電極4として、ニッケル、チタンなど金属材料をリフトオフ法もしくは成膜及びエッチングによって形成する。その後、アノード電極3としてチタン、モリブデン、ニッケル、アルミニウムなどのドリフト領域2とショットキー接合をする金属材料を、同じくリフトオフ法もしくは成膜及びエッチングによって形成する。なお、本実施形態においても、アノード電極3とカソード電極4が同一主面上に形成されるため、ともに同一の金属材料を用いる部分については、同時に形成してもよい。
このようにして、図5に示した本発明の第2実施形態による半導体装置10が完成する。
以上のように、本実施形態においても、一般的な半導体製造方法を用いて、容易に実現することができる。
この図5で新たに形成した電界緩和領域6は、アノード電極3とカソード電極4との間に逆バイアス電圧が印加されている際の、アノード電極3が形成されている溝の表層部における端部への電界集中を緩和する効果を有している。つまり、本実施形態においては、逆バイアス状態においては、溝表層部のショットキー接合部には電界が印加されずに、電界緩和領域6とドリフト領域2との接合部に空乏層が広がるためである。このことから、本実施形態においては、第1実施形態の図1で示した構造に比べて同等の耐圧を保持するのに、アノード電極3とカソード電極4との間に挟まれた溝間のドリフト領域2の厚みを小さくすることができる。このことから、順バイアス導通時のドリフト領域2の抵抗を小さくすることができるため、第1実施形態に比べてさらにオン抵抗を低減することができる。
なお、図5では一例としてアノード電極3が形成される溝の表層部のみに電界緩和領域6を形成した場合で説明してきたが、図10に示すように、アノード電極3とカソード電極4とが形成されている両方の溝の表層部に電界緩和領域6が形成されていてもよい。製造方法に関しても、図6で説明した第2のマスク材の開口形状を変えておけば、容易に製造することができる。
また、図11ならびに図12に示すように、図5で示したアノード電極3が形成されている溝のもう一方の端部である溝の底部についても、電界緩和領域7を形成することによって、オン抵抗低減に寄与する。その理由は上述した表層部の電界緩和と同様である。溝底部に電界緩和領域7を形成する方法としては、図6で示した表層部に不純物導入する前後の工程で、所定のマスク材を用いて選択的に深い位置にイオン注入法を用いて形成する方法と、溝を形成した直後に選択的にイオン注入法で不純物を導入する方法などがあり、一般的な半導体装置を用いて実現可能である。
以上のように、少なくともアノード電極3が形成されている溝の側壁において端部に相当する表層部及び底部に電界緩和領域6、7を形成し、逆バイアス時の電界集中を緩和することで、同等の耐圧を得るのに、アノード電極3とカソード電極4との間に挟まれた溝間のドリフト領域2の厚みをさらに小さくすることができる。このことから、導通時のドリフト領域2の抵抗を小さくすることができるため、第1実施形態に比べてさらにオン抵抗を低減することができる。
また、第2実施形態においても、上述した第1実施形態による他の効果を奏することができる。
(第3実施形態)
図13〜図15を用いて、本発明における半導体装置の第3実施形態を説明する。本実施形態においては、第1実施形態並びに第2実施形態と同様の動作をする部分の説明は省略し、異なる特徴ついて詳しく説明する。
図13は、図1に対応する本発明の実施形態を説明する断面構造図の一例である。図13はP型の基板領域1の代わりに、絶縁性を有する炭化珪素材料からなる基板領域11で構成されており、さらにアノード電極3およびカソード電極4が形成される溝がドリフト領域2を貫通し、溝の底部が基板領域11中に形成されている。
次に、本実施形態の製造方法は、ほぼ第1実施形態で説明した図2〜図4に準拠して容易に製造の一例を図6〜図9を使って説明することができる。つまり、本実施形態においては、第1実施形態とは基板領域11の導電型が異なるものの同じ炭化珪素材料であり、図3で説明した工程において、エッチングする深さを大きくすれば良いためである。つまり、図1の構造と同様に容易に実現することができる。
この図13で示した新たな特徴としては、アノード電極3とカソード電極4が形成されている溝の深さが、ドリフト領域2が貫通するように形成できるため、ダイオードとして機能するアノード電極3及びカソード電極4の表面積を向上し、さらなる低オン抵抗化が可能な点である。図1の構成においては、アノード電極3とカソード電極4間に挟まれたドリフト領域2の厚みで規定される所定耐圧を得るために、溝の底部と基板領域1との間で耐圧が制限されないように、所定距離離す必要があった。一方、本実施形態においては、基板領域11がドリフト領域2より不純物濃度が小さくさらには絶縁性を有するため、溝の底部と基板領域11との間で決まる耐圧が、アノード電極3とカソード電極4間に挟まれたドリフト領域2の厚みで決まる耐圧より大きいという特徴を有する。そのため、ドリフト領域2を貫通して溝の深さを形成できることから、上述したように、本実施形態においては、溝の側壁に形成されるドリフト領域2の全域を耐圧保持領域として活用することができるため、ダイオードとして機能するアノード電極3及びカソード電極4の表面積を向上し、さらなる低オン抵抗化が可能となる。また、本実施形態においては、基板領域11が絶縁性を有していることから、第2実施形態で例示した図11及び図12で形成されている電界緩和領域7の機能についても基板領域11が有しているため、溝底部の電界集中が小さく、さらに抵抗を低減できるという効果も有する。
本実施形態においても、図14、図15に示すように、第2実施形態で説明した溝表層部の電界緩和領域6を、第2実施形態と同様の製造方法で容易に形成することができ、同様の効果も得ることができる。
このように、基板領域11に絶縁性を有する材料を用いることで、さらにオン抵抗を低減することができる。なお、本実施形態においては、基板領域11としてドリフト領域2と同じ半導体材料である炭化珪素材料を用いた場合で説明してきたが、絶縁性を有する他の材料、ガラス基板やセラミック基板等を用いても良い。ただし、本実施形態で説明したようなドリフト領域2と同じ材料で構成することによって、基板領域11とドリフト領域2との原子間の格子整合が良好なため、品質の高いドリフト領域2を形成できるという利点がある。
本実施形態においても、上述した実施形態の他の効果を奏することができる。
(第4実施形態)
図16〜図27を用いて、本発明における半導体装置の第4実施形態を説明する。本実施形態においては、第1実施形態〜第3実施形態で説明した内容と同様の動作をする部分の説明は省略し、異なる特徴ついて詳しく説明する。
図16は図13に対応する本発明の実施形態を説明する断面構造図の一例である。図16に示すように、カソード電極4に接するように、例えばN型の高濃度領域8が形成されている。高濃度領域8は、図16に示すように、図13ではドリフト領域2とカソード電極4とが接していた部分の一部に形成されていてもよいし、図17に示すように、カソード電極4が形成される溝の周囲を覆うように基板領域11中にも形成されていても良い。いずれにしても、高濃度領域8はカソード電極4とドリフト領域2とがより低抵抗のオーミック接続するように機能し、第1実施形態から第3実施形態で説明した構造に比べて、ショットキーダイオードはさらに低オン抵抗で動作するという効果が得られる。
次に製造方法であるが、本実施形態においても容易に作成することができる。ここでは、一例として図17に示した構造で、2通りの製造方法を示す。
まず、図18に示すように、絶縁性を有するの基板領域11の上にN型のドリフト領域2をエピタキシャル成長させて形成したN型の炭化珪素半導体基体上に、フォトリソグラフィによって所定形状に開口した例えばフォトレジスト膜からなる第3のマスク材53を形成する。マスク材の材料としては、フォトレジスト膜以外にも酸化膜やSiN膜や金属材料膜などの材料を用いることができる。そして、第3のマスク材53が開口した部分において、ドリフト領域2中に、例えばイオン注入法を用いて、例えばリンや窒素などのN型のドーパントとなる不純物を導入し所定の熱処理による不純物の活性化をへて高濃度領域8を形成する。不純物導入法としては、少なくともドリフト領域2中に不純物導入できれば、イオン注入法以外にも固相拡散法など別のどの方法を用いても良い。図18では基板領域11に到達するように不純物を導入しているが、例えばイオン注入の加速エネルギーを所定の大きさにすることによって、図16に対応する基板領域11には到達しない深さとすることもできる。
これ以降は、第1実施形態で示した図2〜図4の製造方法と同じプロセスで図5の構造を実現することができるが、以下に詳細を示す。
次に、図19は、図2に対応しており、ドリフト領域2の上面に、熱酸化法もしくはCVD法によって形成された絶縁膜5を形成する。
次に、図20は、図3に対応しており、絶縁膜5上には、フォトリソグラフィによって所定形状に開口した例えばフォトレジスト膜からなる第1のマスク材51を形成する。マスク材の材料としては、フォトレジスト膜以外にもSiN膜や金属材料膜などの材料を用いることができる。第1のマスク材51が開口した部分において、絶縁膜5の層並びにドリフト領域2を、例えば反応性イオンエッチング(ドライエッチング)によりエッチングする。
次に、図21は、図4に対応しており、第1のマスク材51を、例えば硫酸と過酸化水素水の混合液などでウエットエッチングして除去する。そして、カソード電極4として、ニッケル、チタンなどの金属材料をリフトオフ法もしくは成膜及びエッチングによって形成する。その後、アノード電極3としてチタン、モリブデン、ニッケル、アルミニウムなどのドリフト領域2とショットキー接合をする金属材料を、同じくリフトオフ法もしくは成膜及びエッチングによって形成する。なお、本実施形態においても、アノード電極3とカソード電極4が同一主面上に形成されるため、ともに同一の金属材料を用いる部分については、同時に形成してもよい。
次に、もう1つの製造方法を図22〜図25を用いて説明する。
まず、図22に示すように、絶縁性を有するの基板領域11の上にN型のドリフト領域2をエピタキシャル成長させて形成したN型の炭化珪素半導体基体上に、例えば、熱酸化法もしくはCVD法によって形成された絶縁膜5を形成する。
次に、図23に示すように、絶縁膜5上には、まず、カソード電極4となる溝の部分を形成するべく、フォトリソグラフィによって所定形状に開口した例えばフォトレジスト膜からなる第4のマスク材54を形成する。マスク材の材料としては、フォトレジスト膜以外にもSiN膜や金属材料膜などの材料を用いることができる。
第4のマスク材54が開口した部分において、絶縁膜5の層並びにドリフト領域2を、例えば反応性イオンエッチング(ドライエッチング)によりエッチングする。
さらに、エッチング後第4のマスク材54を有する状態で、ドリフト領域2中に、例えばイオン注入法を用いて、例えばリンや窒素などのN型のドーパントとなる不純物を導入し所定の熱処理による不純物の活性化をへて高濃度領域8を形成する。不純物導入法としては、少なくともドリフト領域2中に不純物導入できれば、イオン注入法以外にも固相拡散法など別のどの方法を用いても良い。なお、本工程のエッチング途中で、イオン注入等の不純物導入を実施し、さらに、エッチングを追加することによって、図16に対応する基板領域11には到達しない深さで形成することもできる。
次に、図24に示すように、第4のマスク材54を、例えば、硫酸と過酸化水素水の混合液などでウエットエッチングして除去後、絶縁膜5上には、アノード電極3となる溝の部分を形成するべく、フォトリソグラフィによって所定形状に開口した例えばフォトレジスト膜からなる第5のマスク材55を形成する。マスク材の材料としては、フォトレジスト膜以外にもSiN膜や金属材料膜などの材料を用いることができる。
第5のマスク材55が開口した部分において、絶縁膜5の層並びにドリフト領域2を、例えば反応性イオンエッチング(ドライエッチング)によりエッチングする。
次に、図25に示すように、第5のマスク材55を、例えば硫酸と過酸化水素水の混合液などでウエットエッチングして除去する。そして、カソード電極4として、ニッケル、チタンなど金属材料をリフトオフ法もしくは成膜及びエッチングによって形成する。その後、アノード電極3としてチタン、モリブデン、ニッケル、アルミニウムなどのドリフト領域2とショットキー接合をする金属材料を、同じくリフトオフ法もしくは成膜及びエッチングによって形成する。
なお、図18〜図21及び図22〜図25で示したいずれの製造方法においても、アノード電極3とカソード電極4が同一主面上に形成されるため、ともに同一の金属材料を用いる部分については、同時に形成してもよい。このようにして、図17に示した本発明の実施形態による半導体装置10を完成させることができ、一般的な半導体製造方法を用いて、容易に実現することができる。
また、本実施形態においても、第1実施形態から第3実施形態で説明してきた構造を組み合わせることで、より低抵抗の半導体装置10を実現することができる。
図26及び図27は、図16及び図17に対して、第2実施形態で説明した電界緩和領域6をアノード電極3が形成されている溝の表層部に形成した場合を示している。このようにすることで、カソード電極4のドリフト領域2とのコンタクト抵抗を低減できると共に、アノード電極3が形成されている溝の表層部における逆バイアス時の電界集中を緩和することで、アノード電極3とカソード電極4との間に挟まれた溝間のドリフト領域2の厚みをさらに小さくすることができるため、導通時のトータルのオン抵抗をさらに低減することができる。
なお、本実施形態においては、溝が基板領域11に到達する構造を一例として説明してきたが、図1〜図12に示した溝の底部がドリフト領域2中にある場合についても容易に実現することができ、同様の効果を得ることができる。
また、第4実施形態においても、上述した実施形態による他の効果を奏することができる。
(第5実施形態)
図28〜図39を用いて、本発明における半導体装置の第5実施形態を説明する。本実施形態においては、第1実施形態〜第4実施形態で説明した内容と同様の動作をする部分の説明は省略し、異なる特徴ついて詳しく説明する。
上記、第1実施形態から第4実施形態では図1〜図27を用いて、半導体装置10としてアノード電極3とドリフト領域2とがショットキー接合を有するショットキー接合ダイオードが形成された場合について説明してきたが、本実施形態における図28〜図35においては、ドリフト領域2とドリフト領域2とはバンドギャップが異なる半導体材料からなるアノード領域15とがヘテロ接合したヘテロ接合ダイオードが形成されている場合について説明する。
図28は、図14に対応する本発明の実施形態を説明する断面構造図の一例である。図28中、図14で形成されていたアノード電極3とカソード電極4の代わりに、ドリフト領域2に形成された溝中には、例えば、P型のポリシリコンからなるアノード領域15と、N型のポリシリコンからなるカソード領域16が形成されており、アノード領域15とカソード領域16は、表層部において、それぞれ例えばチタンやアルミなどからなるアノード電極13とカソード電極14に接続されている。
本実施形態においても一般的な半導体製造装置を用いて容易に作成することができる。
まず、図29は、図2及び図3と同様の製造手順で電界緩和領域6を形成する。つまり、絶縁性を有する基板領域11の上にN型のドリフト領域2をエピタキシャル成長させて形成したN型の炭化珪素半導体基体上に、フォトリソグラフィによって所定形状に開口した例えばフォトレジスト膜からなる第2のマスク材(図示なし)を形成する。マスク材の材料としては、フォトレジスト膜以外にも酸化膜やSiN膜や金属材料膜などの材料を用いることができる。そして、第2のマスク材(図示なし)が開口した部分において、ドリフト領域2中に、例えばイオン注入法を用いて、アルミやボロンなどのP型のドーパントとなる不純物を導入し所定の熱処理による不純物の活性化をへて電界緩和領域6を形成する。不純物導入法としては、少なくともドリフト領域2中に不純物導入できれば、イオン注入法以外にも固相拡散法など別のどの方法を用いても良い。さらに、ドリフト領域2の上面に、熱酸化法もしくはCVD法によって形成された絶縁膜5を形成したあと、絶縁膜5上には、フォトリソグラフィによって所定形状に開口した例えばフォトレジスト膜からなる第1のマスク材(図示なし)を形成する。マスク材の材料としては、フォトレジスト膜以外にもSiN膜や金属材料膜などの材料を用いることができる。第1のマスク材(図示なし)が開口した部分において、絶縁膜5層並びにドリフト領域2を、例えば反応性イオンエッチング(ドライエッチング)によりエッチングする。さらにエッチング後の溝が埋まるように、例えば、LP−CVD法によって形成されたポリシリコン層56を形成している。このとき、上記多結晶シリコン層は、電子ビーム蒸着法やスパッタ法などで堆積した後にレーザーアニールなどで再結晶化させて形成しても、例えば分子線エピタキシーなどでヘテロエピタキシャル成長させた単結晶シリコンで形成しても構わない。
次に、図30に示すように、溝からはみ出して表層に堆積されているポリシリコン層56をドライエッチングなどによってエッチバックし除去する。その後、アノード領域15となる溝部が開口するように、フォトリソグラフィによって所定形状に開口した例えばフォトレジスト膜からなる第6のマスク材57を形成する。そして、第6のマスク材57が開口した部分において、ポリシリコン中に、例えばイオン注入法を用いて、例えばボロンなどのP型のドーパントとなる不純物を導入し所定の熱処理による不純物の活性化をへてP型のアノード領域15を形成する。
次に、図31に示すように、第6のマスク材57を例えば硫酸と過酸化水素水の混合液などでウエットエッチングして除去した後、次は、カソード領域16となる溝部が開口するように、フォトリソグラフィによって所定形状に開口した例えばフォトレジスト膜からなる第7のマスク材58を形成する。そして、第7のマスク材58が開口した部分において、ポリシリコン中に、例えばイオン注入法を用いて、リンやヒ素などのN型のドーパントとなる不純物を導入し所定の熱処理による不純物の活性化をへてN型のカソード領域16を形成する。
最後に、図32に示すように、第7のマスク材58を、例えば硫酸と過酸化水素水の混合液などでウエットエッチングして除去した後、アノード電極13およびカソード電極14として、チタン、アルミニウムなどのアノード領域15およびカソード領域16とオーミック接合をする金属材料を成膜及びエッチングによって形成する。
以上のように、図28に示すヘテロ接合ダイオードは容易に形成することができる。
なお、本実施形態においては、ヘテロ接合ダイオードのカソード電極端子側をN型ポリシリコンからなるカソード領域16と金属電極からなるカソード電極14で構成される場合を例示しているが、第1実施形態から第4実施形態で示したような金属電極のみからなるカソード電極としても良い。図28に示したカソード領域16をカソード電極端子の一部として用いる利点として、溝の埋め込みを同じポリシリコンで形成できるため、製造プロセスを簡素化することができる点である。また、アノード領域15およびカソード領域16にP型及びN型の導電性を持たす際に、各領域の材料としてポリシリコンを用いることで不純物の拡散がしやすいことから、溝の表層部に不純物導入すれば熱拡散で溝の底部まで導電性を持たすことができるため、製造プロセスを簡略化することができる。
次に、動作について説明する。
