JP2010152968A - 半導体記憶装置 - Google Patents

半導体記憶装置 Download PDF

Info

Publication number
JP2010152968A
JP2010152968A JP2008329252A JP2008329252A JP2010152968A JP 2010152968 A JP2010152968 A JP 2010152968A JP 2008329252 A JP2008329252 A JP 2008329252A JP 2008329252 A JP2008329252 A JP 2008329252A JP 2010152968 A JP2010152968 A JP 2010152968A
Authority
JP
Japan
Prior art keywords
write
auto precharge
command
memory device
semiconductor memory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008329252A
Other languages
English (en)
Inventor
Koji Kuroki
浩二 黒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micron Memory Japan Ltd
Original Assignee
Elpida Memory Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elpida Memory Inc filed Critical Elpida Memory Inc
Priority to JP2008329252A priority Critical patent/JP2010152968A/ja
Priority to US12/647,277 priority patent/US8120978B2/en
Publication of JP2010152968A publication Critical patent/JP2010152968A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/4076Timing circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/409Read-write [R-W] circuits 
    • G11C11/4094Bit-line management or control circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Dram (AREA)

Abstract

【課題】オートプリチャージ機能を持つ半導体記憶装置の消費電力を低減する。
【解決手段】それぞれ内部クロックICLKW,ICLKWAを生成するクロック生成回路70,80と、内部クロックICLKに同期してレイテンシをカウントするレイテンシカウンタと、内部クロックICLKWAに同期してライトリカバリ期間をカウントするリカバリカウンタとを備える。クロック生成回路80は、オートプリチャージが指定されている場合には内部クロックICLKWAを活性化させ、オートプリチャージが指定されていない場合には内部クロックICLKWAを非活性化させる。これにより、オートプリチャージ機能を使用しない場合にリカバリカウンタ60がカウント動作を行わないことから、無駄な電力消費を防止することが可能となる。
【選択図】図1

Description

本発明は半導体記憶装置に関し、特に、リード動作又はライト動作の終了後、ワード線のリセット及びビット線のプリチャージを自動的に行うオートプリチャージ機能を有する半導体記憶装置に関する。
代表的な半導体記憶装置である同期式のDRAM(Dynamic Random Access Memory)は、外部クロックに同期して発行されるコマンド及びアドレスに基づいてその動作が制御される。具体的には、アクティブコマンドに同期してロウアドレスを入力した後、リードコマンドに同期してカラムアドレスを入力すれば、リードコマンドの入力からCASレイテンシが経過した後、リードデータが出力される。また、アクティブコマンドに同期してロウアドレスを入力した後、ライトコマンドに同期してカラムアドレスを入力すれば、ライトコマンドの入力からCASライトレイテンシが経過した後、ライトデータの入力が可能となる。
そして、このようなリード動作及びライト動作を行った後、プリチャージコマンドを発行することによりワード線のリセット及びビット線のプリチャージを行う。
近年における同期式のDRAMにおいては、リード動作又はライト動作を行った後、ワード線のリセット及びビット線のプリチャージを自動的に行う「オートプリチャージ機能」が備えられていることが多い(特許文献1参照)。この種のDRAMにおいては、所定のアドレスピンを用いることにより、オートプリチャージを行うか否かをリードコマンド発行時又はライトコマンド発行時に指定することができる。したがって、リードコマンド発行時又はライトコマンド発行時にオートプリチャージを指定すれば、動作終了後にプリチャージコマンドを入力する必要がなくなる。
一方、ユーザによっては、オートプリチャージ機能を使用せずにプリチャージコマンドを入力したいという要望もある。このような場合には、リードコマンド発行時又はライトコマンド発行時にオートプリチャージを指定しなければよい。
オートプリチャージ機能を用いて自動的にプリチャージを行う場合、メモリセルへの書き込み(リード時においては再書き込み)が正しく完了してから、つまり、十分なライトリカバリ期間が経過してからプリチャージを実行する必要がある。このため、オートプリチャージ機能を実現するためには、ライトリカバリ期間を計時するためのカウンタ回路が必要となる。
特開平11−306760号公報
しかしながら、近年の同期式DRAMに用いられるクロックは非常に高周波であることから、ライトリカバリ期間の計時に用いるカウンタ回路には、多段のフリップフロップ回路が必要となる。そして、このカウンタ回路は、オートプリチャージ機能を使用しない場合においても、リードライト動作のたびにカウント動作を行うことから、オートプリチャージ機能を使用しない場合において無駄な電力を消費していた。
近年は、同期式のDRAMに対しては低消費電力化が強く求められており、上記のような無駄な消費電力を削減することが望まれている。
本発明による半導体記憶装置は、リード動作又はライト動作の終了後、ワード線のリセット及びビット線のプリチャージを自動的に行うオートプリチャージ機能を有する半導体記憶装置であって、それぞれ第1及び第2の内部クロックを生成する第1及び第2のクロック生成回路と、第1の内部クロックに同期して、リードコマンドの発行からリードデータの出力までのクロック数又はライトコマンドの発行からライトデータの入力までのクロック数を示すレイテンシを少なくともカウントする第1のカウンタ回路と、第2の内部クロックに同期して、リードデータの出力完了又はライトデータの入力完了からオートプリチャージを開始するまでのライトリカバリ期間を少なくともカウントする第2のカウンタ回路と、を備え、第2のクロック生成回路は、リードコマンド又はライトコマンドの発行時にオートプリチャージが指定されている場合には第2の内部クロックを活性化させ、リードコマンド又はライトコマンドの発行時にオートプリチャージが指定されていない場合には第2の内部クロックを非活性化させることを特徴とする。
本発明によれば、レイテンシのカウントに用いる第1の内部クロックとは別に、ライトリカバリ期間のカウントに用いる第2の内部クロックを生成し、オートプリチャージが指定されていない場合には第2の内部クロックを非活性化(停止)させていることから、オートプリチャージ機能を使用しない場合に第2のカウンタがカウント動作を行わないことから、無駄な電力消費を防止することが可能となる。
以下、添付図面を参照しながら、本発明の好ましい実施の形態について詳細に説明する。
図1は、本発明の好ましい第1の実施形態による半導体記憶装置10の構成を示すブロック図である。
図1に示すように、本実施形態による半導体記憶装置10は、バンク#0〜バンク#7からなるメモリセルアレイ20と、メモリセルアレイ20に対してロウ系の選択を行うロウデコーダ21と、メモリセルアレイ20に対してカラム系の選択を行うカラムデコーダ22とを備えている。
ロウデコーダ21には、ロウバンク制御回路31からロウアドレスXA、バンクアドレスBA及びロウ制御回路XCが供給され、ロウデコーダ21はこれに基づいてメモリセルアレイ20に含まれるワード線WLの選択を行う。また、カラムデコーダ22には、カラムバンク制御回路32からカラムアドレスYA、バンクアドレスBA及びカラム制御信号YCが供給され、カラムデコーダ22はこれに基づいてカラム選択線YSの選択を行う。カラム選択線YSは、メモリセルアレイ20に含まれるビット線を選択するための信号である。
ロウバンク制御回路31には、入力レシーバ・アドレスラッチ回路41からロウアドレスXA及びバンクアドレスBAが供給されるとともに、リカバリカウンタ60からリカバリ完了信号RENDが供給される。特に限定されるものではないが、本実施形態ではロウアドレスXAはX13〜X0からなる14ビット構成であり、それぞれアドレスピンA13〜A0を介して入力される。また、バンクアドレスBAはB2〜B0からなる3ビット構成であり、それぞれアドレスピンBA2〜BA0を介して入力される。これら3ビットのバンクアドレスBAは、8つのバンク#0〜#7を選択するために用いられる。
また、カラムバンク制御回路32には、入力レシーバ・アドレスラッチ回路41からカラムアドレスYA及びバンクアドレスBAが供給されるとともに、レイテンシカウンタ50からバースト完了信号BENDが供給される。特に限定されるものではないが、本実施形態ではカラムアドレスYAはY9〜Y0からなる10ビット構成であり、それぞれアドレスピンA9〜A0を介して入力される。したがって、カラムアドレスYAを入力する際には、アドレスピンA13〜A10はアドレスの入力には使用されない。
これを利用して、カラムアドレス入力時におけるアドレスピンA10は、オートプリチャージ機能の指定に用いる。具体的には、カラムアドレス入力時においてアドレスピンA10をハイレベルとすれば、オートプリチャージが指定され、リードライト動作の終了後にワード線のリセット及びビット線のプリチャージが自動的に行われる。逆に、カラムアドレス入力時においてアドレスピンA10をローレベルとすれば、オートプリチャージが指定されず、この場合には、リードライト動作の終了後にプリチャージコマンドを入力する必要がある。
図1に示すように、カラムアドレス入力時にアドレスピンA10を介して入力される信号PA10(オートプリチャージ指定信号)は、クロック生成回路80に供給される。クロック生成回路80は、リカバリカウンタ60に対して内部クロックICLKWAを供給する回路である。一方、クロック生成回路70は、レイテンシカウンタ50に対して内部クロックICLKWを供給する回路である。このように、レイテンシカウンタ50及びリカバリカウンタ60に対しては、それぞれ異なるクロック生成回路70,80によって異なる内部クロックICLKW,ICLKWAが供給される。これらクロック生成回路70,80の構成については後述する。
レイテンシカウンタ50は、CASレイテンシ、CASライトレイテンシ及びバースト長をカウントするカウンタ回路(第1のカウンタ回路)である。そのカウント動作は、クロック生成回路70より供給される内部クロックICLKW(第1の内部クロック)に同期して行われる。ここで、「CASレイテンシ」とは、リードコマンドの発行からリードデータの出力開始までのクロック数である。また、「CASライトレイテンシ」とは、ライトコマンドの発行からライトデータの入力開始までのクロック数である。さらに、バースト長とは、バースト出力又はバースト入力に必要なクロック数である。
そして、リード動作時においては、CASレイテンシ及びバースト長のカウントが終了すると、レイテンシカウンタ50はバースト完了信号BENDを出力する。また、ライト動作時においては、CASライトレイテンシ及びバースト長のカウントが終了すると、レイテンシカウンタ50はバースト完了信号BENDを出力する。バースト完了信号BENDは、カラムバンク制御回路32、リカバリカウンタ60及びクロック生成回路70,80に供給される。
また、レイテンシカウンタ50に供給される内部コマンドは、入力レシーバ・コマンドデコーダ42より供給される。
入力レシーバ・コマンドデコーダ42は、外部より供給されるコマンド(RASB,CASB,WEB,CSB,CKE,ODT)を受け付け、これを解読することによって各種の内部コマンドを生成する回路である。入力レシーバ・コマンドデコーダ42は種々の内部コマンドを生成するが、図1にはこのうち内部ライトコマンドWRDTが示されている。内部ライトコマンドWRDTは、外部からライトコマンドが発行された場合に活性化される内部コマンドである。内部ライトコマンドWRDTは、レイテンシカウンタ50及びクロック生成回路70,80に供給される。
リカバリカウンタ60は、リード動作又はライト動作が完了した後、メモリセルへの書き込み(リード時においては再書き込み)が正しく完了するまでのライトリカバリ期間(tWR)を計時するための回路(第2のカウンタ回路)である。そのカウント動作は、クロック生成回路80より供給される内部クロックICLKWA(第2の内部クロック)に同期して行われる。リカバリカウンタ60には、内部クロックICLKWAの他、バースト完了信号BEND及びオートプリチャージ指定信号CA10が供給される。オートプリチャージ指定信号CA10は、オートプリチャージ指定信号PA10に対応する信号であり、バースト動作の終了に同期してカラムバンク制御回路32から出力される。そして、リカバリカウンタ60は、ライトリカバリ期間をカウントするとリカバリ完了信号RENDを活性化させる。リカバリ完了信号RENDは、ロウバンク制御回路31及びクロック生成回路70,80に供給される。
さらに、本実施形態による半導体記憶装置10は、入力レシーバ・内部クロック生成回路43を備えている。入力レシーバ・内部クロック生成回路43は、外部より供給される外部クロックCK,CKBを受け、これに基づいて内部クロックICLKを生成する回路である。内部クロックICLKは、クロック生成回路70,80に供給される他、入力レシーバ・コマンドデコーダ42やデータ入出力制御回路44など、各種内部回路に供給され、これによって各種内部回路の動作タイミングが制御される。尚、データ入出力制御回路44は、データの入出力に関わる端子(DQ,DM,DQS,DQSB)に接続された回路であり、データの入出力を制御する。
図2は、クロック生成回路70の回路図である。
図2に示すように、クロック生成回路70は、OR回路71、インバータ72、NAND回路73,74からなるSRラッチ、及びAND回路75によって構成されている。OR回路71はバースト完了信号BEND及びリカバリ完了信号RENDを受け、その論理和出力をSRラッチのリセット端子Rに供給する。また、SRラッチのセット端子Sには、インバータ72を介して内部ライトコマンドWRDTの反転信号が供給されている。
かかる構成により、内部ライトコマンドWRDTがハイレベルに活性化するとSRラッチがセットされ、クロック生成回路70の出力である内部クロックICLKW(第1の内部クロック)が内部クロックICLKと同じ波形となる。そして、バースト完了信号BEND及びリカバリ完了信号RENDの両方がローレベルになると、SRラッチがリセットされ内部クロックICLKWのクロッキングが停止する。つまり、非活性状態に保たれる。
図3は、クロック生成回路80の回路図である。
図3に示すように、クロック生成回路80は、OR回路81、NAND回路82〜84及びAND回路85によって構成されている。OR回路81はバースト完了信号BEND及びリカバリ完了信号RENDを受け、その論理和出力をNAND回路83,84からなるSRラッチのリセット端子Rに供給する。また、NAND回路82は、内部ライトコマンドWRDT及びオートプリチャージ指定信号PA10を受け、その否定論理積出力をNAND回路83,84からなるSRラッチのセット端子Sに供給する。
かかる構成により、内部ライトコマンドWRDT及びオートプリチャージ指定信号PA10の両方がハイレベルに活性化するとSRラッチがセットされ、クロック生成回路80の出力である内部クロックICLKWA(第2の内部クロック)が内部クロックICLKと同じ波形となる。そして、バースト完了信号BEND及びリカバリ完了信号RENDの両方がローレベルになると、SRラッチがリセットされ内部クロックICLKWAのクロッキングが停止する。つまり、非活性状態に保たれる。
このように、クロック生成回路80においては、オートプリチャージ指定信号PA10がNAND回路82に供給されていることから、オートプリチャージ指定信号PA10がハイレベルである場合、つまり、オートプリチャージが指定されている場合には、図2に示すクロック生成回路70と同じ動作を行う。これに対し、オートプリチャージ指定信号PA10がローレベルである場合、つまり、オートプリチャージが指定されていない場合には、NAND回路83,84からなるSRラッチがセットされないことから、内部クロックICLKWAは非活性状態に保たれることになる。
図4は、クロック生成回路70,80の動作とオートプリチャージ指定信号PA10との関係をまとめた表である。
図4に示すように、クロック生成回路70については、オートプリチャージ指定信号PA10のレベルにかかわらず、ライト動作時においては常に動作を行う。つまり、内部クロックICLKWの生成を行う。これに対し、クロック生成回路80については、オートプリチャージ指定信号PA10がハイレベルである場合、つまり、オートプリチャージが指定されている場合に限り内部クロックICLKWAの生成を行い、オートプリチャージが指定されていない場合には動作を停止する。
図5は、オートプリチャージが指定されている場合のライト動作を示すタイミング図である。ライト動作におけるオートプリチャージの指定は、ライトコマンド(WR)の入力時においてアドレスピンA10をハイレベルとすることにより行う。
まず、ライトコマンド(WR)が入力されると、入力レシーバ・コマンドデコーダ42はこれを解読し、内部ライトコマンドWRDTを1クロックサイクルだけハイレベルとする。これにより、図2に示したNAND回路73,74からなるSRラッチがセットされ、クロック生成回路70は内部クロックICLKに同期して内部クロックICLKWを生成する。
また、アドレスピンA10を介してオートプリチャージの指定を受けた入力レシーバ・アドレスラッチ回路41は、オートプリチャージ指定信号PA10をハイレベルとする。これにより、図3に示したNAND回路83,84からなるSRラッチがセットされ、クロック生成回路80は内部クロックICLKに同期して内部クロックICLKWAを生成する。
さらに、内部ライトコマンドWRDTはレイテンシカウンタ50にも供給され、レイテンシカウンタ50はこれに応答してバースト完了信号BENDをハイレベルとする。これにより、クロック生成回路70,80に含まれるSRラッチのセット状態が維持される。
そして、レイテンシカウンタ50があらかじめ定められたCASライトレイテンシ及びバースト長をカウントし終えると、バースト完了信号BENDがローベルに遷移する。ここで、CASライトレイテンシとは、ライトコマンドの発行からライトデータの入力開始までのクロック数を示すレイテンシであり、図5に示す例では5クロックサイクル(CWL=5tCK)である。また、バースト長とは、ライトデータの入力開始からライトデータの入力完了までのクロック数を示し、図5に示す例では4ビット(BL=8)である。
また、図5に示す例ではオートプリチャージが指定されているため、オートプリチャージ指定信号CA10のハイレベルへの遷移に応答して、リカバリカウンタ60はリカバリ完了信号RENDをハイレベルに変化させる。このため、クロック生成回路70,80に含まれるSRラッチはリセットされず、それぞれ内部クロックICLKW,ICLKWAのクロッキングを継続する。したがって、レイテンシカウンタ50及びリカバリカウンタ60は、バーストライト終了後も正しく動作を継続することができる。
そして、リカバリカウンタ60によってライトリカバリ期間のカウントが終了すると、リカバリ完了信号RENDがローレベルに遷移する。その結果、クロック生成回路70,80に含まれるSRラッチがリセットされ、内部クロックICLKW,ICLKWAが停止する。図5に示す例では、ライトリカバリ期間は5クロックサイクル(tWR=5tCK)である。
このように、オートプリチャージが指定されている場合には、バーストライト終了後も内部クロックICLKW,ICLKWAのクロッキングが継続されるため、オートプリチャージを正しく実行することが可能となる。
図6は、オートプリチャージが指定されていない場合のライト動作を示すタイミング図である。ライト動作におけるオートプリチャージの非指定は、ライトコマンド(WR)の入力時においてアドレスピンA10をローレベルとすることにより行う。
上述の通り、オートプリチャージが指定されていない場合のクロック生成回路70の動作は、図5に示したオートプリチャージが指定されている場合の動作と同じである。したがって、図6に示すように、内部ライトコマンドWRDTの発生に応答して内部クロックICLKWのクロッキングが開始される。かかる動作は、図5を用いて説明したとおりである。
一方、本例では、オートプリチャージ指定信号PA10がローレベルであることから、図3に示したNAND回路83,84からなるSRラッチはセットされない。したがって、クロック生成回路80の出力である内部クロックICLKWAは、非活性状態に保たれる。
そして、レイテンシカウンタ50があらかじめ定められたCASライトレイテンシ及びバースト長をカウントし終えると、バースト完了信号BENDがローレベルに遷移する。
図6に示す例ではオートプリチャージが指定されていないため、オートプリチャージ指定信号CA10のローレベルのままである。これにより、リカバリカウンタ60の出力であるリカバリ完了信号RENDもローレベルに維持される。したがって、バースト完了信号BENDのローレベルへの遷移に応答して、クロック生成回路70に含まれるSRラッチがリセットされ、内部クロックICLKWが停止する。
このように、オートプリチャージが指定されていない場合には、クロック生成回路80は内部クロックICLKWAの生成を行わない。また、クロック生成回路70はバーストライト終了に応答して内部クロックICLKWのクロッキングを停止させる。
以上説明したように、本実施形態による半導体記憶装置10によれば、オートプリチャージが指定されていない場合に内部クロックICLKWAが停止することから、リカバリカウンタ60におけるカウント動作が行われない。したがって、オートプリチャージが指定されていない場合における無駄な電力消費を抑えることが可能となる。
次に、本発明の第2の実施形態について説明する。
図7は、本発明の好ましい第2の実施形態による半導体記憶装置100の構成を示すブロック図である。
本実施形態による半導体記憶装置100は、内部クロックICLKWAを生成するクロック生成回路80がクロック生成回路90に置き換えられている点において、図1に示した半導体記憶装置10と相違している。クロック生成回路90には、内部クロックICLK、リカバリ完了信号REND、オートプリチャージ指定信号CA10及び内部ライトコマンドWRCTが供給される。前述のクロック生成回路80とは異なり、バースト完了信号BEND、オートプリチャージ指定信号PA10及び内部ライトコマンドWRDTは入力されない。
図8は、クロック生成回路90の回路図である。
図8に示すように、クロック生成回路90は、NAND回路91〜93及びAND回路94によって構成されている。NAND回路91は、内部ライトコマンドWRCT及びオートプリチャージ指定信号CA10を受け、その否定論理積出力をNAND回路92,93からなるSRラッチのセット端子Sに供給する。かかる構成により、内部ライトコマンドWRCT及びオートプリチャージ指定信号CA10の両方がハイレベルに活性化するとSRラッチがセットされ、クロック生成回路90の出力である内部クロックICLKWA(第2の内部クロック)は内部クロックICLKと同じ波形となる。ここで、内部ライトコマンドWRCTとは、ライトコマンド(WR)が発行された後、バースト動作の終了に同期して出力される内部コマンドである。そして、SRラッチのリセット端子Rに入力されるリカバリ完了信号RENDがローレベルになると、SRラッチがリセットされ内部クロックICLKWAは停止する。つまり、非活性状態に保たれる。
図9は、第2の実施形態においてオートプリチャージが指定されている場合のライト動作を示すタイミング図である。
クロック生成回路70の動作については第1の実施形態と同じであり、したがって、図9に示すように、内部ライトコマンドWRDTの発生に応答して内部クロックICLKWのクロッキングが開始される。かかる動作は、図5を用いて説明したとおりである。
一方、クロック生成回路70内のSRラッチがセットされる時点では、クロック生成回路90に含まれるSRラッチはまだセットされないため、内部クロックICLKWAは非活性状態に保たれる。
その後、バースト動作の終了に同期して内部ライトコマンドWRCT及びオートプリチャージ指定信号CA10がともにハイレベルになると、図8に示したNAND回路92,93からなるSRラッチがセットされ、クロック生成回路90は内部クロックICLKに同期して内部クロックICLKWAを生成する。
さらに、オートプリチャージ指定信号CA10のハイレベルへの遷移に応答して、リカバリカウンタ60はリカバリ完了信号RENDをハイレベルに変化させる。これにより、クロック生成回路70,90に含まれるSRラッチのセット状態が維持される。
そして、リカバリカウンタ60によってライトリカバリ期間のカウントが終了すると、リカバリ完了信号RENDがローレベルに遷移する。その結果、クロック生成回路70,90に含まれるSRラッチがリセットされ、内部クロックICLKW,ICLKWAが停止する。
尚、オートプリチャージが指定されていない場合の動作は第1の実施形態と同一であることから、重複する説明は省略する。
以上説明したように、本実施形態による半導体記憶装置100によれば、オートプリチャージが指定されている場合、クロック生成回路90はライトコマンドの発行からライトデータの入力完了(バースト動作の完了)までの期間は内部クロックICLKWAを生成することなく、リカバリ期間だけ内部クロックICLKWAを活性化している。このため、リカバリカウンタ60においても、ライトコマンドの発行からライトデータの入力完了(バースト動作の完了)までの期間はカウント動作を行わないことから、オートプリチャージが指定されている場合についても無駄な電力消費を抑えることが可能となる。
以上、本発明の好ましい実施形態について説明したが、本発明は、上記の実施形態に限定されることなく、本発明の主旨を逸脱しない範囲で種々の変更が可能であり、それらも本発明の範囲内に包含されるものであることはいうまでもない。
例えば、上記の実施形態においては、ライト動作を行う場合を例に説明したが、リード動作を行う場合も同様である。この場合、リードコマンドの発行時にオートプリチャージが指定されていれば、リード動作の終了後、ライトリカバリ期間の経過後にワード線のリセット及びビット線のプリチャージが行われる。また、レイテンシカウンタ50は、内部クロックICLKWに同期して、リードコマンドの発行からリードデータの出力開始までのクロック数を示すレイテンシ(CASレイテンシ)と、リードデータの出力開始からリードデータの出力完了までのクロック数を示すバースト長をさらにカウントすればよい。さらに、リカバリカウンタ60は、内部クロックICLKWAに同期して、リードデータの出力完了からオートプリチャージを開始するまでのライトリカバリ期間をカウントすればよい。
また、上記の実施形態においては、半導体記憶装置がバースト動作を行う場合を例に説明したが、本発明における半導体記憶装置がバースト動作を行うことは必須でない。したがって、バースト動作を行わない場合、レイテンシカウンタ50はCASレイテンシ又はCASライトレイテンシをカウントすれば足り、バースト長をカウントする必要はない。
また、上記実施形態では、アドレスピンA10を用いてオートプリチャージの指定を行っているが、オートプリチャージの指定方法がこれに限定されるものではない。
本発明の好ましい第1の実施形態による半導体記憶装置10の構成を示すブロック図である。 クロック生成回路70の回路図である。 クロック生成回路80の回路図である。 クロック生成回路70,80の動作とオートプリチャージ指定信号PA10との関係をまとめた表である。 第1の実施形態においてオートプリチャージが指定されている場合のライト動作を示すタイミング図である。 第1の実施形態においてオートプリチャージが指定されていない場合のライト動作を示すタイミング図である。 本発明の好ましい第2の実施形態による半導体記憶装置100の構成を示すブロック図である。 クロック生成回路90の回路図である。 第2の実施形態においてオートプリチャージが指定されている場合のライト動作を示すタイミング図である。
符号の説明
10,100 半導体記憶装置
20 メモリセルアレイ
21 ロウデコーダ
22 カラムデコーダ
31 ロウバンク制御回路
32 カラムバンク制御回路
41 入力レシーバ・アドレスラッチ回路
42 入力レシーバ・コマンドデコーダ
43 入力レシーバ・内部クロック生成回路
44 データ入出力制御回路
50 レイテンシカウンタ
60 リカバリカウンタ
70,80,90 クロック生成回路

Claims (4)

  1. リード動作又はライト動作の終了後、ワード線のリセット及びビット線のプリチャージを自動的に行うオートプリチャージ機能を有する半導体記憶装置であって、
    それぞれ第1及び第2の内部クロックを生成する第1及び第2のクロック生成回路と、
    前記第1の内部クロックに同期して、リードコマンドの発行からリードデータの出力までのクロック数又はライトコマンドの発行からライトデータの入力までのクロック数を示すレイテンシを少なくともカウントする第1のカウンタ回路と、
    前記第2の内部クロックに同期して、前記リードデータの出力完了又は前記ライトデータの入力完了からオートプリチャージを開始するまでのライトリカバリ期間を少なくともカウントする第2のカウンタ回路と、を備え、
    前記第2のクロック生成回路は、前記リードコマンド又は前記ライトコマンドの発行時に前記オートプリチャージが指定されている場合には前記第2の内部クロックを活性化させ、前記リードコマンド又は前記ライトコマンドの発行時に前記オートプリチャージが指定されていない場合には前記第2の内部クロックを非活性化させることを特徴とする半導体記憶装置。
  2. 前記第2のカウンタ回路は、前記リードコマンド又は前記ライトコマンドの発行からオートプリチャージを開始するまでの期間をカウントすることを特徴とする請求項1に記載の半導体記憶装置。
  3. 前記第2のカウンタ回路は、前記リードコマンド又は前記ライトコマンドの発行から前記リードデータの出力完了又は前記ライトデータの入力完了までの期間をカウントすることなく、前記ライトリカバリ期間をカウントすることを特徴とする請求項1に記載の半導体記憶装置。
  4. 前記第1のカウンタ回路は、前記リードデータの出力開始から前記リードデータの出力完了までのクロック数又は前記ライトデータの入力開始から前記ライトデータの入力完了までのクロック数を示すバースト長をさらにカウントすることを特徴とする請求項1乃至3のいずれか一項に記載の半導体記憶装置。
JP2008329252A 2008-12-25 2008-12-25 半導体記憶装置 Pending JP2010152968A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008329252A JP2010152968A (ja) 2008-12-25 2008-12-25 半導体記憶装置
US12/647,277 US8120978B2 (en) 2008-12-25 2009-12-24 Semiconductor memory device having auto-precharge function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008329252A JP2010152968A (ja) 2008-12-25 2008-12-25 半導体記憶装置

Publications (1)

Publication Number Publication Date
JP2010152968A true JP2010152968A (ja) 2010-07-08

Family

ID=42284803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008329252A Pending JP2010152968A (ja) 2008-12-25 2008-12-25 半導体記憶装置

Country Status (2)

Country Link
US (1) US8120978B2 (ja)
JP (1) JP2010152968A (ja)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7716510B2 (en) 2006-12-19 2010-05-11 Micron Technology, Inc. Timing synchronization circuit with loop counter
US7656745B2 (en) 2007-03-15 2010-02-02 Micron Technology, Inc. Circuit, system and method for controlling read latency
US7969813B2 (en) * 2009-04-01 2011-06-28 Micron Technology, Inc. Write command and write data timing circuit and methods for timing the same
KR20110001396A (ko) * 2009-06-30 2011-01-06 삼성전자주식회사 전력 소모를 줄일 수 있는 반도체 메모리 장치
US8984320B2 (en) 2011-03-29 2015-03-17 Micron Technology, Inc. Command paths, apparatuses and methods for providing a command to a data block
US8509011B2 (en) 2011-04-25 2013-08-13 Micron Technology, Inc. Command paths, apparatuses, memories, and methods for providing internal commands to a data path
US8552776B2 (en) 2012-02-01 2013-10-08 Micron Technology, Inc. Apparatuses and methods for altering a forward path delay of a signal path
US9166579B2 (en) 2012-06-01 2015-10-20 Micron Technology, Inc. Methods and apparatuses for shifting data signals to match command signal delay
US9054675B2 (en) 2012-06-22 2015-06-09 Micron Technology, Inc. Apparatuses and methods for adjusting a minimum forward path delay of a signal path
US9329623B2 (en) 2012-08-22 2016-05-03 Micron Technology, Inc. Apparatuses, integrated circuits, and methods for synchronizing data signals with a command signal
US8913448B2 (en) 2012-10-25 2014-12-16 Micron Technology, Inc. Apparatuses and methods for capturing data in a memory
US9734097B2 (en) 2013-03-15 2017-08-15 Micron Technology, Inc. Apparatuses and methods for variable latency memory operations
US9727493B2 (en) 2013-08-14 2017-08-08 Micron Technology, Inc. Apparatuses and methods for providing data to a configurable storage area
US9183904B2 (en) 2014-02-07 2015-11-10 Micron Technology, Inc. Apparatuses, memories, and methods for facilitating splitting of internal commands using a shared signal path
US9508417B2 (en) 2014-02-20 2016-11-29 Micron Technology, Inc. Methods and apparatuses for controlling timing paths and latency based on a loop delay
US9530473B2 (en) 2014-05-22 2016-12-27 Micron Technology, Inc. Apparatuses and methods for timing provision of a command to input circuitry
US9531363B2 (en) 2015-04-28 2016-12-27 Micron Technology, Inc. Methods and apparatuses including command latency control circuit
US9813067B2 (en) 2015-06-10 2017-11-07 Micron Technology, Inc. Clock signal and supply voltage variation tracking
US9601183B1 (en) * 2016-04-14 2017-03-21 Micron Technology, Inc. Apparatuses and methods for controlling wordlines and sense amplifiers
US9865317B2 (en) 2016-04-26 2018-01-09 Micron Technology, Inc. Methods and apparatuses including command delay adjustment circuit
US9601170B1 (en) 2016-04-26 2017-03-21 Micron Technology, Inc. Apparatuses and methods for adjusting a delay of a command signal path
US9997220B2 (en) 2016-08-22 2018-06-12 Micron Technology, Inc. Apparatuses and methods for adjusting delay of command signal path
US10224938B2 (en) 2017-07-26 2019-03-05 Micron Technology, Inc. Apparatuses and methods for indirectly detecting phase variations
US11423962B1 (en) * 2021-03-19 2022-08-23 Taiwan Semiconductor Manufacturing Company, Ltd. Bit line pre-charge circuit and method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11306760A (ja) 1998-04-22 1999-11-05 Hitachi Ltd 半導体記憶装置
KR100680975B1 (ko) * 2006-01-13 2007-02-09 주식회사 하이닉스반도체 파워다운 모드 제어 회로
JP4808070B2 (ja) * 2006-05-18 2011-11-02 富士通セミコンダクター株式会社 半導体メモリおよび半導体メモリの動作方法

Also Published As

Publication number Publication date
US8120978B2 (en) 2012-02-21
US20100165769A1 (en) 2010-07-01

Similar Documents

Publication Publication Date Title
JP2010152968A (ja) 半導体記憶装置
US9281047B2 (en) Dynamic random access memory with fully independent partial array refresh function
JP4877560B2 (ja) コマンド信号と動作状態に基づいてコマンドをデコードするためのシステムおよび方法
US7466623B2 (en) Pseudo SRAM capable of operating in continuous burst mode and method of controlling burst mode operation thereof
JP2010170596A (ja) 半導体記憶装置
KR100233973B1 (ko) 동기형 반도체 기억 장치
JP2006309913A (ja) 半導体メモリ素子
US20040008544A1 (en) Semiconductor memory
JP2001110183A (ja) 半導体記憶装置
US6879540B2 (en) Synchronous semiconductor memory device having dynamic memory cells and operating method thereof
JP3341710B2 (ja) 半導体記憶装置
CN104810043A (zh) 突发长度控制电路
JP5261888B2 (ja) 半導体記憶装置
JP2009266370A (ja) 半導体メモリ装置及びその動作方法
JP4837357B2 (ja) 半導体記憶装置
JP2004259343A (ja) 半導体記憶装置
US7154799B2 (en) Semiconductor memory with single cell and twin cell refreshing
JP2004062925A (ja) 半導体メモリ
JP4307894B2 (ja) 同期式半導体メモリ装置のカラムデコーダ・イネーブルタイミングの制御方法及びその装置
US11487610B2 (en) Methods for parity error alert timing interlock and memory devices and systems employing the same
JP2010541075A (ja) 高速dram中の信号を処理するためのシステムおよび方法
JP2005174384A (ja) 半導体集積回路装置
US20070064503A1 (en) Internal Voltage Generation Control Circuit and Internal Voltage Generation Circuit Using the Same
JP2006146992A (ja) 半導体メモリ装置
JP4563694B2 (ja) 半導体メモリ装置及びワードライン駆動方法。