JP2010080287A - 燃料電池システムおよび燃料電池システムの制御方法 - Google Patents

燃料電池システムおよび燃料電池システムの制御方法 Download PDF

Info

Publication number
JP2010080287A
JP2010080287A JP2008247885A JP2008247885A JP2010080287A JP 2010080287 A JP2010080287 A JP 2010080287A JP 2008247885 A JP2008247885 A JP 2008247885A JP 2008247885 A JP2008247885 A JP 2008247885A JP 2010080287 A JP2010080287 A JP 2010080287A
Authority
JP
Japan
Prior art keywords
fuel cell
gas
flow rate
generated water
determination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008247885A
Other languages
English (en)
Other versions
JP5412780B2 (ja
Inventor
Masashi Sato
雅士 佐藤
Susumu Maejima
晋 前嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2008247885A priority Critical patent/JP5412780B2/ja
Priority to EP09815997.3A priority patent/EP2330670B1/en
Priority to CN200980137583.XA priority patent/CN102165636B/zh
Priority to PCT/JP2009/064033 priority patent/WO2010035580A1/ja
Priority to US13/120,788 priority patent/US8748049B2/en
Publication of JP2010080287A publication Critical patent/JP2010080287A/ja
Application granted granted Critical
Publication of JP5412780B2 publication Critical patent/JP5412780B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • H01M8/04179Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal by purging or increasing flow or pressure of reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04492Humidity; Ambient humidity; Water content
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2484Details of groupings of fuel cells characterised by external manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04432Pressure differences, e.g. between anode and cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04574Current
    • H01M8/04589Current of fuel cell stacks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

【課題】燃料電池の起動時、生成水の排出処理を適切なタイミングで終了する燃料電池システム及びその制御方法を提供する。
【解決手段】第1の流量にて反応ガスの供給を開始する。そして、予め設定された判定セル数以上の単位セル1aにおいて反応極によって保持される生成水が内部ガス流路側に流出したと判定した場合に、反応ガスの流量を、第1の流量よりも小さな流量である第2の流量に変更する。
【選択図】図4

Description

本発明は、燃料電池システムおよびその制御方法に関する。
従来より、酸化剤極に供給される酸化剤ガスおよび燃料極に供給される燃料ガスを電気化学的に反応させることにより発電を行う燃料電池を有する燃料電池システムが知られている。通常、燃料電池は、反応極(酸化剤極または燃料極)と、この反応極に反応ガス(酸化剤ガスまたは燃料ガス)を供給する内部ガス流路とを有する単位セルを、複数積層して構成されている。
この類の燃料電池システムでは、個々の単位セルにおいて、反応極において生成水が生成される。この生成水によって内部ガス流路が塞がれた単位セルでは反応ガスが供給され難くなる。そのため、電圧が不安定に推移し、燃料電池の発電を安定して行うことができない可能性がある。
例えば、特許文献1には、燃料電池に供給される反応ガスの流量を増加させることにより、内部ガス流路に滞留する生成水を排出し、燃料電池の安定化を図る手法が開示されている。
特開2006−111266号公報
特許文献1に開示された手法によれば、反応ガスの流量を増加させることにより、内部ガス流路に滞留する生成水を排出することは可能である。もっとも、この生成水の排出処理は、その処理を終了する終了タイミングによっては、反応ガスを余剰に供給する可能性がある。
かかる課題を解決するために、本発明は、燃料電池へ第1の流量にて反応ガスの供給を開始する。予め設定された判定セル数以上の単位セルにおいて反応極によって保持される生成水が内部ガス流路側に流出したと判定された場合に反応ガスの流量を第1の流量から、この第1の流量よりも小さな流量である第2の流量に変更する。
本発明によれば、燃料電池へ反応ガスの供給を開始した後、判定セル数以上の単位セルにおいて生成水の内部ガス流路側への流出を検知することで、個々の単位セルに対する反応ガスの分配量のばらつきが改善したことを判断することができる。このばらつきの改善により、反応ガスの流量を増加させる必要がなくなるので、流量を小さくすることができる。これにより、生成水の排出処理において、反応ガスを余剰に供給する可能性を低減することができる。
(第1の実施形態)
図1は、本発明の第1の実施形態にかかる燃料電池システムを概略的に示す構成図である。燃料電池システムは、例えば、移動体である車両に搭載されており、この車両は燃料電池システムから供給される電力によって駆動する。
燃料電池システムは、一対のセパレータによって燃料電池構造体が挟持された単位セルを複数積層することにより構成される燃料電池スタック(燃料電池)1を備える。ここで、燃料電池構造体は、固体高分子電解質膜を、一対の電極(反応極)である燃料極と酸化剤極とで挟持することにより構成される。固体高分子電解質は、例えば、フッ素樹脂系イオン交換膜といったイオン伝導性の高分子膜で構成されており、飽和含水することによりイオン伝導性電解質として機能する。燃料極は、プラチナ等の触媒を担持した白金系の触媒層と、カーボン繊維等の多孔質体から構成したガス拡散層とで構成されている。酸化剤極は、プラチナ等の触媒を担持した白金系の触媒層と、カーボン繊維等の多孔質体から構成したガス拡散層とで構成されている。また、燃料電池構造体を両側より挟持するセパレータには、個々の反応極に反応ガス(燃料ガスまたは酸化剤ガス)を供給するための内部ガス流路が形成されている。
燃料電池スタック1は、個々の単位セルにおいて、燃料極に燃料ガスが供給されるとともに酸化剤極に酸化剤ガスが供給されることにより、燃料ガスおよび酸化剤ガスを電気化学的に反応させて発電を行う。本実施形態では、燃料ガスとして水素を、酸化剤ガスとして空気を用いるケースについて説明する。
燃料電池システムには、燃料電池スタック1に水素を供給するための水素系と、燃料電池スタック1に空気を供給するための空気系とが備えられている。
水素系は、燃料ガスである水素を燃料電池スタック1へ供給する燃料ガス供給手段を備えている。具体的には、例えば、水素は、高圧水素ボンベといった燃料タンク10に貯蔵されており、燃料タンク10から水素供給流路を介して燃料電池スタック1に供給される。水素供給流路には、燃料タンク10の下流側にタンク元バルブ(図示せず)が設けられているとともに、このバルブの下流に減圧バルブ(図示せず)が設けられている。タンク元バルブが開状態とされることにより、燃料タンク10からの高圧水素ガスは、減圧バルブによって所定の圧力まで機械的に減圧される。また、水素供給流路には、減圧バルブの下流側に水素調圧バルブ11が設けられている。この水素調圧バルブ11は、燃料電池スタック1の燃料極における水素圧力が所望の圧力となるように、減圧バルブによって減圧された水素の圧力を調整する。
燃料電池スタック1における個々の燃料極からの排出ガス(未使用の水素を含むガス)は、水素循環流路に排出される。水素循環流路の他方の端部は、水素供給流路における水素調圧バルブ11よりも下流側に接続されている。この水素循環流路には、例えば、水素循環ポンプ12といった水素循環手段が設けられている。燃料電池スタック1の燃料極からの排出ガスは、水素循環手段により、燃料電池スタック1の燃料極に循環させられる。
ところで、酸化剤ガスとして空気を用いるケースでは、酸化剤極に供給された酸化剤ガスに含まれる不純物(例えば、窒素)が燃料極側に透過することがある。そのため、燃料極および水素循環流路を含む循環系内の不純物濃度が増加し、水素分圧が減少する傾向となる。不純物濃度が高い場合、燃料電池スタック1の出力が低下する等の不都合が生じるため、循環系内の不純物濃度を管理する必要がある。
そこで、水素循環流路には、循環系内から不純物をパージするためのパージ流路が設けられている。パージ流路には、パージバルブ13が設けられており、このパージバルブ13を閉状態から開状態に必要に応じて切り替えることにより、水素循環流路を流れる循環ガスを外部に排出することができる。これにより、不純物のパージを行うことができ、循環系内における不純物濃度を調整することができる。
空気系は、酸化剤ガスである空気を燃料電池スタック1へ供給する酸化剤ガス供給手段を有する。具体的には、空気は、空気供給流路を介して燃料電池スタック1に供給される。この空気供給流路には、コンプレッサ20が設けられている。コンプレッサ20は、大気(空気)を取り込むと、空気を加圧して吐出する。加圧された空気は、燃料電池スタック1に供給される。
燃料電池スタック1における個々の酸化剤極からの排出ガス(酸素が消費された空気)は、空気排出流路を介して外部(大気)に排出される。空気排出流路には、空気調圧バルブ21が設けられている。この空気調圧バルブ21は、燃料電池スタック1の酸化剤極における圧力が所望の圧力となるように、空気の圧力を調整する。
燃料電池スタック1には、燃料電池スタック1から取り出す出力(例えば、電流)を制御する出力取出装置2が接続されている。燃料電池スタック1において発電された電力は、出力取出装置2を介して、車両を駆動する電動モータ、バッテリ、または、燃料電池スタック1による発電を行うための種々の補機(例えば、コンプレッサ20、水素循環ポンプ12など)および車両用の種々の補機(空調装置など)に供給される。
制御部(制御手段)30は、システム全体を統合的に制御する機能を担っており、制御プログラムに従って動作することにより、システムの運転状態を制御する。制御部30としては、CPU、ROM、RAM、I/Oインターフェースを主体に構成されたマイクロコンピュータを用いることができる。この制御部30は、システムの状態に基づいて、各種の演算を行い、この演算結果を制御信号として各種のアクチュエータ(図示せず)に出力する。これにより、水素調圧バルブ11の開度、水素循環ポンプ12の回転数、コンプレッサ20の回転数、空気調圧バルブ21の開度、出力取出装置2による電流の取出量が制御される。
制御部30には、システムの状態を検出するために、各種センサ等からのセンサ信号が入力されている。電流センサ31は、燃料電池スタック1から取り出される電流(以下「スタック電流」という)を検出する。
本実施形態との関係において、制御部(制御手段および判定手段)30は、予め設定された判定セル数以上の単位セルにおいて燃料極によって保持される生成水が内部ガス流路側に流出したことを判定する(生成水流出判定)。また、制御部30は、システムの起動時に実行する起動処理において、後述する起動時流量(第1の流量)にて水素の供給を開始し、生成水流出判定が行われた場合、水素の流量を起動時流量から、この起動時流量よりも小さな流量である後述する通常運転流量に変更する。
制御部30は、燃料極側を制御対象として処理を行うのみならず、酸化剤側を制御対象として処理を行うこともできる。具体的には、制御部30は、システムの起動時に実行する起動処理において、起動時流量(第1の流量)にて空気を供給する。また、制御部30は、予め設定された判定セル数以上の単位セルにおいて酸化剤極によって保持される生成水が内部ガス流路側に流出したと判断した場合に生成水流出判定を行う。そして、制御部30は、生成水流出判定が行われた場合、空気の流量を起動時流量から、後述する通常運転流量に変更する。
かかる制御は、燃料電池スタック1に関する生成水の発生状況に応じて、燃料極および酸化剤極のいずれか一方のみ制御対象として処理を実行してもよいし、双方を制御対象として並列的に処理を実行してもよい。また、燃料極および酸化剤極の双方を制御対象として、総合的に処理を実行してもよい。このケースでは、燃料極および酸化剤極の双方において生成水流出判定が行われた場合に、水素および空気の流量を起動時流量から通常運転流量に減少させるといった如くである。
なお、本実施形態では、このような制御形態のバリエーションを考慮して、説明の便宜上、燃料極または酸化剤極を反応極と総称し、水素または空気を反応ガスと総称して説明を行う。
図2は、本発明の実施形態にかかる燃料電池システムの制御方法の手順を示すフローチャートである。このフローチャートに示す一連の手順は、システムの起動時に実行される起動処理の流れを示しており、例えば、イグニッションスイッチのオン信号をトリガーとして、制御部30によって実行される。
まず、ステップ1(S1)において、生成水排出フラグFwが「1」であるか否かが判断される。この生成水排出フラグFwは、後述する排出処理が実行されているか否かを判別するフラグであり、初期的には「0」にセットされている。そのため、生成水排出フラグFwが「1」にセットされるまでは、このステップ1において否定判定されるため、ステップ2(S2)に進む。一方、生成水排出フラグFwが「1」にセットされると、ステップ1において肯定判定されるため、ステップ2およびステップ3(S3)の処理をスキップして、ステップ4(S4)の処理に進む。
ステップ2において、カウントフラグFcntが「1」にセットされる。このカウントフラグFcntは、反応ガスの供給が開始されてからの経過時間、すなわち、燃料電池スタック1による発電が開始されてからの経過時間のカウントを行うタイマが動作中か否かを判別するためのフラグである。カウントフラグFcntは、初期的には「0」にセットされている。制御部30は、ステップ2においてカウントフラグFcntを「0」から「1」にセットしたことを条件として、タイマによる経過時間のカウントを開始する。
ステップ3において、反応ガスの供給が開始される。具体的には、制御部30は、水素調圧バルブ11およびコンプレッサ20を制御して、反応ガスの供給を開始する。この場合、制御部30は、通常運転時に設定される通常運転流量(すなわち、燃料電池スタック1を動作させるための設計流量)よりも大きな値に設定された起動時流量にて、反応ガスの供給を行う(排出処理の開始)。
ステップ4において、センサ値が読み込まれる。具体的には、第1の実施形態では、電流センサ31において検出されるスタック電流が読み込まれる。
ステップ5(S5)において、生成水積算量Wadが判定値Wth以上であるか否かが判断される。生成水積算量Wadは、燃料電池スタック1による発電開始のタイミングを始点とする、燃料電池スタック1において生成される生成水量の積算値である。燃料電池スタック1による単位時間当たりの生成水量は、燃料電池スタック1からの取出電流に比例する。そのため、スタック電流を定期的に読み込み、スタック電流の経時的な推移をモニタリングすることにより、生成水積算量Wadを演算することができる。
一方、判定値Wthは、単位セルの液水保持可能量に、予め設定された判定セル数(例えば、燃料電池スタック1を構成する全セルに相当する数)を積算することにより算出される。ここで、単位セルの液水保持可能量は、単位セル、具体的には、ガス拡散層が保持することができる生成水の量であり、単位セルの開発段階、あるいは実験やシミュレーションを通じて知得することができる。換言すれば、判定値Wthは、判定セル数に相当する単位セルが保持することができる生成水の総量を示す。
このステップ5の判断により、燃料電池スタック1において、判定セル数(例えば、全セル)以上の単位セルにおいて、反応極(ガス拡散層)によって保持される生成水が内部ガス流路側に流出したか否かを判定することできる。ステップ5において肯定判定された場合、すなわち、生成水積算量Wadが判定値Wth以上である場合には、生成水流出判定が行われ、ステップ6(S6)に進む。ステップ5において否定判定された場合、すなわち、生成水積算量Wadが判定値Wthよりも小さい場合には、ステップ7(S7)に進む。
ステップ6において、カウントフラグFcntが「0」にセットされるとともに、生成水排出フラグFwが「0」にセットされる。制御部30は、カウントフラグFcntを「1」から「0」にセットしたことを条件として、タイマのカウントをストップするとともに、経過時間をゼロにリセットする。また、制御部30は、生成水排出フラグFwを「1」から「0」にセットしたことを条件として、起動時流量から通常運転流量に変更して、反応ガスの供給を行う。
ステップ7において、生成水排出フラグFwが「1」にセットされ、その後、本ルーチンを抜ける。
図3は、本実施形態の起動処理におけるタイミングチャートを示す。同図において、Lqは燃料電池スタック1へ供給される反応ガスの流量の推移を示し、Lwは生成水積算量Wadの推移を示し、Lwthは判定値Wthを示す。
このように本実施形態において、制御部30は、システムの起動時に実行する起動処理において、起動時流量にて反応ガスを供給する。また、制御部30は、予め設定された判定セル数以上の単位セルにおいて反応極によって保持される生成水が内部ガス流路側に流出したと判断した場合に生成水流出判定を行う(タイミングt1)。そして、制御部30は、生成水流出判定が行われた場合、反応ガスの流量を起動時流量から、通常運転流量に変更する。
図4は、燃料電池スタック1の内部構造を模式的に示す断面図である。燃料電池スタック1において発電が開始されると、各単位セル1aでは発電反応にともない水が生成される。燃料電池システムの起動時など、燃料電池スタック1の動作温度が低いシーンでは、動作温度が高いシーンと比較して、生成水や供給ガスが持ち込む水分がガス拡散層1bや内部ガス流路1cで凝縮し易い。そのため、凝縮した水分によって反応ガスの供給が妨げられ、発電不能になる恐れがある(いわゆる、フラッディング)。
また、燃料電池スタック1の温度が高い場合でも、ガス拡散層が乾燥している状態から発電を開始した場合、あるいは、十分運転して温度が上昇した後の再起動時などの場合、生成水は、ガス拡散層1bを濡らす、すなわち、ガス拡散層1bによって保持される。生成水は、ガス拡散層1bの液水可能保持量に達するまではガス拡散層1bによって保持され、内部ガス流路1c側に流出しない(図4(a)参照)。同図において、実線で示す矢印は、反応ガスの流れを示す。ガス拡散層1bによって保持される生成水量が液水可能保持量に到達すると、ガス拡散層1bから溢れた生成水が内部ガス流路1c側へ流出する。ガス拡散層1bの液水可能保持量は、単位セルの温度に依存する傾向がある。具体的には、ガス拡散層1bの液水可能保持量は、温度が高い程大きな値となる傾向を有する。単位セルの個体差、または、温度差に応じて、個々の単位セル1aにおける液水可能保持量が異なることがある。これにより、生成水がガス拡散層1bから内部ガス流路1cに流出するタイミングが、個々の単位セル1aにおいて異なる場合がある。
生成水が内部ガス流路1cに流出した単位セル1aでは、内部ガス流路1cに生成水が溢れる、いわゆる、フラッディングが発生する。フラッディングにより生成水が内部流路に滞留した単位セル1aにおける内部ガス流路1cの圧力損失は、生成水が流出していない単位セル1aのそれと比較して上昇する。そのため、単位セル1a間において内部ガス流路1cの圧力損失にばらつきが発生し、単位セル1aに対する反応ガスの分配性能が悪くなる単位セル1aが生じる(図4(b)参照)。同図において、ハッチングで示すガス拡散層1bは、内部ガス流路1c側へ生成水が流出した状態を示す。そのため、反応ガスが分配され難い単位セル1aにおいて、反応ガスが不足する可能性がある。
そこで、本実施形態では、発電を開始した場合、通常運転流量よりも大きな流量である起動時流量にて反応ガスの供給を行う。このため、反応ガスの流量が大きくなることにより、圧力損失が大きく通常運転流量では反応ガスが不足するような単位セル1aであっても、反応ガスを供給することができる。
また、判定セル数以上の単位セル1aにおいて、生成水が内部ガス流路1c側に流出された場合には、個々の単位セル1aの圧力損失のばらつきが解消される(図4(c)参照)。これにより、単位セル1aに対する反応ガスの分配性能の回復を図ることができる。そのため、反応ガスの流量を通常運転流量に戻すことが可能となる。
このように本実施形態によれば、判定セル数以上の単位セルにおいて生成水が内部ガス流路側へと流出したタイミングを検知することができる。これにより、反応ガスの分配性能が悪く、電圧が不安定となる期間の終了タイミングを精度よく判定することができる。そのため、反応ガスの流量を増加させている期間、すなわち、内部ガス流路に滞留する生成水の排出処理を適切なタイミングで終了することができる。
また、本実施形態において、判定セル数は、内部ガス流路側に生成水が流出した単位セルの数と、個々の単位セルへの反応ガスの分配ばらつきの程度とに基づいて、燃料電池スタック1を構成する全単位セルを上限数として設定される。
ここで、判定値Wthの設定基準について説明する。例えば、判定セル数は、燃料電池スタック1を構成する全単位セル1aの数とする。この場合、判定値Wthは、全単位セル1aに相当するガス拡散層1bの液水保持可能量の総計となる。そして、全単位セル1aにおいて生成水が内部ガス流路1c側に排出された場合には、単位セル1a間で圧力損失のばらつきを抑制することができる。このため、反応ガスの流量を通常運転流量に戻すことが可能となる。
なお、判定セル数は、燃料電池スタック1を構成する全ての単位セルの数に限定されない。例えば、ガス拡散層から内部ガス流路側に生成水が排出された単位セルの数をカウントし、反応ガスの分配性能が改善したと判断することができる単位セルの数を、判定セル数の下限値として設定することができる。
図5は、判定値Wthの設定基準を示す説明図である。具体的には、まず、燃料電池スタック1に対して取出電流を一定とした定常発電状態を設定する。この場合、内部ガス流路への生成水の排出が単位セル間でばらつき始めるタイミングにおいて、反応ガスの分配が最も悪くなる単位セルではフラッディングが生じるような反応ガスの流量で発電を継続する。そして、所定数の単位セルにおいて内部ガス流路側に生成水が排出されることにより、反応ガスの分配性能が改善され、フラッディングが解消するまでの生成水積算量を判定値Wthとして算出する。
ここで、図5において、Aは、燃料電池スタック1を構成する全単位セルのガス拡散層に相当する容積を示し、Lwは、生成水積算量Wadを示す。また、Vaveは、個々の単位セルに関する平均電圧を示し、Vminは、個々の単位セルのうち最低電圧を示す。フラッディングが生じた単位セルでは、発電効率が低下するため電圧が低下する傾向を示す。また、フラッディングが解消したタイミングにおいて、電圧の低下が解消される。そのため、フラッディングが解消したタイミングに対応する点Bにおける生成水積算量から、判定値Wthを設定することができる。
また、本実施形態において、制御部30は、発電開始のタイミングを始点とするスタック電流の時系列的な推移に基づいて、燃料電池スタック1の生成水積算量Wadを算出する。そして、制御部30は、生成水積算量Wadが、判定値Wth、すなわち、判定セル数以上の単位セルにおいて内部ガス流路側に生成水が流出した場合における生成水の総量に到達したことを条件として、生成水流出判定を行う。
発電開始後、判定セル数以上でガス拡散層の液水可能保持量を超える生成水が内部ガス流路側に流出すれば、電圧が不安定な領域(圧力損失にバラツキがある領域)を脱したこととなる。スタック電流から生成水積算量を求めることで、精度よく値を検出することができる。
(第2の実施形態)
図6は、本発明の第2の実施形態にかかる燃料電池システムの構成を示す構成図である。本実施形態にかかる燃料電池システムが、第1の実施形態のそれと相違する点は、生成水積算量Wadを直接的に計測する点にある。なお、第1の実施形態と重複する構成については説明を省略することとし、相違点を中心に説明を行う。
具体的には、水素循環流路には、気液分離装置14が設けられている。この気液分離装置14は、水素循環流路を流れるガス、すなわち、生成水が含まれるガスを、気体成分と生成水とに分離する。分離された生成水は、気液分離装置14内に貯留され、図示しない流路を介して必要に応じて外部に排出される。この気液分離装置14には、貯蔵される生成水の水位を検出するレベルセンサ32が設けられている。換言すれば、このレベルセンサ32は、燃料電池スタック1に対する反応ガスの出口側に設けられており、燃料電池スタック1から排出される生成水量を検出する。レベルセンサ32からのセンサ信号は、制御部30に入力される。
制御部30は、レベルセンサ32からのセンサ信号、すなわち、生成水の水位に基づいて、生成水積算量Wadを演算する。そして、この生成水積算量Wadと判定値Wthとを比較することにより、第1の実施形態と同様に、判定セル数以上の単位セルから生成水が排出されたか否かを判断する。
発電開始後、判定セル数以上でガス拡散層の液水可能保持量を超える生成水が内部ガス流路側に流出すれば、電圧が不安定な領域(圧力損失にバラツキがある領域)を脱したこととなる。燃料電池スタック1から排出される生成水の量を直接的に検出することにより、生成水積算量を精度よく検出することができる。
なお、本実施形態では、主として燃料極側に生成水が保持されることを前提に、水素系側のみに、燃料電池スタック1から排出される生成水量を検出する検出手段を設けているが、本発明はこれに限定されない。酸化剤極側に生成水が保持されるようなケースでは、酸素系のみに検出手段を設けてもよい。また、水素系および空気系の両方に検出手段を設けてもよい。
また、検出手段としては、燃料電池スタック1に対する反応ガスの出口側に設けられて、燃料電池スタック1から排出される生成水の排出速度を検出してもよい。この場合、制御部30は、検出され排出速度が、判定セル数以上の単位セルにおいて内部ガス流路側に生成水が流出した場合における生成水の排出速度に到達したことを条件として、生成水流出判定を行う。
(第3の実施形態)
図7は、本発明の第3の実施形態にかかる燃料電池システムの構成を示す構成図である。本実施形態にかかる燃料電池システムが、第1の実施形態のそれと相違する点は、生成水積算量Wadを直接的に計測する点にある。なお、第1の実施形態と重複する構成については説明を省略することとし、相違点を中心に説明を行う。
具体的には、水素系において、燃料電池スタック1の上流側および下流側には圧力を検出する圧力センサ33,34が設けられている。また、空気系において、燃料電池スタック1の上流側および下流側には圧力を検出する圧力センサ35,36が設けられている。これらの圧力センサ33〜36からのセンサ信号は、制御部30に入力されている。
制御部30は、水素系の圧力センサ33,34に基づいて、燃料極側における燃料電池スタック1の入出口の圧力損失(以下「燃料極側のスタック圧力損失」という)を特定することができる。また、制御部30は、空気系の圧力センサ35,36に基づいて、酸化剤極側における燃料電池スタック1の圧力損失(以下「酸化剤極側のスタック圧力損失」という)を特定することができる。換言すれば、圧力センサ33〜36は、燃料電池スタック1に対する反応ガスの入口側の圧力と、燃料電池スタック1に対する反応ガスの出口側の圧力との差圧を検出するセンサとして機能する。
そして、制御部30は、スタック圧力損失と、判定値とを比較することにより、判定セル数(例えば、全セル)以上の単位セルにおいて、反応極(ガス拡散層)が保持する生成水が内部ガス流路側に排出されたか否かを判定する。
図8は、判定値の設定方法について説明する説明図である。ここで、判定値の設定方法について説明する。同図において、Lvは、スタック圧力損失の推移を示し、Lwは、生成水積算量Wadの推移を示す。燃料電池スタック1の発電が開始された場合、生成水が発生しても各単位セルのガス拡散層の液水保持量以内であれば、内部ガス流路側に生成水は排水されない。そのため、各単位セルの内部ガス流路の圧力損失は小さく、スタック圧力損失も小さい。
つぎに、生成水が内部ガス流路に排出され始めると、スタック圧力損失は次第に大きくなる(タイミングt1)。そして、全ての単位セルについて、ガス拡散層から生成水が排出された場合には、スタック圧力損失が最大値となる(タイミングt2)。スタック圧力損失が最大値に到達している場合には、全ての単位セルで内部ガス流路側に生成水が排出されている。単位セル間における圧力損失のばらつきを回避することができるので、このスタック圧力損失の最大値を判定値として用いることができる。
具体的には、まず、燃料電池スタック1に対して取出電流を一定とした定常発電状態を設定する。この場合、内部ガス流路への生成水の排出が単位セル間でばらつき始めるタイミングにおいて、反応ガスの分配が最も悪くなる単位セルではフラッディングが生じるような反応ガスの流量で発電を継続する。そして、内部ガス流路側に生成水が排出されることにより、反応ガスの分配性能が改善され、フラッディングが解消した際のスタック圧力損失を算出する。そして、この算出されたスタック圧力損失が判定値として設定する。 このように本実施形態によれば、制御部30は、スタック圧力損失が、判定セル数以上の単位セルにおいて内部ガス流路側に生成水が流出した場合における燃料電池スタック1の出入口の差圧に到達したことを条件として、生成水流出判定を行う。
かかる構成によれば、内部ガス流路に生成水が流出する前後では、同一の条件下でもスタック圧力損失が変わってくる。これにより、スタック圧力損失から、分配流量にバラツキがあるようなシーンの終了タイミングを精度よく検出することができる。
第1の実施形態にかかる燃料電池システムを概略的に示す構成図 燃料電池システムの制御方法の手順を示すフローチャート 起動処理におけるタイミングチャート 燃料電池スタック1の内部構造を模式的に示す断面図 判定値Wthの設定基準を示す説明図 第2の実施形態にかかる燃料電池システムの構成を示す構成図 第3の実施形態にかかる燃料電池システムの構成を示す構成図 判定値の設定方法について説明する説明図
符号の説明
1…燃料電池スタック
1a…全単位セル
1a…単位セル
1b…ガス拡散層
1c…ガス拡散層
1c…内部ガス流路
2…出力取出装置
10…燃料タンク
11…水素調圧バルブ
12…水素循環ポンプ
13…パージバルブ
14…気液分離装置
20…コンプレッサ
21…空気調圧バルブ
30…制御部
31…電流センサ
32…レベルセンサ
33…圧力センサ
34…圧力センサ
35…圧力センサ
36…圧力センサ

Claims (9)

  1. それぞれが反応極と当該反応極に反応ガスを供給する内部ガス流路とを備えた複数の単位セルから構成されており、単位セル毎に、内部ガス流路を介して反応ガスが供給されることにより発電を行う燃料電池と、前記燃料電池へ反応ガスを供給するガス供給手段とを備える燃料電池システムにおいて、
    予め設定された判定セル数以上の単位セルにおいて前記反応極によって保持される生成水が前記内部ガス流路側に流出したことを判する判定手段と、
    前記ガス供給手段から第1の流量にて反応ガスの供給を開始し、前記判定手段によって生成水が流出した判定が行われた場合、前記ガス供給手段から供給される反応ガスの流量を前記第1の流量から、当該第1の流量よりも小さな流量である第2の流量に変更する制御手段と
    を有することを特徴とする燃料電池システム。
  2. 前記判定セル数は、前記内部ガス流路側に生成水が流出した単位セルの数と、個々の単位セルへの反応ガスの分配ばらつきの程度とに基づいて、前記燃料電池を構成する全単位セルを上限数として設定されることを特徴とする請求項1に記載された燃料電池システム。
  3. 前記第2の流量は、システム起動後の通常運転時において前記燃料電池による発電動作を行うための設計流量であることを特徴とする請求項1または2に記載された燃料電池システム。
  4. 前記燃料電池から取り出される電流を検出する電流検出手段をさらに有し、
    前記判定手段は、前記燃料電池による発電開始のタイミングを始点とする、前記電流検出手段によって検出される電流の時系列的な推移に基づいて、前記燃料電池において生成される生成水の積算量を算出し、当該生成水の積算量が、前記判定セル数以上の単位セルにおいて前記内部ガス流路側に生成水が流出した場合における生成水の総量に到達したことを条件として、前記判定を行うことを特徴とする請求項1から3のいずれか一項に記載された燃料電池システム。
  5. 前記燃料電池に対する反応ガスの出口側に設けられて、前記燃料電池から排出される生成水量を検出する液水検出手段をさらに有し、
    前記判定手段は、前記液水検出手段によって検出される液水量が、前記判定セル数以上の単位セルにおいて前記内部ガス流路側に生成水が流出した場合における生成水の量に到達したことを条件として、前記判定を行うことを特徴とする請求項1から3のいずれか一項に記載された燃料電池システム。
  6. 前記燃料電池に対する反応ガスの出口側に設けられて、前記燃料電池から排出される生成水の排出速度を検出する液水検出手段をさらに有し、
    前記判定手段は、前記液水検出手段によって検出され排出速度が、前記判定セル数以上の単位セルにおいて前記内部ガス流路側に生成水が流出した場合における生成水の排出速度に到達したことを条件として、前記判定を行うことを特徴とする請求項1から3のいずれか一項に記載された燃料電池システム。
  7. 前記燃料電池に対する反応ガスの入口側の圧力と、前記燃料電池に対する反応ガスの出口側の圧力との差圧を検出する差圧検出手段をさらに有し、
    前記判定手段は、前記差圧検出手段によって検出される差圧が、前記判定セル数以上の単位セルにおいて前記内部ガス流路側に生成水が流出した場合における前記燃料電池の出入口の差圧に到達したことを条件として、前記判定を行うことを特徴とする請求項1から3のいずれか一項に記載された燃料電池システム。
  8. 燃料電池システムにおいて、
    それぞれが反応極と、当該反応極に反応ガスを供給する内部ガス流路とを備えた複数の単位セルから構成されており、それぞれの内部ガス流路を介して各反応極に反応ガスが供給されることにより発電を行う燃料電池と、
    前記反応極へ反応ガスを供給するガス供給手段と、
    システムの起動時に前記ガス供給手段から反応ガスを第1の流量で供給するとともに、前記判定セル数以上の単位セルにおいて前記反応極によって保持される生成水が前記内部ガス流路側に流出することにより、個々の内部ガス流路に対する反応ガスの分配ばらつきが抑制されたことを条件として、前記ガス供給手段から供給される反応ガスの流量を第1の流量から減少させることを特徴とする燃料電池システム。
  9. それぞれが反応極と当該反応極に反応ガスを供給する内部ガス流路とを備えた複数の単位セルから構成される燃料電池を備える燃料電池システムの制御方法において、
    前記燃料電池に第1の流量にて反応ガスの供給を開始し、予め設定された判定セル数以上の単位セルにおいて前記反応極によって保持される生成水が前記内部ガス流路側に流出したと判定した場合に、反応ガスの流量を前記第1の流量から、当該第1の流量よりも小さな流量である第2の流量に変更することを特徴とする燃料電池システムの制御方法。
JP2008247885A 2008-09-26 2008-09-26 燃料電池システムおよび燃料電池システムの制御方法 Expired - Fee Related JP5412780B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2008247885A JP5412780B2 (ja) 2008-09-26 2008-09-26 燃料電池システムおよび燃料電池システムの制御方法
EP09815997.3A EP2330670B1 (en) 2008-09-26 2009-08-07 Fuel cell system and method of controlling fuel cell system
CN200980137583.XA CN102165636B (zh) 2008-09-26 2009-08-07 燃料电池系统以及燃料电池系统的控制方法
PCT/JP2009/064033 WO2010035580A1 (ja) 2008-09-26 2009-08-07 燃料電池システムおよび燃料電池システムの制御方法
US13/120,788 US8748049B2 (en) 2008-09-26 2009-08-07 Fuel cell system and method of controlling fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008247885A JP5412780B2 (ja) 2008-09-26 2008-09-26 燃料電池システムおよび燃料電池システムの制御方法

Publications (2)

Publication Number Publication Date
JP2010080287A true JP2010080287A (ja) 2010-04-08
JP5412780B2 JP5412780B2 (ja) 2014-02-12

Family

ID=42059587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008247885A Expired - Fee Related JP5412780B2 (ja) 2008-09-26 2008-09-26 燃料電池システムおよび燃料電池システムの制御方法

Country Status (5)

Country Link
US (1) US8748049B2 (ja)
EP (1) EP2330670B1 (ja)
JP (1) JP5412780B2 (ja)
CN (1) CN102165636B (ja)
WO (1) WO2010035580A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6597444B2 (ja) * 2016-03-25 2019-10-30 ブラザー工業株式会社 燃料電池、燃料電池の制御方法、及びコンピュータプログラム
JP2019220414A (ja) * 2018-06-22 2019-12-26 本田技研工業株式会社 水検出装置及び発電セル

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001118587A (ja) * 1999-10-15 2001-04-27 Toshiba Corp 固体高分子型燃料電池及びその運転方法
JP2003331892A (ja) * 2002-05-13 2003-11-21 Mitsubishi Heavy Ind Ltd 燃料電池システム及び燃料電池システムの起動方法
JP2004265862A (ja) * 2003-02-14 2004-09-24 Denso Corp 燃料電池システム
JP2005032587A (ja) * 2003-07-07 2005-02-03 Denso Corp 燃料電池システム
JP2007157621A (ja) * 2005-12-08 2007-06-21 Denso Corp 燃料電池システム
JP2007242449A (ja) * 2006-03-09 2007-09-20 Nissan Motor Co Ltd 燃料電池システム
JP2008147093A (ja) * 2006-12-12 2008-06-26 Toyota Motor Corp 燃料電池システム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7318971B2 (en) * 2003-02-14 2008-01-15 Denso Corporation Fuel cell system utilizing control of operating current to adjust moisture content within fuel cell
US20050260463A1 (en) * 2004-05-21 2005-11-24 Chapman Ivan D Fluid flow pulsing for increased stability in PEM fuel cell
JP4335877B2 (ja) 2006-01-25 2009-09-30 株式会社パイオラックス フロート弁装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001118587A (ja) * 1999-10-15 2001-04-27 Toshiba Corp 固体高分子型燃料電池及びその運転方法
JP2003331892A (ja) * 2002-05-13 2003-11-21 Mitsubishi Heavy Ind Ltd 燃料電池システム及び燃料電池システムの起動方法
JP2004265862A (ja) * 2003-02-14 2004-09-24 Denso Corp 燃料電池システム
JP2005032587A (ja) * 2003-07-07 2005-02-03 Denso Corp 燃料電池システム
JP2007157621A (ja) * 2005-12-08 2007-06-21 Denso Corp 燃料電池システム
JP2007242449A (ja) * 2006-03-09 2007-09-20 Nissan Motor Co Ltd 燃料電池システム
JP2008147093A (ja) * 2006-12-12 2008-06-26 Toyota Motor Corp 燃料電池システム

Also Published As

Publication number Publication date
WO2010035580A1 (ja) 2010-04-01
CN102165636B (zh) 2014-07-02
EP2330670A1 (en) 2011-06-08
EP2330670A4 (en) 2014-02-26
CN102165636A (zh) 2011-08-24
JP5412780B2 (ja) 2014-02-12
US8748049B2 (en) 2014-06-10
EP2330670B1 (en) 2014-11-19
US20110183223A1 (en) 2011-07-28

Similar Documents

Publication Publication Date Title
WO2010058747A1 (ja) 燃料電池システムおよびその制御方法
JP5228835B2 (ja) 燃料電池システム
JP5428307B2 (ja) 燃料電池システム
JP2005100827A (ja) 燃料電池システム
JP2009158371A (ja) 燃料電池システム
JP6017785B2 (ja) 燃料電池システム及び燃料電池システムの運転方法
US20150004512A1 (en) Fuel cell system
JP5804181B2 (ja) 燃料電池システム及び燃料電池システムの制御方法
JP5858138B2 (ja) 燃料電池システム及び燃料電池システムの制御方法
JP4973138B2 (ja) 燃料電池システム
JP5422979B2 (ja) 燃料電池システム
JP2009123613A (ja) 燃料電池システムおよび燃料電池システムの制御方法
JP5304863B2 (ja) 燃料電池システム
JP4982977B2 (ja) 燃料電池システム
JP5412780B2 (ja) 燃料電池システムおよび燃料電池システムの制御方法
JP2009129760A (ja) 燃料電池システムおよび燃料電池システムの制御方法
JP2013182690A (ja) 燃料電池システム
JP2009076261A (ja) 燃料電池システム及びその起動方法
JP2007165019A (ja) 燃料電池システム
JP2013182688A (ja) 燃料電池システム
JP7016025B2 (ja) 燃料電池システムおよびその運転方法
JP5319171B2 (ja) 燃料電池システム
JP6315714B2 (ja) 燃料電池システムの運転制御方法
JP5429341B2 (ja) 燃料電池システム
JP5251379B2 (ja) 燃料電池システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131028

R150 Certificate of patent or registration of utility model

Ref document number: 5412780

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees