JP2010023756A - 車線維持支援装置及び車線維持支援方法 - Google Patents
車線維持支援装置及び車線維持支援方法 Download PDFInfo
- Publication number
- JP2010023756A JP2010023756A JP2008189809A JP2008189809A JP2010023756A JP 2010023756 A JP2010023756 A JP 2010023756A JP 2008189809 A JP2008189809 A JP 2008189809A JP 2008189809 A JP2008189809 A JP 2008189809A JP 2010023756 A JP2010023756 A JP 2010023756A
- Authority
- JP
- Japan
- Prior art keywords
- control
- lane
- lateral displacement
- host vehicle
- deviation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Power Steering Mechanism (AREA)
- Traffic Control Systems (AREA)
- Steering Control In Accordance With Driving Conditions (AREA)
Abstract
【解決手段】自車両が走行する走行車線の幅方向中央から幅方向左右の少なくとも一方にオフセットした位置である横方向変位閾値を設ける。そして、少なくとも左右の横方向変位閾値以内に自車両が位置する場合には、走行車線に対する角度偏差が小さくなるようにフィードバック制御(ヨー角制御)を行う。また、走行車線中央に対し左右の横方向変位閾値よりも外に自車両がいる場合には、主として横変位偏差が小さくなるようにフィードバック制御(横位置制御)を行う。さらに、上記制御の基礎とする情報に基づき、運転者の感覚に制御の報知をするための刺激を付与する。
【選択図】 図3
Description
この特許文献1に記載の技術では、自車両の進行方向と走行車線との角度偏差が小さくなるように車輪の転舵角を制御する技術である。これによって、自車両が走行車線を逸脱することを防止することを目的としている。
ここで、以下の説明では、自車両が走行車線の一方の端部側に近づいた位置にいる場合を例に説明する。
このように、上記従来技術では、逸脱側への角度偏差発生時の逸脱防止効果と、逸脱回避側への角度偏差発生時の制御介入違和感とがトレードオフの関係にある。
本発明は、上記のような点に着目したもので、走行車線逸脱を有効に防止しつつ、運転者の意図する走行ラインとのずれからくる運転者が受ける違和感を低減可能な車線維持支援装置を提供することを課題としている。
さらに、上記制御の基礎とする情報に基づき、運転者の感覚に制御の報知をするための刺激を付与する。
一方、自車両が走行車線の端部側に位置する場合には、走行車線中央部側に戻す制御が介入することで、適切に走行車線内に留めることができる。
以上のように、本発明によれば、運転者の意図する走行ラインとのずれからくる違和感を低減しつつ、有効に走行車線逸脱を防止することが可能となる。
更に、以上のような運転者の意図する走行ラインとのずれからくる違和感を低減するように車両の走行制御に基づいて、運転者が認知できる注意喚起を行う。
これによって、さらに、車線維持支援の際における、運転者の違和感を低減できる。
図1は、本実施形態の車線維持支援装置を適用した自車両のシステム概要構成図である。
この実施形態の自車両は、ステアバイワイヤシステムを採用している。
(構成)
まず構成について図1を参照しながら説明する。
運転者が操作するステアリングホイール12にステアリング入力軸30が連結する。そのステアリング入力軸30には、ステアリングホイール12の操舵角を検出するハンドル角度センサ1を設ける。そのハンドル角度センサ1は、検出した操舵角度信号を操舵用コントローラ11に出力する。
上記第1中間軸31に、操舵反力アクチュエータ3が連結する。操舵反力アクチュエータ3は、操舵用コントローラ11からの指令に基づき操舵反力を第1中間軸31に付加する。その操舵反力アクチュエータ3の操舵反力モータに操舵反力モータ角度センサ4を設ける。操舵反力モータ角度センサ4は、操舵反力モータの回転角度位置を検出し、その検出信号を操舵用コントローラ11に出力する。
また、自車両状態パラメータ14が操舵用コントローラ11に入力する。自車両状態パラメータ14は、例えば車速検出手段が検出した車速や、路面摩擦係数推定手段が検出した走行路面の摩擦係数推定値である。
また、符号44は、運転席前方のメータークラスター内のランプを示す。また、符号45は、車室内に設けた警報装置を示す。
上記システム構成を備えた自車両に対し、車線維持支援装置を設ける。
自車両に、画像処理機能付き単眼カメラを搭載する。この画像処理機能付き単眼カメラは、自車両の位置を検出するための外界認識手段16である。画像処理機能付き単眼カメラは、自車両前方の路面を撮像する。その撮像したカメラ画像から路面の状態を判断し、自車が走行する走行車線内の自車両の位置に関する信号を、車線維持支援コントローラ15に出力する。走行車線内の自車両の位置に関する信号は、走行車線に対する自車両の進行方向の角度偏差であるヨー角θ、走行車線中央からの横変位X、及び走行車線の曲率ρに関する情報である。
また、車線維持支援コントローラ15は、操舵用コントローラ11から、現在のステアの状態やタイヤの操舵状態などの信号が入力する。
車線維持支援コントローラ15は、入力した信号に基づき自車両を走行車線に維持させるための制御量を算出して、少なくとも上記操舵用コントローラ11に出力する。
この車線維持支援コントローラ15は、所定サンプリング周期毎に繰り返し実行する。
まず作動すると、ステップS100にて、各センサ及び操舵用コントローラ11などからの各種データを読み込む。車輪速センサ18〜21から各車輪速Vwを読み込む。また、操舵角δ、操舵角速度δ′、方向指示スイッチ17の信号を読み込む。外界認識手段16のカメラコントローラからは、自車両の走行車線Lに対する自車両のヨー角θ、走行車線中央Lsからの横変位X、及び走行車線Lの曲率ρをそれぞれ読み込む。ここで、走行車線中央Lsからの横変位Xは、例えば図3及び図4に示すように、自車両Cの重心位置Gを基準とすれば良い。もっとも自車両Cの重心位置Gを基準としなくても良い。例えば、自車両Cの前端部中央を基準にして、走行車線中央Lsからの横変位Xを求めても良い。すなわち、図4のように、ヨー角θに応じて自車両Cの前端部から先に逸脱方向に変位するので、その部分を基準として横変位Xを求めて、より早期に横変位偏差を小さくするようにしても良い。
ここで、図3に示すように、右側の横変位基準閾値XRtは、右逸脱に対して設定する横変位Xの偏差の基準である横変位基準位置LXRの位置を特定するものである。左側の横変位基準位置XLtは、左逸脱に対して設定する横変位Xの偏差の基準である横変位基準位置LXLの位置を特定するものである。
XRt = ( Wlane/2 ) − ( Wcar/2 )
− Xoffset ・・・(1)
XLt = −((Wlane/2 ) − ( Wcar/2 )
− Xoffset ) ・・・(2)
ここで、走行車線中央Lsからの横変位Xは、走行車線Lに対して自車両Cが中心よりも右側にいる場合を正とし、左側に位置する場合を負とする。このため、右側の横変位基準位置XRt側を正としている。
また、Xoffsetは走行車線端部Le(白線や路肩)の位置に対する余裕代である。この余裕代Xoffsetは、走行車線幅Wlaneや車速などに応じて変更しても良い。例えば、走行車線幅Wlaneが狭い程、余裕代Xoffsetを小さくする。また、左右の横変位基準位置LXL、LXR毎に異なる余裕代Xoffsetを使用しても良い。また、この左右の横変位基準位置LXL、LXRは固定値であっても良い。
ΔXR = X − XRt ・・・(3)
ただし、ΔXR≦0の場合、ΔXR=0とする(正の値のみをとるようにする)。
上記(3)式によって、横変位Xと、右逸脱に対する横変位偏差ΔXRとは、図5(a)に示す関係となる。
すなわち、上記(3)式を使用することで、「X−XRt≧0」となると、自車両Cが、走行車線中央Lsに対し右の横変位基準位置LXRよりも外に出たと判定する。そして、自車両Cが右側の走行車線端部Le側に寄った場合であるので、自車両Cに近い横変位基準位置として右側の横変位基準位置LXRを横変位偏差の基準として、右逸脱に対する横変位偏差ΔXRを求めることになる。
ΔXL = X − XLt ・・・(4)
ただし、ΔXL≧0の場合、ΔXL=0とする(負の値のみをとるようにする)。
上記式によって、横変位Xと、左逸脱に対する横変位偏差ΔXLとは、図5(b)に示す関係となる。