アノード電極13とカソード電極14との間に電圧を印加すると、アノード領域15とドリフト領域2の接合界面において整流作用が生じ、ダイオード特性が得られる。まず、アノード電極13とカソード電極14との間に逆バイアス電圧を印加すると、ヘテロ接合ダイオードは逆方向特性を示し遮断特性を示す。本実施形態においては、アノード領域15の導電型をP型としているため、遮断特性はPN接合ダイオードのごとく動作する。これは、アノード領域15の導電型をP型、ドリフト領域2の導電型をN型とした構成では、PN接合ダイオードに見られるような所定の電界下で発生するキャリアによる漏れ電流特性が優勢になる程に、ヘテロ接合界面のエネルギー障壁を介する漏れ電流を大幅に低減することができるからである。
次に、アノード電極13とカソード電極14との間に順バイアス電圧を印加すると、第1実施形態で示したショットキー接合ダイオードのごとく導通特性を示す。すなわち、順方向特性はヘテロ接合部からドリフト領域2側並びにアノード領域15側にそれぞれ広がる内蔵電位の和によって決まる電圧降下で順方向電流が流れる。本実施形態においても、溝中に形成されたアノード領域15とカソード領域16間を、溝の側壁に対してほぼ垂直に電流が流れるようにしているため、基板領域11及びドリフト領域2の厚みを支持基体としての強度を保持できる厚みで構成しつつ、縦型構造では制限が生じていた基板領域の抵抗分を削減できると共に、横型構造では制限が生じていたダイオード領域の高密度化を実現することができる。このため、従来の横型構造及び縦型構造と比べても、導通時の抵抗を低減することができる。ダイオード部の構成は第1実施形態から第4実施形態で説明したショットキー接合ダイオードとは異なるものの、低オン抵抗で動作ができるという特徴は同様に有する。なお、図28においては、溝中にポリシリコンが完全に埋め込められた場合を例示しているが、図33のように、溝の側壁に接するようポリシリコン層を形成し、溝中にもアノード電極13およびカソード電極14が形成されていても良い。図33ではアノード領域15とアノード電極13の端部、カソード領域16とカソード電極14の端部がほぼ揃うように、それらの構成材料であるポリシリコン層および金属膜を連続してエッチングした場合を例示しているが、別々に形成して端部が揃っていなくてもよい。ただ、同時に連続してエッチングすることで、製造工程を簡略化することができる利点がある。
また、図34および図35に示すように、カソード領域16とドリフト領域2との接続をさらに低抵抗にするために、高濃度領域8を形成した場合を示している。その効果については、第4実施形態と同じ効果を得ることができ、さらに低抵抗化を実現することができる。
なお、本実施形態においては、他の実施形態と異なる部分についての説明をするため、図28〜図35の4つの構造を例に説明しているが、第1実施形態から第4実施形態において説明した構成で、ショットキー接合ダイオードの部分をヘテロ接合ダイオードに置き換えることで、図1〜図27で説明した特徴は同様に得ることができる。
さらに、本実施形態における図36、図37、図38、図39においては、ドリフト領域2とドリフト領域2とは反対導電型のP型領域からなる反対導電型領域26とがPN接合したPN接合ダイオードが形成されている場合について説明する。本実施形態においても、形成されるダイオードの構成が異なるだけで、溝中に形成されたアノード電極23とカソード電極24間を、溝の側壁に対してほぼ垂直に電流が流れるようにしているため、基板領域11及びドリフト領域2の厚みを支持基体としての強度を保持できる厚みで構成しつつ、縦型構造では制限が生じていた基板領域の抵抗分を削減できると共に、横型構造では制限が生じていたダイオード領域の高密度化を実現することができる。このため、従来の横型構造及び縦型構造と比べても、導通時の抵抗を低減することができる。ダイオード部の構成は第1実施形態から第4実施形態で説明したショットキー接合ダイオードとは異なるものの、低オン抵抗で動作ができるという特徴は同様に有する。
製造方法についても、溝を掘る前にリソグラフィーとイオン注入等の不純物導入を用いて、P型の反対導電型領域を形成する方法と、アノード電極23が埋め込まれる溝を形成するときに、イオン注入等の不純物導入によって形成することができ、他の実施形態と同様に容易に作成可能である。また、アノード電極23とカソード電極24はP型及びN型の炭化珪素材料と低抵抗で接合が形成可能なニッケルを用いることで、同時に成膜することが可能であり、製造工程を簡略化することが可能である。
本実施形態においても、他の実施形態と異なる部分についての説明をするため、図36〜図39の4つの構造を例に説明しているが、第1実施形態から第4実施形態において説明した構成で、ショットキー接合ダイオードの部分をPN接合ダイオードに置き換えることで、図1〜図27で説明した特徴は同様に得ることができるため、ここでの説明は省略する。
また、第5実施形態においても、上述した実施形態による他の効果を奏することができる。
(第6実施形態)
図40〜図42を用いて、本発明における半導体装置の第6実施形態を説明する。本実施形態においては、第1実施形態〜第5実施形態で説明した内容と同様の動作をする部分の説明は省略し、異なる特徴ついて詳しく説明する。
上記第1実施形態から第5実施形態ではアノード電極とカソード電極が同一主面上に形成される場合について説明してきたが、本実施形態における図40〜図42においては、アノード電極とカソード電極とが基板領域を挟んで対向するように、対面する主面の両方からそれぞれ溝を形成する構成を示している。
図40は、図1に対応する断面図であり、アノード電極3はドリフト領域2が形成される主面側から形成された溝中に形成され、カソード電極4は、基板領域1が形成される対向主面側から形成された溝中に形成されている。本実施形態においても、ショットキー接合ダイオードの耐圧は各溝中に形成されたアノード電極3とカソード電極4の間に形成されたドリフト領域2の側壁の厚みで決まるように形成されている。
本実施形態では、上述した本発明の効果である低オン抵抗を縦型構造で実現した場合の一例である。本実施形態とすることで、アノード電極3とドリフト領域2とが接するショットキー接合部の表面積が増えるため、ショトキー接合ダイオードの内蔵電位を低減することができ、導通時の損失をさらに低減できるという効果を有する。
製造プロセスとしては、他の実施形態に比べると、アノード電極側少なくとも2回に分けて溝を形成する必要があり、多少工程が複雑にはなるが、両面コンタクトアライナー装置を用いれば、表面と裏面の位置合わせも比較的容易にできるため、一般的な半導体装置を用いれば実現可能である。
図41はショットキー接合ダイオードをヘテロ接合ダイオードで形成した場合を例示しており、図42はPN接合ダイオードで形成した場合を示している。いずれの構成にしても、ダイオードの低損失化が可能となる。
