JP2010003689A - 燃料電池インターコネクト構造体並びに関連するデバイス及び方法 - Google Patents

燃料電池インターコネクト構造体並びに関連するデバイス及び方法 Download PDF

Info

Publication number
JP2010003689A
JP2010003689A JP2009142850A JP2009142850A JP2010003689A JP 2010003689 A JP2010003689 A JP 2010003689A JP 2009142850 A JP2009142850 A JP 2009142850A JP 2009142850 A JP2009142850 A JP 2009142850A JP 2010003689 A JP2010003689 A JP 2010003689A
Authority
JP
Japan
Prior art keywords
interconnect
cathode
fuel cell
phase
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009142850A
Other languages
English (en)
Inventor
Matthew Joseph Alinger
マシュー・ジョセフ・エイリンガー
Frederic Joseph Klug
フレデリック・ジョセフ・クラッグ
James Anthony Ruud
ジェームズ・アンソニー・ラッド
Stephane Renou
ステファニー・レヌー
Reza Sarrafi-Nour
レザ・サラフィ−ヌアー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of JP2010003689A publication Critical patent/JP2010003689A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • H01M8/0208Alloys
    • H01M8/021Alloys based on iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

【課題】表面にオーステナイト相を形成させた固体酸化物燃料電池用のインターコネクト構造体を提供する。
【解決手段】クロムを含むフェライト系ステンレス鋼で形成されたインターコネクト構造体22,33の表面23上に、オーステナイト相からなる拡散障壁層を形成する。インターコネクト表面23をオーステナイト相安定剤で被覆し、次いで被覆表面を加熱する段階を含んでいる。この熱処理は、インターコネクトの表面領域のミクロ組織をフェライト系の体心立方(BCC)相からオーステナイト系の面心立方(FCC)相に転移させる。FCC相を通してのクロムの拡散速度は比較的低いので、厚い酸化クロム層の形成を最小限に抑え、良好な発電性能を実現する。
【選択図】図1

Description

本発明は、一般的には燃料電池に関する。さらに詳しくは、本発明は固体酸化物燃料電池用のインターコネクト構造体及び材料に関する。
固体酸化物形燃料電池(SOFC)は、高い効率及び低い排出量を伴いながら燃料から電気エネルギーを生み出すための有望なデバイスである。大抵の燃料電池と同じく、SOFCデバイスは水素及び酸素の電気化学的化合によって電流を発生する。典型的なSOFCでは、アノード層及びカソード層はセラミック固体酸化物から形成された電解質によって隔てられている。水素(純水素又は炭化水素の改質で得られた水素)をアノードの外面に沿って流し、アノード中に拡散させる。酸素(通例は空気からの酸素)をカソードの外面に沿って流し、カソード中に拡散させる。各O分子は、カソードにより(触媒的に)分割されて2つのO−2陰イオンになる。酸素陰イオンは電解質を通って移動し、アノード/電解質界面で4つの水素イオンと化合して2つの水分子を形成する。外部の負荷を介してアノード及びカソードを接続することで回路を完成すれば、4つの電子はアノードからカソードに移送される。
図1に示すように、例示的なプレーナ型SOFC20は、カソードインターコネクト22と1対の電極(カソード26及びアノード24)とを含んでいる。カソード及びアノードはセラミック電解質28によって隔てられている。一般に、このような電池構成は当技術分野で公知であるが、図に示した構成を(例えば、アノード層が電解質の上方に位置しかつカソード層が電解質の下方に位置するように)変更することもできる。
市販の固体酸化物燃料電池構造物は、通常は多数のかかる電池を互いに積層したものからなり、これらが累加的にデバイスを商業的に実用可能にするのに十分な電圧を与える。電池は、通例、上述したもののようなインターコネクトによって互いに接合されている。インターコネクトは、通常は金属層又はセラミック層の形態を有しており、個々の電池間における電気的接触、電流分布及び構造的保全性をもたらす。(説明の都合から垂直方向に沿って見た)典型的なカソード−電解質−アノードスタック構成では、隣接するセル又は「モジュール」のアノード層への接続のため、カソード層の上面に1つのインターコネクト層が取り付けられる。別の隣接するセルのカソード層への接続のため、アノードの下面に別のインターコネクト層が取り付けられる。
コスト及び製造の容易性のような考慮事項に基づき、燃料電池では金属インターコネクトが多用される。任意のタイプのインターコネクト(例えば、セラミック)の場合と同じく、合金組成物は燃料電池動作条件下で所望レベルの気密性及び導電性を与えなければならない。その上、合金材料は高温での動作及び温度サイクリング条件がもたらす効果に耐え得るべきである。
多くの場合、カソードインターコネクト及びアノードインターコネクトはフェライト系ステンレス鋼材料で形成される。フェライト系ステンレス鋼は当技術分野で公知であり、通常は鉄、クロム及び及びその他各種の選択元素に基づいている。一例として、かかる材料は体心立方(BCC)相の形態を有する。この種の材料は、燃料電池中の電解質の熱膨張率(CTE)と緊密に整合し得るCTEを有している。SOFC中の各種層に関する膨張特性の整合は、高温電気性能及び構造的保全性の点から見て不可欠である。
確かに、フェライト系ステンレス鋼はインターコネクト材料として非常に有用である。クロム含有合金は成形及び造形が容易であり、また大抵のセラミックインターコネクト材料より安価である。しかし、フェライト系ステンレス鋼はいくつかの欠点も有している。例えば、かかる材料は熱的に誘起される酸化物生成(即ち、合金部品の表面上における酸化クロム(クロミア)層の急速な形成)を起こしやすい。大抵の場合、部品表面上の薄くて緻密なクロミア層は、比較的高い導電性を示しながら金属表面を保護するために有益であり得る。しかし、急速に成長する厚いクロミア層は、短期間で電池の総合電気抵抗を増加させることにより、燃料電池の性能を低下させることがある。その結果、燃料電池の有効寿命は顕著に減少することがある。
これらの考慮事項を念頭に置けば、固体酸化物燃料電池及び燃料電池部品の新しい製造方法は当技術分野で歓迎されるであろう。かかる方法は、例えば燃料電池の面積抵抗率(ASR)によって測定した場合、長い動作期間にわたって最適で安定した電気化学的特性及び燃料効率を与え得る燃料電池構造を生み出すべきである。その上、燃料電池は良好な物理的保全性及び耐久性を示すべきである。
米国特許第4630096号明細書 米国特許第4722914号明細書 米国特許第4783695号明細書 米国特許第4894115号明細書 米国特許第4901136号明細書 米国特許第4918811号明細書 米国特許第4933042号明細書 米国特許第4981811号明細書 米国特許第5169678号明細書 米国特許第5169911号明細書 米国特許第5353195号明細書 米国特許第5353498号明細書 米国特許第5366906号明細書 米国特許第5452182号明細書 米国特許第5497033号明細書 米国特許第5527741号明細書 米国特許第5866952号明細書 米国特許第5888837号明細書 米国特許第5946546号明細書 米国特許第6239482号明細書 米国特許第6239980号明細書 米国特許第6242282号明細書 米国特許第6396153号明細書 米国特許第6475877号明細書 米国特許第6489185号明細書 米国特許第6506632号明細書 米国特許第6506633号明細書 米国特許第6548896号明細書 米国特許第6555906号明細書 米国特許第6586822号明細書 米国特許第6713859号明細書 米国特許第6734534号明細書 米国特許第6749737号明細書 米国特許第6825063号明細書 米国特許第6838776号明細書 米国特許第6894399号明細書 米国特許第6991966号明細書 米国特許第6994897号明細書 米国特許第7007356号明細書 米国特許第7078788号明細書 米国特許第7170162号明細書 米国特許第7183658号明細書 欧州特許第1474959号明細書 欧州特許出願公開第1617714号明細書 国際公開第03/065778号パンフレット 国際公開第2004/077902号パンフレット 国際公開第2004/077903号パンフレット 国際公開第2005/027602号パンフレット 国際公開第2006/013230号パンフレット
本発明は、フェライト系ステンレス鋼からなる材料で形成された1以上の燃料電池インターコネクト構造体の表面上に拡散障壁層を形成する方法を提供することで上記その他のニーズを満たす。かかる方法は、
(a)インターコネクトの表面にオーステナイト相安定剤のコーティングを適用する段階、及び
(b)被覆表面を加熱してオーステナイト相安定剤を表面中に拡散させることで、インターコネクト構造体の表面領域を実質的にフェライト系の体心立方(BCC)相から実質的にオーステナイト系の面心立方(FCC)相に転移させる段階
を含んでなる。
本発明の別の実施形態では、固体酸化物燃料電池が開示される。かかる燃料電池は、
(i)カソード、
(ii)アノード、
(iii)アノードとカソードとの間に配設されたセラミック電解質、
(iv)カソードの上面に取り付けられたカソードインターコネクトであって、カソードの表面に対面しかつ該表面に少なくとも部分的に接触するインターコネクト表面を有するカソードインターコネクト、及び
(v)アノードの下面に取り付けられたアノードインターコネクトであって、アノードの表面に対面しかつ該表面に少なくとも部分的に接触するインターコネクト表面を有するアノードインターコネクト
を含んでなり、カソードインターコネクト表面又はアノードインターコネクト表面の少なくとも一方が実質的にオーステナイト系の面心立方(FCC)相によって特徴づけられる表面領域を含んでいる。
本発明のさらに別の実施形態は、固体酸化物燃料電池スタックに関する。かかるスタックは、複数の相互接続された燃料電池から形成されている。少なくとも1つの燃料電池は、フェライト系ステンレス鋼材料で形成されかつ燃料電池のカソードの表面に対面するカソードインターコネクト表面を有するカソードインターコネクトを含んでいる。カソードインターコネクト表面は、実質的にオーステナイト系の面心立方(FCC)相によって特徴づけられる表面領域を含んでいる。
図1は固体酸化物燃料電池の略図である。 図2は燃料電池インターコネクトの一部分の概略断面図である。 図3はオーステナイト相安定剤を適用した図2の燃料電池インターコネクトを示す図である。 図4は所定の熱処理後における図3の燃料電池インターコネクトを示す図である。
以下の説明では、図面中の複数の図のすべてにわたり、同じ参照符号は類似の又は対応する部分を表すことに注意すべきである。また、「上部」、「下部」、「外方」、「内方」、「第1」、「第2」などの用語は便宜上の言葉であって、限定的な用語と解すべきでないことはもちろんである。さらに、本明細書全体にわたって使用される不定冠詞“a”及び“an”は数量の限定を意味するわけではなく、むしろ記載されたものの1以上が存在することを意味する。本明細書中で使用される接尾辞“(s)”は、それが修飾する語の単数形及び複数形の両方を包含し、それによってその語が意味するものの1以上を包含するものである(例えば、“surface”という用語は時には1種以上の表面を包含し得る)。
図1は上述した通りであって、本発明の若干の実施形態に係るSOFCの典型的な構造を示している。カソード26上にカソードインターコネクト22が配設されかつ取り付けられている。インターコネクトの内面23は一定パターンの燃料流路25をなして形成されていて、トラフの壁面並びにカソード26に直接接触する「分割壁」の表面27の両方を含んでいる。
上記に示唆されている通り、カソードインターコネクト22用の合金組成物はフェライト系ステンレス鋼合金(本明細書中では時に「フェライト鋼」ともいう)からなっている。かかる合金は当技術分野で公知である。電気化学セルで使用されるものの多くは、約60〜約85重量%の鉄及び約15〜約30重量%のクロムを含んでいる。かかる合金は、多くの場合、炭素(例えば、約0.1重量%以下)及び/又はマンガン(例えば、約1重量%以下)を含んでいる。その他各種の金属(例えば、イットリウム及びランタン)も含まれることがあるが、これらは通例約1重量%以下のレベルで存在する。しかし、本発明は「フェライト系ステンレス鋼」として特徴づけることができる多種多様の鉄−クロム合金に適用し得ることに注意すべきである。
上述の通り、インターコネクトの表面(例えば、内面23及び表面27)にオーステナイト相安定剤のコーティングが適用される。オーステナイト相安定剤は、ニッケル、コバルト、窒素、炭素及びマンガンからなる群から選択される1種以上の金属を含んでいる。若干の特定の実施形態では、オーステナイト相安定剤はマンガン、コバルト、又はマンガン及びコバルトの組合せからなる。しかし、多くの実施形態ではニッケルが好ましく、他の実施形態ではコバルトが好ましい安定剤である。オーステナイト相安定剤は、通例は金属形態で堆積させなければならない。場合によっては、安定剤を酸化物形態で堆積させることもできるが、これは続いて(例えば、水素炉のような還元雰囲気中での熱処理により)金属形態に還元される。
インターコネクトの表面にオーステナイト相安定剤を適用するためには各種の堆積技法が使用できる。非限定的な例には、電気めっき、無電解めっき、真空プラズマ溶射、低圧プラズマ溶射、真空アーク溶射、物理蒸着、電子ビーム物理蒸着、スパッタコーティング及び化学蒸着がある。若干の実施形態では、電気めっきが好ましい堆積方法であるのに対し、他の実施形態では、無電解めっきが選択すべき技法であろう。当業者はこれらの技法に精通しており、その各々を特定の堆積状況に適合させることができる。インターコネクト表面に適用させるべきオーステナイトコーティング材料(即ち、オーステナイト形成コーティング)の量は、後述の通り、一部ではオーステナイト系表面層又は表面領域の所望厚さによって決定される。一般に、オーステナイト形成コーティングの厚さは基体の厚さに無関係である。その代わり、本明細書中に述べられる通り、コーティング厚さは燃料電池の動作寿命にわたって拡散を低減又は阻止するように最適化される。
オーステナイト相安定剤をインターコネクト(カソードインターコネクト、アノードインターコネクト又はその両方)の表面上に適用した後、熱処理を実施することで材料を表面中に拡散させる。特定の加熱条件は、使用する特定のオーステナイト相安定剤金属、安定剤金属を堆積させる方法、下方のフェライト鋼材料の具体的組成及びそのミクロ組織特性、並びにオーステナイト系表面領域の所望深さのような各種因子に依存する。様々な製造因子(例えば、典型的な製造施設においてインターコネクト構造体上に所望の表面領域を形成するために必要な時間)もまた重要となり得る。
通常、インターコネクト表面領域はフェライト系ステンレス鋼材料の融点の約40%以上の温度に加熱される。若干の特定の実施形態では、表面領域はフェライト鋼材料の融点の約65%以上に加熱される。マンガン又はコバルトオーステナイト元素に関する非限定的な例示としては、拡散温度は約600〜約1100℃の範囲内にある。若干の特定の実施形態では、拡散温度は約800〜約1000℃の範囲内にある。当業者には理解される通り、これらの範囲内で温度が高くなるほど熱処理時間を短縮できる一方、長い熱処理は低い拡散温度を補償できる。商業的環境に関する若干の好ましい実施形態では、熱処理時間は通常約1〜約24時間の範囲内にある。(後述のようなインサイチュ熱処理の場合には、熱処理は実際には約100時間までの期間にわたって実施できる。)熱処理はいくつかの技法によって達成できる。普通、それは空気雰囲気又は酸素雰囲気を用いる通常の炉内で実施される。別法として、(上述のような)還元雰囲気又は不活性雰囲気を使用することもできる。
本発明の別の実施形態では、インターコネクト表面領域に関する熱処理は「インサイチュ(in−situ)」で(即ち、燃料電池が動作している間に)実施できる。一例としては、オーステナイト相安定化材料をインターコネクトに適用し、次いでインターコネクトを燃料電池構造物中に組み込むことができる。燃料電池がその初期動作温度(例えば、約700〜900℃)に達すると、通常は後述のようにインターコネクトの表面領域の相転移が起こり始まる。さらに、若干の実施形態では、初期の通常加熱及び続くインサイチュ加熱の組合せによって熱処理を実施することもできる。(本明細書中で使用される「被覆表面を加熱する」という用語は、部分的又は全体的なインサイチュ処理も述べるものとする。)
やはり前述した通り、熱処理はインターコネクト構造体の表面領域を実質的にフェライト系の体心立方(BCC)相から実質的にオーステナイト系の面心立方(FCC)相に転移させ、効果的に拡散障壁層を形成する。表面領域の平均深さはいくつかの因子に依存するが、その一部は上述した通りである。かかる因子には、使用する特定のオーステナイト相安定剤金属及び下方のフェライト鋼材料の具体的組成がある。
一般に、表面領域は障壁層として機能するのに十分な厚さ(即ち、深さ)を有するべきである。障壁層はインターコネクト表面からのクロム拡散を阻止し、それによってベース金属の酸化速度を低下させる。しかし、表面領域は、バルクインターコネクト構造体が燃料電池の他の構造部材(例えば、セラミック電解質膜)と同様な又は実質的に同一のCTE値を維持することを保証するのに十分な程度に薄くあるべきである。
若干の実施形態では、表面領域はインターコネクト構造体の厚さの約0.1〜約10%の範囲内の深さを有する。図1を参照しながら、非限定的な例示を示すことができる。約120〜約1500ミクロンの範囲内の厚さ(「x」)を有するインターコネクトに関しては、オーステナイト系表面領域は通例約0.5〜約10ミクロンの範囲内の深さを有する。当業者は、本明細書中の教示に基づき、所定の状況下における表面領域の最も適切な深さを選択できよう。さらに、当技術分野で知られる各種のイメージング技法を使用することで、ミクロ組織相が変化した表面領域の深さを測定することができる。一例は電子後方散乱回折(EBSD)分析である。
本開示はまた、前述したように、固体酸化物燃料電池(SOFC)に関する実施形態も含んでいる。図1について説明すれば、例示的なプレーナ型燃料電池は、カソードインターコネクト22と、電解質28で隔てられた1対の電極(即ち、カソード26及びアノード24)とを含んでいる。一般に、このような電池構成は当技術分野で公知である。しかし、図に示した構成を(例えば、アノード層が電解質の上方に位置しかつカソード層が電解質の下方に位置するように)変更することもできる。当業者には理解される通り、燃料電池は水平、垂直又は任意の方位で動作させることができる。場合によっては、インターコネクト22とカソード26との間にボンド層を配置することができる。(さらに、視認を容易にするため、図中の各種層の厚さは必ずしも一定の縮尺で示されておらず、またこれらの層は分解図で示されている。)
続けて図1について説明すれば、インターコネクト部分22はカソード26に接触した複数の空気流路25を画成している。上述の通り、インターコネクトの表面にオーステナイトコーティングが適用される。(下方のカソード35に取り付けられた)インターコネクト部分33は、アノード24に接触した複数の燃料流路34を画成している。
若干の実施形態では、アノード24に対面するアノードインターコネクトの表面にオーステナイトコーティングを適用することが望ましい場合もある。即ち、かかるコーティングは燃料流路34(即ち、トラフ)の壁面45並びに構造体の分割壁の表面47に適用できる。次いで、独立の段階として、或いは燃料電池に関する別の熱処理の一部として、オーステナイト被覆表面を(拡散及び相転移のため)前述したようにして加熱することができる。アノードインターコネクト上におけるオーステナイト材料の使用もまた、カソードインターコネクトに関して上述した基本的な利点のいくつかを提供し得る。アノードインターコネクトの場合には、オーステナイト相安定剤は通常ニッケルである。
燃料電池の動作に際しては、燃料の流れ40が燃料流路34に供給される。また、空気(通例は加熱空気)の流れ38が空気流路25に供給される。図1に示したもののような燃料電池の動作は当技術分野で公知である。非限定的な例としては、2006年11月30日に提出されたT.Strikerらの米国特許出願第11/565,236号には、固体酸化物燃料電池の動作に関係する一般概念が記載されている。2007年9月28日に提出されたS.C.Quekらの米国特許出願第11/863,747号並びに米国特許第6949307号(Cableら)及び同第6296962号(Minh)も有益である。これらの特許及び特許出願はいずれも、援用によって本明細書の内容の一部をなす。一般に、天然ガスのような燃料がアノード26に供給されて酸化反応を受ける。燃料はアノードで、電解質を横切ってアノードに輸送される酸素イオン(O2−)と反応する。酸素イオンは水素と反応して水を生成し、外部電気回路に電子を放出する。燃料電池スキームの一部として、空気がカソードに供給される。カソードが外部回路から電子を受け取ると、還元反応が起こる。電解質はアノードとカソードとの間でイオンを伝導する。電子の流れは直流電気を発生し、このプロセスは熱並びに若干の排ガス及び液体(例えば、水及び二酸化炭素)を生じる。
SOFCの各種構造層の組成は当技術分野で公知である。セラミック電解質は、通例、イオン種(例えば、酸化イオン又は水素イオン)を伝導し得るが、比較的低い導電性を有する材料で形成されている。好適なセラミック材料の例には、特に限定されないが、様々な形態のジルコニア、セリア、ハフニア、酸化ビスマス、没食子酸ランタン、トリア及びこれらのセラミックの様々な組合せがある。若干の実施形態では、セラミック電解質は、イットリア安定化ジルコニア、希土類酸化物安定化ジルコニア、スカンジア安定化ジルコニア、希土類ドープトセリア、アルカリ土類ドープトセリア、希土類酸化物安定化酸化ビスマス及びこれらの化合物の様々な組合せからなる群から選択される材料からなる。例示的な実施形態では、セラミック電解質はイットリア安定化ジルコニアからなる。ドープトジルコニアは、広範囲の酸素分圧レベルにわたって実質的に純粋なイオン伝導性を示すので魅力的である。一実施形態では、セラミック電解質は熱溶射イットリア安定化ジルコニアからなる。当業者は、本明細書中に記載された要件に基づいて適切な電解質を選択する方法を熟知しているであろう。
同様に、アノード層の組成は最終用途に依存する。非限定的な一実施形態では、アノード層は、貴金属、遷移金属、サーメット、セラミック及びこれらの組合せからなる群から選択される材料からなる。好適なアノード材料の若干の例には、特に限定されないが、ニッケル、ニッケル合金、コバルト、ニッケル−イットリア安定化ジルコニアサーメット、銅−イットリア安定化ジルコニアサーメット、ニッケル−セリアサーメット、ニッケル−サマリアドープトセリアサーメット、ニッケル−ガドリニウムドープトセリアサーメット及びこれらの組合せがある。これらのアノード材料には、多くの異種陽イオンをドープすることができる。例えば、ジルコニアに対しては、Y、Ca及びScがドーパントとして使用できる。セリアの場合には、Gd及びSmがドーパントとして使用できる。特定の実施形態では、アノード層はニッケルからなる。ニッケルは、容易にインサイチュで気孔を形成し得るという利点を与えると共に、未焼結状態で非常に頑強である。ニッケルのその他の利点は、比較的安い価格及び容易な入手可能性に関する。
カソード層もまた、各種の導電性(かつ場合によってはイオン伝導性)化合物のような通常の材料で形成できる。非限定的な例には、ストロンチウムドープトLaMnO、ストロンチウムドープトPrMnO、ストロンチウムドープト亜鉄酸ランタン、ストロンチウムドープトコバルト酸ランタン、ストロンチウムドープト亜鉄酸コバルト酸ランタン、亜鉄酸ストロンチウム、SrFeCo0.5、SrCo0.8Fe0.23−δ、La0.8Sr0.2Co0.8Ni0.23−δ、La0.7Sr0.3Fe0.8Ni0.23−δ及びこれらの組合せがある。これらの材料の複合材も使用できる。若干の実施形態では、イオン伝導体は、イットリア安定化ジルコニア、希土類酸化物安定化ジルコニア、スカンジア安定化ジルコニア、希土類ドープトセリア、アルカリ土類ドープトセリア、希土類酸化物安定化酸化ビスマス及びこれらの化合物の様々な組合せからなる群から選択される材料からなる。
燃料電池部品用の材料に関するその他の様々な詳細は当技術分野で公知である。さらに、電池の製造方法も公知である。当業者は、燃料電池スタックの組立方法にも精通している。図1に示される例示的な実施形態では、燃料電池アセンブリ20は、通常はプレーナ型構造を有する複数の繰返し単位30を含んでいる。複数のこの種の電池を単一の構造物中に設けることができる。かかる構造物は、「スタック」、「アセンブリ」、又は単一の出力電圧を生じ得る電池の集合体ということがある。
図2は、カソードインターコネクト22(図1)に類似した燃料電池インターコネクトの一部分50の概略断面図である。かかるインターコネクトはフェライト鋼材料で形成され、通例はカソード層(図示せず)に対面する表面52を含んでいる。図3では、前述のようにして表面52上にオーステナイト材料54(例えば、コバルト又はマンガンからなるもの)が適用される。次いで、被覆表面に熱処理を施す(或いは部分的又は全体的にインサイチュで熱処理する)ことにより、オーステナイト相安定剤をインターコネクトの表面中に拡散させる。図4に示される通り、熱処理後には表面領域56が形成される。(表面領域の深さは視認を容易にするために多少拡大されている。さらに、領域の境界は実際にはやや不規則なことがあり、また拡散プロファイルのパターンに従うこともある。)上述の通り、表面領域は実質的にオーステナイト系のFCC相に転移している。FCC相の存在は、本明細書中に記載した付属の利点、例えば燃料電池インターコネクトからのクロム拡散の減少及びその結果としての電池の有効実用寿命の増加をもたらすことができる。熱処理後、時にはオーステナイト相安定剤の残渣がインターコネクトの表面上に残ることがある。場合によっては、かかる残渣は有益なことがあり、残ったままにされる。他の場合には、かかる残渣は各種のクリーニング技法(例えば、化学エッチング又は機械的研削)によって除去できる。
本発明の特許可能な技術的範囲は、特許請求の範囲によって定義されている。以上、特定の実施形態に関して本発明を詳しく説明してきたが、本発明の技術思想から逸脱せずに(本明細書中に詳述された実施形態を超える)本発明のその他の変更を行い得ることは当業者にとって自明であろう。したがって、当業者によって想起される変更は本発明の技術的範囲内に含まれると考えるべきである。さらに、上記に記載した特許、特許公開、論文、教科書及びその他の参考文献はいずれも、援用によって本明細書の内容の一部をなす。
20 固体酸化物燃料電池
22 カソードインターコネクト
23 インターコネクト表面
24 アノード
26 カソード
28 セラミック電解質
30 相互接続された燃料電池
33 アノードインターコネクト
50 インターコネクト構造体
52 インターコネクト表面
54 オーステナイト相安定剤
56 インターコネクトの表面領域

Claims (10)

  1. フェライト鋼からなる材料で形成された1以上の燃料電池インターコネクト構造体(50)の表面(52)上に拡散障壁層(56)を形成する方法であって、
    (a)インターコネクト(50)の表面(52)にオーステナイト相安定剤のコーティング(54)を適用する段階、及び
    (b)被覆表面を加熱してオーステナイト相安定剤を表面(52)中に拡散させることで、インターコネクト構造体(50)の表面領域(56)を実質的にフェライト系の体心立方(BCC)相から実質的にオーステナイト系の面心立方(FCC)相に転移させる段階であって、FCC相はBCC相を通しての金属原子の拡散速度に比べて金属原子の拡散速度を低下させる特性を示す段階
    を含んでなる方法。
  2. インターコネクト(22)が燃料電池(20)のカソード(26)に取り付けられる、請求項1記載の方法。
  3. インターコネクト構造体材料がクロムを含む、請求項1記載の方法。
  4. 拡散障壁層が、BCCフェライト材料を通してのクロムの拡散速度に比べてクロムの拡散速度を低下させる特性を有する、請求項3記載の方法。
  5. オーステナイト相安定剤が、ニッケル、コバルト、窒素、炭素及びマンガンからなる群から選択される1種以上の金属を含む、請求項1記載の方法。
  6. 段階(b)において、インターコネクト構造体(50)の厚さの約0.1〜約10%に相当する深さを有する表面領域(56)を形成するのに十分な条件下で被覆表面(52)が加熱される、請求項1記載の方法。
  7. 表面領域(56)が約0.5〜約10ミクロンの深さを有する、請求項6記載の方法。
  8. (i)カソード(26)、
    (ii)アノード(24)、
    (iii)アノードとカソードとの間に配設されたセラミック電解質(28)、
    (iv)カソード(26)の上面に取り付けられたカソードインターコネクト(22)であって、カソードの表面に対面しかつ該表面に少なくとも部分的に接触するインターコネクト表面(23)を有するカソードインターコネクト(22)、及び
    (v)アノード(24)の下面に取り付けられたアノードインターコネクト(33)であって、アノードの表面に対面しかつ該表面に少なくとも部分的に接触するインターコネクト表面を有するアノードインターコネクト(33)
    を含んでなる固体酸化物燃料電池(20)であって、カソードインターコネクト表面又はアノードインターコネクト表面の少なくとも一方が実質的にオーステナイト系の面心立方(FCC)相によって特徴づけられる表面領域を含む、固体酸化物燃料電池(20)。
  9. カソードインターコネクト(22)がフェライト系ステンレス鋼からなる材料で形成されていて、実質的にフェライト系の体心立方(BCC)相によって特徴づけられる下方のバルク領域と、実質的にオーステナイト系の面心立方(FCC)相によって特徴づけられる表面領域とを含んでいる、請求項8記載の固体酸化物燃料電池。
  10. 複数の相互接続された燃料電池(30)から形成された固体酸化物燃料電池スタックであって、少なくとも1つの燃料電池がフェライト系ステンレス鋼材料で形成されかつ燃料電池(20)のカソード(26)の表面に対面するカソードインターコネクト表面(23)を有するカソードインターコネクト(22)を含み、カソードインターコネクト表面が実質的にオーステナイト系の面心立方(FCC)相によって特徴づけられる表面領域を含む、固体酸化物燃料電池スタック。
JP2009142850A 2008-06-20 2009-06-16 燃料電池インターコネクト構造体並びに関連するデバイス及び方法 Pending JP2010003689A (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/143,188 US20090317705A1 (en) 2008-06-20 2008-06-20 Fuel cell interconnect structures, and related devices and processes

Publications (1)

Publication Number Publication Date
JP2010003689A true JP2010003689A (ja) 2010-01-07

Family

ID=41050498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009142850A Pending JP2010003689A (ja) 2008-06-20 2009-06-16 燃料電池インターコネクト構造体並びに関連するデバイス及び方法

Country Status (5)

Country Link
US (1) US20090317705A1 (ja)
EP (1) EP2136427A1 (ja)
JP (1) JP2010003689A (ja)
KR (1) KR20090132530A (ja)
CN (1) CN101609875A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012119126A (ja) * 2010-11-30 2012-06-21 Magunekusu Kk 固体酸化物燃料電池
JP2018131643A (ja) * 2017-02-13 2018-08-23 新日鐵住金ステンレス株式会社 耐熱性に優れた固体酸化物形燃料電池用セパレータおよびこれを用いた燃料電池

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8628887B2 (en) * 2009-07-15 2014-01-14 Cummins Power Generation Ip, Inc. Fuel cell with low water consumption
US9843053B2 (en) * 2010-09-09 2017-12-12 Audi Ag Fuel cell coating
US20120321994A1 (en) * 2011-06-15 2012-12-20 Zhien Liu Fuel cell system with interconnect
KR101301354B1 (ko) * 2011-09-27 2013-08-29 삼성전기주식회사 고체 산화물 연료 전지 및 고체 산화물 연료 전지 모듈
US9559366B2 (en) 2014-03-20 2017-01-31 Versa Power Systems Ltd. Systems and methods for preventing chromium contamination of solid oxide fuel cells
US10084192B2 (en) 2014-03-20 2018-09-25 Versa Power Systems, Ltd Cathode contact layer design for preventing chromium contamination of solid oxide fuel cells
KR102111830B1 (ko) * 2016-09-28 2020-05-15 주식회사 엘지화학 고체 산화물 연료전지
CN109671958B (zh) * 2018-11-02 2021-04-27 全球能源互联网研究院有限公司 一种固体氧化物燃料电池及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0967672A (ja) * 1995-08-29 1997-03-11 Tokyo Gas Co Ltd フェライト系ステンレス鋼、これを使用した固体電解質燃料電池およびこのフェライト系ステンレス鋼の製造方法
JPH1092446A (ja) * 1996-09-13 1998-04-10 Fuji Electric Corp Res & Dev Ltd 固体電解質型燃料電池
JPH11501764A (ja) * 1995-03-15 1999-02-09 セラミック・フューエル・セルズ・リミテッド 燃料電池インタコネクタデバイス
JP2002289215A (ja) * 2001-03-23 2002-10-04 Mitsubishi Materials Corp 導電性に優れた固体電解質型燃料電池用セパレータ
WO2006059943A1 (en) * 2004-11-30 2006-06-08 Sandvik Intellectual Property Ab Fuel cell component comprising a complex oxide forming coating
WO2006138070A1 (en) * 2005-06-15 2006-12-28 Ati Properties, Inc. Interconnects for solid oxide fuel cells and ferritic stainless steels adapted for use with solid oxide fuel cells
JP2010535290A (ja) * 2007-08-02 2010-11-18 トラスティーズ オブ ボストン ユニバーシティ Sofcインターコネクタのための保護酸化物皮膜

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6296962B1 (en) * 1999-02-23 2001-10-02 Alliedsignal Inc. Design for solid oxide fuel cell stacks
US6197125B1 (en) * 1999-12-13 2001-03-06 Mcdermott Technology, Inc. Modification of diffusion coating grain structure by nitriding
US6737182B2 (en) * 2001-06-18 2004-05-18 Delphi Technologies, Inc. Heated interconnect
US6949307B2 (en) * 2001-10-19 2005-09-27 Sfco-Efs Holdings, Llc High performance ceramic fuel cell interconnect with integrated flowpaths and method for making same
US7294424B2 (en) * 2002-06-24 2007-11-13 Delphi Technologies, Inc. Solid-oxide fuel cell assembly having simplified arrangement of current collectors
US20080032172A1 (en) * 2006-08-04 2008-02-07 Subhasish Mukerjee Conductive coating for solid oxide fuel cell

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11501764A (ja) * 1995-03-15 1999-02-09 セラミック・フューエル・セルズ・リミテッド 燃料電池インタコネクタデバイス
JPH0967672A (ja) * 1995-08-29 1997-03-11 Tokyo Gas Co Ltd フェライト系ステンレス鋼、これを使用した固体電解質燃料電池およびこのフェライト系ステンレス鋼の製造方法
JPH1092446A (ja) * 1996-09-13 1998-04-10 Fuji Electric Corp Res & Dev Ltd 固体電解質型燃料電池
JP2002289215A (ja) * 2001-03-23 2002-10-04 Mitsubishi Materials Corp 導電性に優れた固体電解質型燃料電池用セパレータ
WO2006059943A1 (en) * 2004-11-30 2006-06-08 Sandvik Intellectual Property Ab Fuel cell component comprising a complex oxide forming coating
JP2008522363A (ja) * 2004-11-30 2008-06-26 サンドビック インテレクチュアル プロパティー アクティエボラーグ 燃料電池構成部品
WO2006138070A1 (en) * 2005-06-15 2006-12-28 Ati Properties, Inc. Interconnects for solid oxide fuel cells and ferritic stainless steels adapted for use with solid oxide fuel cells
JP2008544452A (ja) * 2005-06-15 2008-12-04 エイティーアイ・プロパティーズ・インコーポレーテッド 固体酸化物燃料電池のための相互接続及び固体酸化物燃料電池と共に使用するために適合させたフェライト系ステンレス鋼
JP2010535290A (ja) * 2007-08-02 2010-11-18 トラスティーズ オブ ボストン ユニバーシティ Sofcインターコネクタのための保護酸化物皮膜

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012119126A (ja) * 2010-11-30 2012-06-21 Magunekusu Kk 固体酸化物燃料電池
JP2018131643A (ja) * 2017-02-13 2018-08-23 新日鐵住金ステンレス株式会社 耐熱性に優れた固体酸化物形燃料電池用セパレータおよびこれを用いた燃料電池

Also Published As

Publication number Publication date
CN101609875A (zh) 2009-12-23
US20090317705A1 (en) 2009-12-24
KR20090132530A (ko) 2009-12-30
EP2136427A1 (en) 2009-12-23

Similar Documents

Publication Publication Date Title
JP2010003689A (ja) 燃料電池インターコネクト構造体並びに関連するデバイス及び方法
KR101258799B1 (ko) 고체 산화물 연료 전지용 인터커넥트 및 상기 고체 산화물 연료 전지용 인터커넥트로서 사용되기에 적합한 페라이트 스테인리스강
EP1768205B1 (en) Solid-oxide fuel cell with ferritic support
US7674546B2 (en) Metallic separator for fuel cell and method for anti-corrosion treatment of the same
JP5090800B2 (ja) インターコネクタ及び固体酸化物形燃料電池
CA2596409A1 (en) Separator for fuel cell and method for manufacturing same
TW201029252A (en) Coating process for production of fuel cell components
US20080107928A1 (en) Fuel Cell Separator and Method for Manufacturing the Same
CN101454932B (zh) 用于燃料电池组的连接件和生产方法
US11552306B2 (en) Contact between interconnect and electrode
JP6917182B2 (ja) 導電性部材、電気化学反応単位、および、電気化学反応セルスタック
JP5215443B2 (ja) 固体酸化物形燃料電池
JP2006107936A (ja) 平板形固体酸化物燃料電池用インターコネクタ
KR101353788B1 (ko) 고체산화물 연료전지용 분리판, 그의 제조방법 및 그를 포함하는 고체산화물 연료전지
KR101220746B1 (ko) 고체산화물 연료전지용 금속 연결재 및 그 코팅방법
KR101242794B1 (ko) 내크롬피독성이 우수한 연료전지용 분리판 및 그 제조방법
CN102227844A (zh) 平面型高温燃料电池
Yu The Performance of Spinel-Based Interconnect Coating and Cathode-Side Contact Layer for Solid Oxide Fuel Cell
WO2023117086A1 (en) Method for creating a protective coating on a component of an electrochemical cell
Sun Electrophoretically deposited copper manganese spinel protective coatings on metallic interconnects for prevention of Cr-poisoning in solid oxide fuel cells
Shaigan Protective/conductive coatings for ferritic stainless steel interconnects used in solid oxide fuel cells
KR20100122361A (ko) 고분자 전해질 연료전지용 전극판 및 그의 제조방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130716

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131011

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131029