すなわち、上記(4)式を使用することで、「X−XLt≦0」となると、自車両Cが、走行車線中央Lsに対し左の横変位基準位置LXLよりも外に出たと判定する。そして、自車両Cが左側の走行車線端部Le側に寄った場合であるので、自車両Cに近い横変位基準位置として左側の横変位基準位置LXLを横変位偏差の基準として、左逸脱に対する横変位偏差ΔXLを求めることになる。
ΔθR = θ (θ>0の場合)
ΔθR = 0 (θ≦0の場合)
・・・(5)
上記(5)式によって、ヨー角θと、右逸脱に対してのみ設定するヨー角偏差ΔθRとは、図6(a)に示す関係となる。
ΔθL = θ (θ<0の場合)
ΔθL = 0 (θ≧0の場合)
・・・(6)
上記(6)式によって、ヨー角θと、左逸脱に対してのみ設定するヨー角偏差ΔθLとは、図6(b)に示す関係となる。
すなわち、曲率ρの向き(走行車線Lのカーブ方向)に応じて3種類に分けて、下記のように、個別のマップを使用して、右逸脱に対する走行車線端部制御フィードバック補正ゲインKρL_R、及び左逸脱に対する走行車線端部制御フィードバック補正ゲインKρL_Lを設定する。
KρL_R:図7に示すような、カーブIN側補正ゲインマップから読み込む。
KρL_L:図8に示すような、カーブOUT側補正ゲインマップから読み込む。
曲率ρ>0(左カーブ)と判定した場合
KρL_R:図8に示すような、カーブOUT側補正ゲインマップから読み込む。
KρL_L:図7に示すような、カーブIN側補正ゲインマップから読み込む。
曲率ρ=0(直線路)と判定した場合
KρL_R = 1.0 (補正なし)
KρL_L = 1.0 (補正なし)
ここで、走行車線Lの曲率ρは、旋回半径の逆数であり、直線路でρ=0となり、カーブがきつくなる(旋回半径が小さくなる)につれて、曲率ρの絶対値が大きな値となる。また、左カーブを正とし、右カーブを負とする。
すなわち、曲率ρの向き(走行車線Lのカーブ方向)に応じて3種類に分けて、下記のように、マップを使用して、右逸脱に対する走行車線中央部制御フィードバック補正ゲインKρY_R、及び左逸脱に対する走行車線中央部制御フィードバック補正ゲインKρY_Lをそれぞれ設定する。
KρY_R : 図7に示すような、カーブIN側補正ゲインマップから読み込む。
KρY_L : 図8に示すような、カーブOUT側補正ゲインマップから読み込む。
曲率ρ>0(左カーブ)と判定した場合
KρY_R : 図8に示すような、カーブOUT側補正ゲインマップから読み込む。
KρY_L : 図7に示すような、カーブIN側補正ゲインマップから読み込む。
曲率ρ=0(直線路)と判定した場合
KρY_R = 1.0 (補正なし)
KρY_L = 1.0 (補正なし)
φL_Rt=−(((Kc_L1×Kv_L1×ΔXR)
+(Kc_L2×Kv_L2×θ)
+(Kc_L3×Kv_L3×ρ))
×KρL_R) ・・・(7)
φL_Lt=−(((Kc_L1×Kv_L1×ΔXL)
+(Kc_L2×Kv_L2×θ)
+(Kc_L3×Kv_L3×ρ))
×KρL_R) ・・・(8)
ここで、Kc_L1、Kc_L2、Kc_L3は、車両諸元により定まるフィードバックゲインである。
ここで、上記(7)式及び(8)式の2項目及び3項目は、横変位偏差に対する補正項(収束項)である。このため、補正ゲインKc_L1よりも、補正ゲインKc_L2、Kc_L3を小さく設定してある。同様に、補正ゲインKv_L1よりも、補正ゲインKc_L2、Kc_L3を小さく設定してある。
このとき、走行車線中央Ls側である左右の横変位基準位置LXL、LXRの間に自車両Cが位置する場合には、図5のように横変位偏差ΔXR、ΔXLの両方の値が0となる。すなわち、上記目標転舵角φL_Rtと目標転舵角φL_Ltの値は、小さな値となる。この結果、走行車線端部制御分の目標転舵角は小さなものとなり、後述の走行車線中央部制御分の目標転舵角φY_Lt、φY_Rtが支配的となる。
更に、走行車線端部制御フィードバック補正ゲインKρL_R、KρL_Lを乗算して制御ゲインを補正する。すなわち、走行車線Lのカーブ方向、曲率ρ、及び横位置に応じて補正することにより、カーブ路においても違和感なく、適切に、制御を行うことができる。
なお、上記第3項をゼロとしても良い。
φY_Rt=−(Kc_Y ×Kv_Y ×Ky_R ×KρY_R ×ΔθR)
・・・(9)
φY_Lt=−(Kc_Y ×Kv_Y ×Ky_L ×KρY_L ×ΔθL)
・・・(10)
ここで、Kc_Yは車両諸元により定まるフィードバックゲインである。また、Kv_Yは車速に応じた補正ゲインである。例えば、Kv_Yは車速が高いほど大きな値とする。
すなわち、右逸脱に対する走行車線中央部制御による目標転舵角φY_Rtは、自車両Cの進行方向が、右側を向いている場合である。このため、右逸脱に対するフィードバックゲインKy_Rは、左側の走行車線端部Le側を基準として右側の走行車線端部Leに近づくにつれて大きくなるように設定してある。
更に、カーブ路における走行車線中央Lsに対して内側若しくは外側に変位している場合には、ステップS170において算出するように、走行車線Lのカーブ方向、及び曲率ρに応じて補正することにより、カーブ路においても違和感なく、適切に、制御を行うことができる。
本実施例では、下記(11)式のように、ステップS180において算出した走行車線端部制御による左右の目標転舵角φL_Lt、φL_Rtと、ステップS190において算出した走行車線中央部制御による左右目標転舵角φY_Lt、φY_Rtとの和として算出する。
φt=(α_R ×φL_Rt +β_R ×φY_Rt)
+(α_L ×φL_Lt +β_L ×φY_Lt)
・・・(11)
上記重み付け係数α_R、α_L、β_R、β_Lは、図10に示す関係となっていて、自車両Cの横位置に応じて、α_R、α_Lに対するβ_R、β_Lの相対的な大きさが変化するようになっている。
また、下記式の関係となっている。
α_R + β_R = 1.0
α_L + β_L = 1.0
(7)式及び(8)式にあるように、走行車線端部制御による目標転舵角φL_Rt、φL_Ltの第2項としてヨー角要素(横速度)のフィードバックがある。このフィードバックは、走行車線端部Leからのはじき返され感を低減するための、横変位要素の微分項として設定してある。このために、横変位要素のフィードバックと併せて、横変位基準位置への収束性を向上させることが可能となる。
このため、例えば、走行車線Lの左端部において、左側(逸脱側)へのヨー角θがついている場合、走行車線端部制御における横変位フィードバック要素に加えて、走行車線中央部制御におけるヨー角フィードバックを行うと、制御過多となるおそれがある。また、走行車線L左端部において、右側(逸脱回避側)へヨー角θがついている場合、走行車線中央部制御におけるヨー角フィードバックは弱く設定しており、横変位基準位置への収束性が悪く、走行車線端部Leからのはじき返され感が生じてしまう可能性がある。
上述のように重み付けを行う事で、横変位基準閾値よりも走行車線端部Le側において、横変位フィードバックとヨー角フィードバックの両方の制御を行う重複制御領域を有することになる。
ステアリングトルクτは、(200)式〜(204)式に基づいて算出する。すなわち、右方向の横位置制御分のステアリングトルクτL_R、左方向の横位置制御分のステアリングトルクτL_L、右方向のヨー角制御分のステアリングトルクτc_R、及び左方向のヨー角制御分のステアリングトルクτc_Lをそれぞれ算出する。その後に、それらを加算して最終的なステアリングトルクτを求める。
+(Kc_L2×Kv_L2×θ)
+(Kc_L3×Kv_L3×ρ) ・・・(200)
τL_L =(Kc_L1×Kv_L1×ΔXL)
+(Kc_L2×Kv_L2×θ)
+(Kc_L3×Kv_L3×ρ) ・・・(201)
τY_R =Kc_Y×Kv_Y×KY_R×ΔθR ・・・(202)
τY_L =Kc_Y×Kv_Y×KY_L×ΔθL ・・・(203)
τ =τL_R +τL_L +τY_R +τY_L ・・・(204)
ここで、Kc_L1、Kc_L2、Kc_L3は、車両諸元により定まるフィードバックゲインである。
ここで、上記(200)式及び(201)式の2項目及び3項目は、横変位偏差に対する補正項(収束項)である。このため、補正ゲインKc_L1よりも補正ゲインKc_L2、Kc_L3を小さく設定してある。同様に、補正ゲインKv_L1よりも補正ゲインKc_L2、Kc_L3を小さく設定してある。
また、Ky_R、Ky_Lは、図9に示すような、走行車線Lに対する横変位Xに応じてそれぞれ個別に設定するフィードバックゲインである。
すなわち、右逸脱に対する走行車線中央部制御による目標転舵角φY_Rt目標ステアリングトルクτY_Rは、自車両Cの進行方向が、右側を向いている場合である。このため、右逸脱に対するフィードバックゲインKy_Rは、左側の走行車線端部Le側を基準として右側の走行車線端部Leに近づくにつれて大きくなるように設定してある。
すなわち、方向スイッチ信号が示す方向(ウインカ点灯側)と自車両Cの進行方向とが同方向の場合には、運転者が意識的に走行車線Lを変更しようとしていると判定する。この場合には、ステップS220における転舵角の補正を行うこと無く、復帰する。なお、ステアリングホイール12の操舵が、方向スイッチ信号が示す方向(ウインカ点灯側)と同方向の場合に運転者が意識的に走行車線L変更しようとしていると判定しても良い。
ここで、操舵用コントローラ11では、前述の通り、車線維持支援コントローラ15から最終目標転舵角φtの補正転舵角指令値を入力すると、運転者の操舵操作に応じて算出した目標転舵角に当該最終目標転舵角φtを付加して、最終的な目標転舵角とし、その目標転舵角に応じた転舵角となるように、転舵アクチュエータ5を駆動する。
また、ステアリング軸を回転変位して転舵角を変更可能な自車両Cにあっては、その回転変位量を上記最終目標転舵角φtの分だけ補正するようにすればよい。
ステップS201が報知量演算手段を構成する。ステップS210及び操舵反力アクチュエータ3が感覚刺激手段を構成する。
「左右の横変位基準位置LXL、LXRの間」
まず自車両Cが、左右の横変位基準位置LXL、LXRの間を走行している場合について説明する。
この場合には、ΔXR及びΔXLは共にゼロとなる。このため、(7)式及び(8)式で示す、走行車線端部制御による左右の目標転舵角φL_Rt及びφL_Ltの第1項はゼロとなる。つまり、走行車線端部制御による左右の目標転舵角φL_Rt及びφL_Ltは、小さな値となる。
ここで、走行車線端部制御による左右の目標転舵角φL_Rt及びφL_Ltの2項は、自車両Cの横速度分をゼロとする制御量となる。また、走行車線端部制御による左右の目標転舵角φL_Rt及びφL_Ltの2項は、直進路であればゼロの値を取る。
これによって、自車両Cが、左右の横変位基準位置LXL、LXRの間を走行している場合には、走行車線中央部制御による目標転舵角φY_Rt及びφY_Ltが支配的となる。特に、図10のように、走行車線端部制御による左右の目標転舵角φL_Rt及びφL_Ltに対する重み付け係数α_R、α_Lよりも、走行車線中央部制御による目標転舵角φY_Rt及びφY_Ltのβ_R、β_Lの方が大きくなるように設定してある。このことからも、自車両Cが、左右の横変位基準位置LXL、LXRの間を走行している場合には、走行車線中央部制御による目標転舵角φY_Rt及びφY_Ltが支配的となる。
以上のことから、自車両Cが走行車線中央Ls側に位置する場合には、角度偏差が小さくなるように制御する。また、横方向変位に対するフィードバックが無いか小さい。つまり走行車線中央Ls側に戻す制御介入は無いか小さい。この結果、運転者の意図する走行ラインに応じて、自車両Cは走行車線Lに沿って走行する。
そして、ΔXR及びΔXLは共にゼロであることから右方向の横位置制御分のステアリングトルクτL_R、左方向の横位置制御分のステアリングトルクτL_Lは小さくなる。このため、ヨー角に応じたステアリングトルクτを算出して、ステアリングトルクτを操舵反力としてハンドル12に付与する。
このため、自車両Cの進行方向が逸脱側の場合には、目標転舵角φY_Rt及びφY_Ltは大きくなって逸脱防止効果が大きくなる。また、自車両Cの進行方向が逸脱回避側の場合には、目標転舵角φY_Rt及びφY_Ltは小さくなって、制御過多とならずに違和感を低減する。
次に、自車両Cが、走行車線中央Ls側から、左右の横変位基準位置LXL、LXRよりも外側に移行する場合について説明する。
ここで、横変位基準位置LXL、LXRよりも走行車線端部側の領域を逸脱領域と呼ぶ。
上述のように、自車両Cが、左右の横変位基準位置LXL、LXRの間を走行している場合には、角度偏差が小さくなるように制御する。このため、自車両が逸脱領域に進入する際における、自車両の逸脱方向へのヨー角を小さく抑制することに繋がる。
すなわち、自車両が逸脱領域に進入する過程における、上記逸脱側への角度偏差を小さくする第2の制御量による制御が、横変位偏差を小さくする第1の制御量を低減するための予備制御として作用する。
次に、自車両Cが、走行車線中央Lsに対し、左右の横変位基準位置LXL、LXRよりも外側に位置した場合(逸脱領域に位置する場合)について説明する。
この場合には、(7)式及び(8)式によって示す、走行車線端部制御による目標転舵角φL_Rt、φL_Ltによって、自車両Cが近い側の横変位基準位置との偏差が小さくなるように制御が介入する。すなわち、走行車線中央Lsに対し左右の横変位基準位置LXL、LXR内に向けて、つまり走行車線中央Ls側に戻す制御が介入する。これによって、走行車線L外側へ自車両Cの位置を制御しようとする動きを無くしつつ、適切に走行車線L内に留めることができる。
このため、図11の下側部分のように、逸脱側(自車両Cに近い走行車線Lの端部側)へ角度偏差(ヨー角θ)がついている場合には、その角度偏差を解消する制御量と共に、横方向変位を解消する方向の制御量が同方向に発生する。この結果、逸脱回避側への制御量が大きくなって、より有効に逸脱を防止することができる。またこのとき、上述のようにヨー角フィードバックの制御ゲインKy_R、Ky_Rは大きい値となっている。つまり、角度偏差を解消する制御量は大きくなっているので、その効果が大きい。
更に、制御フィードバック補正ゲインKρL_R、KρL_L、KρY_R、KρY_Lで制御量を補正することで、カーブ路においては、カーブ内側とカーブ外側とで、目標転舵角φtが変わる。
そして、横変位及びヨー角に応じたステアリングトルクτを算出して、ステアリングトルクτを操舵反力としてハンドル12に付与する。
これによって、制御の大きさに応じた報知が同期をとって運転者の感覚を刺激するように入力することとなる。
横方向変位閾値外への逸脱の際の、自車両の軌跡を図13に示す。
上述のように、ヨー角制御によって、自車両が逸脱領域に進入する際における、自車両の逸脱方向へのヨー角(進入角度)を小さくすることが出来る。
このため、自車両が逸脱領域に進入した後における、横方向変位閾値の外側への逸脱量が小さくなる。この結果、横変位偏差を小さくするための制御量(横位置制御)が小さくなる。この制御量が小さいことから、その分、走行車線端部からのはじき返され感が小さくなる。また、逸脱回避能力の向上に繋がる。
さらに、上記車線維持支援の制御と同期をとって、制御量に応じたステアリングの操舵反力の変動をステアリングトルクτとして入力する。これによって、車線維持支援の制御を行ったことを運転者に報知する。
(1)第2制御量算出手段によって第2の制御量を算出する。すなわち、自車両Cが左右の横方向変位閾値内、つまり横方向変位閾値よりも走行車線中央部側では、角度偏差を小さくする制御である、ヨー角フィードバック制御を行う。これによって、走行車線中央Ls側では、走行車線Lに沿った方向に車両の進行方向を制御する。この結果、走行車線中央Ls側では、拘束感のない自由なライン取りができる。
これによって、自車両Cが横方向変位閾値外の逸脱領域に進入すると、横方向変位閾値内に戻す効果が発生する。
すなわち、上記進入角が小さい場合には、続く自車両が逸脱領域に進入した後おける、横方向変位閾値の外側への逸脱量が小さくなる。そして、自車両が逸脱領域に進入すると、横変位偏差を小さくするフィードバック制御で使用する第1の制御量が小さくなる。
この結果、走行車線端部側からのはじき返され感が低減し、逸脱側へ制御が介入しているかのような違和感を低減出来る。すなわち、乗員が感じる拘束感を低減することが可能となる。
これによって、車両挙動制御した場合に、運転者が認知できる注意喚起を行うことが出来る。すなわち、車両挙動制御を実施した事に対する、運転者に違和感を低減する。
ここで、実際に車両挙動制御した場合に、運転者が認知できる注意喚起がないまま、車両挙動制御のみを実施した場合に、運転者に違和感を与えるおそれがある。
またこの報知と共に、上述のように逸脱側へ制御が介入しているかのような違和感を低減する結果、その相乗効果によって、更に運転者に違和感を抑えることに繋がる。
これによって、触覚を通じて運転者に車線維持支援の制御に応じた報知を与えることができる。
(6)感覚刺激手段は、ハンドルの操作反力の変動によって報知する。
これによって、運転操作するハンドルを通じて車線維持支援の制御に応じた報知を与えることができる。
これによって、自車両Cが、走行車線中央Lsに対し左右の横方向変位閾値の外であれば、横変位Xとヨー角θの両方のフィードバック制御を行う。この結果、走行車線端部Le側では、自車両Cを適切に走行車線L内に留め、かつ走行車線端部Leからのはじき返され感を低減した車線維持支援を行うことができる。
すなわち、逸脱領域における横方向変位閾値側の重複制御領域において、横位置制御の制御量とヨー角制御の制御量の両方を使用する。両方の制御量を使用する相乗効果として、次の効果を奏する。
一方、逸脱領域で横方向変位閾値に向かう際に、逸脱回避側への角度偏差となって車両が進行する場合には、横位置制御の制御量とヨー角制御の制御量の向きが反対方向への制御量となっている。この結果、逸脱側へ制御が介入しているかのような違和感を低減しつう左右の横方向閾値内に車両を戻すことが可能となる。
このように、横位置制御にヨー角制御を加えることにより、逸脱回避のための車両の転舵半径を大きくすることが出来る。このことは、ヨー方向の加減速度を小さくできて、より確実に、はじき返され感を小さくできる。
特に、本実施形態では、走行車線端部制御による目標転舵角φL_Rt、φL_Ltにおいて収束項(第2項)としてのヨー角フィードバック分があるが、上記重み付けによって、ヨー角フィードバックが制御過多となることを低減することが可能となる。
この結果、横変位基準位置に対する横変位Xに対する収束性が良くなる。これによって、走行車線端部Leからのはじき返され感をさらに低減することが出来る。
すなわち、走行車線Lに対する車両の横位置に応じて、ヨー角フィードバック制御の制御ゲインを変更している。このとき、上記走行車線端部Leに対する自車両Cの距離が短いほど上記制御ゲインが大きくなるように補正する。
例えば、右側へヨー角θがついている場合には、左側の走行車線端部Leから右側の走行車線端部Leに近づくにつれて大きくする。また、左側へヨー角θがついている場合には、右側の走行車線端部Leから左側の走行車線端部Leに近づくにつれて大きく設定する。
また、逸脱側へヨー角θがついている場合には制御ゲイン(制御量)を大きくし、逸脱防止効果を確保する。一方、逸脱回避側へヨー角θがついている場合には制御ゲイン(制御量)を小さくし、制御過多という違和感も低減することができる。
このとき、逸脱回避側へヨー角θがついている場合の制御ゲイン(制御量)を小さくすることにより、逸脱側へヨー角θがついている場合の制御ゲイン(制御量)を大きく設定しても振動(ハンチング)が起こりにくく、より逸脱防止効果の大きいものとすることができる。
この結果、走行車線Lがカーブ路であっても、横変位基準位置に対する横変位Xに対する収束性が良くなる。
走行車線Lの曲率ρが所定以上、つまりカーブ路である場合には、走行車線Lの幅方向中央に対してカーブ内側とカーブ外側とで異なる制御ゲインで補正している。すなわち、走行車線Lの幅方向中央に対し走行車線Lのカーブ内側に自車両Cが位置する場合には、上記曲率が小さい場合よりも曲率が大きい場合に制御ゲインを小さく補正する。一方、走行車線Lの幅方向中央に対し走行車線Lのカーブ外側に自車両Cが位置する場合には、上記曲率が小さい場合よりも曲率が大きい場合に制御ゲインを大きく補正する。
この結果、カーブ内側での制御過多を防止出来る。すなわち、制御量が大きい場合に発生する、カーブ外側へはじき返すかのような違和感を低減出来る。
また、カーブ外側での制御不足を防止することが出来る。すなわち、カーブ外側へのヨー角θ発生時の制御介入が強くなり、逸脱防止効果が大きくなる。
(1)上記実施形態では、感覚刺激手段は、操舵反力によって運転者の触覚を刺激する。触覚への刺激はこれに限定しない。これに代えて、座席やヘッドレストなどを振動させることで報知しても良い。
(2)感覚刺激手段として、視覚を刺激して運転者に車線維持支援の制御に応じた報知を与えても良い。この場合には、ランプ44の明るさや点滅速度等を制御量などに基づき求める。
制御に対して、視覚刺激によって運転者が認知できる注意喚起を発生可能となる。
(3)例えば、メータークラスター内のランプ44を上記報知量に応じて点滅させても良い。この場合には、点滅速度(点滅信号)等を制御量などに基づき求める。
運転席前方等にあるランプによって運転者が認知できる注意喚起を発生可能となる。
制御に対して、聴覚刺激によって運転者が認知できる注意喚起を発生可能となる。
(5)例えば、警報装置45で発する警報音によって、聴覚を刺激して運転者に車線維持支援の制御に応じた報知を与える。
運転者が視認することなく、運転者が認知できる注意喚起を発生可能となる。
すなわち、ステアリングトルクτを、上述の(200)式〜(204)式の代わりに、(205)式〜(209)式に基づいて算出してもよい。
τL_R = fL_Rt × KτL ・・・ (205)
τL_L = fL_Lt × KτL ・・・ (206)
τY_R = fY_Rt × KτY ・・・ (207)
τY_L = fY_Lt × KτY ・・・ (208)
τ = τL_R + τL_L + τY_R + τY_L ・・・ (209)
また、KτL、KτYは、ステアリングトルクの大きさを決める重み係数であって、大きい値にすればステアリングトルクが大きくなる。したがって、運転者が違和感を感じない範囲で、ステアリングトルクを大きくするように、KτL、KτYを決める。
この場合には、自車両Cが、走行車線中央Lsに対し横方向変位閾値よりも外側に位置すると、横方向変位閾値LAL、LARよりも内側に位置する横変位基準位置LXL、LXRに向けて横変位Xが小さくなるようにフィードバック制御が行われる。
横方向フィードバック制御の制御ゲインを調整することが可能となる。
(9)上記実施形態では、走行車線端部Leを横方向端部位置とした。これに替えて、横方向端部位置を走行車線端部Leよりも所定量だけ内側に設定しても良い。例えば、上記横変位基準位置LXL、LXRと等しくしても良い。
上記重み付け係数α_R、α_L、β_R、β_Lの関係は、これに限定しない。
例えば、
α_R : β_R = 1:1
α_L : β_L = 1:1
と一定に設定しても良い。このように設定しても効果を得ることができたことを確認している。
例えば、図15に示すように、重み付け係数β_R、β_Lについて、逸脱遷移領域よりも車線中央部側の領域でゼロに設定する。
この結果、逸脱遷移領域よりも車線中央部側の領域では、より拘束感を減らすことが可能となる。
例えば、図15に示すように、重み付け係数β_R、β_Lについて、逸脱遷移領域よりも車線中央部側の領域でゼロに設定する。
この結果、逸脱遷移領域よりも車線中央部側の領域では、より拘束感を減らすことが可能となる。
例えば、図15に示すように、重み付け係数β_R、β_Lについて、逸脱遷移領域では、横方向変位閾値XRt、XLtに近づくほど、大きく設定する。
これによって、自車両Cが横方向変位閾値XRt、XLtに近づくほど、逸脱方向への角度偏差を小さくする効果が発生する。この結果、中央側から横方向変位閾値を越えて逸脱領域に進入する際における、その進入角度を小さくすることができる。
(15)横方向変位閾値は、左右幅方向一方だけでもよい。または、左右の横方向変位閾値の一方だけを走行車線端部位置に設定しても良い。
(16)操舵輪は、後輪でも良いし、前後輪両方でも良い。
次に、第2実施形態について図面を参照しつつ説明する。なお、上記各実施形態と同様な構成については同一の符号を付して説明する。
本実施形態の車線維持支援装置を適用する自車両の車両構成は、上記第1実施形態と同様である。従って、その車両構成の説明は省略する。
そして、上述のようなシステム構成を備えた自車両に対し、車線維持支援装置を設ける。
自車両に、画像処理機能付き単眼カメラを搭載する。この画像処理機能付き単眼カメラは、自車両の位置を検出するための外界認識手段16である。画像処理機能付き単眼カメラは、自車両前方の路面を撮像する。その撮像したカメラ画像から路面の状態を判断し、自車が走行する走行車線内の自車両の位置に関する信号を、車線維持支援コントローラ15に出力する。走行車線内の自車両の位置に関する信号は、走行車線に対する自車両の進行方向の角度偏差であるヨー角θ、走行車線中央からの横変位X、及び走行車線の曲率ρである。
また、車線維持支援コントローラ15は、操舵用コントローラ11から、現在のステアの状態やタイヤの操舵状態などの信号が入力する。車線維持支援コントローラ15は、入力した信号に基づき自車両を走行車線に維持させるための制御量を算出して、少なくとも上記操舵用コントローラ11に出力する。
この車線維持支援コントローラ15は、所定サンプリング周期毎に繰り返し実行する。
まず作動すると、ステップS1100にて、各センサ及び操舵用コントローラ11などからの各種データを読み込む。車線センサ18〜21から各車輪速Vwを読み込む。また、操舵角δ、操舵角速度δ′、方向指示スイッチ17の信号を読み込む。外界認識手段16のカメラコントローラからは、自車両の走行車線Lに対する自車両のヨー角θ、走行車線中央Lsからの横変位X、及び走行車線Lの曲率ρをそれぞれ読み込む。ここで、走行車線中央Lsからの横変位Xは、例えば図3及び図4に示すように、自車両Cの重心位置Gを基準とすれば良い。もっとも自車両C重心位置Gを基準としなくても良い。例えば、自車両Cの前端部中央を基準にして、走行車線中央Lsからの横変位Xを求めても良い。すなわち、図4のように、ヨー角θに応じて自車両C前端部から先に逸脱方向に変位するので、その部分を基準として横変位Xを求めて、より早期に横変位偏差を小さくするようにしても良い。
ここで、図3に示すように、右側の横変位基準閾値XRtは、右逸脱に対して設定する横変位Xの偏差の基準である横変位基準位置LXRの位置を特定するものである。左側の横変位基準位置XLtは、左逸脱に対して設定する横変位Xの偏差の基準である横変位基準位置LXLの位置を特定するものである。
