JP2010192042A - 半導体装置及びこれを備えるデータ処理システム - Google Patents

半導体装置及びこれを備えるデータ処理システム Download PDF

Info

Publication number
JP2010192042A
JP2010192042A JP2009035805A JP2009035805A JP2010192042A JP 2010192042 A JP2010192042 A JP 2010192042A JP 2009035805 A JP2009035805 A JP 2009035805A JP 2009035805 A JP2009035805 A JP 2009035805A JP 2010192042 A JP2010192042 A JP 2010192042A
Authority
JP
Japan
Prior art keywords
reset signal
circuit
semiconductor device
reset
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009035805A
Other languages
English (en)
Inventor
Yoshio Mizukane
良雄 水兼
Hiroki Fujisawa
宏樹 藤澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micron Memory Japan Ltd
Original Assignee
Elpida Memory Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elpida Memory Inc filed Critical Elpida Memory Inc
Priority to JP2009035805A priority Critical patent/JP2010192042A/ja
Priority to US12/695,784 priority patent/US8274843B2/en
Priority to US12/797,948 priority patent/US8270228B2/en
Publication of JP2010192042A publication Critical patent/JP2010192042A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/4072Circuits for initialization, powering up or down, clearing memory or presetting
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/10Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
    • G11C7/1015Read-write modes for single port memories, i.e. having either a random port or a serial port
    • G11C7/1045Read-write mode select circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/10Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
    • G11C7/1051Data output circuits, e.g. read-out amplifiers, data output buffers, data output registers, data output level conversion circuits
    • G11C7/1066Output synchronization
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/20Memory cell initialisation circuits, e.g. when powering up or down, memory clear, latent image memory

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Dram (AREA)
  • For Increasing The Reliability Of Semiconductor Memories (AREA)
  • Read Only Memory (AREA)

Abstract

【課題】ヒューズ素子などの不揮発性記憶素子から記憶内容を低消費電流で読み出す。
【解決手段】ヒューズ素子31と、外部リセット信号RESET#の遷移に応答して活性化する内部リセット信号RESET1に応答してヒューズ素子31の記憶内容を読み出す読み出し回路RDと、読み出し回路RDによって読み出された記憶内容を保持し、外部リセット信号RESET#の活性化期間に基づいて活性化する第2の内部リセット信号RESET2によってリセットされるラッチ回路L1とを備える。これにより、外部リセット信号RESET#の活性化期間が長くても、ヒューズ素子31に電流が流れる時間は僅かとなるため、リセット時における消費電流を低減することが可能となる。
【選択図】図4