本実施形態においても、図示はしていないものの、電界緩和領域6、7や高濃度領域8を形成することができる。
また、第6実施形態においても、上述した実施形態による他の効果を奏することができる。
(第7実施形態)
図43〜図45を用いて、本発明における半導体装置の第7実施形態を説明する。本実施形態においては、第1実施形態〜第6実施形態で説明した内容と同様の動作をする部分の説明は省略し、異なる特徴ついて詳しく説明する。
上記、第1実施形態から第7実施形態ではアノード電極とカソード電極の2端子素子からなるダイオードが形成される場合について説明してきたが、本実施形態においては、ソース電極、ドレイン電極、ゲート電極の3端子素子からなる場合を示しており、具体的にはMOSFETの構成を有している。
図43及び図44は本発明の半導体装置10の断面構造を示している。図45は、本発明の半導体装置10の表面構造を示している。尚、図43は、図45に示すLA-LA線に沿った断面図である。図44は、図45に示すLB-LB線に沿った断面図である。
図43〜図45に示すように、本実施形態の半導体装置10は、例えば炭化珪素のポリタイプが4Hタイプの絶縁性を有する基板領域11上にN型のドリフト領域2が形成された基板材料で構成されている。本実施形態においては、基板領域11には支持基体としての強度を満たす必要があるため、厚さが数10μm〜数100μm程度の厚さを有している。ドリフト領域2としては、例えばN型の不純物密度が1015cm-3〜1018cm-3、厚みが0.1μm〜数10μmのものを用いることができる。なお、素子構造や所要の耐圧により、ドリフト領域2は不純物密度や厚みが前記範囲外となってももちろん良い。本実施形態では例えば不純物密度が1016cm-3、厚みが12μmのものを用いた場合で説明する。
なお、本実施形態では、半導体基体が、基板領域11とドリフト領域2の2層からなる基板の場合について説明するが、ドリフト領域2のみで形成された基板を使用してもかまわないし、反対に多層の基板を使用してもかまわない。また、本実施形態においては、基板材料を炭化珪素材料で形成した場合を説明しているがシリコンなど他の半導体材料で構成されていてもかまわない。また、本実施形態においては、第3実施形態で詳述したように、絶縁性を有する基板領域11を用いることで、溝底部の電界集中を緩和する効果を有しているが、基板領域1がN型もしくはP型であったとしてもドリフト領域2の厚みや溝の深さに制限はあるものの用いることは可能である。
ドリフト領域2の基板領域1との接合面に対向する主面には、U字型の溝が複数形成されており、溝の側壁を介して互いに対向するように、一方の溝にはソース電極33及びゲート電極36が、他方の溝にはドレイン電極34が形成されている。なお、図43および図44においては、溝の底部が垂直形状をした場合を示しているが、溝の底部全体を湾曲させてもよく、底部の端部のみを湾曲させていてももちろんよい。また、本実施形態における説明では、断面構造に対して、奥行き方向に溝が形成されたストライプ型の場合を一例とするが、四角や六角もしくは丸型の環状構造としてもよい。
図43〜図45に示すように、ソース電極33およびゲート電極36が形成されている溝には、所定の繰り返しピッチでソース電極33およびゲート電極36が形成されている。
本実施形態においては、ソース電極33とドレイン電極34に挟まれた溝の側壁間の距離、つまり、ソース電極33とドレイン電極34に挟まれたドリフト領域2の厚みによって、耐圧の大きさが決まる。また、本発明においては、耐圧クラスは限定されず効果を得ることができるが、一例として600Vクラスの場合で説明することとし、本実施形態においては溝の側壁間の距離を6μmとする。ソース電極33が形成される溝側のドリフト領域2には、ソース電極33に接するように、N型のソース領域31とP型のウェル領域32が形成されている。さらに、ソース領域31とウェル領域32とドリフト領域2に例えばシリコン酸化膜からなるゲート絶縁膜35を介して接するようにゲート電極36が形成されている。
また、ドレイン電極34側には溝に接するように、N型の高濃度領域8が形成されている。
ソース電極33は、ソース領域31およびウェル領域32と、ドレイン電極34は高濃度領域8と、それぞれオーミック接続するように、例えば、ニッケル及びチタン、アルミ等を多層とした金属材料を用いている。
本実施形態においては、ソース電極33及びドレイン電極34がドリフト領域2の主面側を覆うように溝からはみ出すような構成をしているが、この場合は、ドリフト領域2の主面部を介してソース電極33とドレイン電極34との間の耐圧が低下しないように、絶縁膜5を形成している。本実施形態では図示していないが、ソース電極33及びドレイン電極34が溝からはみ出さないように埋め込まれた形状をしていても良い。その場合、絶縁膜5は必須ではない。
このように、図43〜図45に示す半導体装置10は、ソース電極、ドレイン電極、ゲート電極の3端子からなるMOSFETとして動作する。
次に、図46〜図57を使って製造方法について説明する。図46、図48、図50、図52、図54、図56は、図43に対応する断面図である。図47、図49、図51、図53、図55、図57は、図44に対応する断面図である。
まず、図46及び図47に示すように、絶縁性を有する基板領域11の上にN型のドリフト領域2をエピタキシャル成長させて形成したN型の炭化珪素半導体基体上に、例えば、熱酸化法もしくはCVD法によって形成された絶縁膜5を形成する。
次に、絶縁膜5上には、溝の部分を形成するべく、フォトリソグラフィによって所定形状に開口した例えばフォトレジスト膜からなるマスク材59を形成する。マスク材の材料としては、フォトレジスト膜以外にもSiN膜や金属材料膜などの材料を用いることができる。
マスク材59が開口した部分において、絶縁膜5の層並びにドリフト領域2を、例えば反応性イオンエッチング(ドライエッチング)によりエッチングする。
次に、図48及び図49に示すように、マスク材59を例えば硫酸と過酸化水素水の混合液などでウエットエッチングして除去した後、フォトリソグラフィによって所定形状に開口した例えばフォトレジスト膜からなるマスク材60を形成し、ドリフト領域2に形成された溝の表面にウェル領域32を形成するべく、例えばイオン注入法を用いて、ボロンやアルミなどのP型のドーパントとなる不純物を導入する。
