JP2010093170A - 半導体装置の製造方法 - Google Patents

半導体装置の製造方法 Download PDF

Info

Publication number
JP2010093170A
JP2010093170A JP2008263667A JP2008263667A JP2010093170A JP 2010093170 A JP2010093170 A JP 2010093170A JP 2008263667 A JP2008263667 A JP 2008263667A JP 2008263667 A JP2008263667 A JP 2008263667A JP 2010093170 A JP2010093170 A JP 2010093170A
Authority
JP
Japan
Prior art keywords
oxide film
substrate
gate oxide
manufacturing
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008263667A
Other languages
English (en)
Inventor
Yukihiro Hisanaga
幸博 久永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008263667A priority Critical patent/JP2010093170A/ja
Priority to PCT/JP2009/067640 priority patent/WO2010041740A1/ja
Publication of JP2010093170A publication Critical patent/JP2010093170A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28211Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation in a gaseous ambient using an oxygen or a water vapour, e.g. RTO, possibly through a layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66734Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the gate electrode, e.g. to form a trench gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/511Insulating materials associated therewith with a compositional variation, e.g. multilayer structures
    • H01L29/513Insulating materials associated therewith with a compositional variation, e.g. multilayer structures the variation being perpendicular to the channel plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/518Insulating materials associated therewith the insulating material containing nitrogen, e.g. nitride, oxynitride, nitrogen-doped material

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Formation Of Insulating Films (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

【課題】 CZ基板を用いた絶縁ゲート型の半導体装置の製造方法において、ゲート酸化膜の絶縁耐圧を十分に確保することができる製造方法を提供すること。
【解決手段】 プラズマCVD法によって、CZ基板6の表面に水素が含有されたゲート酸化膜10を形成する工程と、ゲート酸化膜10を熱処理する工程を備えている。ゲート酸化膜10を熱処理することによって、ゲート酸化膜10内の水素と、ゲート酸化膜10とCZ基板6の界面近傍のCZ基板6内に存在する酸素析出欠陥との間で還元反応が生じる。これによって、CZ基板6内の酸素が除去され、ゲート酸化膜10の絶縁耐圧を十分に確保することができる。
【選択図】 図3

Description

本発明は、半導体装置の製造方法に関する。特に、CZ法によって形成されたシリコン基板を用いた絶縁ゲート型の半導体装置を製造する方法に関する。
半導体装置の製造に用いられるシリコン基板を形成する方法として、CZ(Czokralski)法およびFZ(Floating Zone)法が知られている。CZ法によって形成されたシリコン基板(以下、CZ基板と記載する)は、FZ法によって形成されたシリコン基板(以下、FZ基板と記載する)に比べて、製造コストが低い。このため、CZ基板を用いて半導体装置を製造することが望ましい。一方で、CZ法では石英坩堝を用いるため、CZ基板はFZ基板に比べて基板内の酸素濃度が高い。CZ基板内に含まれる酸素は、CZ基板内で酸素析出欠陥(SiO)として存在する。
絶縁ゲート型のパワーMOS(Metal Oxide Semiconductor)、IGBT(Insulated Gate Bipolar Transistor)等のパワー半導体装置では、良好なデバイス特性を確保するために、ゲート酸化膜の絶縁耐圧を十分に確保する必要がある。CZ基板を用いてパワー半導体装置を製造した場合、CZ基板内の酸素濃度が高いため、CZ基板からCZ基板の表面に形成したゲート酸化膜内に多くの酸素析出欠陥が取り込まれる。ゲート酸化膜内に取り込まれた酸素析出欠陥はゲート酸化膜の絶縁耐圧の低下を引き起こすため、ゲート酸化膜の絶縁耐圧を十分に確保することができない。
特許文献1に、CZ基板内の酸素濃度を低下させることによってゲート酸化膜の絶縁耐圧の低下を抑制できる半導体装置の製造方法が開示されている。この方法によると、半導体装置の製造過程において、CZ基板の表面をプラズマ処理することによって、CZ基板の表面からCZ基板内に水素を注入する。注入された水素はCZ基板内の酸素と還元反応を引き起こし(SiO+H→Si+HO)、CZ基板内の酸素が除去される。これによって、CZ基板内の酸素濃度が低下する。このため、ゲート酸化膜の絶縁耐圧の低下を抑制することができる。
特開2006−156973号公報
しかしながら、上記した従来の製造方法によると、CZ基板の表面に対して直接プラズマ処理を行うため、CZ基板の表面が損傷することがある。CZ基板の表面が損傷すると、CZ基板内に結晶欠陥が形成される。このため、CZ基板の表面にゲート酸化膜を形成したときに、CZ基板内の結晶欠陥がゲート酸化膜内に取り込まれて、ゲート酸化膜の絶縁耐圧の低下を引き起こす。
本発明は上記の課題を解決するために提案されたものである。本発明の製造方法では、CZ基板の表面を損傷させることなく、CZ基板内の酸素濃度を低下させる。本発明は、CZ基板を用いた絶縁ゲート型の半導体装置の製造方法において、ゲート酸化膜の絶縁耐圧を十分に確保できる製造方法を提供することを目的とする。
本発明は、CZ法によって形成されたシリコン基板を用いた絶縁ゲート型の半導体装置を製造する方法に関する。
本方法は、プラズマCVD法によって、シリコン基板の表面に水素が含有されたゲート酸化膜を形成する工程と、シリコン基板の表面に形成されたゲート酸化膜を熱処理する工程を備えている。
本方法によると、プラズマCVD(Chemical Vapor Deposition)法によって、シリコン基板の表面に水素が含有されたゲート酸化膜が形成される。ゲート酸化膜内に水素が含有されているため、ゲート酸化膜を熱処理することによって、ゲート酸化膜内の水素と、ゲート酸化膜とCZ基板の界面近傍のCZ基板内に存在する酸素析出欠陥との間で還元反応が生じる。これによって、CZ基板内の酸素が除去され、CZ基板内の酸素濃度が低下する。CZ基板の表面を直接プラズマ処理することがないため、CZ基板の表面が損傷することがない。このため、ゲート酸化膜の絶縁耐圧を十分に確保することができる。
本方法では、ゲート酸化膜を形成する工程で、1019atoms/cm以上の水素が含有されたゲート酸化膜を形成することが好ましい。CZ基板内には、通常4×1017atoms/cm〜15×1018atoms/cmの酸素が含有されている。CZ基板内の酸素濃度よりも高い濃度の水素が含有されたゲート酸化膜を形成することによって、CZ基板内の酸素の還元効果を高めることができる。これによって、ゲート酸化膜の絶縁耐圧の低下を確実に防止することができる。
本方法では、ゲート酸化膜を形成する工程で、50Pa以下の圧力条件下でプラズマCVD法を用いることが好ましい。50Pa以下の減圧条件下でプラズマCVD法を用いることによって、減圧しない場合に比べて、より多くの水素が含有されたゲート酸化膜を形成することができる。このため、多くの酸素析出欠陥を還元することができ、CZ基板内の酸素をより低減することができる。ゲート酸化膜の絶縁耐圧の低下を確実に防止することができる。
本発明によると、CZ基板を用いた絶縁ゲート型の半導体装置の製造方法において、ゲート酸化膜の絶縁耐圧を十分に確保することができる。
下記に説明する実施例の好ましい特徴を列記する。
(第1特徴)プラズマCVD法に用いる材料ガスとして、SiH/NO又はTEOS/Oを用いる。
(第2特徴)CZ基板の表面に40nm以下の厚みの熱酸化膜を形成する。
(第1実施例)
図1〜図4に本発明の第1実施例である半導体装置100を製造する方法を示す。半導体装置100は、トレンチ構造を有する絶縁ゲート型のMOSである。
まず、図1に示すように、n型のCZ基板6を準備する。図1は、CZ基板6の表面側の一部の断面図を示したものである。次に、CZ基板6の表面側にp型のボディ領域4を形成する。これによって、CZ基板6内には、n型のドリフト領域2とボディ領域4が形成される。なお、CZ基板6は基板抵抗が50Ωであり、基板内の酸素濃度が4×1017atoms/cm、又は1.5×1018atoms/cmのものを用いることができる。
次に、図2に示すように、CZ基板6の表面からエッチングを行って、CZ基板6の表面からボディ領域4を貫通してCZ基板6内を伸びる複数のトレンチ8を形成する。エッチング法としてはRIE(Reactive Ion Etching)法等を用いることができる。
次に、図3に示すように、プラズマCVD法によって、CZ基板6の表面に100nmの厚みのゲート酸化膜10を成膜する。ここで、CZ基板6の表面には、トレンチ8の内壁も含まれる。プラズマCVD法の条件として、成膜温度は380℃、圧力は10Torr、材料ガスはSiH/NOを用いることができる。これによって、CZ基板6の表面に約1019atoms/cmの水素が含有されたゲート酸化膜10が形成される。プラズマCVD法の他の条件として、成膜温度は690℃、圧力は50Pa、材料ガスはTEOS/Oを用いることができる。これによって、CZ基板6の表面に約1020atoms/cmの水素が含有されたゲート酸化膜10が形成される。
次に、CZ基板6の表面に成膜したゲート酸化膜10をアニール処理する。アニール処理の条件として、処理温度を900℃、窒素雰囲気、処理時間を30分とすることができる。これによって、ゲート酸化膜10内の水素と、ゲート酸化膜10との界面近傍のCZ基板6内に存在する酸素析出欠陥SiOとの間で還元反応が生じる。
次に、図4に示すように、トレンチ8の内部にゲート電極12を形成する。次に、ゲート電極12の表面を層間絶縁膜14で被覆する。次に、ソース電極16、半導体装置100の裏面構造(図示しない)、ドレイン電極(図示しない)を形成することによって、半導体装置100が完成する。
本実施例の製造方法によると、ゲート酸化膜10内に含まれる水素によって、アニール処理を行ったときに、ゲート酸化膜10との界面近傍のCZ基板6内に存在する酸素が還元される。これによって、CZ基板6内の酸素が除去され、CZ基板6内の酸素濃度が低下する。このため、ゲート酸化膜10の絶縁耐圧を十分に確保することができる。
また、本実施例の製造方法によると、MOS等のパワー半導体装置の製造過程において、CZ基板6を用いた場合でも、ゲート酸化膜10の絶縁耐圧を十分に確保することができる。このため、FZ基板等、他のシリコン基板を用いた場合に比べて製造コストを低減することができる。
さらに、本実施例の製造方法によると、CZ基板6の表面に水素が含有されたゲート酸化膜10を形成するため、CZ基板6内への水素の注入とゲート酸化膜10の形成を別工程で行う場合に比べて製造工程数を減らすことができる。
(第2実施例)
図5,6に本発明の第2実施例である半導体装置200を製造する方法を示す。半導体装置200はトレンチ構造を有する絶縁ゲート型のMOSである。
半導体基板26にトレンチ28(図5参照)を形成するまでの製造過程(第1実施例の図1,2に相当)は第1実施例の製造方法と同様であるため、説明を省略する。
図5に、CZ基板26内にトレンチ28を形成したときのCZ基板28の断面図を示す。図5に示すように、トレンチ28を形成した後、CZ基板26の表面にSiO等の熱酸化膜33を成膜する。次に、プラズマCVD法によって、熱酸化膜33の表面にゲート酸化膜30を成膜する。プラズマCVD法の条件は第1実施例の条件と同様であるため、説明を省略する。次に、熱酸化膜33の表面に形成したゲート酸化膜30をアニール処理する。アニール処理の条件は第1実施例の条件と同様であるため、説明を省略する。なお、熱酸化膜33の厚みが大きすぎる場合、ゲート酸化膜30内への酸素析出欠陥の取り込みが顕著になり、ゲート酸化膜30の絶縁耐圧が低下することがある。このため、熱酸化膜33の厚みはゲート酸化膜の厚みより小さいことが望ましい。また、熱酸化膜33が形成されていても、CZ基板26内の酸素の還元に影響はない。
次に、図6に示すように、トレンチ28の内部にゲート電極32を形成する。次に、ゲート電極32の表面を層間絶縁膜34で被覆する。次に、ソース電極36、半導体装置200の裏面構造(図示しない)、ドレイン電極(図示しない)を形成することによって、半導体装置200が完成する。
本実施例の製造方法によると、CZ基板26とゲート酸化膜30の間に熱酸化膜33を形成する。これによって、CZ基板26の表面に直接ゲート酸化膜30を形成した場合に比べて、CZ基板26の表面を清浄な状態に保つことができる。このため、CZ基板26とゲート酸化膜30の間の界面準位が低減され、ゲート酸化膜30内に余分な電荷が入り込むのを防止することができる。
(第3実施例)
図7,8に本発明の第3実施例である半導体装置300を製造する方法を示す。半導体装置300はトレンチ構造を有する絶縁ゲート型のMOSである。
半導体基板46にトレンチ48(図7参照)を形成するまでの製造過程(第1実施例の図1,2に相当)は第1実施例の製造方法と同様であるため、説明を省略する。
図7に、CZ基板46内にトレンチ48を形成したときのCZ基板46の断面図を示す。図7に示すように、トレンチ48を形成した後、CZ基板46の表面にSiO等の熱酸化膜53を成膜する。次に、熱酸化膜53の表面に、CVD法によって、Si等のCVD窒化膜51を成膜する。次に、プラズマCVD法によって、CVD窒化膜51の表面にゲート酸化膜50を形成する。プラズマCVD法の条件は第1実施例の条件と同様であるため、説明を省略する。次に、CVD窒化膜51の表面に形成したゲート酸化膜50をアニール処理する。アニール処理の条件は第1実施例の条件と同様であるため、説明を省略する。なお、熱酸化膜53およびCVD窒化膜51の厚みが大きすぎる場合、ゲート酸化膜50内への酸素析出欠陥の取り込みが顕著になり、ゲート酸化膜50の絶縁耐圧が低下することがある。このため、熱酸化膜53およびCVD窒化膜51の厚みはゲート酸化膜の厚みより小さいことが望ましい。また、熱酸化膜53およびCVD窒化膜51が形成されていても、CZ基板46内の酸素の還元に影響はない。
次に、図8に示すように、トレンチ48の内部にゲート電極52を形成する。次に、ゲート電極52の表面を層間絶縁膜54で被覆する。次に、ソース電極56、半導体装置300の裏面構造(図示しない)、ドレイン電極(図示しない)を形成することによって、半導体装置300が完成する。
本実施例の製造方法によると、CZ基板46とゲート酸化膜50の間に熱酸化膜53を形成し、さらに、ゲート酸化膜50と熱酸化膜53の間にCVD窒化膜51を形成する。これによって、ゲート酸化膜50の長期的な信頼性を高めることができる。また、ゲート酸化膜50の絶縁耐圧をより高めることもできる。
第2実施例および第3実施例の製造方法では、CZ基板の表面に40nm以下の厚みの熱酸化膜を形成することが好ましい。ゲート酸化膜内への酸素析出欠陥の取り込みを防止することができ、ゲート酸化膜の絶縁耐圧の低下を防止することができる。
(第4実施例)
図9,10に本発明の第4実施例である半導体装置400を製造する方法を示す。半導体装置400は、プレーナ構造を有する絶縁ゲート型のMOSである。
まず、図9に示すように、n型のCZ基板66の表面側の一部にp型のボディ領域64と、n型のソース領域68を形成する。CZ基板66内の他の領域は、ドリフト領域62となる。次に、プラズマCVD法によって、CZ基板66の表面にゲート酸化膜70を成膜する。プラズマCVD法の条件は第1実施例の条件と同様であるため、説明を省略する。
次に、図10に示すように、ゲート酸化膜70の一部をエッチングにより除去して、CZ基板66の表面の一部にソース領域78と接触するソース電極76を形成する。次に、ゲート酸化膜70の表面であってソース電極76と接触しない位置にゲート電極72を形成する。次に、CZ基板66の裏面側にドレイン領域61を形成する。次に、CZ基板66の裏面にドレイン領域61と接触するドレイン電極(図示しない)を形成することによって、半導体装置400が完成する。
本実施例の製造方法によると、プレーナ構造を有する絶縁ゲート型のMOSを製造する場合であっても、水素が含有されたゲート酸化膜70を形成することができる。これによって、半導体装置400の絶縁耐圧を十分に確保することができる。
第1実施例〜第4実施例の製造方法では、プラズマCVD法に用いる材料ガスとして、SiH/NO又はTEOS/Oを用いることが好ましい。高濃度の水素が含有されたゲート酸化膜を形成することができる。
以上、本発明の実施例について詳細に説明したが、これらは例示に過ぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。
例えば、実施例ではMOSを製造する方法を記載したが、IGBTを製造する方法であってもよい。
本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時請求項記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成し得るものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。
本発明の第1実施例である半導体装置100を製造する工程(1)を示す。 半導体装置100を製造する工程(2)を示す。 半導体装置100を製造する工程(3)を示す。 半導体装置100を製造する工程(4)を示す。 本発明の第2実施例である半導体装置200を製造する工程(1)を示す。 半導体装置200を製造する工程(2)を示す。 本発明の第3実施例である半導体装置300を製造する工程(1)を示す。 半導体装置300を製造する工程(2)を示す。 本発明の第4実施例である半導体装置400を製造する工程(1)を示す。 半導体装置100を製造する工程(2)を示す。
符号の説明
2、22、42:ドリフト領域
4、24、44、74:ボディ領域
6、26、46、66:CZ基板
8、28、48:トレンチ
10、30、50、70:ゲート酸化膜
12、32、52、72:ゲート電極
14、34、54:層間絶縁膜
16、36、56、76:ソース電極
33、53:熱酸化膜
51:CVD窒化膜
68:ソース領域
71:ドレイン領域
100、200、300、400:半導体装置

Claims (3)

  1. CZ法によって形成されたシリコン基板を用いた絶縁ゲート型の半導体装置を製造する方法であり、
    プラズマCVD法によって、前記シリコン基板の表面に水素が含有されたゲート酸化膜を形成する工程と、
    そのゲート酸化膜を熱処理する工程と、
    を備えていることを特徴とする半導体装置の製造方法。
  2. 前記ゲート酸化膜を形成する工程では、1019atoms/cm以上の水素が含有されたゲート酸化膜を形成することを特徴とする請求項1の半導体装置の製造方法。
  3. 前記ゲート酸化膜を形成する工程では、50Pa以下の圧力条件下でプラズマCVD法を用いることを特徴とする請求項1又は2の半導体装置の製造方法。
JP2008263667A 2008-10-10 2008-10-10 半導体装置の製造方法 Pending JP2010093170A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008263667A JP2010093170A (ja) 2008-10-10 2008-10-10 半導体装置の製造方法
PCT/JP2009/067640 WO2010041740A1 (ja) 2008-10-10 2009-10-09 半導体装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008263667A JP2010093170A (ja) 2008-10-10 2008-10-10 半導体装置の製造方法

Publications (1)

Publication Number Publication Date
JP2010093170A true JP2010093170A (ja) 2010-04-22

Family

ID=42100686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008263667A Pending JP2010093170A (ja) 2008-10-10 2008-10-10 半導体装置の製造方法

Country Status (2)

Country Link
JP (1) JP2010093170A (ja)
WO (1) WO2010041740A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9490140B2 (en) 2014-08-26 2016-11-08 Samsung Electronics Co., Ltd. Method for manufacturing semiconductor device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016051970A1 (ja) 2014-09-30 2016-04-07 富士電機株式会社 半導体装置および半導体装置の製造方法
WO2021153708A1 (ja) * 2020-01-31 2021-08-05 国立大学法人信州大学 抗ピロリ菌活性を有するコレステロール類似物質

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03185827A (ja) * 1989-12-04 1991-08-13 Motorola Inc 高純度薄膜の形成方法
JPH0443462A (ja) * 1990-06-08 1992-02-13 Ricoh Co Ltd 翻訳後校正支援システム
JPH08125197A (ja) * 1994-08-31 1996-05-17 Semiconductor Energy Lab Co Ltd 半導体装置の作製方法および半導体装置の作製装置
JP2001036078A (ja) * 1999-07-22 2001-02-09 Seiko Epson Corp Mos型トランジスタ及びその製造方法
JP2002203961A (ja) * 2000-12-28 2002-07-19 Sony Corp ゲート絶縁膜の形成方法
JP2006156973A (ja) * 2004-10-25 2006-06-15 Toyota Motor Corp 絶縁ゲート型半導体装置の製造方法
JP2006261495A (ja) * 2005-03-18 2006-09-28 Seiko Epson Corp 半導体装置の製造方法及び半導体装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0443642A (ja) * 1990-06-11 1992-02-13 G T C:Kk ゲート絶縁膜の形成方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03185827A (ja) * 1989-12-04 1991-08-13 Motorola Inc 高純度薄膜の形成方法
JPH0443462A (ja) * 1990-06-08 1992-02-13 Ricoh Co Ltd 翻訳後校正支援システム
JPH08125197A (ja) * 1994-08-31 1996-05-17 Semiconductor Energy Lab Co Ltd 半導体装置の作製方法および半導体装置の作製装置
JP2001036078A (ja) * 1999-07-22 2001-02-09 Seiko Epson Corp Mos型トランジスタ及びその製造方法
JP2002203961A (ja) * 2000-12-28 2002-07-19 Sony Corp ゲート絶縁膜の形成方法
JP2006156973A (ja) * 2004-10-25 2006-06-15 Toyota Motor Corp 絶縁ゲート型半導体装置の製造方法
JP2006261495A (ja) * 2005-03-18 2006-09-28 Seiko Epson Corp 半導体装置の製造方法及び半導体装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9490140B2 (en) 2014-08-26 2016-11-08 Samsung Electronics Co., Ltd. Method for manufacturing semiconductor device

Also Published As

Publication number Publication date
WO2010041740A1 (ja) 2010-04-15

Similar Documents

Publication Publication Date Title
JPWO2003047000A1 (ja) 半導体装置及びその製造方法
JPS6245712B2 (ja)
US20150044840A1 (en) Method for producing silicon carbide semiconductor device
JP4819566B2 (ja) 半導体装置およびその製造方法
US8524585B2 (en) Method of manufacturing semiconductor device
US6204205B1 (en) Using H2anneal to improve the electrical characteristics of gate oxide
JP4983025B2 (ja) 半導体装置の製造方法
JP4434080B2 (ja) 絶縁ゲート型半導体装置およびその製造方法
JP5626037B2 (ja) 半導体装置の製造方法
JP2010080787A (ja) 半導体装置の製造方法
WO2010041740A1 (ja) 半導体装置の製造方法
JP4694769B2 (ja) 半導体装置の製造方法
JP2021082689A (ja) 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
TW201234599A (en) Method for manufacturing semiconductor device
JP2013165118A (ja) ゲート酸化膜の形成方法及び炭化珪素半導体装置の製造方法
CN105161526B (zh) 提高垂直导电结构SiC MOSFET沟道迁移率的方法
CN105140285B (zh) 一种垂直导电结构SiC MOSFET功率器件
JP2010123866A (ja) 半導体装置及びその製造方法
CN105097937B (zh) 一种横向导电结构 SiC MOSFET 功率器件
JP2006019615A (ja) 半導体装置及びその製造方法
JP2006073704A (ja) 半導体装置の製造方法
JP2023043338A (ja) 半導体装置の製造方法
JP2006156973A (ja) 絶縁ゲート型半導体装置の製造方法
JPWO2006137146A1 (ja) 電界効果トランジスタ及びその製造方法
JP2004221097A (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100518