Description

本発明は半導体装置に関し、特に、ヒューズなどの不揮発性記憶素子に記憶された内容によって動作が制御される半導体装置に関する。また、本発明は、このような半導体装置を備えるデータ処理システムに関する。
DRAMなどの半導体装置では、不良アドレスの置換や内部動作の切り替えを行うために不揮発性記憶素子が用いられている。不揮発性記憶素子としては、電気的にプログラム可能なアンチヒューズや、レーザービームにより切断可能なレーザーヒューズがある。不揮発性記憶素子の情報は読み出し信号により読み出され、その情報はラッチ回路に記憶される(特許文献1参照)。
一方、DDR3型のDRAMなど一部の半導体装置には、外部端子としてリセット端子が設けられていることがある。リセット端子は外部リセット信号が入力される端子であり、外部リセット信号が活性化すると上述したラッチ回路がリセットされるとともに、不揮発性記憶素子に記憶された情報の読み出し動作が行われる。これにより、ラッチ回路には不揮発性記憶素子に記憶された情報が正しく取り込まれ、その後、半導体装置の初期化動作が実行される。リセット信号は、起動時に活性化される場合と、動作中の任意のタイミングで活性化される場合とがある。
特開平8−96594号公報
しかしながら、このようなリセット端子を備える半導体装置に対して、特許文献1に記載のヒューズ回路を適用すると、次のような問題がある。
特許文献1では、ATD信号発生回路2からの信号YRDの活性化に応じてフリップフロップ4をリセットし、信号YRDBが活性化している期間に亘って、選択されたヒューズFの読み出しが行われる。特許文献1では、信号YRDBが活性化している期間、常にヒューズFの読み出し動作が行われる。この際に、選択されたヒューズが導通状態であれば、その期間、電源からグランドに対して電流が流れ続ける。
このため、リセット端子を備える半導体装置に対して特許文献1に記載のヒューズ回路を適用すると、外部リセット信号がアクティブである期間に亘り、未切断のヒューズ素子に電流が流れ続けることになる。その結果、例えば、DRAMのディープパワーダウンモードのように低消費電流が求められる状態で外部リセット信号を活性化させると、消費電流値が規定値を超えてしまうという問題があった。
本発明による半導体装置は、外部リセット信号の遷移に応答して第1の内部リセット信号を活性化させ、前記外部リセット信号の活性化期間に基づいて第2の内部リセット信号を活性化させるタイミング制御回路と、不揮発性記憶素子と、前記第1の内部リセット信号に応答して前記不揮発性記憶素子の記憶内容を読み出す読み出し回路と、前記読み出し回路によって読み出された記憶内容を保持し、前記第2の内部リセット信号によってリセットされる第1のラッチ回路とを備えることを特徴とする。
本発明によるデータ処理システムは、前記半導体装置と、前記半導体装置に対して前記外部リセット信号を発行するコントローラとを備え、前記コントローラは、少なくとも前記半導体装置への電源投入時に前記外部リセット信号を活性化させることを特徴とする。
本発明によれば、不揮発性記憶素子への読み出し動作を外部リセット信号の遷移に応答して行っていることから、外部リセット信号の活性化期間が長くても、不揮発性記憶素子に電流が流れる時間は僅かとなる。このため、リセット時における消費電流を低減することが可能となる。
しかも、不揮発性記憶素子から読み出された記憶内容を保持するラッチ回路は、外部リセット信号の活性化期間に基づいてリセットされることから、ラッチ回路の出力が不定となる期間は最小限となる。このため、ラッチ回路の出力を利用する他の内部回路が誤動作を起こすおそれもなくなる。
本発明の好ましい実施形態によるデータ処理システムの構成を示すブロック図である。 第1の実施形態による半導体装置10の構成を示すブロック図である。 タイミング制御回路20の回路図である。 ヒューズ回路30の回路図である。 半導体装置10の動作を説明するためのタイミング図である。 比較例によるヒューズ回路30aの回路図である。 ヒューズ回路30aを用いた場合の動作を示すタイミング図である。 別の比較例によるヒューズ回路30bの回路図である。 ヒューズ回路30bを用いた場合の動作を示すタイミング図である。 第2の実施形態による半導体装置10aの構成を示すブロック図である。 タイミング制御回路20aの回路図である。 半導体装置10aの動作を説明するためのタイミング図である。 タイミング制御回路20bの回路図である。 第3の実施形態による半導体装置の動作を説明するためのタイミング図である。 第4の実施形態による半導体装置10bの構成を示すブロック図である。 第5の実施形態による半導体装置10cの構成を示すブロック図である。
以下、添付図面を参照しながら、本発明の好ましい実施の形態について詳細に説明する。
図1は、本発明の好ましい実施形態によるデータ処理システムの構成を示すブロック図である。
図1に示すデータ処理システムは、半導体装置10とこれを制御するコントローラ12によって構成されている。特に限定されるものではないが、半導体装置10はDDR3(Double Data Rate 3)型のDRAM(Dynamic Random Access Memory)である。コントローラ12は、バス14を介してアドレス、コマンド、クロックなどの信号をDRAMである半導体装置10に供給するとともに、ライトデータの出力及びリードデータの入力を行う。
コントローラ12が発行するコマンドの一つに、外部リセット信号RESET#が含まれる。外部リセット信号RESET#は、半導体装置10をリセットするための信号であり、本実施形態ではローレベルが活性状態である。したがって、通常の動作時においては外部リセット信号RESET#はハイレベルに保つ必要があり、電源投入時やリスタート時において一定期間だけローレベルに活性化される。外部リセット信号RESET#は、アクティブコマンドやリードコマンドなど、複数の信号(RAS,CASなど)の組み合わせによって表現される信号ではなく、専用の配線16を介してコントローラ12から半導体装置10に供給される単一の信号である。
コントローラ12が外部リセット信号RESET#を活性化させるタイミングとしては、少なくとも半導体装置10への電源投入時が挙げられる。但し、電源投入時だけでなく、半導体装置10が電源投入後の定常状態である場合においても、コントローラ12は外部リセット信号RESET#を任意のタイミングで活性化させることにより、半導体装置10をリスタートさせることができる。
図2は、第1の実施形態による半導体装置10の構成を示すブロック図である。
図2に示すように、本実施形態による半導体装置10は、主回路40の他にタイミング制御回路20及びヒューズ回路30を備えている。主回路40とは、当該半導体装置10の主たる機能を実現するための回路ブロックであり、本実施形態のように半導体装置10がDRAMであれば、メモリコアやその周辺回路が該当する。周辺回路とは、アドレスバッファ、アドレスデコーダ、コマンドデコーダ、リフレッシュカウンタ、クロック制御回路、データ入出力回路などの回路ブロックを指す。
タイミング制御回路20は、外部リセット信号RESET#を受けるリセット端子16aに接続されており、これに基づいて内部リセット信号PRESET1、PRESET2を生成する回路である。生成された内部リセット信号PRESET1、PRESET2は、ヒューズ回路30に供給される。
ヒューズ回路30は、内部リセット信号PRESET1、PRESET2に基づいて、制御信号FLOAD3を生成する回路である。制御信号FLOAD3は主回路40に供給され、主回路40はこれに基づいて動作モードが指定される。ヒューズ回路30の設定は、仕様などに基づき半導体装置10の製造時に行われる。つまり、ヒューズ回路30の設定内容は不可逆的なものであり、実使用時に変更することはできない。
その他、半導体装置10には、外部端子として電源端子18a,18bが設けられている。電源端子18aは電源電圧VDDが供給される端子であり、電源端子18aに印加された電源電圧VDDは、主回路40に含まれる各種回路に直接、或いは、電源回路によって昇圧又は降圧された後に供給される。また、電源端子18bは電源電圧VDDQが供給される端子である。電源電圧VDDQとは、主回路40に含まれる出力バッファ(図示せず)の動作電圧として用いられる。
図3は、タイミング制御回路20の回路図である。
図3に示すように、タイミング制御回路20は、内部リセット信号PRESETを遅延させるディレイ回路21と、ディレイ回路21の反転出力と内部リセット信号PRESETを受けるNAND回路22とを有している。内部リセット信号PRESETとは、リセット端子16aに供給された外部リセット信号RESET#の内部信号であり、外部リセット信号RESET#よりもやや位相の遅れた信号である。NAND回路22の出力は、偶数段のインバータ列23を経由することにより、内部リセット信号PRESET1として出力される。また、内部リセット信号PRESETは、偶数段の別のインバータ列24を経由することにより、内部リセット信号PRESET2として出力される。
図4は、ヒューズ回路30の回路図である。
図4に示すように、ヒューズ回路30は、ヒューズ素子31と、読み出し回路RDと、ラッチ回路L1とを有している。ヒューズ素子31は、レーザービームの照射によって切断することが可能な不揮発性記憶素子(レーザーヒューズ)である。したがって、レーザービームを照射する前は導通状態であり、レーザービームを照射した後は絶縁状態となる。かかる変化は不可逆的であり、一旦絶縁状態に変化させたヒューズ素子31を元の導通状態に戻すことはできない。特に限定されるものではないが、レーザービームの照射は半導体装置10の製造時においてウェハ状態で行われる。
読み出し回路RDは、内部リセット信号PRESET1に応答してヒューズ素子31の記憶内容を読み出す回路である。読み出し回路RDは、互いに並列接続されるとともにいずれもヒューズ素子31に対して直列接続されたトランジスタTr1,Tr2と、トランジスタTr1,Tr2とヒューズ素子31との接続点Aに入力端が接続され、トランジスタTr2のゲート電極(制御電極)に出力端が接続されたインバータINV1とを有している。トランジスタTr1,Tr2は、いずれもPチャンネルMOSトランジスタである。トランジスタTr1のゲート電極には内部リセット信号PRESET1が供給されている。
かかる構成により、内部リセット信号PRESET1がローレベルに活性化すると、トランジスタTr1がオンし、ヒューズ素子31に電圧が印加される。このため、ヒューズ素子31が導通状態(レーザービームによって切断されていない状態)であれば、トランジスタTr1のオン電流がヒューズ素子31を介してグランドに流れることから、接続点Aの電位はローレベルとなる。これに対し、ヒューズ素子31が絶縁状態(レーザービームによって切断された状態)であれば、トランジスタTr1がオンしてもヒューズ素子31には電流が流れないことから、接続点Aの電位はハイレベルとなる。接続点Aの論理レベルは、トランジスタTr2及びインバータINV1からなるラッチ回路L2によって保持され、インバータINV2を介して出力される。図4において、読み出し回路RDの出力は制御信号FLOAD1と表記されている。
ラッチ回路L1は、2つのNAND回路G1,G2が循環接続されてなるSRラッチ回路であり、そのリセット入力端Rには制御信号FLOAD2が供給される。制御信号FLOAD2は、内部リセット信号PRESET2と同じ信号であるが、信号伝搬により生じる遅延により、内部リセット信号PRESET2よりもやや位相が遅れている。
したがって、内部リセット信号PRESET2がローレベルに活性化すると、インバータINV3を介したラッチ回路L1の出力は強制的にローレベルとなる。一方、ラッチ回路L1のセット入力端Sには、読み出し回路RDの出力が供給される。これにより、内部リセット信号PRESET1が活性化してない状態(ハイレベル)で読み出し回路RDの出力がローレベルになると、インバータINV3を介したラッチ回路L1の出力である制御信号FLOAD3はハイレベルとなる。ラッチ回路L1にラッチされた情報は、制御信号FLOAD2が活性化するまで保持される。
以上が本実施形態による半導体装置10の構成である。次に、本実施形態による半導体装置10の動作について説明する。
図5は、本実施形態による半導体装置10の動作を説明するためのタイミング図である。図5に示す例は、電源投入時であるCASE1と、電源投入後の定常状態であるCASE2において外部リセット信号RESET#がそれぞれ活性化した場合の動作を示している。
図5に示すように、外部リセット信号RESET#は、電源投入時であるCASE1においては200μsec以上の期間に亘り活性化し、電源投入後の定常状態であるCASE2においては100nsec以上の期間に亘り活性化する。電源投入時であるCASE1において外部リセット信号RESET#の活性化期間を長く設定しているのは、電源投入時においては電源電圧VDD,VDDQが安定しておらず、正しくリセット動作を行うためには十分な時間が必要だからである。これに対し、電源投入後の定常状態においては、電源電圧VDD,VDDQが安定していることから、短期間で確実にリセット動作を行うことが可能である。
CASE1,2のいずれにおいても、外部リセット信号RESET#がローレベルに活性化すると、これに連動して、内部リセット信号PRESET及びPRESET2も活性化する。もちろん、図3に示したインバータ列24の経由などによる所定の伝搬時間が存在することから、内部リセット信号PRESETの位相は外部リセット信号RESET#に対してやや遅れ、内部リセット信号PRESET2の位相は内部リセット信号PRESETに対してやや遅れる。
これに対し、内部リセット信号PRESET1は、内部リセット信号PRESETの立ち上がりエッジに応答して、所定期間T1だけローレベルに活性化する。所定期間T1は、図3に示したディレイ回路21のディレイ量によって定められる。所定期間T1としては、外部リセット信号RESET#の活性化期間よりも十分に短く設計され、定常状態における外部リセット信号RESET#の活性化期間が100nsec以上であるとすれば、所定期間T1は1nsec程度に設定することが好ましい。但し、所定期間T1が短すぎると、読み出し回路RDによる読み出し動作が正しく行われないおそれがあることから、2nsec以上の時間となるよう、設計することが好ましい。
これにより、外部リセット信号RESET#が活性化すると、外部リセット信号RESET#の活性化期間と同じ期間に亘り内部リセット信号PRESET2(=制御信号FLOAD2)が活性化し、その後、外部リセット信号RESET#が活性状態から非活性状態に遷移すると、これに応答して内部リセット信号PRESET1が所定期間T1だけ活性化することになる。
その結果、制御信号FLOAD2の活性化期間中は、ヒューズ回路30に含まれるラッチ回路L1が強制的にリセットされるため、ヒューズ回路30の出力である制御信号FLOAD3はローレベルに固定される。その後、内部リセット信号PRESET1が所定期間T1だけ活性化すると、読み出し回路RDはヒューズ素子31の記憶内容の読み出しを行い、その結果に応じて制御信号FLOAD1の論理レベルが定められる。これにより、ヒューズ素子31が切断されていれば制御信号FLOAD1はローレベルとなり、ラッチ回路L1はセットされるため、ヒューズ回路30の出力である制御信号FLOAD3はハイレベルに変化する。一方、ヒューズ素子31が切断されていなければ、制御信号FLOAD1はハイレベルとなることから、ヒューズ回路30の出力である制御信号FLOAD3はローレベルを維持する。尚、図5に示す例では、ヒューズ素子31が切断されている場合の波形を示している。
以上の動作により、外部リセット信号RESET#が活性化するとヒューズ素子31の記憶内容が読み出され、これに基づいてヒューズ回路30の出力である制御信号FLOAD3の論理レベルが定められる。
この時、本実施形態では、ヒューズ素子31に電流を流す期間T1は、外部リセット信号RESET#の活性化期間とは関係なく、内部リセット信号PRESET1の活性化期間によって定められることから、ヒューズ素子31への通電による消費電流を抑制することが可能となる。特に、電源投入時であるCASE1のように、外部リセット信号RESET#の活性化期間が長い場合であっても、ヒューズ素子31に電流が流れる期間はあくまで所定期間T1に固定されることから、電源投入時における消費電流を大幅に抑制することが可能となる。
しかも、本実施形態では、外部リセット信号RESET#が活性化すると、ラッチ回路L1を直ちにリセットしていることから、ヒューズ回路30の出力である制御信号FLOAD3が不定となる期間は最小限に抑えられる。このため、制御信号FLOAD3の不定出力によって主回路40が誤動作するおそれもなくなる。
図6は、比較例によるヒューズ回路30aの回路図である。
図6に示すヒューズ回路30aは、ラッチ回路L1のリセット入力端に内部リセット信号PRESET2が供給されている点において、図4に示したヒューズ回路30と相違している。したがって、内部リセット信号PRESET1は用いられていない。
図7は、比較例によるヒューズ回路30aを用いた場合の動作を示すタイミング図である。
図7に示すように、比較例によるヒューズ回路30aを用いた場合、内部リセット信号PRESET2の活性化期間に亘ってヒューズ素子31には電流が流れ続ける。このため、特に電源投入時であるCASE1のように、外部リセット信号RESET#の活性化期間が長い場合、ヒューズ素子31には電流が長時間流れ続けるため、消費電流が増大してしまう。
これに対し、上述した第1の実施形態では、外部リセット信号RESET#の遷移(立ち上がりエッジ)に応答して所定期間T1だけヒューズ素子31に電流を流していることから、図6及び図7を用いて説明した問題が生じることはない。
図8は、別の比較例によるヒューズ回路30bの回路図である。
図8に示すヒューズ回路30bは、ラッチ回路L1のリセット入力端に内部リセット信号PRESET1が供給されている点において、図4に示したヒューズ回路30と相違している。したがって、内部リセット信号PRESET2は用いられていない。
図9は、比較例によるヒューズ回路30bを用いた場合の動作を示すタイミング図である。
図9に示すように、比較例によるヒューズ回路30bを用いた場合、上述した第1の実施形態と同様、ヒューズ素子31に電流が流れるのは、内部リセット信号PRESET1が活性化する所定期間T1に限定される。しかしながら、内部リセット信号PRESET1が活性化するのは、外部リセット信号RESET#が非活性化した後である。したがって、電源投入時においては、外部リセット信号RESET#が非活性化するまでの期間(すなわち200μsec以上の期間)、制御信号FLOAD3の出力は不定となる。このため、制御信号FLOAD3を利用する主回路40が誤動作するおそれが生じる。
これに対し、上述した第1の実施形態では、外部リセット信号RESET#が活性化すると直ちに制御信号FLOAD3をローレベルに固定していることから、図8及び図9を用いて説明した問題が生じることはない。
以上説明したように、本実施形態による半導体装置10によれば、消費電流を抑制しつつ主回路40の誤動作を防止することが可能となる。
次に、本発明の好ましい第2の実施形態について説明する。
図10は、第2の実施形態による半導体装置10aの構成を示すブロック図である。
図10に示すように、本実施形態による半導体装置10aは、パワーオンリセット信号生成回路50を備えるとともに、タイミング制御回路20がタイミング制御回路20aに置き換えられている点において、上述した第1の実施形態による半導体装置10と相違している。その他の点については、第1の実施形態による半導体装置10と同一であることから、同一の要素には同一の符号を付し、重複する説明は省略する。
パワーオンリセット信号生成回路50は電源端子18a,18bに接続されており、これら電源端子に供給される電源電圧VDD,VDDQの投入を検出する回路である。パワーオンリセット信号生成回路50の出力であるパワーオンリセット信号PONは、電源投入直後においてはハイレベル(上昇中の電源電圧とほぼ同じ値)であるが、電源電圧が一定値以上に上昇するとローレベルに変化し、その後はローレベルに固定される。パワーオンリセット信号PONは、タイミング制御回路20aに供給される。
図11は、タイミング制御回路20aの回路図である。
図11に示すように、タイミング制御回路20aは、ディレイ回路21の反転出力と内部リセット信号PRESETを受けるAND回路25と、AND回路25の出力とパワーオンリセット信号PONを受けるNOR回路26とを有している。NOR回路26の出力は、内部リセット信号PRESET1として出力される。その他の点については、図3に示したタイミング制御回路20と同一である。
図12は、本実施形態による半導体装置10aの動作を説明するためのタイミング図である。
図12に示すように、本実施形態においては、外部リセット信号RESET#がハイレベルに遷移した場合だけでなく、パワーオンリセット信号PONがハイレベルとなっている期間においても、内部リセット信号PRESET1がローレベルに活性化する。これにより、電源投入時に外部リセット信号RESET#が活性化されると、パワーオンリセット信号PONの活性化期間にトランジスタTr1がオンし、読み出し回路RDに含まれるラッチ回路L2にヒューズ素子31の記憶内容がラッチされる。その結果、読み出し回路RDに含まれるラッチ回路L2は、直ちに不定状態から記憶内容の保持状態となることから、より安定した動作を確保することが可能となる。
本実施形態では、パワーオンリセット信号PONに応答してヒューズ素子31の記憶内容が読み出されるため、電源投入時においては、外部リセット信号RESET#の遷移に応答して内部リセット信号PRESET1を活性化させる必要は本来ない。しかしながら、パワーオンリセット信号PONはある程度不安定な信号であり、場合によっては電源投入を行ってもパワーオンリセット信号PONが発生しないこともあり得る。このような状況を考慮し、本実施形態では、パワーオンリセット信号PONに応答してヒューズ素子31の記憶内容が読み出した後も、外部リセット信号RESET#の遷移に応答して再度の読み出しを行うことで、確実な読み出し動作を担保している。
次に、本発明の好ましい第3の実施形態について説明する。
本実施形態による半導体装置は、タイミング制御回路20aがタイミング制御回路20bに置き換えられている点において、上述した第2の実施形態による半導体装置10aと相違している。このため、本実施形態による半導体装置の全体構成を示すブロック図については省略する。
図13は、第3の実施形態にて用いるタイミング制御回路20bの回路図である。
図13に示すように、タイミング制御回路20bは、図11に示したAND回路25がNOR回路27に置き換えられている。その他の点については、図11に示したタイミング制御回路20aと同一である。
図14は、本実施形態による半導体装置の動作を説明するためのタイミング図である。
図14に示すように、本実施形態においては、外部リセット信号RESET#がローレベルに遷移した場合に、内部リセット信号PRESET1が所定期間T1だけ活性化する。つまり、上記第1及び第2の実施形態では、外部リセット信号RESET#が活性状態から非活性状態に遷移した場合に内部リセット信号PRESET1を発生させていたが、本実施形態では、外部リセット信号RESET#が非活性状態から活性状態に遷移したことに応答して内部リセット信号PRESET1を発生させている。
但し、電源投入時においては、外部リセット信号RESET#が非活性状態から活性状態に遷移することがない。つまり、電源投入時における外部リセット信号RESET#は、不定状態から活性状態となり、その後非活性状態に遷移するのみである。このため、本実施形態においても、パワーオンリセット信号PONに応答して内部リセット信号PRESET1を活性化させている。
本実施形態によれば、ラッチ回路L1のリセットと読み出し回路RDによる読み出し動作が並行して行われることから、一連の動作に要する時間を短縮することが可能となる。
次に、本発明の好ましい第4の実施形態について説明する。
図15は、第4の実施形態による半導体装置10bの構成を示すブロック図である。
図15に示すように、本実施形態による半導体装置10bは、モード設定回路60を備える点において、上述した第1の実施形態による半導体装置10と相違している。その他の点については、第1の実施形態による半導体装置10と同一であることから、同一の要素には同一の符号を付し、重複する説明は省略する。
モード設定回路60は、主回路40の動作モードを指定するためのレジスタである。つまり、主回路40の動作モードは、ヒューズ回路30及びモード設定回路60の両方によって指定されるが、ヒューズ回路30による動作モードの指定は不可逆的であり、仕様などに基づき製造段階で決定される。これに対し、モード設定回路60による動作モードの指定は可逆的であり、ユーザ側で任意に変更しうる。モード設定回路60への書き込みは、半導体装置10bのリセット時において行われる。一例として、いわゆるモードレジスタがモード設定回路60に該当する。
図15に示すように、モード設定回路60には内部リセット信号PRESET2が供給されており、モード設定回路60の設定内容は、内部リセット信号PRESET2の活性化に応答してリセットされる。これにより、外部リセット信号RESET#が活性化すると、ヒューズ回路30からの情報の読み出しが行われるだけでなく、モード設定回路60のリセットも同時に行われることになる。これにより、半導体装置10bを完全にリセットすることが可能となる。
次に、本発明の好ましい第5の実施形態について説明する。
図16は、第5の実施形態による半導体装置10cの構成を示すブロック図である。
図16に示すように、本実施形態による半導体装置10cは、モード設定回路60を備える点において、上述した第2又は第3の実施形態による半導体装置10aと相違している。その他の点については、第2又は第3の実施形態による半導体装置10aと同一である。図16に示すように、本実施形態においても、モード設定回路60の設定内容は、内部リセット信号PRESET2の活性化に応答してリセットされる。これにより、外部リセット信号RESET#が活性化すると、半導体装置10cを完全にリセットすることが可能となる。
以上、本発明の好ましい実施形態について説明したが、本発明は、上記の実施形態に限定されることなく、本発明の主旨を逸脱しない範囲で種々の変更が可能であり、それらも本発明の範囲内に包含されるものであることはいうまでもない。
例えば、上記各実施形態では、不揮発性記憶素子として、レーザービームの照射によって切断可能なヒューズ素子31を用いているが、不揮発性記憶素子がレーザーヒューズに限定されるものではない。したがって、大電流による溶断が可能なヒューズ素子であっても構わないし、高電圧の印加により絶縁状態から導通状態へ不可逆的に変化させることが可能なアンチヒューズ素子であっても構わない。さらには、各種のROM素子又はROM回路であっても構わない。ROM素子又はROM回路を用いる場合であっても、情報を不可逆的に記憶する素子又は回路である必要はなく、例えば、EEPROMのように情報を可逆的に記憶する素子又は回路であっても構わない。
10,10a,10b,10c 半導体装置
12 コントローラ
14 バス
16 配線
16a リセット端子
18a,18b 電源端子
20,20a,20b タイミング制御回路
30,30a,30b ヒューズ回路
31 ヒューズ素子
40 主回路
50 パワーオンリセット信号生成回路
60 モード設定回路
L1 ラッチ回路(第1のラッチ回路)
L2 ラッチ回路(第2のラッチ回路)
R 読み出し回路
Tr1 トランジスタ(第1のトランジスタ)
Tr2 トランジスタ(第2のトランジスタ)

Claims (10)

  1. 外部リセット信号の遷移に応答して第1の内部リセット信号を活性化させ、前記外部リセット信号の活性化期間に基づいて第2の内部リセット信号を活性化させるタイミング制御回路と、
    不揮発性記憶素子と、
    前記第1の内部リセット信号に応答して前記不揮発性記憶素子の記憶内容を読み出す読み出し回路と、
    前記読み出し回路によって読み出された記憶内容を保持し、前記第2の内部リセット信号によってリセットされる第1のラッチ回路と、を備えることを特徴とする半導体装置。
  2. 前記読み出し回路は、前記不揮発性記憶素子から読み出した記憶内容を保持する第2のラッチ回路を含んでおり、
    前記第1のラッチ回路は、前記第2のラッチ回路に保持された前記記憶内容に基づいてセットされ、前記第2の内部リセット信号によってリセットされるSRラッチ回路であることを特徴とする請求項1に記載の半導体装置。
  3. 前記読み出し回路は、
    互いに並列接続されるとともにいずれも前記不揮発性記憶素子に対して直列接続された第1及び第2のトランジスタと、
    前記第1及び第2のトランジスタと前記不揮発性記憶素子との接続点に入力端が接続され、前記第2のトランジスタの制御電極に出力端が接続されたインバータと、を含み、
    前記第1のトランジスタの制御電極に前記第1の内部リセット信号が供給され、
    前記第2のトランジスタ及び前記インバータによって前記第2のラッチ回路が構成されている、ことを特徴とする請求項2に記載の半導体装置。
  4. 電源電圧の投入に応答してパワーオンリセット信号を生成するパワーオンリセット信号生成回路をさらに備え、
    前記タイミング制御回路は、前記外部リセット信号の遷移にかかわらず、前記パワーオンリセット信号の活性化に応答して前記第1の内部リセット信号を活性化させることを特徴とする請求項1乃至3のいずれか一項に記載の半導体装置。
  5. 任意の動作モードが設定されるモード設定回路をさらに備え、
    前記モード設定回路は、前記第2の内部リセット信号によってリセットされることを特徴とする請求項1乃至4のいずれか一項に記載の半導体装置。
  6. 前記不揮発性記憶素子は情報を不可逆的に記憶し、前記モード設定回路は設定された動作モードを可逆的に記憶することを特徴とする請求項5に記載の半導体装置。
  7. 前記外部リセット信号は、少なくとも電源電圧の投入時に活性化されることを特徴とする請求項1乃至6のいずれか一項に記載の半導体装置。
  8. 前記外部リセット信号は、電源投入後の定常状態においても活性化されることを特徴とする請求項7に記載の半導体装置。
  9. 請求項1乃至6のいずれか一項に記載の半導体装置と、前記半導体装置に対して前記外部リセット信号を発行するコントローラとを備え、
    前記コントローラは、少なくとも前記半導体装置への電源投入時に前記外部リセット信号を活性化させることを特徴とするデータ処理システム。
  10. 前記コントローラは、前記半導体装置が電源投入後の定常状態である場合においても、前記外部リセット信号を活性化させることを特徴とする請求項9に記載のデータ処理システム。
JP2009035805A 2009-02-18 2009-02-18 半導体装置及びこれを備えるデータ処理システム Pending JP2010192042A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009035805A JP2010192042A (ja) 2009-02-18 2009-02-18 半導体装置及びこれを備えるデータ処理システム
US12/695,784 US8274843B2 (en) 2009-02-18 2010-01-28 Semiconductor device having nonvolatile memory element and data processing system including the same
US12/797,948 US8270228B2 (en) 2009-02-18 2010-06-10 Semiconductor device having nonvolatile memory element and data processing system including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009035805A JP2010192042A (ja) 2009-02-18 2009-02-18 半導体装置及びこれを備えるデータ処理システム

Publications (1)

Publication Number Publication Date
JP2010192042A true JP2010192042A (ja) 2010-09-02

Family

ID=42559789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009035805A Pending JP2010192042A (ja) 2009-02-18 2009-02-18 半導体装置及びこれを備えるデータ処理システム

Country Status (2)

Country Link
US (1) US8274843B2 (ja)
JP (1) JP2010192042A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013190835A (ja) * 2012-03-12 2013-09-26 Renesas Mobile Corp 半導体装置及び携帯端末装置
US9118459B2 (en) 2013-02-21 2015-08-25 Panasonic Corporation Wireless communication device and activation method of the wireless communication device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4908560B2 (ja) * 2009-08-31 2012-04-04 株式会社東芝 強誘電体メモリ及びメモリシステム
CN116013390B (zh) * 2023-03-28 2023-06-16 长鑫存储技术有限公司 一种存储器及其读取方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2630274B2 (ja) 1994-09-28 1997-07-16 日本電気株式会社 半導体記憶装置
US5825706A (en) * 1997-10-27 1998-10-20 Motorola, Inc. Circuit and method for retaining data in DRAM in a portable electronic device
JP4093705B2 (ja) * 2000-06-30 2008-06-04 富士通株式会社 半導体集積回路
EP1518325A1 (en) 2002-06-28 2005-03-30 Advanced Micro Devices, Inc. Phase-locked loop with automatic frequency tuning
KR100593139B1 (ko) * 2004-12-30 2006-06-26 주식회사 하이닉스반도체 오프 칩 드라이버 제어용 카운터 회로 및 이를 이용한오프 칩 드라이버의 출력 전류값 변경방법

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013190835A (ja) * 2012-03-12 2013-09-26 Renesas Mobile Corp 半導体装置及び携帯端末装置
US9111043B2 (en) 2012-03-12 2015-08-18 Renesas Electronics Corporation Semiconductor device and mobile terminal device
US9471530B2 (en) 2012-03-12 2016-10-18 Renesas Electronics Corporation Semiconductor device and mobile terminal device
US9118459B2 (en) 2013-02-21 2015-08-25 Panasonic Corporation Wireless communication device and activation method of the wireless communication device

Also Published As

Publication number Publication date
US8274843B2 (en) 2012-09-25
US20100208528A1 (en) 2010-08-19

Similar Documents

Publication Publication Date Title
JP2007122807A (ja) 半導体記憶装置及びその調整方法
US7471578B2 (en) Internal voltage generation control circuit and internal voltage generation circuit using the same
JP5082334B2 (ja) 電気ヒューズ回路、メモリ装置及び電子部品
JP2008198304A (ja) 不揮発性半導体記憶装置
JP2006172660A (ja) 不揮発性半導体記憶装置
JP4532951B2 (ja) 半導体集積回路の使用方法および半導体集積回路
JP2010165428A (ja) 不揮発性半導体記憶装置及びその制御方法
JP4146628B2 (ja) メモリシステム及び半導体集積回路
JP2010192042A (ja) 半導体装置及びこれを備えるデータ処理システム
JP2008028984A (ja) 半導体装置
US20150009742A1 (en) Semiconductor memory device having improved fuse sensing reliability in slow power-up operation and method for reading fuse block thereby
JP3971565B2 (ja) 半導体装置及び半導体装置初期設定方法
US8270228B2 (en) Semiconductor device having nonvolatile memory element and data processing system including the same
CN115413357A (zh) 供电电压选择电路
JP5592238B2 (ja) 半導体装置及びその制御方法
JP2011165274A (ja) 半導体装置およびデータ処理システム
JP2010182365A (ja) アンチヒューズ回路及び半導体記憶装置
USRE46141E1 (en) Semiconductor device and timing control method for the same
JP5587156B2 (ja) 不揮発性メモリを備える半導体装置及び不揮発性メモリに対するアクセス制御方法
US8699285B2 (en) Semiconductor memory device and integrated circuit
US9001610B2 (en) Semiconductor device generating internal voltage
JP2009283602A (ja) 不揮発性半導体メモリ
KR100798739B1 (ko) 반도체메모리소자 및 그의 구동 방법
US8395439B2 (en) Semiconductor device having fuse circuit and control method thereof
US10802535B1 (en) Resetting clock divider circuitry prior to a clock restart