XRt = ( Wlane/2 ) − ( Wcar/2 )
− Xoffset ・・・(1)
XLt = −((Wlane/2 ) − ( Wcar/2 )
− Xoffset )・・・(2)
ここで、走行車線中央Lsからの横変位Xは、走行車線Lに対して自車両Cが中心より右側にいる場合を正とし、左側に位置する場合を負とする。このため、右側の横変位基準位置XRt側を正としている。
また、Xoffsetは走行車線端部Le(白線)位置に対する余裕代である。この余裕代Xoffsetは、走行車線幅Wlaneや車速などに応じて変更しても良い。例えば、走行車線幅Wlaneが狭い程、余裕代Xoffsetを小さくする。また、左右の横変位基準位置LXL、LXR毎に異なる余裕代Xoffsetを使用しても良い。また、この左右の横変位基準位置LXL、LXRは固定値であっても良い。
ΔXR = X − XRt ・・・(3)
ただし、ΔXR≦0の場合、ΔXR=0とする(正の値のみをとるようにする)。
上記(3)式によって、横変位Xと、右逸脱に対する横変位偏差ΔXRとは、図5(a)に示す関係となる。
すなわち、上記(3)式を使用することで、「X−XRt≧0」となると、自車両Cが、走行車線中央Lsに対し右の横変位基準位置LXRよりも外に出たと判定する。そして、自車両Cが右側の走行車線端部Le側に寄った場合であるので、自車両Cに近い横変位基準位置として右側の横変位基準位置LXRを横変位偏差の基準として、右逸脱に対する横変位偏差ΔXRを求めることになる。
ΔXL = X − XLt ・・・(4)
ただし、ΔXL≧0の場合、ΔXL=0とする(負の値のみをとるようにする)。
上記式によって、横変位Xと、左逸脱に対する横変位偏差ΔXLとは、図5(b)に示す関係となる。
すなわち、上記(4)式を使用することで、「X−XLt≦0」となると、自車両Cが、走行車線中央Lsに対し左の横変位基準位置LXLよりも外に出たと判定する。そして、自車両Cが左側の走行車線端部Le側に寄った場合であるので、自車両Cに近い横変位基準位置として左側の横変位基準位置LXLを横変位偏差の基準として、左逸脱に対する横変位偏差ΔXLを求めることになる。
ΔθR = θ (θ>0の場合)
ΔθR = 0 (θ≦0の場合) ・・・(5)
上記(5)式によって、ヨー角θと、右逸脱に対してのみ設定するヨー角偏差ΔθRとは、図6(a)に示す関係となる。
ΔθL = θ (θ<0の場合)
ΔθL = 0 (θ≧0の場合) ・・・(6)
上記(6)式によって、ヨー角θと、左逸脱に対してのみ設定するヨー角偏差ΔθLとは、図6(b)に示す関係となる。
すなわち、曲率ρの向き(走行車線Lのカーブ方向)に応じて3種類に分けて、下記のように、個別のマップを使用して、右逸脱に対する走行車線端部制御フィードバック補正ゲインKρL_R、及び左逸脱に対する走行車線端部制御フィードバック補正ゲインKρL_Lを設定する。
KρL_R:図7に示すような、カーブIN側補正ゲインマップから読み込む。
KρL_L:図8に示すような、カーブOUT側補正ゲインマップから読み込む。
曲率ρ>0(左カーブ)と判定した場合
KρL_R:図8に示すような、カーブOUT側補正ゲインマップから読み込む。
KρL_L:図7に示すような、カーブIN側補正ゲインマップから読み込む。
曲率ρ=0(直線路)と判定した場合
KρL_R = 1.0 (補正なし)
KρL_L = 1.0 (補正なし)
上記カーブIN側補正ゲインマップは、図7のように、曲率ρの絶対値が所定以上となると、曲率ρの絶対値が大きくなるにつれて、補正のゲインが小さくなるマップである。そして、左右の走行車線端部Leのうちカーブ路の内側に位置する走行車線端部Leに対する制御のゲインを、曲率ρの絶対値の増大に応じて低減するように補正するものである。
すなわち、曲率ρの向き(走行車線Lのカーブ方向)に応じて3種類に分けて、下記のように、マップを使用して、右逸脱に対する走行車線中央部制御フィードバック補正ゲインKρY_R、及び左逸脱に対する走行車線中央部制御フィードバック補正ゲインKρY_Lをそれぞれ設定する。
KρY_R : 図7に示すような、カーブIN側補正ゲインマップから読み込む。
KρY_L : 図8に示すような、カーブOUT側補正ゲインマップから読み込む。
曲率ρ>0(左カーブ)と判定した場合
KρY_R : 図8に示すような、カーブOUT側補正ゲインマップから読み込む。
KρY_L : 図7に示すような、カーブIN側補正ゲインマップから読み込む。
曲率ρ=0(直線路)と判定した場合
KρY_R = 1.0 (補正なし)
KρY_L = 1.0 (補正なし)
FL_Rt=−((K_L1×ΔXR)+(K_L2×θ)
+(K_L3×ρ))・・・(107)
FL_Lt=−((K_L1×ΔXL)+(K_L2×θ)
+(K_L3×ρ))・・・(108)
ここで、K_L1、K_L2、K_L3は、車両諸元や車速により定まるフィードバックゲインである。ここで、上記(107)式及び(108)式の2項目及び3項目は、横変位偏差に対する補正項(収束項)である。このため、補正ゲインK_L1よりも補正ゲインK_L2、K_L3を小さく設定してある。
すなわち、右逸脱若しくは左逸脱に対する走行車線端部制御による目標仮想反発力FL_Rt、FL_Rtは、各横変位基準位置LXL、LXRからの横変位偏差が小さくなる制御量を求めるものである。そして、その際に、自車両Cのヨー角θ及び道路曲率ρでその制御量を補正している。このとき、上記式の第2項の自車両Cのヨー角θ分は、横速度に対するフィードバック制御量として作用する。このため、第2項の自車両Cのヨー角θ分として、ヨー角偏差ΔθR若しくはΔθLを使用することなく、ヨー角θを使用している。
FY_Rt=−Ky_R×ΔθR ・・・(109)
FY_Lt=−Ky_L×ΔθL ・・・(110)
ここで、Ky_R、Ky_Lは、図9に示すような、走行車線Lに対する横変位Xに応じてそれぞれ個別に設定するフィードバックゲインである。
また、左逸脱に対する走行車線中央部制御による目標仮想反発力FY_Ltは、自車両Cの進行方向が、左側を向いている場合である。このため、左逸脱に対するフィードバックゲインKy_Lは、右側の走行車線端部Le側を基準として左側走行車線端部Leに近づくにつれて大きくなるように設定してある。なお、目標仮想反発力FY_Rt、及びFY_Ltは、右方向への反発力を正とし、左方向への反発力を負とする。
更に、カーブ路における走行車線中央Lsに対して内側若しくは外側に変位している場合には、ステップS1170において算出するように、走行車線Lのカーブ方向、及び曲率ρに応じて補正することにより、カーブ路においても違和感なく、適切に、制御を行うことができる。
本実施例では、下記(111)式のように、ステップS180において算出した走行車線端部制御による左右の目標仮想反発力FL_Lt、FL_Rtと、ステップS1190において算出した走行車線中央部制御による左右の目標仮想反発力FY_Lt、FY_Rtとの和として算出する。
Ft=(α_R ×FL_Rt +β_R ×FY_Rt)
+(α_L ×FL_Lt +β_L ×FY_Lt) ・・・(111)
上記重み付け係数α_R、α_L、β_R、β_Lは、一定値、例えば、α_R=α_L=β_R=β_L=1、としてもよいし、図10に示すような関係としてもいい。図10に示す関係においては、上記重み付け係数α_R、α_L、β_R、β_Lは、自車両Cの横位置に応じて、α_R、α_Lに対するβ_R、β_Lの相対的な大きさが変化するようになっている。
α_R + β_R = 1.0
α_L + β_L = 1.0
この重み付け係数について説明する。
(107)式及び(108)式にあるように、走行車線端部制御による目標転舵角φL_Rt、φL_Ltの第2項としてヨー角要素(横速度)のフィードバックがある。このフィードバックは、走行車線端部Leからのはじき返され感を低減するための、横変位要素の微分項として設定してある。このために、横変位要素のフィードバックと併せて、横変位基準位置への収束性を向上させることが可能となる。
このため、例えば、走行車線Lの左端部において、左側(逸脱側)へのヨー角θがついている場合、走行車線端部制御における横変位フィードバック要素に加えて、走行車線中央部制御におけるヨー角フィードバックを行うと、制御過多となる。また、走行車線L左端部において、右側(逸脱回避側)へヨー角θがついている場合、走行車線中央部制御におけるヨー角フィードバックは弱く設定しており、横変位基準位置への収束性が悪く、走行車線端部Leからのはじき返され感が生じてしまう。
M=F×(HB/2) ・・・(112)
ここで、HBは、車両の前輪と後輪との距離を表すホイールベースを表す。
Yα=M/I ・・・(113)
ここで、Iは、自車両のヨー慣性モーメントであって、車両の寸法や重量、重量配分等の車両諸元から決まる。
次に、ヨー方向の加速度Yαを使って、(114)式によりヨーレートYrを算出する。
Yr=M/I×Th ・・・(114)
ここで、Thは、ヨーレートYrの発生を設定する補正係数である。
<前輪で操舵する場合>
最終目標転舵角ft=+Yr×HB/V
<後輪で操舵する場合>
最終目標転舵角ft=−Yr×HB/V
・・・(115)
ここで、HBは、車両の前輪と後輪との距離を表すホイールベース、Vは自社の車速を表す。
τL−R = − FL_Rt × KτL ・・・(116)
τL−L = − FL_Lt × KτL ・・・(117)
τY−R = − FY_Rt× KτY ・・・(118)
τY−L = − FY_Lt× KτY ・・・(119)
τ = τL−R+τL−L+τY−R+τY−L ・・・(120)
ここで、FL_Rt、FL_Lt、FY_Rt、FY_Ltは、(107)式〜(110)式で求めた目標仮想反発力である。
また、KτL、KτYは、ステアリングトルクの大きさを決める重み係数であって、大きい値にすればステアリングトルクが大きくなる。したがって、運転者が違和感を感じない範囲で、ステアリングトルクを大きくするように、KτL、KτYを決める。
すなわち、方向スイッチ信号が示す方向(ウインカ点灯側)と自車両Cの進行方向とが同方向の場合には、運転者が意識的に走行車線Lを変更しようとしていると判定する。この場合には、ステップS1220における転舵角の補正を行うこと無く、復帰する。なお、ステアリングホイール12の操舵が、方向スイッチ信号が示す方向(ウインカ点灯側)と同方向の場合に運転者が意識的に走行車線L変更しようとしていると判定しても良い。
ここで、操舵用コントローラ11では、前述の通り、車線維持支援コントローラ15から最終目標転舵角φtの補正転舵角指令値を入力すると、運転者の操舵操作に応じて算出した目標転舵角に当該最終目標転舵角φtを付加して、最終的な目標転舵角とし、その目標転舵角に応じた転舵角となるように、転舵アクチュエータ5を駆動する。
また、ステアリング軸を回転変位して転舵角を変更可能な自車両Cにあっては、その回転変位量を上記最終目標仮想反発力Ftの分だけ補正するようにすればよい。
その他の構成は上記第1または第2実施形態と同様である。
第1実施形態では、横変位偏差ΔXやヨー角θに基づいて、制御量としての目標転舵角φLを直接算出している。
これに対し、この実施形態では、横変位偏差ΔXやヨー角θに基づいて、一度、1次出力として、自車両に対し走行車線幅方向から付加する力としての最終目標仮想反発力Ftを算出する。その上で、最終目標仮想反発力Ftから2次出力として制御量としての目標転舵角を算出する。
また、上記車線維持支援の制御と同期をとって、仮想反発力に応じたステアリングの操舵反力の変動をステアリングトルクτとして入力する。これによって、車線維持支援の制御を行ったことを運転者に報知する。
(1)目標仮想反発力に基づき報知量を演算する。すなわち、一度、最終目標仮想反発力Ftを算出することにより、制御量を運転者の視覚や聴覚や触覚等に刺激を与えて報知する場合に、刺激の量や傾向を決める基準として、最終目標仮想反発力を利用することができる。したがって、回避操作性能で決まる最終目標転舵角に基づいて報知のための刺激の量や傾向を決めた場合よりも、より運転者の感覚にあわせた刺激に調節しやすくなる。この結果、運転者の違和感を低減することができる。
これよって、自車両Cが左右の横方向変位閾値内、つまり横方向変位閾値よりも走行車線中央部側では、走行車線Lに沿った方向に車両の進行方向がなるような仮想の反発力を自車両に付与可能となる。この結果、走行車線中央Ls側では、拘束感のない自由なライン取りができる。
一方、自車両Cが左右の横方向変位閾値外、つまり横方向変位閾値よりも走行車線端部側では、自車両Cを横方向変位閾値に戻すような仮想の反発力を当該自車両Cに付与可能となる。
これによって、自車両Cが横方向変位閾値外の逸脱領域に進入すると、横方向変位閾値内に戻す効果が発生する。
すなわち、一次出力として、自車両に付与する力である目標仮想反発力Ftを求める。その後に、目標仮想反発力Ftを車両の挙動を制御する転舵や制駆動力などの制御出力に変換して、上記目標仮想反発力Ftが付加されたときに発生するであろう車両の挙動を実現している。
このため、複数の制御装置を組合せて、目的とする車両の挙動を補正制御することが容易となり、逸脱制御のための制御の自由度が向上する。また、他の制御との統合も容易となる。
また、本実施形態と異なる別の制御、例えば、前方車両との車間距離制御のように、制御力を発生する向きが異なる制御と、本実施形態の制御とを、同時に実施する場合、複数の異なる制御量を統合する必要がある。制御を統合するためには、統合する複数の制御の出力を、同じ次元の物理量に揃えた上で、統合する必要がある。
このとき、本実施形態の制御は、制御の結果である転舵角を制御量として直接求めるのではなく、一次出力として、力を表す変数である目標仮想反発力Ftを求めている。一般的に車両制御の出力として、力を出力することは容易であるため、他の制御の制御出力と、力の次元で合成することができる。したがって、他の制御との統合制御が容易になる。
自車両の進行方向の角度偏差が小さくなるように自車両に対し走行車線幅方向から第2の目標仮想反発力を加える事で、逸脱領域に進入する際の進入角を小さく出来る。
これによって、第2の目標仮想反発力に基づく制御量による制御が、逸脱防止のための予備制御としての効果を奏する。
この結果、走行車線端部側からのはじき返され感が低減し、逸脱側へ制御が介入しているかのような違和感を低減出来る。すなわち、乗員が感じる拘束感を低減することが可能となる。
(5)その他の効果は、上記第1実施形態と同様である。
(1)左右別々に、第1の目標仮想反発力と第2の目標仮想反発力とのセレクトハイを行った後に、左右の目標仮想反発力を加算して、最終的な目標仮想反発力を算出しても良い。
最終の目標仮想反発力を算出する際に、単純に第1の目標仮想反発力と第2の目標仮想反発力とを加算すると、大きくヨー角θがついている場合などにおいて、走行車線Lの端部側で制御量が過大となる可能性がある。この問題を解決するためには制御ゲインを一律的に落とすという手法も考えることができる。しかしこの場合には、制御性能が低くなってしまう。
これに対し、セレクトハイを行うことで、最終の目標仮想反発力に基づく制御量を大きくしすぎることなく、走行車線中央Ls側での制御性能を確保しつつ、走行車線端部Le側での制御性能を確保できる。
これによっても、これによって、目的の挙動を自車両に発生することが可能となる。
その一例を示す。
M=F×(HB/2) ・・・(112)
ここで、HBは、車両の前輪と後輪との距離を表すホイールベースを表す。
まず、目標制動液圧差ΔPs_f、ΔPs_rを目標ヨーモーメントMsから次式で算出する。
|Ms| < Ms0 の場合
ΔPs_f = 0
ΔPs_r = 2 × Kb_r × |Ms| / T
|Ms| ≧ Ms0 の場合
ΔPs_f = 2 × Kb_f × ( |Ms| − Ms0 ) / T
ΔPs_r = 2 × Kb_r × Ms0 / T
ここで、Tはトレッドを示す。また、Kb_f、Kb_rは制動力を制動液圧に換算する場合の換算係数であり、ブレーキ諸元により定まる。
右方向へのヨーモーメント発生時
Ps_fl = Pm
Ps_fr = Pm + ΔPs_f
Ps_rl = Pm_r
Ps_rr = Pm_r + ΔPs_r
左方向へのヨーモーメント発生時
Ps_fl = Pm + ΔPs_f
Ps_fr = Pm
Ps_rl = Pm_r + ΔPs_r
Ps_rr = Pm_r
ここで、Pm_rはPmから算出される前後配分を考慮した後輪用マスターシリンダ液圧である。
次に、上記算出された目標制動液圧Psに応じて圧力制御ユニットにて制動液圧を発生させる。
これによって、目的の車両挙動を発生するためのヨーモーメントが発生する。
また、駆動力の変動と、制動力、転舵を組み合わせて上記ヨーモーメントを発生するように制御しても良い。
この場合でも、目的の挙動を自車両に発生することが可能となる。
この場合には、自車両を、ヨー角方向の変動を抑えつつ横方向に変位させることが可能となる。
この場合には、自車両を、積極的にヨー角方向の変化を発生しつつ横方向に変位させることが可能となる。
(6)更に、前輪が接地面に対して発生するヨー方向の力の大きさと、後輪が接地面に対して発生するヨー方向の力の大きさとを、異なる大きさとして、上記ヨーモーメントを発生させても良い。
これによって、発生するヨーモーメントを調整可能となる。
3 操舵反力アクチュエータ
5 転舵アクチュエータ
11 操舵用コントローラ
15 車線維持支援コントローラ
τ 最終的なステアリングトルク
τL_L 左方向の横位置制御分のステアリングトルク
τL_R 右方向の横位置制御分のステアリングトルク
τY_L 左方向のヨー角制御分のステアリングトルク
τY_R 右方向のヨー角制御分のステアリングトルク
L 走行車線
Le 走行車線端部
Ls 走行車線中央
Wlane 走行車線幅
θ ヨー角
ρ 道路曲率
X 横変位
LXL 左の横変位基準位置
LXR 右の横変位基準位置
ΔXL 左逸脱に対する横変位偏差
ΔXR 右逸脱に対する横変位偏差
ΔθL ヨー角偏差
ΔθR ヨー角偏差
Ky_L フィードバックゲイン(カーブ路補正手段)
Ky_R フィードバックゲイン(カーブ路補正手段)
KρL_L 走行車線端部制御フィードバック補正ゲイン
KρL_R 走行車線端部制御フィードバック補正ゲイン
KρY_L 走行車線中央部制御フィードバック補正ゲイン
KρY_R 走行車線中央部制御フィードバック補正ゲイン
φL_Lt 左逸脱に対する走行車線端部制御による目標転舵角(制御量)
φL_Rt 右逸脱に対する走行車線端部制御による目標転舵角(制御量)
φY_Lt 左逸脱に対する走行車線中央部制御による目標転舵角(制御量)
φY_Rt 右逸脱に対する走行車線中央部制御による目標転舵角(制御量)
φt 最終目標転舵角(制御量)
FL_Lt、FL_Rt 第1の目標仮想反発力
FY_Lt、FY_Rt 第2の目標仮想反発力
Ft 最終目標仮想反発力
Claims (9)
- 走行車線に対する自車両の横方向変位に関する情報を取得する横方向変位取得手段と、
自車両が走行する走行車線に横方向変位閾値を設ける横方向変位閾値設定手段と、
上記横方向変位閾値からの自車両の横変位偏差を小さくする第1の制御量を算出する第1制御量算出手段と、上記走行車線に対する自車両の進行方向の角度偏差を小さくする第2の制御量を算出する第2制御量算出手段と、
自車両が上記走行車線の幅方向中央側から上記横方向変位閾値を通過する際に、上記横方向変位閾値より上記走行車線中央側では第2の制御量、上記横方向変位閾値よりも上記走行車線の幅方向外側では少なくとも第1の制御量に基づき制御量を算出する制御量算出手段と、
上記制御量算出手段が算出した制御量に基づき、車輪の転舵角若しくは転舵トルク又は制駆動量若しくは制駆動力を補正することで自車両の進行を制御する進行方向制御手段と、
上記制御量算出手段が算出した制御量又は上記横変位偏差若しくは角度偏差に基づいて、報知量を演算する報知量演算手段と、
報知信号演算手段の演算した報知量に基づき、運転者の感覚に対し報知の刺激を付与する感覚刺激手段と、を備えることを特徴とする車線維持支援装置。 - 上記制御量算出手段は、上記横変位偏差を小さくするために走行車線の端部側から中央部側に向けて自車両に仮想的に加える第1の目標仮想反発力を算出すると共に、上記角度偏差を小さくするために走行車線の左右幅方向から自車両に仮想的に加える第2の目標仮想反発力を算出し、その第1の目標仮想反発力及び第2の目標仮想反発力に基づき上記制御量を算出し、
上記報知量演算手段は、上記目標仮想反発力に基づき報知量を演算することを特徴とする請求項1に記載した車線維持支援装置。 - 上記感覚刺激手段は、運転者の触覚に対し刺激を付与することを特徴とする請求項1または請求項2に記載した車線維持支援装置。
- 上記感覚刺激手段は、ハンドルの操作反力の変動によって刺激を付与することを特徴とする請求項3に記載した車線維持支援装置。
- 上記感覚刺激手段は、運転者の視覚に対し刺激を付与することを特徴とする請求項1〜請求項4のいずれか1項に記載した車線維持支援装置。
- 視覚に対する刺激は、光の点滅によって運転者の視覚に対し刺激を付与することを特徴とする請求項5に記載した車線維持支援装置。
- 上記感覚刺激手段は、運転者の聴覚に対し刺激を付与することを特徴とする請求項1〜請求項6のいずれか1項に記載した車線維持支援装置。
- 上記感覚刺激手段は、警報音によって運転者の聴覚に対し刺激を付与することを特徴とする請求項7に記載した車線維持支援装置。
- 自車両が走行する走行車線に横方向変位閾値を設けると共に、走行車線に対する自車両の横方向変位に関する情報を取得し、
自車両が上記走行車線の幅方向中央側から上記横方向変位閾値を通過する際に、上記横方向変位閾値より上記走行車線中央側では、走行車線に対する自車両の進行方向の角度偏差が小さくなるように自車両の進行方向を制御し、上記横方向変位閾値よりも上記走行車線の幅方向外側では、少なくとも横方向変位閾値からの自車両の横変位偏差が小さくなるように自車両の進行方向を制御し、
上記制御に基づいて上記角度偏差及び横変位偏差に応じた報知量の刺激を運転者の感覚に与えることを特徴とする車線維持支援方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008189809A JP5266926B2 (ja) | 2008-07-23 | 2008-07-23 | 車線維持支援装置及び車線維持支援方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008189809A JP5266926B2 (ja) | 2008-07-23 | 2008-07-23 | 車線維持支援装置及び車線維持支援方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010023756A true JP2010023756A (ja) | 2010-02-04 |
JP5266926B2 JP5266926B2 (ja) | 2013-08-21 |
Family
ID=41729969
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008189809A Active JP5266926B2 (ja) | 2008-07-23 | 2008-07-23 | 車線維持支援装置及び車線維持支援方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5266926B2 (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013190931A (ja) * | 2012-03-13 | 2013-09-26 | Toyota Motor Corp | 車両の運転支援システム |
JP2014144745A (ja) * | 2013-01-30 | 2014-08-14 | Toyota Motor Corp | 車両の走行制御装置 |
US9434383B2 (en) | 2014-12-01 | 2016-09-06 | Hyundai Motor Company | Integrative method and system for controlling blind spot detection system and lane keeping assist system |
JP2017500241A (ja) * | 2013-12-13 | 2017-01-05 | ダヴ | 自動車用のヒューマンマシンインターフェース |
US20170003683A1 (en) * | 2015-07-01 | 2017-01-05 | Toyota Jidosha Kabushiki Kaisha | Automatic driving control device |
WO2018025750A1 (ja) | 2016-08-02 | 2018-02-08 | いすゞ自動車株式会社 | 操舵補助装置及び操舵補助方法 |
US10994731B2 (en) | 2016-08-02 | 2021-05-04 | Isuzu Motors Limited | Steering assistance device and steering assistance method |
JP2023008656A (ja) * | 2021-07-06 | 2023-01-19 | トヨタ自動車株式会社 | 車両用操舵ガイドトルク制御装置 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5988308B2 (ja) * | 2013-12-27 | 2016-09-07 | 富士重工業株式会社 | 車両のレーンキープ制御装置 |
US10625740B2 (en) | 2018-01-18 | 2020-04-21 | Ford Global Technologies, Llc | Lane centering disturbance mitigation |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07215144A (ja) * | 1994-02-04 | 1995-08-15 | Mitsubishi Motors Corp | 操舵系加振式車両用警告装置 |
JP2001315600A (ja) * | 2000-02-29 | 2001-11-13 | Aisin Seiki Co Ltd | 車両の後退支援装置および後退支援方法 |
JP2004199286A (ja) * | 2002-12-17 | 2004-07-15 | Fuji Heavy Ind Ltd | 車両の走行制御装置 |