次に、図50及び図51に示すように、マスク材60を例えば硫酸と過酸化水素水の混合液などでウエットエッチングして除去した後、再度フォトリソグラフィによって所定形状に開口した例えばフォトレジスト膜からなるマスク材61を形成し、ドリフト領域2に形成された溝の表面にソース領域31および高濃度領域8を形成するべく、例えばイオン注入法を用いて、リンや窒素などのN型のドーパントとなる不純物を導入する。
ここではP型の不純物の導入後、N型の不純物の導入をしているが、順序はどちらが先でもかまわない。また、他の実施形態と同様に、不純物導入法としては、少なくともドリフト領域2中に不純物導入できれば、イオン注入法以外にも固相拡散法など別のどの方法を用いても良い。また、第4実施形態など他の実施形態と同様に、溝を形成する前にイオン注入等でドリフト領域2にウェル領域32、ソース領域31、高濃度領域8を形成する製造プロセスを用いても良い。
次に、図52及び図53に示すように、マスク材61を例えば硫酸と過酸化水素水の混合液などでウエットエッチングして除去した後、所定の熱処理による不純物の活性化をへてウェル領域32、ソース領域31、高濃度領域8を形成する。
そして、ドリフト領域2の側壁など剥き出しになっている部分に、ゲート絶縁膜35として、熱酸化法による熱酸化膜もしくはCVD法によるCVD酸化膜を形成した後、ゲート電極36を形成するべく、例えば、LP−CVD法によって形成されたポリシリコン層を形成する。そして、例えばイオン注入法でリンもしくはヒ素を不純物導入することで、N型のゲート電極36層が形成される。このとき、上記多結晶シリコン層は、電子ビーム蒸着法やスパッタ法などで堆積した後にレーザーアニールなどで再結晶化させて形成しても、例えば分子線エピタキシーなどでヘテロエピタキシャル成長させた単結晶シリコンで形成しても構わない。また、不純物ドーピングには固相拡散や気相拡散を用いても構わない。また、導電型もボロンを不純物導入してP型としてもかまわない。
次に、図54及び図55に示すように、ゲート電極36が形成される部分のみポリシリコン層が残るように、フォトリソグラフィによって所定形状に開口した例えばフォトレジスト膜からなるマスク材62を形成し、マスク材62が開口している部分のポリシリコン層をドライエッチングで除去する。その後、ゲート電極36のエッチングされた端部に熱酸化法によって酸化膜を形成し、絶縁ゲート電極を形成する。
最後に、図56及び図57に示すように、ソース電極33やドレイン電極34が形成される溝の側壁に形成されている酸化膜をフッ化アンモニウムとフッ酸との混合溶液でウエットエッチングして除去した後、ソース電極33およびドレイン電極34として、ニッケル、チタン、アルミニウムなどソース領域31、高濃度領域8とオーミック接合をする金属材料を成膜及びエッチングによって形成する。
以上のようにして、本実施形態の半導体装置10を一般的な半導体装置を用いて形成することができる。
次に動作について説明する。
本実施形態においては、例えばソース電極33を接地し、ドレイン電極34に正電位を印加して使用する。
まず、ゲート電極36を例えば接地電位もしくは負電位とした場合、遮断状態を保持する。すなわち、P型のウェル領域32とN型のドリフト領域2間に逆バイアスが印加され、そのPN接合部から主にドリフト領域2側に空乏層が広がるためである。
次に、遮断状態から導通状態へと転じるべくゲート電極36に正電位を印加した場合、ゲート絶縁膜35を介してウェル領域32表層部には反転層が形成される。すると、ゲート絶縁膜35に接したソース領域31とウェル領域32とドリフト領域2の表層部においては自由電子が存在可能なポテンシャルとなり、ドリフト領域2側に伸びていた空乏層後退し、その結果電子電流が導通する。
本実施形態においては、その電子電流が、溝中に形成されたソース電極33とドレイン電極34間を、溝の側壁に対してほぼ垂直に流れるため、基板領域11及びドリフト領域2の厚みを支持基体としての強度を保持できる厚みで構成しつつ、縦型構造では制限が生じていた基板領域の抵抗分を削減できると共に、横型構造では制限が生じていたダイオード領域の高密度化を実現することができる。このため、従来の横型構造及び縦型構造と比べても、導通時の抵抗を低減することができる。
このように、本発明の半導体装置10においては、2端子素子のダイオードだけではなく3端子素子のスイッチング素子にも同様に適用することができる。なお、本実施の説明においては、MOSFETを一例として説明してきているが、IGBTやJFETさらには、第1導電型の半導体基体と、前記半導体基体の一主面に接して前記半導体基体とはバンドギャップが異なったヘテロ半導体領域と、前記ヘテロ半導体領域と前記半導体基体との接合部のヘテロ接合駆動端部においてゲート絶縁膜を介して接するゲート電極と、前記ヘテロ半導体領域とオーミック接続されたソース電極と、前記半導体基体とオーミック接続されたドレイン電極とで構成されるヘテロ接合部に形成されるヘテロ障壁の幅を制御する半導体装置10としてもよい。いずれにしても、導通時の電流が溝の側壁に対してほぼ垂直に流れるため、基板領域11及びドリフト領域2の厚みを支持基体としての強度を保持できる厚みで構成しつつ、縦型構造では制限が生じていた基板領域の抵抗分を削減できると共に、横型構造では制限が生じていたダイオード領域の高密度化を実現することができる。このため、従来の横型構造及び縦型構造と比べても、導通時の抵抗を低減することができる。
また、第7実施形態においても、上述した実施形態による他の効果を奏することができる。
以上、第1実施形態〜第7実施形態を通して、本発明の具体的な構成及び効果を説明してきたが、ドリフト領域の半導体材料として、炭化珪素材料などを一例として説明してきたが、シリコン、シリコンゲルマン、窒化ガリウム、ダイヤモンドなどその他の半導体材料でもかまわない。また、炭化珪素のポリタイプとして4Hタイプを用いて説明したが、6H、3C等その他のポリタイプでも構わない。
以上、実施形態を用いて本発明を詳細に説明したが、本発明は本明細書中に説明した実施形態に限定されるものではない。本発明の範囲は、特許請求の範囲の記載及び特許請求の範囲の記載と均等の範囲により決定されるものである。以下、上記実施形態を一部変更した変更形態について説明する。
1 基板領域
2 ドリフト領域
3、13、23アノード電極
4、14、24カソード電極
5 絶縁膜
6、7 電界緩和領域
8 高濃度領域
10 半導体装置
11 基板領域
15 アノード領域
16 カソード領域
26 反対導電型領域
31 ソース領域
32 ウェル領域
33 ソース電極
34 ドレイン電極
35 ゲート絶縁膜
36 ゲート電極
51〜55、57〜62 マスク材
56 ポリシリコン層
d 深さ
p ピッチ

Claims (16)

  1. 支持基板と、
    前記支持基板上に設けられ、炭化珪素を含む半導体材料からなり、複数の凹部が形成されたドリフト領域と、
    前記凹部に配設された第1の電極と、
    前記第1の電極が配設された凹部とは異なる凹部に配設された第2の電極と、
    を有し、
    前記第1の電極と前記第2の電極とが絶縁されていることを特徴とする半導体装置。
  2. 前記第1の電極の少なくとも一部が、前記ドリフト領域とショットキー接合を有しており、前記第1の電極と前記第2の電極間に、ショットキーバリアダイオードが形成されていることを特徴とする請求項1に記載の半導体装置。
  3. 前記第1の電極の少なくとも一部が、前記ドリフト領域とはバンドギャップが異なった半導体材料からなるヘテロ半導体領域からなり、前記第1の電極と前記第2の電極間に、ヘテロ接合ダイオードが形成されていることを特徴とする請求項1に記載の半導体装置。
  4. 前記ドリフト領域の少なくとも一部が、第1導電型である第1導電型領域と、第2導電型である第2導電型領域とからなり、前記第1の電極と前記第2の電極間に、PN接合ダイオードが形成されていることを特徴とする請求項1に記載の半導体装置。
  5. 前記第1の電極と前記第2の電極とは絶縁された第3の電極を有し、前記第3の電極は前記第1の電極と前記第2の電極との間を流れる電流を制御する制御電極であることを特徴とする請求項1に記載の半導体装置。
  6. 前記複数の前記凹部が前記ドリフト領域の同一主面側に形成されており、前記第1の電極と前記第2の電極とが同一主面側に形成されていることを特徴とする請求項1〜5のいずれか1項に記載の半導体装置。
  7. 前記複数の前記凹部が前記ドリフト領域の互いに対向する2つの主面にそれぞれ形成されており、前記第1の電極と前記第2の電極とが互いに対向するように2つの主面にそれぞれ形成されていることを特徴とする請求項1〜5のいずれか1項に記載の半導体装置。
  8. 前記凹部の深さが、前記第1の電極と前記第2の電極とがそれぞれ形成された凹部の中心間の距離よりも大きいことを特徴とする請求項1〜7のいずれか1項に記載の半導体装置。
  9. 前記凹部の側壁表層部に電界集中を緩和する表層部電界緩和領域が形成されていることを特徴とする請求項1〜8のいずれか1項に記載の半導体装置。
  10. 前記凹部の側壁底部に電界集中を緩和する底部電界緩和領域が形成されていることを特徴とする請求項1〜9のいずれか1項に記載の半導体装置。
  11. 前記凹部の底部が前記支持基板まで延びるように、前記ドリフト領域を貫通していることを特徴とする請求項1〜10のいずれか1項に記載の半導体装置。
  12. 前記支持基板が半導体材料からなることを特徴とする請求項1〜11のいずれか1項に記載の半導体装置。
  13. 前記支持基板が前記ドリフト領域とは反対導電型の前記半導体材料からなることを特徴とする請求項12に記載の半導体装置。
  14. 前記支持基板が絶縁性を有する材料からなることを特徴とする請求項1〜13のいずれか1項に記載の半導体装置。
  15. 前記支持基板が前記ドリフト領域と同じ半導体材料で、かつ、絶縁性を有する材料からなることを特徴とする請求項14に記載の半導体装置。
  16. 前記支持基板が炭化珪素材料からなることを特徴とする請求項1〜15のいずれか1項に記載の半導体装置。
JP2009051048A 2009-03-04 2009-03-04 半導体装置 Active JP5621198B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009051048A JP5621198B2 (ja) 2009-03-04 2009-03-04 半導体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009051048A JP5621198B2 (ja) 2009-03-04 2009-03-04 半導体装置

Publications (2)

Publication Number Publication Date
JP2010206014A true JP2010206014A (ja) 2010-09-16
JP5621198B2 JP5621198B2 (ja) 2014-11-05

Family

ID=42967204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009051048A Active JP5621198B2 (ja) 2009-03-04 2009-03-04 半導体装置

Country Status (1)

Country Link
JP (1) JP5621198B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012129299A (ja) * 2010-12-14 2012-07-05 Nissan Motor Co Ltd 異種材料接合型ダイオード及びその製造方法
CN102598211A (zh) * 2010-10-18 2012-07-18 住友电气工业株式会社 用于制造具有碳化硅衬底的复合衬底的方法
JP2017168858A (ja) * 2011-10-17 2017-09-21 ローム株式会社 チップダイオード
CN107946270A (zh) * 2011-10-17 2018-04-20 罗姆股份有限公司 芯片二极管以及双向齐纳二极管芯片
JP2018206870A (ja) * 2017-05-31 2018-12-27 株式会社テンシックス 半導体素子及びその製造方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0575098A (ja) * 1991-09-12 1993-03-26 Shindengen Electric Mfg Co Ltd 半導体装置
JPH05259436A (ja) * 1992-03-13 1993-10-08 Shindengen Electric Mfg Co Ltd ショットキバリア整流半導体装置
JPH06196683A (ja) * 1992-12-22 1994-07-15 Hitachi Ltd ショットキバリアダイオードおよび半導体集積回路装置
JP2001274398A (ja) * 1999-10-19 2001-10-05 Denso Corp 半導体装置及びその製造方法
JP2003224277A (ja) * 2002-01-31 2003-08-08 Denso Corp 炭化珪素半導体装置とその製造方法
JP2003318413A (ja) * 2002-02-19 2003-11-07 Nissan Motor Co Ltd 高耐圧炭化珪素ダイオードおよびその製造方法
JP2004055627A (ja) * 2002-07-17 2004-02-19 Nippon Inter Electronics Corp 横型トレンチ構造を有するショットキー・バリア・ダイオード及びその製造方法
WO2006038390A1 (ja) * 2004-09-30 2006-04-13 Sanken Electric Co., Ltd. 半導体装置
JP2006313887A (ja) * 2005-04-07 2006-11-16 Fuji Electric Holdings Co Ltd 半導体装置およびその製造方法
JP2008227014A (ja) * 2007-03-09 2008-09-25 Matsushita Electric Ind Co Ltd 窒化物半導体装置及びその製造方法
JP2008235618A (ja) * 2007-03-22 2008-10-02 Toshiba Corp 半導体装置およびその製造方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0575098A (ja) * 1991-09-12 1993-03-26 Shindengen Electric Mfg Co Ltd 半導体装置
JPH05259436A (ja) * 1992-03-13 1993-10-08 Shindengen Electric Mfg Co Ltd ショットキバリア整流半導体装置
JPH06196683A (ja) * 1992-12-22 1994-07-15 Hitachi Ltd ショットキバリアダイオードおよび半導体集積回路装置
JP2001274398A (ja) * 1999-10-19 2001-10-05 Denso Corp 半導体装置及びその製造方法
JP2003224277A (ja) * 2002-01-31 2003-08-08 Denso Corp 炭化珪素半導体装置とその製造方法
JP2003318413A (ja) * 2002-02-19 2003-11-07 Nissan Motor Co Ltd 高耐圧炭化珪素ダイオードおよびその製造方法
JP2004055627A (ja) * 2002-07-17 2004-02-19 Nippon Inter Electronics Corp 横型トレンチ構造を有するショットキー・バリア・ダイオード及びその製造方法
WO2006038390A1 (ja) * 2004-09-30 2006-04-13 Sanken Electric Co., Ltd. 半導体装置
JP2006313887A (ja) * 2005-04-07 2006-11-16 Fuji Electric Holdings Co Ltd 半導体装置およびその製造方法
JP2008227014A (ja) * 2007-03-09 2008-09-25 Matsushita Electric Ind Co Ltd 窒化物半導体装置及びその製造方法
JP2008235618A (ja) * 2007-03-22 2008-10-02 Toshiba Corp 半導体装置およびその製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102598211A (zh) * 2010-10-18 2012-07-18 住友电气工业株式会社 用于制造具有碳化硅衬底的复合衬底的方法
JP2012129299A (ja) * 2010-12-14 2012-07-05 Nissan Motor Co Ltd 異種材料接合型ダイオード及びその製造方法
JP2017168858A (ja) * 2011-10-17 2017-09-21 ローム株式会社 チップダイオード
CN107946270A (zh) * 2011-10-17 2018-04-20 罗姆股份有限公司 芯片二极管以及双向齐纳二极管芯片
US10164125B2 (en) 2011-10-17 2018-12-25 Rohm Co., Ltd. Semiconductor device having first and second electrode layers electrically disconnected from each other by a slit
US10593814B2 (en) 2011-10-17 2020-03-17 Rohm Co., Ltd. Semiconductor device having first and second electrode layers electrically disconnected from each other by a slit
JP2018206870A (ja) * 2017-05-31 2018-12-27 株式会社テンシックス 半導体素子及びその製造方法

Also Published As

Publication number Publication date
JP5621198B2 (ja) 2014-11-05

Similar Documents

Publication Publication Date Title
JP5560519B2 (ja) 半導体装置及びその製造方法
US11342420B2 (en) Heterojunction devices and methods for fabricating the same
JP6996082B2 (ja) 半導体装置および半導体装置の製造方法
JP5101985B2 (ja) ジャンクションバリアショットキーダイオード
JP6855700B2 (ja) 半導体装置およびその製造方法
KR101668215B1 (ko) 제어가능 온-상태 전압을 가진 전력 반도체 정류기
JP7176239B2 (ja) 半導体装置
US8841741B2 (en) High breakdown voltage semiconductor rectifier
JP2005303027A (ja) 半導体装置
JP4282972B2 (ja) 高耐圧ダイオード
JP2007305609A (ja) 半導体装置
JP7030665B2 (ja) 半導体装置
JP5621198B2 (ja) 半導体装置
JP2019216223A (ja) 半導体装置
JP5377548B2 (ja) 半導体整流装置
JP4211642B2 (ja) 半導体装置
JP2023101772A (ja) 半導体装置および半導体装置の製造方法
JP2008160024A (ja) 半導体装置
JP2008226997A (ja) 半導体装置およびその製造方法
JP2006165013A (ja) 半導体装置及びその製造方法
WO2017183375A1 (ja) 半導体装置
WO2015111177A1 (ja) 半導体装置,パワーモジュール,電力変換装置,および鉄道車両
JP3879697B2 (ja) 半導体装置
US10734483B2 (en) Semiconductor device
JP5211479B2 (ja) 半導体装置および半導体装置の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140826

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140908

R151 Written notification of patent or utility model registration

Ref document number: 5621198

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151