JP3729494B2 (ja) * | 2002-05-14 | 2005-12-21 | 三菱電機株式会社 | 車両の車線維持支援装置 |
JP2006143096A (ja) * | 2004-11-24 | 2006-06-08 | Toyota Motor Corp | 車輌の操舵制御装置 |
JP2006206032A (ja) * | 2004-12-27 | 2006-08-10 | Nissan Motor Co Ltd | 車線逸脱防止装置 |
-
2008
- 2008-07-23 JP JP2008189809A patent/JP5266926B2/ja active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07215144A (ja) * | 1994-02-04 | 1995-08-15 | Mitsubishi Motors Corp | 操舵系加振式車両用警告装置 |
JP2001315600A (ja) * | 2000-02-29 | 2001-11-13 | Aisin Seiki Co Ltd | 車両の後退支援装置および後退支援方法 |
JP3729494B2 (ja) * | 2002-05-14 | 2005-12-21 | 三菱電機株式会社 | 車両の車線維持支援装置 |
JP2004199286A (ja) * | 2002-12-17 | 2004-07-15 | Fuji Heavy Ind Ltd | 車両の走行制御装置 |
JP2006143096A (ja) * | 2004-11-24 | 2006-06-08 | Toyota Motor Corp | 車輌の操舵制御装置 |
JP2006206032A (ja) * | 2004-12-27 | 2006-08-10 | Nissan Motor Co Ltd | 車線逸脱防止装置 |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013190931A (ja) * | 2012-03-13 | 2013-09-26 | Toyota Motor Corp | 車両の運転支援システム |
JP2014144745A (ja) * | 2013-01-30 | 2014-08-14 | Toyota Motor Corp | 車両の走行制御装置 |
JP2017500241A (ja) * | 2013-12-13 | 2017-01-05 | ダヴ | 自動車用のヒューマンマシンインターフェース |
US9434383B2 (en) | 2014-12-01 | 2016-09-06 | Hyundai Motor Company | Integrative method and system for controlling blind spot detection system and lane keeping assist system |
US9950740B2 (en) * | 2015-07-01 | 2018-04-24 | Toyota Jidosha Kabushiki Kaisha | Automatic driving control device |
US20170003683A1 (en) * | 2015-07-01 | 2017-01-05 | Toyota Jidosha Kabushiki Kaisha | Automatic driving control device |
US20180201314A1 (en) * | 2015-07-01 | 2018-07-19 | Toyota Jidosha Kabushiki Kaisha | Automatic driving control device |
US10710632B2 (en) * | 2015-07-01 | 2020-07-14 | Toyota Jidosha Kabushiki Kaisha | Automatic driving control device |
WO2018025750A1 (ja) | 2016-08-02 | 2018-02-08 | いすゞ自動車株式会社 | 操舵補助装置及び操舵補助方法 |
US10994731B2 (en) | 2016-08-02 | 2021-05-04 | Isuzu Motors Limited | Steering assistance device and steering assistance method |
US11148716B2 (en) | 2016-08-02 | 2021-10-19 | Isuzu Motors Limited | Steering assistance device and steering assistance method |
JP2023008656A (ja) * | 2021-07-06 | 2023-01-19 | トヨタ自動車株式会社 | 車両用操舵ガイドトルク制御装置 |
JP7472866B2 (ja) | 2021-07-06 | 2024-04-23 | トヨタ自動車株式会社 | 車両用操舵ガイドトルク制御装置 |
Also Published As
Publication number | Publication date |
---|---|
JP5266926B2 (ja) | 2013-08-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5359085B2 (ja) | 車線維持支援装置及び車線維持支援方法 | |
JP5569631B2 (ja) | 車線維持支援方法及び車線維持支援装置 | |
JP5266926B2 (ja) | 車線維持支援装置及び車線維持支援方法 | |
JP2005508781A (ja) | 運転者アシストシステムおよびその運転方法 | |
JP5853552B2 (ja) | 車両用走行制御装置 | |
JP6928512B2 (ja) | 運転支援装置、運転支援方法および運転支援システム | |
JP2013028326A (ja) | インホイールシステムを利用した車線維持補助システム | |
JP5332703B2 (ja) | 車線維持支援装置及び車線維持支援方法 | |
WO2014199868A1 (ja) | 車両制御システム | |
KR20110125282A (ko) | 차선 유지 제어 방법 | |
JP2010513123A (ja) | 車両内のステアリングシステムを調整設定する方法 | |
JP2011195017A (ja) | 車両制御装置および車両制御方法 | |
JP6986463B2 (ja) | 運転支援装置、運転支援方法及び運転支援システム | |
CN107416020B (zh) | 用于控制和/或调节车辆的转向系统的系统和方法及车辆 | |
JP2013039892A (ja) | 車両のヨーモーメント発生旋回効率化装置 | |
JP2011005893A (ja) | 車両の走行制御装置および車両の走行制御方法 | |
JP7188236B2 (ja) | 車両制御装置 | |
JP2009292345A (ja) | 運転支援装置 | |
JP5380861B2 (ja) | 車線維持支援装置及び車線維持支援方法 | |
JP2014024448A (ja) | 車両の操舵支援装置 | |
JP5380860B2 (ja) | 車線維持支援装置及び車線維持支援方法 | |
JP4367214B2 (ja) | 車両用運転操作補助装置および車両用運転操作補助装置を備えた車両 | |
JP2004359143A (ja) | 車両用舵角制御装置 | |
JP2014031167A (ja) | 車線逸脱防止装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20100917 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110628 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121228 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130108 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130305 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130409 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130422 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 5266926 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |