JP2009532113A - 磁気駆動式mems共振構造を使用する遠隔計測の方法および装置 - Google Patents

磁気駆動式mems共振構造を使用する遠隔計測の方法および装置 Download PDF

Info

Publication number
JP2009532113A
JP2009532113A JP2009503191A JP2009503191A JP2009532113A JP 2009532113 A JP2009532113 A JP 2009532113A JP 2009503191 A JP2009503191 A JP 2009503191A JP 2009503191 A JP2009503191 A JP 2009503191A JP 2009532113 A JP2009532113 A JP 2009532113A
Authority
JP
Japan
Prior art keywords
resonant
signal processor
resonance
resonant structure
change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009503191A
Other languages
English (en)
Inventor
ブラッドリー・イー・ペイデン
ブライアン・ノーリング
ジョサイア・イー・ヴァーカイク
Original Assignee
ローンチポイント・テクノロジーズ・インコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローンチポイント・テクノロジーズ・インコーポレーテッド filed Critical ローンチポイント・テクノロジーズ・インコーポレーテッド
Publication of JP2009532113A publication Critical patent/JP2009532113A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/16Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for measuring intraocular pressure, e.g. tonometers

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measuring Fluid Pressure (AREA)
  • Micromachines (AREA)

Abstract

ピックアップから遠隔配置された圧力感知要素と、環境内で圧力を感知し、監視する処理ユニットとを使用する遠隔計測の方法および装置を提供する。これは、封入シェルまたはダイアフラム内に気密封止されている磁気駆動式共振器を組み込んだ遠隔圧力感知装置と、圧力を感知する新しい方法とを含む。磁気駆動式共振器の共振構造は、機械的応力または質量の変化に変換可能な量の測定に適する。共振構造は、圧力、吸着質量、及び歪みセンサーなどに一体化できる。この装置および方法は、周期的に振動する共振器の滞留周波数を利用または聴取することにより情報を与える。最も重要な共振構造聴取周波数は、機械的構造の基本または高調波共振周波数である。装置は、特定の流体環境の遠隔での1回限り、ランダム、周期的、または連続的/進行中の監視を行うためにさまざまな環境で動作可能である。眼内圧、血圧、および頭蓋内圧力の測定などの生物医学的用途がある。

Description

本発明は、一般に、共振構造における機械的応力または質量に変換可能な量を測定するのに適した共振構造を含む装置、および関連する方法に関する。より具体的には、本発明は、生体内の無線生理的パラメータ測定および遠隔計測に適した磁気駆動式共振センサーを含む装置および方法に関する。
生物医学装置の分野では、生体内の生理的パラメータの測定には、固有の問題がある。このような問題および関係する既知の解決策は、例えば、医学界の重大な関心事である緑内障の治療に見られる。緑内障は、視神経の損傷および失明を引き起こす可能性のある重病である。緑内障には多数の原因があるが、眼内圧の増加が主要な機序である。多くの人々が緑内障に悩んでおり、またそれに伴って、この疾病は重大であり、早期発見および最適化された薬物療法が必要であることから、眼圧を頻繁に測定することが望ましい。さらに、眼圧は、一日中変化しており、不定期の検査に基づく臨床診断は、遅れがちである。したがって、迅速で、正確な圧力監視を行うことが望ましい。
目の中(つまり、眼球内)にセンサーを留置する外科手術は、緑内障の患者または他の理由で眼球手術を受けている場合に緑内障を発症する危険性のある患者に勧めることができる。特に、眼内レンズ(IOL)を受けている患者は、さらに健康上の危険性または費用をほとんど被ることなくIOLに取り付けられた圧力センサーを装着することができる。また、眼圧に応じて薬物用量を調節する必要のある緑内障患者は、そのようなデバイスを利用する。
眼内圧の測定を対象とするデバイスが多数存在している。眼圧計を使用し目の角膜との接触を利用する技術が普及している。角膜は、局所麻酔され、眼圧計プローブの滑らかで平坦な表面に接触させられる。眼内圧を計算するために、角膜の指定領域を平らにするのに必要な圧力の大きさが使用される。この方法は、費用効果が高いが、重大な欠点を数多く抱えている。例えば、測定には訓練を受けた医師が必要であり、したがって頻繁な監視は可能でない。さらに、角膜の力学的特性が測定に影響を与えることがある。さらに、眼圧計は、きれいな殺菌済み状態に保たれる必要がある。
共振周波数が眼圧に敏感なインダクタ−キャパシタ(LC)共振回路を伴う眼圧を連続監視するための技術を実現することがすでに別のところで提案されている。しかし、このようなデバイスは、人間の臨床用途に対して十分にコンパクトで信頼性が高いとはいえず、また埋め込みおよび取り付けの方法を欠いていた。さらに、LC共振センサーでは、周波数、したがって圧力を外部から素早く、簡単に感知できる十分に鋭い共振をもたらすことができない。このようなセンサーは、30の範囲のクオリティファクタ(Q)を示しうる。Qファクタは、共振デバイスまたはシステムの「クオリティ」の尺度である。共振システムは、他の周波数に応答する場合よりもかなり強く、固有周波数に近い周波数に応答する。Qファクタは、システムにおける共振に対する感受性を示す。高いQファクタを持つシステムは、低いQファクタを持つシステムに比べて大きな振幅で(共振周波数で)共振する。減衰は、Qファクタを低くする。平面微小電気機械システム(MEMS)製造技術を使用する既知のLC共振器の修正が試みられた。しかし、コイルおよび他の導電体における抵抗損失に関連する低Qの問題は、センサーおよび誘導ピックアップコイルの相対的位置に対するそのようなシステムの感度のせいで残った。
眼球内への埋め込みのために十分小さくすることが可能であり、それでも高いQを有する機械的共振器から派生するさらに他の圧力センサーが示唆されているが、そのようなセンサーは、光を使用して共振ビームを電気的に引き付けるか、または必須の高光度をセンサーに伝える光学的励起システムを他の何らかの方法で実現するフォトダイオードを駆動する。比較的強い光が必要であるという条件は、患者の視覚を妨げるものとなるか、または他の何らかの形で、人間の目に近い用途に適した条件といえない可能性が高い。
また、無線通信を使用するLC共振圧力センサーが多数存在する。このような方式は、埋め込みデバイスに関連付けられているインダクタコイルと別の外部「読み出し」コイルとの間の磁気結合に依存する。例えば、無線通信の既知の仕組みの1つは、LCタンク共振器である。このようなデバイスでは、キャパシタとインダクタの直列−並列接続に、回路のインピーダンスから検出されうる特定の共振周波数が付随する。インダクタ−キャパシタ対の一要素が、ある種の物理パラメータ(例えば、圧力)とともに変化し、その一方で、他の要素が、既知の値のままである場合、その物理パラメータは、共振周波数から決定できる。LC共振回路を使用するそのようなデバイスは、脳水腫への応用、血圧を測定する埋め込み型デバイス、および眼内圧を監視するための埋め込み型レンズなどの多数の応用事例に対しさまざまな形態のものが提案されている。
埋め込み型無線センサーは、さらに、慢性心不全(CHF)などの心臓血管疾患の治療の分野に存在していた。CHFは、心臓および関連する血管内のさまざまな圧力および/または流量を連続的に、および/または間欠的に監視することで大幅に改善されうる。ステント内に配置された無線センサーの応用事例が示唆されているが、ステントに組み込める十分に小さな遠隔計測手段を備える圧力センサーを製造する際の問題点を解決する策は存在していない。
前述の場合のほとんどすべてにおいて、開示されているデバイスは、多くの異種物質を用いた複雑な電気機械アセンブリを必要とする。その結果、典型的には、時間の経過とともに著しい温度上昇と経年変化誘発ドリフトを生じる。このようなアセンブリは、さらに、例えば眼内圧監視および/または小児科における応用を含む多くの望ましい応用事例には大きすぎる場合がある。最後に、組立工程が複雑であるため、広範な用途に使用しようにもこのようなデバイスの製造コストが法外に高くつく。製造のこのような複雑さは、従来加工されていたデバイスの代替えとして近年提案されている微細加工センサーを形成する代替え工程の場合に増大するだけである。
磁歪型の磁気機械圧力センサーを使用する遠隔計測センサーを実現しようとする試みもなされている。磁歪は、磁界に曝されたときに体積を変化させる強磁性体の特性である。非交番磁界によるバイアスがかけられたときに、磁歪物質は、機械的歪みを介してエネルギーを蓄積する。この蓄積は、物質のヤング率Eに影響を及ぼす。このような磁歪物質は、交番磁界において共振させることができる。共振周波数は、材料の幾何学的形状、磁歪物質の1つまたは複数の力学的特性、およびバイアス非交番磁界の強度を変化させることにより設計されうる。これらのタイプのセンサーは、高透磁率要素を有する。高透磁率要素は、より高い磁気保磁力を持つ要素に隣接して配置される。より高い磁気保磁力を持つ要素に隣接する高透磁率要素は、磁気特性の非線形性による交番磁界により問い合わせが行われたときにより共振する。より高い磁気保磁力を持つ要素に隣接する高透磁率要素は、受信コイルにより検出される問い合わせ周波数の高調波を発生する。このようなセンサーは、より高い保磁力を持つ磁気要素(「磁気的に硬質な要素」と呼ばれることが多い)に隣接して配置される薄い帯状の磁歪強磁性体を備えることができる。
上で示唆されているように、磁歪物質上に置かれた非交番磁気バイアスは、磁歪物資内に機械的歪みを引き起こし、これはさらに、磁歪物質の共振周波数に影響を及ぼす。磁歪物質の共振は、電磁的に検出されうる。磁気機械圧力センサーは、動作信頼性の高さ、および高感度の以前の電磁マーカーに勝る製造コストの低さなどの利点を有しているが、そのような圧力センサーに関連するいくつかの問題点が知られている。磁歪応答は、主にヤング率に依存しているため温度感性を有している。その結果、そのような磁歪圧力センサーは、サイズを大きくし、単一モノリシック構造としての構成または生理的パラメータを監視するのに適している超小型サイズへの適応を不可能にする追加温度および測定デバイスを使用することを伴う独立した温度補正を必要とすることが多い。
さらに既知のタイプの機械的共振センサーが、高精度測定を行うために長年使用されてきた。加速度計、圧力変換器、質量流センサー、温度および湿度センサー、空気密度センサー、およびスケールにおいて振動変換器が使用されている。このようなセンサーは、振動の固有周波数(つまり、周期的に振動するビームまたは他の部材の共振周波数)は、部材にそって誘導された歪みに応じて変化するという原理に基づいて動作する。共振センサーの主な利点の1つは、共振周波数は、周期的に振動するビームの幾何学的および力学的特性にのみ依存し、電気的特性には実質的に依存しないという点である。その結果、駆動および感知電極の正確な値(例えば、抵抗および静電容量)は、重要なものでなくなる。考えられる不利点は、駆動電極と感知電極との間の寄生結合が、共振計測器の精度を減少させうることである。さらに、従来の容量性駆動配置では、周期的に振動するビームと駆動電極との間の力は、二次であり、その結果、望ましくない周波数引き寄せ効果を生じる。結晶水晶ピエゾ抵抗器の共振計測器応用事例における利用は満足のゆくものであったが、そのサイズが、その実用性を狭めている。
近年、他の既知のタイプの圧力感知デバイスが、半導体材料、例えば、シリコンから加工されている。一般に、このタイプの圧力感知デバイスは、いわゆる「シリコン微細加工」技術を採用して実現される。このような技術は、その極端に小さなサイズ(数10ミクロンにまで達する)にもかかわらず、設計時にきちんと定めることができる力学的特性を持つ二次元または三次元の半導体構造を実現する。したがって、このような半導体構造は、高い精度で力学量(例えば、流体の圧力)を測定し、および/または変換することができるが、その一方で、集積回路に典型的な繰り返し性と信頼性に関して、利点を保持する。いわゆる「共振型」圧力感知デバイスの半導体材料から作られるこのような圧力感知デバイスは、工業分野に広く行き渡っている。侵襲性の少ない用途向けの超小型センサーは、ここ10年の間に、心臓外科および医療診断にとって重要な道具となっている。典型的には、光学またはピエゾ抵抗の原理が、このようなセンサーにおいて採用されているのである。これらのデバイスには、例えば、測定範囲が非常に広くても(最大数百バールまで)測定が高精度である、安定しているなどの相当の利点があるけれども、このような既知のセンサーには、いくつかの欠点がある。特に、較正は、かなり複雑であり、製造は、容易な作業でなく、生産される最終製品の不良品発生率はかなり高い。したがって、新しいタイプのセンサーと、効率よく、経済的に超小型センサーを製造する他の手段および方法とに対するニーズはほとんど未解決である。
原子間力顕微鏡および磁気力顕微鏡法を伴う可視化処理で使用する磁気駆動カンチレバーに関連する既知の関係デバイスもある。さらに、磁気的に結合された共振構造を伴うマイクロコンパスに関連する既知の関係デバイスがある。しかし、このようなカンチレバーおよびマイクロコンパスは、他の量を測定するステップを機械的応力(つまり、圧力と力)の変化を測定するステップに変換可能な解決手段となりえない。
従来技術に対し上記および他の制限があるという点から、改善されたセンサーシステムのニーズの存在することは明白である。したがって、従来技術の制限を解消することができる生理的パラメータ測定において使用される磁気駆動式共振器を利用する、信号の忠実度、伝送距離、および製造性について最適化された無線MEMSシステムを実現することが望ましい。さらに、構造共振を駆動するために使用される磁気材料に取り付けられた共振構造を含む無線生理的パラメータ測定用に適合された磁気駆動式MEMS共振器を実現することが望ましい。
一般に、本発明は、関連するピックアップから遠隔配置された感知要素、および環境内で圧力を感知し、監視するための処理ユニットを使用する遠隔計測に関する。より具体的には、本発明は、磁気駆動式共振器(封入シェルまたはダイアフラム内に気密封止される)を組み込んだ独自の遠隔圧力感知装置および圧力を感知する関連する新しい方法に関する。共振構造は、機械的応力または質量の変化に変換可能な量を測定するのに適している。この構造は、例えば、圧力センサー、吸着質量センサー、および歪みセンサーに一体化することができる。本発明は、信頼性および使い勝手の向上を含む、既知のデバイスに勝る改善をもたらす磁気結合MEMS共振器を含む。
本発明による圧力感知装置および方法は、同期的に振動する共振器の共振周波数を利用するか、または聞くことにより、情報を与える。最も重要な共振構造聴取周波数は、機械的構造の基本または高調波共振周波数である。本発明の圧力感知装置は、特定の流体環境の遠隔の1回限りの、ランダムな、周期的な、または連続的/進行中の監視を行うためにさまざまな環境内で動作することが可能である。
限定はしないが、生物医学的応用(インビボまたはインビトロのいずれかの)を含む本発明の装置および方法の多数の応用のうちのいずれも考えられる。本発明による共振構造は、離れた場所から駆動され、感知され、これにより、電線を用いた接続が実用的でないか、または他のどのような方法でも実現可能でない応用において使用することができる。特に、本発明の装置および方法は、緑内障の患者、または緑内障を患う危険性があり、眼球内レンズ(IOL)を装着する患者の眼内圧を測定するステップを含む生物医学的応用に適している。緑内障および眼内圧の測定に関係するこの特定の応用事例が、詳細に説明されているが、そのような特定の実施例は、本発明を単に例示しているにすぎず、限定はしないが血圧感知および頭蓋内圧力感知など、眼球内環境と同じ制限を有する他の生物医学的応用も等しく、本発明を利用することができる。さらに、本発明は、電線が多くの場合実用的でない他の特殊な応用事例として、生物医学的応用に限定されない、回転機械類に関係する応用において有用であると思われる。
エネルギーは、共振構造に磁気的に伝達され、構造の運動は、磁気的、光学的、または音響学的に検出される。磁気駆動は、かなりの距離で隔てられている磁気駆動コイルを用いて大きな力を出せるため、特に有用である。本発明の感知装置は、眼内圧を測定するために使用することができるが、感知された変数が、その周波数を変化させるように機械的共振器内の応力または質量の変化に影響を及ぼしうる感知応用事例に応用できる。眼内圧の場合、構造運動は、磁気的に、または光学的に検出されうる。
本発明の一実施形態では、磁性体が、ねじれ共振器上に取り付けられる。共振器ビームの周波数が圧力に相関するように、圧力が共振器ビームの張力に変換される。ねじれ共振器は、近くの電流通過コイルにより励起され、その同じコイルを共振周波数の感知に使用することができる。コイルは、グリッドディップメーターまたは他の回路に接続され、これにより、共振を測定することができる。センサーは、小型カプセル内に気密封止され、眼球内に埋め込まれたIOLに取り付けることができる。それとは別に、虹彩に直接取り付けることもできる。この実施形態の変更形態では、永久磁石を、ニッケル鉄、コバルト鉄、または共振器上に容易に取り付けられる、または形成されうる他の合金などの軟磁性体で置き換える。使用時に、軟磁性体は、目の外部に置かれている永久磁石で磁化される。共振器は、上述のようにコイルにより励起される。
本発明の利点は、LC共振回路に関する機械的共振構造で得られる高いクオリティファクタ(Q)ならびに高Q共振器に基づくセンサーの信頼性および使い勝手が改善されたことである。さらに、磁気結合により、生体組織を通してセンサーと交信することが可能になる。共振構造は、磁性体を含み、時間変動磁界に応じて振動するように適合される。この装置は、さらに、前記センサーに対する共振周波数値を識別する逐次的問い合わせ周波数の稼働範囲にわたって取られた振動構造の磁界放射の複数の逐次的値を測定する受信機を備える。
本発明の他の態様は、時間変動磁界(ある時間間隔で連続的に放射されるか、またはパルスとして伝達される)に応じて振動する少なくとも1つの磁気駆動共振ビームを有する共振構造を組み込んだ環境内に動作可能な配置をとる圧力感知装置を実現することである。共振ビームは、気密封止型ダイアフラム内に封入することができ、ダイアフラムの少なくとも片側は共振構造が結合された柔軟な膜を有する。圧力感知装置は、さらに、センサーから放射(電磁放射または音響放射)をピックアップすることができる受信機ユニットを備える。好ましくは、受信機は、(a)逐次的問い合わせ周波数の稼働範囲にわたって取られたセンサーの周波数に対応する複数の逐次的応答を測定してセンサーに対する共振周波数値を識別するか、または(b)時間変動磁界パルスによるセンサーの共振強度の一時的時間応答を検出して共振周波数値を識別する。後者の場合、滞留強度の一時的時間応答に対する振幅閾値が観測された後に検出を実行し、次いで、放射の一時的時間応答に対しフーリエ変換を実行して、検出された時間応答情報を周波数領域に変換することができる。
本発明の一態様では、物理的観測結果の変化から変換可能な量を測定する感知装置を実現し、この装置は、物理的観測結果の変化に応答する、帯磁要素を含む共振構造と、帯磁要素に動作可能なように結合された、帯磁要素に磁気的に結合され共振構造の共振を励起する励振コイルである電磁コイルと、物理的観測結果の変化に関して移動の相関を求め感知データを生成する、共振構造の移動を処理するためのシグナルプロセッサとを備える。共振構造は、監視される環境内に配置可能な基板と、基板に気密封止され、監視される環境と連絡している柔軟なダイアフラムと、基板と少なくとも1つの柔軟なダイアフラムにより取り囲まれた密閉室と、シグナルプロセッサにより生成され、電磁コイルにより形成される電磁信号に応答して共振ビームを振動させる帯磁要素に接続され、密閉室内に吊され、柔軟なダイアフラムに機械的に結合された共振ビームとを備える。
本発明の他の態様は、環境内の物理的観測結果を感知する方法を提供することであり、この方法は、共振構造を環境内に動作可能なように配列し、直流バイアス磁界に近接させ、共振構造は帯磁要素を備え、物理的観測結果の変化に応答するステップと、帯磁要素に動作可能なように結合された電磁コイルを使って磁界を印加するステップと、一定の範囲の逐次的問い合わせ周波数にわたって動作するシグナルプロセッサにより共振構造の磁気共振強度の複数の逐次的値を測定して共振構造の共振周波数値を識別するステップと、共振周波数値を使用して、環境の物理的観測結果に相関する感知されたデータを識別するステップを含む。
少なくとも1つの磁気駆動共振構造とともにセンサーを使用して本発明の柔軟な新しい圧力感知装置および環境の圧力を感知する関連する新しい方法を実現することにより多くの利点が存在する。このような利点は、限定はしないが、以下を含む。
(a)感度――この方法は、高い感度と高Q共振周波数をもたらすための手段を実現する。
(b)簡素――共振周波数は、簡単な尺度であり、小さなデバイスであれば、所望の音響応答特性を有するアレイで製造されうる。
(c)速度――極端に小さなサイズおよび大きなQ値により従来の音響検出器(10ミリ秒)に比べてかなり短い応答時間(数十マイクロ秒)。
(d)可変感度――感度は、マイクロビームおよびその上のコーティングの幾何学的形状により制御されうる。これは、非常に広い帯域、狭い帯域、ローパス、またはハイパスにされうる。
(e)サイズ――現在最新の微細精密加工技術は、モノリシックMEMS構造に機械的構造を取り付けることが可能であることを示唆している。
(b)低消費電力――必要電力は、個々のセンサーについてミリワット以下の範囲で見積もられる。
(d)低コスト――センサー加工に標準外もしくは高価な材料またはコンポーネントはいっさい必要とされない。操作および制御用の電子機器は、従来設計のものであり、比較的単純で、安価である。
(e)本発明は、1回限り、周期的、またはランダムな運用に使用することができるか、またはさまざまな環境における圧力変化の連続的進行中監視を行うために使用することができ、センサーの材料およびサイズは、1回限りの使い捨て用途を経済的に実現可能なものとするように選択できる。
(f)多目的性――本発明は、生物医学的応用(インビボまたはインビトロ)などの広範囲にわたる検査環境内での運用に使用することができる。
(g)使いやすさ――新しいセンサー構造は、比較的容易に、また検査試料または環境を実質的に壊すことなく、設置/位置決めされ、取り外すことができる。
(h)構造設計の柔軟性――共振構造は、多数の異なる形状に形成することができ、また空間が限られており、および/または極小のセンサーが検査/監視されている試料または環境の内部にさらに配置されなければならない用途向けのマイクロ回路として加工できる。
(i)複数のセンサーを、それぞれ大きな検査環境内の異なる場所に配置し、同時または順次、異なる場所の圧力を監視することができる。
(j)複数のセンサー要素を1つのアレイ内に組み込んで、圧力および温度の変化を含む、環境に関する情報を感知するパッケージとすることができる。
(k)受信ユニット設計の柔軟性――音響放射(最高ギガヘルツ(GHz)までの範囲の周波数を持つことができる弾性非電磁波)とともに共振構造の周波数を受信する能力を持つ1つのユニットを製作できるか、または独立した音波および電磁波受信ユニットを使用することができる。
他の利点およびメリットも考えられ、本発明を実施するためにこれらのメリットまたは利点のすべてまたはどれかを実現する必要はない。したがって、可能な、または例示的な利点およびメリットに関する前記の説明の中のどのような言いまわしも制限するものとして解釈できないし、また解釈すべきでもない。
本発明の特性と考えられる、本発明の新規性のある特徴が、本開示において説明されているが、限定的な請求項による詳細を含まない。しかし、本発明それ自体は、編成および動作方法の両方に関して、さらなる目的とその利点と併せて、付属の図面を眺めつつ、以下の説明を参照することで最もよく理解できる。
一般に、本発明は、物理的観測結果の何らかの変化を測定する、つまり、圧力、流量などの変化を感知するのに好適な磁気駆動共振構造を含む方法および装置を実現する。しかし、例示するために、本発明は、緑内障の患者またはその疾病を患う危険性があり、眼球内レンズ(IOL)を装着する患者の眼内圧を測定するのに適している方法および装置に関して説明される。前述のように、以前のデバイスは、寸法上の要件を満たさないか、または生体内で無線生理的パラメータ測定を行うのに必要な感度制限を被る。
本発明を詳細に説明する前に、本発明は、その応用または用途に関して、付属の図面および説明に例示されている部分の構造および配列の詳細に限定されないことに留意されたい。本発明の例示されている実施形態は、他の実施形態、変更形態、および修正形態に実装されるか、または組み込まれ、本発明の意図された範囲から逸脱することなくさまざまな方法で実施または実行されうる。さらに、断りのない限り、本明細書で使用される用語および表現は、読み手の便宜のため本発明の例示されている実施形態を説明することを目的として選択されており、本発明を制限するために選択されているわけではない。さらに、下記の実施形態、実施形態の表現、実施例などのうちの1つまたは複数は、他の下記の実施形態、実施形態の表現、実施例などのうちの1つまたは複数と組み合わせることができる。
図1aおよび1bは、本発明の単純な一実施形態を示している。図1aは、上面図であり、図1bは、セクションA-Aにそった断面図である。図1aおよび1bを参照すると、共振構造100は、本体102、弾性ビーム105、質量体110、および質量体110上に取り付けられた磁性体115を備える。ビーム材料は、特に、比較的減衰力が低く、質量体が、励起されたときに振動運動を維持できるように選択される。典型的には、本体102、弾性ビーム105、および質量体110は、同じ弾性材料から加工される。好適な材料は、単結晶シリコン、多結晶シリコン、チタン、真鍮、または減衰力の低い他の弾性材料である。多くの弾性系と同様に、共振構造100は、多数の振動モードで振動しうる。当業で行われているように、モード形状およびモード周波数は、それぞれの振動モードに関連付けられる。
3つのそのようなモード形状が、図1cに示されている。モード形状120は、平衡位置135に相対的な上下運動を表す。一端では、質量体と弾性ビームは、上方にそってモード形状120になる。他端では、質量体110と弾性ビーム105は、下方にそって135に相対的な120の鏡像になる。モード形状125は、質量体110およびビーム105の第2の振動運動を表し、質量体は図1cの外を指している軸を中心に前後に回転する。他のモード形状は、図1dに示されている運動130に関連付けられている。
一般に、共振構造は、1つまたは複数の周波数で振動する任意の物体である。例えば、弦楽器、音叉、チャイム、腕時計の中の水晶振動子、およびMEMS振動ジャイロなどの振動コンポーネントを備える微小電気機械システム(MEMS)などがある。ギターの場合、振動の周波数は、調和運動を含む、弦の振動数を含む。
図1aから1cに示されている実施形態の利点は、単純さである。しかし、ビームおよび質量体の振動は、本体の振動を伴う。その結果、本体が支持構造に接触させられると、振動エネルギーは、共振構造から引き出され、振動は、支持配置がほとんどまたは全く振動しない共振構造内でよりもずっと速く減衰する。振動の減衰速度は、振動解析の技術を実行する人によってクオリティファクタ(Q)の概念で捉えられる。クオリティファクタが高いほど、持続度の高い振動を反映し、石英またはシリコンから作られた何らかの単結晶共振構造では1,000,000と高い場合がある。
図1cを参照すると、力Fおよび/またはモーメントMは、応力を共振器構造に伝え、特に張力をビーム105に伝える。このような応力は、モード周波数を変化させる。このようなシステムは、力に依存する周波数可変共振器の一実施例である。力は、感知された量の一実施例であり、図1cの実施形態は、力センサーとして機能しうる。モード形状130は、ビームが円筒状の棒である場合にビーム張力に比較的依存しないモード周波数を有する。したがって、モードの断面および選択は、感度が最高になるように最適化されなければならない。これは、COSMOS(登録商標)またはANSYS(登録商標)などの市販の有限要素解析(FEA)ソフトウェアパッケージを使うと簡単に行える。圧力、歪み、加速度、および化学的濃度などの多くの感知される量は、共振構造内の応力に変換できるので、図1aから1cまでの実施形態をさまざまなセンサーに組み込むことができる。さらに、本体の回転により、モード間で振幅の変化およびエネルギー伝達が発生しうる。このような現象を、振動ジャイロを設計する際に使用できる。この後者の場合、共振器は、回転に依存する振幅可変共振器であると言う。回転は、感知される量のもう1つの例である。
図1aの磁性体115は、外部印加された磁界を磁石に結合することにより共振構造内の振動を励起する機構を実現する。振動は、特に、モード周波数において外部磁界が振動力および/またはトルクを磁性体に印加するときに励起される。結合は、さらに、モードが励起されたときに磁石が著しく平行移動または回転するようなモード形状である場合に高められる。例えば、モード形状120、125、および130はすべて、磁性体を回転または平行移動させる。磁性体は、帯磁した硬質の磁性体(つまり、NdFeB、SmCo、またはフェライトなどの永久磁石)またはシリコン−鉄またはコバルト−鉄などの軟磁性体としてよい。軟磁性体が使用される場合、外部永久磁石またはコイル内の直流電流により生じる直流磁界で軟質材料を帯磁させるのが好ましい。
磁性体と磁界との間の力/トルクの相互作用、およびそれらの力/トルクと共振構造の運動との間の相互作用に対する関係を計算することができる。幾何学的形状が単純であれば、鉛筆と紙だけで計算できる。より複雑な幾何学的形状の場合には、有限要素解析ソフトウェアを使用して解析するとよい。このようにして、製造およびテスト前にシステム全体を設計し、最適化することができる。
図1aから1cまでの本発明の運動の検出は、例えば、ピックアップコイルの使用により、音響的に、本体の振動を直接または伝搬媒質を介して検出することにより、または光学的に、構造の研磨された表面から光(例えば、レーザー光)を反射させることにより磁気的に実行できる。
図1aから1cまでの実施形態の加工は、多くの製造方法により行うことができる。デバイスが小さい場合、シリコンを使用するMEMSの製造方法が望ましい。これらの方法は、フォトリソグラフィ、エッチング(例えば、異方性エッチング、等方性エッチング、および深反応性イオンエッチング)、およびさまざまな接着技術を含む。本発明に特有なのは、磁性体115を共振構造100に接着することである。NdFeBまたはSmCoなどの硬質(つまり、高保磁力)磁性体が使用される場合、磁性体は、好ましくは、エポキシ、フォトレジスト、または他の好適な有機化合物を使用して残りの構造に接着される。NdFeBなどの材料を取り付ける他の方法では、NdFeB表面をニッケルで、次いで金により、電気メッキする。次いで、加熱し共晶接合により金をシリコンに接着することができる。それとは別に、軟磁性体が取り付けられる場合、ディスクドライブの記録ヘッド用に開発された方法を使用する電気メッキが好ましい。
図2aから2dは、永久磁石(PM)が共振構造にさまざまな向きで取り付けられる場合に振動を励起し、および/または検出するための構成を示している。磁化方向215が示されている。図2aは、絶縁銅線または他のそのような好適な導電体から形成された端子205および210を持つ単純なコイル200を示している。共振構造内の軸220を中心とする運動を励起するために、そのようなコイル200内に電流が通され、それにより磁界を発生する。電流波形が、共振周波数の周波数成分を含む場合、対応する振動モードを励起することができる。磁化のPM方向に相対的なコイル200の向きが重要である。PMに最大のトルクが加えられるように、印加磁界は、PM磁化の方向に垂直でなければならない。PMに最大の力が加えられるように、印加磁界勾配は、PM磁化の方向に揃えられていなければならない。一般に、磁界と磁界勾配の複合効果によりPMに対しトルクと力との組み合わせが印加される。これらと異なる他の角度もうまくゆくことがあるが、これらとちょうど90度異なる角度は、それぞれトルクも力も発生しない。
また、コイル200は、これらの運動がコイル端子間に電圧を発生するときにPMの回転および直線運動を感知することができる。偶発的に、トルクおよび力を最大にするコイル200とPMの相対的位置および向きは、それぞれ、回転運動と直線運動により発生する電圧も最大にする。電圧を感知している間に電流を加えることは、共振構造の共振周波数を測定する一方法であるが、電流を測定している間に電圧をコイル200に印加することも可能である。コイルまたはコイルの集合体の近くの共振構造内の磁性体の位置の決め方により、コイルの電気的特性が変化することに留意されたい。特に、共振周波数を測定することができる。コイルの電気的特性のこのような変化は、アナログ回路、デジタル回路、および/またはソフトウェア制御回路内に信号処理機能を実装する信号処理デバイスにより測定することができる。特に、構造の共振周波数の1つまたは複数をこの方法で決定することができる。例えば、単一のコイル(図の200など)のインピーダンスは、PMを組み込んだ構造の共振の近くに低下する。インピーダンスアナライザーまたはグリッドディップメーターは、コイルの電気的特性の変化を測定するために使用できる。また、共振構造/永久磁石/コイルシステムは、水晶振動子のように、電気振動子の周波数を設定するために使用されうる。他の信号処理デバイスについて、以下で説明する。
図2bは、方向225にそって運動を励起する機構を示している。230にそって運動を励起する、また軸220を中心として運動を励起する他のそのような機構は、図2cおよび2dにそれぞれ示されている。
図2dは、共振器の可能な運動を示すことに加えて、コイルと共振器との間の磁気結合を改善するために共振器の外部で軟磁性体235を使用することを示している。
図3aは、磁化矢印305が、外部磁界により誘導される軟磁性体300を使用するシステムを示している。図3bは、断面C-Cにそった同じ実施形態の断面を示している。さらに、図3bは、位置315でページから外へ磁化され、位置320およびその他の位置でページ内へ磁界を発生する永久磁石310を示している。特に、永久磁石は、図3bのページ内へ、図3aの方向305にそって材料を磁化する軟磁性体に対する磁界を発生する。この軟質材料は、磁化されると、図2aから2dに記載されているのと似た方法でコイル325内の交流電流により励起されうる。
図4aは、注目しているモード形状が、D-D線にそって切り取った断面図4bに示されているように対称的である本発明の他の実施形態を示している。この対称性により、振動が発生しても本体402の運動はごくわずかである。そのため、本体を支持する構造にはほとんどエネルギーが伝達されず、周囲構造への損失が最小なので、注目するモードは高いQを有することになる。類推により、類似の設計原理が、音叉にも適用される。音叉は、所望のモード形状で振動するが、音叉の柄は振動せず、したがって、音叉は比較的高いQを有する。両頭音叉(DETF)は、ふつうに使われている共振器構造であり、本発明で使用される他の共振器実施形態を代表する。これらのモード形状の本質的特徴は、支持されている本体または支持されている点のごくわずかな運動であり、この特徴は動釣り合いと呼ばれる。幾何学的対称性は、動的釣り合いを持つシステムでは一般的な性質であるが、本質的ではない。例えば、図4aの実施形態には磁石が1つだけあればよく、動的釣り合いは、磁石の代わりに同等の質量体を用いてとることができる。しかし、図4aの実施形態は、質量体455およびビーム405を含む反対の永久磁石磁化を使用する。正味の双極子モーメントは、ほぼゼロであり、システムは、周囲の磁界におけるトルクの作用を受けない。これは、磁石が消磁されないという条件の下でセンサーが磁気医療用画像装置(例えば、磁気共鳴映像(MRI))内で使用される場合に有利である。
図5は、振動発生時のスナップショットに示されている他の実施形態である。この設計は、さらに、正味の磁気モーメントも持たない。これは、単一ビーム上に複数の磁石515を有し、力Fおよび2Fの機械的増幅を組み込む。機械的増幅は、レバーアーム500を通じてこの弾性系内で行われる。力センサーにおいて、機械的増幅は、外力により共振器に伝達される力学的エネルギーの大きな部分を共振構造内の機械的歪みエネルギーに変換(つまり、「集束」)する。これは、注目するモード内の周波数シフトを最大にするために行われる。ここで、機械的増幅という用語は、力学的エネルギーのこの種の集束を意味するために使用される。
図6は、柔軟なビーム600および620、永久磁石610、および周囲の質量体の追加の集合体を備える一実施形態を示している。ビーム620は、最大の振動運動を受けることを意図されている。ビーム600は、磁石が、例えばMRIによる大きな外部磁界の向きに揃うように永久磁石をさらに回転させることができる。このようにして、共振構造の本体に伝達されるトルクを小さくすることができる。さらに、人体で使用される場合には、支持する組織へのトルクが小さくなる。
図7は、コイル700、封止された体積710および720、ならびに異なるモードで使用される2つの共振構造730および740を含む圧力センサーを示している。この実施形態は、共振構造を保護し、体積720内に基準圧力を発生する封止された体積を含む。共振器740は、圧力P0>P1が印加され、共振器730(異なる周波数範囲で動作する)が引張荷重を受ける場合に圧縮荷重を受ける。このシステム内の共振構造の周波数の温度感度を知ることにより、温度に無関係な差圧P0-P1について解くことができる。これは、差圧センサーと呼ばれる。周波数シフトの正確な、または重み付けした差を使用することが可能であろう。一般に、重み付けされた差は、温度効果を最もよく遮断するように最適化されうる。P1がゼロ(つまり真空)でない場合のガス膨張効果も、計算に織り込まれうる。さらに、2つよりも多いセンサーを差動モードで使用することができる。M個の共振構造の周波数出力を使用して、M個の異なる量について解くことができるが、ただし、測定量を周波数に関連付けるM個の方程式は特異でないとする。ただ1つの量に注目している場合でも、複数のセンサーがあれば、その量の推定値が改善される。封止された体積710および720は、材料からのガス抜き量がわずかだと基準圧力にさほど影響を及ぼさないような比較的大きな体積として選択されうる。
図8は、化学センサーを形成するように図7の圧力センサーを修正したものを示している。注目している化学物質を優先的に吸着する材料800が、センサーに組み込まれる。化学物質が存在する場合、これらの化学物質が吸着され、吸着物質中の機械的応力レベルを変化させる。この応力は、共振構造810および820に伝達され、共振周波数のシフトを引き起こす。
図9は、眼球内に本発明を組み込んだ圧力センサー900のIOL触覚への留置を示している。図の重要な特徴は、虹彩910、IOL 920、水晶体嚢930、角膜950、およびIOL触覚940である。圧力センサーは、さらに、IOLの周囲に埋め込まれるか、または虹彩910を含む、目(図に示されていない)の組織に取り付けられうる。しかし、好ましくは、網膜960までの光学経路の外側に置かれる。
図10aおよび10bは、圧力センサー1020および1030の共振構造内の磁性体と相互作用する外部コイル1000および1010の可能な留置を示している図10aは、目の中への光学経路の方向にもっぱら揃えられている磁界が発生する幾何学的形状を示している。コイル端子は、1002および1004である。図10bは、センサーの配置における光学経路に大体垂直である磁界を発生する幾何学的形状を示している。コイル端子は、1006および1008である。
図11は、圧力センサーと通信する信号方式を示している。特に、これは、取り付けられている永久磁石とともに共振構造を組み込むセンサー1130を示している。コイル電流は、パルス音で駆動される。パルスとパルスの間で、コイル1100を使用して、磁性体の周期的に振動する磁界を感知する。このようにして、送信信号の高い振幅は、振動する磁石により発生する比較的弱い信号に干渉しない。コイルは、図に示されているように、交互に、送信回路に接続され、次いでアナログ送信/受信スイッチを持つ受信回路に接続される。パルス音の周波数は、センサーの1つの共振周波数、または複数の共振周波数を探索するために変化させられる。この探索は、典型的には、周波数のおおよその値を見つける粗い探索であり、次いで圧力の正確な測定結果を得るために細かな探索を行う。信号方式の有用な特徴は、コイルからの受信回路の接続および切断を行うアナログスイッチの使用である。このような方式は、ゲート付き受信機と呼ばれる。図には示されていないが、本発明の意図されている範囲から逸脱することなく、別々の受信コイルおよび送信コイルを本明細書で説明されているスイッチ構成の代わりに備えることができる。
図12は、パルス(例えば、1201)および静止期間(1202)からなる可能な送信電流の構造をある程度詳しく説明している。周波数fiの共振を検出するために、長さΔiの合計Ni>1個のパルスを、場合によっては異なる長さΔ'iの介在静止期間で送信する。スイッチング速度が有限であるため生じるスイッチング歪みは、Δiを検査周波数fiに対応する整数倍の正弦波周期となるように選択することにより最小にすることができる。介在静止期間は、共振構造上の周期的に振動する永久磁石により発生する弱い信号を検出するために受信機サブシステムにより使用される。この信号は、周期的に変調される正弦波の形態をとり、したがって、周波数fiにおける大きな成分に加えて周波数領域内に側波帯を含む。側波帯励起共振を有することを避けるために、Δiは、その側波帯が注目する周波数範囲から外れるように十分短く選択されうる。それとは別に、側波帯効果が受信機によって解釈されるか、または送信電流が変調され、エネルギーを側波帯の中に拡散するようにできる。この送信信号の有利な特徴は、fiにおける有意なスペクトル成分およびゼロ出力の期間を有し、受信機が共振構造から放射される変化する磁界を検出できるという点である。静止期間を有するこのような信号を組み込んだシステムは、本明細書では、パルス駆動信号を有すると称される。
図13aは、デジタルシグナルプロセッサ(DSP)1310を組み込んだ信号処理システム(SPS)を示している。DSP「送信ソフトウェア」は、図12に示されているパルス信号(または同等の信号)のデジタルバージョンを生成する。この信号は、デジタル−アナログコンバータ(D/A)1315でアナログ信号に変換され、ローパスフィルタ(LPF)1320によりフィルタ処理されて時間サンプリングの効果が除去され、次いで、増幅器(アンプ)1325により処理される。その結果得られる電流信号は、アナログスイッチ1330が「アップ」位置にあるときにコイル1300に送信される。パルスとパルスとの間で、スイッチは「ダウン」位置にある。共振構造からの磁気信号は、アンプ1345、アンチエイリアシングフィルタ1350、およびアナログ−デジタルコンバータ(A/D)1355を介してDSPとやり取りされる。単一の電磁コイルは、さらに、別々の送信および受信電磁コイルで置き換えることもできる。信号処理の他の方式は、グリッドディップメーターまたは同等品を使用する連続的コイルインピーダンス測定を伴う。共振構造の励起がある限り信号処理システムを実装する方法は多数あり、共振構造の振動運動を解釈し、少なくとも1つの共振周波数および/または感知された量を推定する。
図13bは、LC型圧力センサーと相互作用する信号処理システム(SPS)に取り付けられた電磁コイルを示している。この実施形態では、圧力依存静電容量1370は、LC回路の共振周波数が圧力依存となるように固定インダクタ1360と並列に接続される。インダクタは、信号処理システムのコイル部分に磁気的に結合される。他のLCセンサーも、感知される量が静電容量および/またはインダクタンスの変化を引き起こす限りSPSとともに使用することができる。LC共振器の低いQに関連する低信号対雑音比の問題は、SPSにより部分的に解決できる。
図14aおよび14bは、図13のDSPの内側に表されている受信機ソフトウェアの2つのブロック図である。一般的用語で言うと、ソフトウェアは、受信機がセンサーの近くのコイルから大きな応答を得る周波数を探索するものである。受信信号は、図14aおよび14bの1400で表される。単純な処理技術が、図14aに示されており、二乗関数1410とその後のローパスフィルタ(LPF)を使用する整流(DCへの変換)を伴う。LPF出力がfiパルス列の終わりにサンプリングされ、R(fi)で表されるこの周波数の応答を生成する。この応答は、パルス列の信号振幅と長さに依存しているため、何らかの正規化が必要になることがある。整流は、二乗回路とともに示されているが、絶対値関数およびゼロ交差で切り換える時間同期復調器を含む他の関数も機能する。図14bは、信号処理のいわゆる整合フィルタ方式を示している。増幅された受信信号は、予想受信信号1430と乗算され(1420)、積分される。パルス列の終わりに、時刻Tiで、積分された応答がサンプリングされてR(fi)を形成し、積分器がリセットされる。
永久磁石を装着した基本的な共振器構造の上面図である。 永久磁石を装着した基本的な共振器構造の側面図である。 コイルおよび共振器構造を示す図である。 図2aに例示されている共振器の振動の多数のモードのうちの1つを示す図である。 図2aに例示されている共振器の振動の多数のモードのうちの1つを示す図である。 図2aに例示されている共振器の振動の多数のモードのうちの1つを示す図である。 軟磁性体を使用する共振器構造の一実施形態を示す図である。 軟磁性体を使用する共振器構造の一実施形態を示す図である。 最小の基本運動を伴う動的に釣り合いをとる実施形態を示す図である。 最小の基本運動を伴う動的に釣り合いをとる実施形態を示す図である。 同じビーム上に2つの磁石を載せた代替実施形態を示す図である。 大きな外部直流磁界とのアライメントを可能にする屈曲部を加えた一実施形態を示す図である。 圧力センサーに組み込まれた共振構造を示す図である。 吸着型化学センサーの一実施形態を示す図である。 眼球内レンズに組み込まれた圧力センサーを示す図である。 目の外部へのコイル配置を示す図である。 目の外部へのコイル配置を示す図である。 コイルとの間の信号の送受信を示す図である。 信号構造を例示する図である。 本発明のシグナルプロセッサを示す図である。 LCタイプのセンサーとともに使用されるシグナルプロセッサを示す図である。 受信信号に対するソフトウェア機能を示す図である。 受信信号に対するソフトウェア機能を示す図である。
符号の説明
F,2F 力
100 共振構造
102 本体
105 弾性ビーム
110 質量体
115 磁性体
120,125,130 モード形状
130 運動
135 平衡位置
200 単純なコイル
205,210 端子
215 磁化方向
220 軸
225 方向
235 軟磁性体
300 軟磁性体
305 磁化矢印
310 永久磁石
315,320 位置
402 本体
405 ビーム
455 質量体
500 レバーアーム
515 磁石
610 永久磁石
600,620 柔軟なビーム
700 コイル
710,720 封止された体積
730,740 共振構造
800 材料
810,820 共振構造
900 圧力センサー
910 虹彩
920 IOL
930 水晶体嚢
950 角膜
940 IOL触覚
960 網膜
1000,1010 外部コイル
1002,1004 コイル端子
1006,1008 コイル端子
1020,1030 圧力センサー
1130 センサー
1300 コイル
1310 デジタルシグナルプロセッサ(DSP)
1315 デジタル−アナログコンバータ(D/A)
1320 ローパスフィルタ(LPF)
1325 増幅器(アンプ)
1330 アナログスイッチ
1345 アンプ
1350 アンチエイリアシングフィルタ
1355 アナログ−デジタルコンバータ(A/D)
1360 固定インダクタ
1370 圧力依存静電容量
1400 受信信号
1410 二乗関数
1420 乗算
1430 予想受信信号

Claims (62)

  1. 物理的観測結果の変化から変換可能な量を測定するための感知装置であって、
    前記物理的観測結果の前記変化に応答する、帯磁要素を含む共振構造と、
    前記帯磁要素に動作可能なように結合された、前記帯磁要素に磁気的に結合され前記共振構造の共振を励起する励振コイルである電磁コイルと、
    前記共振構造の移動を処理し、前記物理的観測結果の前記変化に関して前記移動の相関を求めて感知データを生成するシグナルプロセッサと
    を備えることを特徴とする装置。
  2. 物理的観測結果の前記変化は、機械的応力の変化であることを特徴とする請求項1に記載の装置。
  3. 物理的観測結果の前記変化は、質量の変化であることを特徴とする請求項1に記載の装置。
  4. 前記感知データは、人体内の生理学的変化を含むことを特徴とする請求項1に記載の装置。
  5. 前記生理学的変化は、眼内圧の変化を含むことを特徴とする請求項4に記載の装置。
  6. 前記感知データは、圧力変化、温度変化、流量変化、回転変化、過速度変化、および音の変化からなる群から選択された測定可能な物理的出来事を含むことを特徴とする請求項2に記載の装置。
  7. 前記感知データは、化学物質の存在を示す測定可能な物理的出来事を含むことを特徴とする請求項3に記載の装置。
  8. 前記共振構造は、物理的観測結果の前記変化が前記吸着機構により前記化学物質の吸着に相関するような化学物質を吸着する吸着機構を含むことを特徴とする請求項2に記載の装置。
  9. 前記共振構造は、減衰損失を最小限に抑えるように真空環境内に置かれることを特徴とする請求項1に記載の装置。
  10. 前記シグナルプロセッサは、角状である共振感知モード内で動作することを特徴とする請求項1に記載の装置。
  11. 前記シグナルプロセッサは、線形である共振感知モード内で動作することを特徴とする請求項1に記載の装置。
  12. 前記電磁コイルは、前記共振構造の共振を感知し、前記共振を前記シグナルプロセッサに送るために前記帯磁要素に磁気的に結合されたピックアップコイルでもあることを特徴とする請求項1に記載の装置。
  13. 前記電磁コイルは、それとは別に、前記励振コイルと前記帯磁要素に磁気的に結合されたピックアップコイルとの両方を選択的に形成し、前記共振構造の前記共振を感知して、前記共振を前記シグナルプロセッサに送るように前記シグナルプロセッサ内の回路によりアクティブ化されることを特徴とする請求項1に記載の装置。
  14. 前記共振構造は、
    監視対象の環境内に配置可能な基板と、
    前記基板に気密封止され、監視対象の前記環境と連絡する柔軟なダイアフラムと、
    前記基板および前記少なくとも1つの柔軟なダイアフラムにより取り囲まれている密閉室と、
    前記帯磁要素に接続され、前記密閉室内に吊され、前記柔軟なダイアフラムに磁気的に結合された共振ビームと
    を備え、
    前記帯磁要素は、前記シグナルプロセッサにより生成され、前記電磁コイルにより形成される電磁信号に応答して前記共振ビームを周期的に振動させることを特徴とする請求項1に記載の装置。
  15. 前記電磁コイルおよび前記シグナルプロセッサは、監視対象の前記環境の外部に配置可能であることを特徴とする請求項14に記載の装置。
  16. 監視対象の前記環境は、角膜内にあり、
    前記基板は、生理学的構造に取り付け可能であり、
    前記柔軟なダイアフラムは、生理液と連絡することが可能であることを特徴とする請求項15に記載の装置。
  17. 前記基板は、人工補装具に取り付け可能であることを特徴とする請求項16に記載の装置。
  18. 監視対象の前記環境は、眼球内環境であり、
    前記感知データは、眼内圧であることを特徴とする請求項16に記載の装置。
  19. 監視対象の前記環境は、眼球内環境であり、
    前記感知データは、眼内圧であり、
    前記人工補装具は、眼球内レンズであることを特徴とする請求項17に記載の装置。
  20. 前記共振ビームは、フォトリソグラフィおよびエッチングにより製造されることを特徴とする請求項14に記載の装置。
  21. 前記基板は、単結晶シリコンから形成されることを特徴とする請求項14に記載の装置。
  22. 前記共振ビームは、多結晶シリコンビームの少なくとも一端により前記基板に取り付けられ、前記少なくとも一端と前記多結晶シリコンビームの反対端との間で前記基板から隔てられて並ぶ前記多結晶シリコンビームであり、これにより前記多結晶シリコンビームの自由振動を可能にすることを特徴とする請求項14に記載の装置。
  23. 前記多結晶シリコンビームは、引張歪みの低減を示すように処理された実質的にドープされていない多結晶シリコンから形成されることを特徴とする請求項22に記載の装置。
  24. 前記柔軟なダイアフラムは、多結晶シリコンから形成され、前記共振ビームを囲み、
    前記柔軟なダイアフラムは、前記基板に貼り付けられ、前記ビームを囲む主空洞を定め、
    前記主空洞は、周囲環境から密封され、
    前記主空洞の内部は、実質的に真空にされることを特徴とする請求項14に記載の装置。
  25. 前記柔軟なダイアフラムは、周辺部を通して前記主空洞から前記柔軟なダイアフラムの周囲に延びる溝で前記基板に接着された前記周辺部を備え、
    前記柔軟なダイアフラムは、二酸化ケイ素、多結晶シリコン、窒化ケイ素、およびそれらの組み合わせからなる群から選択された材料から形成され、
    前記材料は、前記溝内に形成され、大気気体が前記溝を通して前記主空洞に入り込むか、または抜け出るのを妨げられるように前記溝から封止することを特徴とする請求項24に記載の装置。
  26. 前記基板は、変位空洞をさらに備え、
    前記変位空洞は、内部空洞体積全体が前記柔軟なダイアフラムの変位の動作範囲にわたって前記柔軟なダイアフラムのたわみとともに最小限度変化するようなサイズを有することを特徴とする請求項14に記載の装置。
  27. 前記共振ビームは、前記共振ビームが前記柔軟なダイアフラムの下に吊られるように1つまたは複数の点で前記柔軟なダイアフラムにより吊られることを特徴とする請求項14に記載の装置。
  28. 前記主空洞を形成する前記基板内の陥凹部をさらに備え、
    前記共振ビームは、少なくとも1つの点で前記柔軟なダイアフラムに、また少なくとも他の1つの点で前記基板に取り付けられることを特徴とする請求項24に記載の装置。
  29. 前記共振ビームは、前記共振ビームが前記柔軟なダイアフラムにより全体として吊られるように少なくとも2つの点で前記柔軟なダイアフラムに取り付けられることを特徴とする請求項24に記載の装置。
  30. 前記共振ビームは、前記共振ビームが可変共振振幅を示すように前記共振ビームの剛性を変化させるためにその上に施された応力感応コーティングを含むことを特徴とする請求項14に記載の装置。
  31. 前記共振ビームは、ブリッジ、両頭音叉(DEFT)、カンチレバー、およびダイアフラムからなる群から選択された構造を形成することを特徴とする請求項14に記載の装置。
  32. 前記共振ビームは、動的に釣り合いをとることを特徴とする請求項14に記載の装置。
  33. 前記共振ビームは、機械的増幅を示すことを特徴とする請求項14に記載の装置。
  34. 前記共振ビームは、それぞれ差動モードで使用される2つの共振構造を備えることを特徴とする請求項14に記載の装置。
  35. 前記帯磁要素は、永久磁石から形成されることを特徴とする請求項14に記載の装置。
  36. 前記帯磁要素は、軟磁性体から形成されることを特徴とする請求項14に記載の装置。
  37. 前記帯磁要素は、前記共振ビームに電気メッキされることを特徴とする請求項14に記載の装置。
  38. 前記帯磁要素は、前記電磁信号に応答する磁界を示す導体ループから形成されることを特徴とする請求項14に記載の装置。
  39. 前記シグナルプロセッサは、少なくとも1つのゲート付き受信機を備えることを特徴とする請求項14に記載の装置。
  40. 前記シグナルプロセッサは、少なくとも1つのパルス駆動信号を形成することを特徴とする請求項14に記載の装置。
  41. 前記シグナルプロセッサは、グリッドディップメーターであることを特徴とする請求項14に記載の装置。
  42. 前記共振ビームの運動は、光学的に検出されることを特徴とする請求項14に記載の装置。
  43. 前記共振ビームの運動は、音響的に検出されることを特徴とする請求項14に記載の装置。
  44. 前記共振ビームの運動は、前記シグナルプロセッサと動作可能なように結合する前記電磁コイルを使って電磁的に検出されることを特徴とする請求項14に記載の装置。
  45. 環境内で物理的観測結果を感知する方法であって、
    共振構造を前記環境内に動作可能なように配列し、直流バイアス磁界に近接させ、前記共振構造は帯磁要素を備え、前記物理的観測結果の変化に応答するステップと、
    前記帯磁要素に動作可能なように結合された電磁コイルを使って磁界を印加するステップと、
    一定の範囲の逐次的問い合わせ周波数にわたって動作するシグナルプロセッサにより前記共振構造の磁気共振強度の複数の逐次的値を測定して前記共振構造の共振周波数値を識別するステップと、
    前記共振周波数値を使用して、前記環境の前記物理的観測結果に相関する感知データを識別するステップと
    を含むことを特徴とする方法。
  46. 前記磁界は、時間変動磁界であることを特徴とする請求項45に記載の方法。
  47. 前記磁界は、磁界パルスであることを特徴とする請求項45に記載の方法。
  48. 前記磁界は、一連の磁界パルスであることを特徴とする請求項45に記載の方法。
  49. 前記電磁コイルは、前記共振構造の共振を励起するように前記帯磁要素に磁気的に結合された励振コイルであることを特徴とする請求項45に記載の方法。
  50. 前記シグナルプロセッサは、前記共振構造の移動を処理し、前記物理的観測結果の前記変化に関して前記移動の相関を求めて前記感知データを生成することを特徴とする請求項49に記載の方法。
  51. 受信機で前記共振構造の周波数放射強度の一時的時間応答を検出し、前記感知データを決定するために使用される前記共振構造の共振周波数値を識別するステップをさらに含むことを特徴とする請求項45に記載の方法。
  52. 前記検出された一時的時間応答を周波数領域形式に変換し、検出された磁気振動強度の前記一時的時間応答に対しフーリエ変換を実行できるようにするステップをさらに含むことを特徴とする請求項51に記載の方法。
  53. 前記共振構造の外部に軟磁性体を備え、前記シグナルプロセッサによる信号検出能力を高めるステップをさらに含むことを特徴とする請求項45に記載の方法。
  54. 物理的観測結果の変化から変換可能な量を測定するための装置であって、
    前記物理的観測結果の前記変化に応答する、帯磁要素を含む共振構造と、
    前記帯磁要素に動作可能なように結合され、前記帯磁要素に磁気的に結合された電磁コイルと、
    前記共振構造の移動を処理し、前記物理的観測結果の前記変化に関して前記移動の相関を求めて感知データを生成するシグナルプロセッサと
    を備えることを特徴とする装置。
  55. 前記電磁コイルは、前記共振構造の共振を感知し、前記共振を前記シグナルプロセッサに送るために前記帯磁要素に磁気的に結合されたピックアップコイルでもあることを特徴とする請求項54に記載の装置。
  56. 前記電磁コイルは、前記共振構造の共振を励起するように前記帯磁要素に磁気的に結合された励振コイルであることを特徴とする請求項54に記載の装置。
  57. 前記電磁コイルは、それとは別に、励振コイルと前記帯磁要素に磁気的に結合されたピックアップコイルとの両方を選択的に形成し、前記共振構造の前記共振を感知して、前記共振を前記シグナルプロセッサに送るように前記シグナルプロセッサ内の回路によりアクティブ化されることを特徴とする請求項54に記載の装置。
  58. 前記共振構造は、共振LC回路であることを特徴とする請求項54に記載の装置。
  59. 前記シグナルプロセッサは、少なくとも1つのゲート付き受信機を備えることを特徴とする請求項58に記載の装置。
  60. 前記シグナルプロセッサは、少なくとも1つのパルス駆動信号を形成することを特徴とする請求項58に記載の装置。
  61. 複数の共振構造をさらに備え、
    前記共振構造のそれぞれは、前記物理的観測結果のうちの異なるいくつかの観測結果に応答することを特徴とする請求項54に記載の装置。
  62. 複数の電磁コイルをさらに備え、
    前記複数の電磁コイルのうちの少なくとも1つの電磁コイルは、前記共振構造の共振を感知し、前記共振を前記シグナルプロセッサに送るように前記帯磁要素に磁気的に結合されたピックアップコイルであり、
    前記複数の電磁コイルのうちの少なくとも他の1つの電磁コイルは、前記共振構造の共振を励起するように前記帯磁要素に磁気的に結合された励振コイルであることを特徴とする請求項54に記載の装置。
JP2009503191A 2006-03-30 2007-03-26 磁気駆動式mems共振構造を使用する遠隔計測の方法および装置 Pending JP2009532113A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/278,138 US20070236213A1 (en) 2006-03-30 2006-03-30 Telemetry method and apparatus using magnetically-driven mems resonant structure
PCT/US2007/064895 WO2008060649A2 (en) 2006-03-30 2007-03-26 Telemetry method and apparatus using magnetically-driven mems resonant structure

Publications (1)

Publication Number Publication Date
JP2009532113A true JP2009532113A (ja) 2009-09-10

Family

ID=38574564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009503191A Pending JP2009532113A (ja) 2006-03-30 2007-03-26 磁気駆動式mems共振構造を使用する遠隔計測の方法および装置

Country Status (5)

Country Link
US (2) US20070236213A1 (ja)
EP (1) EP1998664A4 (ja)
JP (1) JP2009532113A (ja)
AU (1) AU2007319761A1 (ja)
WO (1) WO2008060649A2 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012525921A (ja) * 2009-05-04 2012-10-25 アルコン リサーチ, リミテッド 眼内圧力センサー
JP2014533983A (ja) * 2011-10-07 2014-12-18 スンシル ユニバーシティー リサーチ コンソルティウム テクノーパークSoongsil University Research Consortium Techno−Park 眼圧センサー及びその製造方法
US9125721B2 (en) 2011-12-13 2015-09-08 Alcon Research, Ltd. Active drainage systems with dual-input pressure-driven valves
JP2017520337A (ja) * 2014-07-01 2017-07-27 インジェクトセンス, インコーポレイテッド 患者を監視するための、無線インターフェイスを備える超低電力充電式植え込みセンサ
JP2021528142A (ja) * 2018-06-20 2021-10-21 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 遠隔圧力感知のための圧力感知ユニット、システム及び方法
JP2022000178A (ja) * 2013-03-13 2022-01-04 グローコス コーポレーション 眼内生理センサ

Families Citing this family (200)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11229472B2 (en) 2001-06-12 2022-01-25 Cilag Gmbh International Modular battery powered handheld surgical instrument with multiple magnetic position sensors
EP1589866A2 (en) * 2003-01-09 2005-11-02 The Regents of the University of California Implantable devices and methods for measuring intraocular, subconjunctival or subdermal pressure and/or analyte concentration
US7245117B1 (en) * 2004-11-01 2007-07-17 Cardiomems, Inc. Communicating with implanted wireless sensor
US8026729B2 (en) * 2003-09-16 2011-09-27 Cardiomems, Inc. System and apparatus for in-vivo assessment of relative position of an implant
WO2005027998A2 (en) 2003-09-16 2005-03-31 Cardiomems, Inc. Implantable wireless sensor
US8182501B2 (en) 2004-02-27 2012-05-22 Ethicon Endo-Surgery, Inc. Ultrasonic surgical shears and method for sealing a blood vessel using same
PL1802245T3 (pl) 2004-10-08 2017-01-31 Ethicon Endosurgery Llc Ultradźwiękowy przyrząd chirurgiczny
EP1893080A2 (en) 2005-06-21 2008-03-05 CardioMems, Inc. Method of manufacturing implantable wireless sensor for in vivo pressure measurement
US20070191713A1 (en) 2005-10-14 2007-08-16 Eichmann Stephen E Ultrasonic device for cutting and coagulating
US7926176B2 (en) * 2005-10-19 2011-04-19 General Electric Company Methods for magnetically directed self assembly
US20070231826A1 (en) * 2005-10-19 2007-10-04 General Electric Company Article and assembly for magnetically directed self assembly
US8022416B2 (en) * 2005-10-19 2011-09-20 General Electric Company Functional blocks for assembly
US7621930B2 (en) 2006-01-20 2009-11-24 Ethicon Endo-Surgery, Inc. Ultrasound medical instrument having a medical ultrasonic blade
US20070234811A1 (en) * 2006-04-05 2007-10-11 Vega Grieshaber Kg Vibrating sensor
DE102006016355A1 (de) * 2006-04-05 2007-10-18 Vega Grieshaber Kg Vibrationssensor
CN101511258B (zh) * 2006-09-14 2011-07-20 奥林巴斯医疗株式会社 医疗用引导系统以及医疗装置的控制方法
US8142461B2 (en) 2007-03-22 2012-03-27 Ethicon Endo-Surgery, Inc. Surgical instruments
US8911460B2 (en) 2007-03-22 2014-12-16 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US8057498B2 (en) 2007-11-30 2011-11-15 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instrument blades
US8523889B2 (en) 2007-07-27 2013-09-03 Ethicon Endo-Surgery, Inc. Ultrasonic end effectors with increased active length
US8808319B2 (en) 2007-07-27 2014-08-19 Ethicon Endo-Surgery, Inc. Surgical instruments
US8430898B2 (en) 2007-07-31 2013-04-30 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US8512365B2 (en) 2007-07-31 2013-08-20 Ethicon Endo-Surgery, Inc. Surgical instruments
US9044261B2 (en) 2007-07-31 2015-06-02 Ethicon Endo-Surgery, Inc. Temperature controlled ultrasonic surgical instruments
CA2701962C (en) 2007-10-05 2016-05-31 Ethicon Endo-Surgery, Inc. Ergonomic surgical instruments
US10010339B2 (en) 2007-11-30 2018-07-03 Ethicon Llc Ultrasonic surgical blades
US8674212B2 (en) * 2008-01-15 2014-03-18 General Electric Company Solar cell and magnetically self-assembled solar cell assembly
EP2268218B1 (en) * 2008-04-01 2016-02-10 CardioMems, Inc. System and apparatus for in-vivo assessment of relative position of an implant
US9089360B2 (en) 2008-08-06 2015-07-28 Ethicon Endo-Surgery, Inc. Devices and techniques for cutting and coagulating tissue
EP2158840B1 (de) * 2008-08-27 2014-09-10 Biotronik CRM Patent AG Implantierbarer Biosensor und Sensoranordnung
US9700339B2 (en) 2009-05-20 2017-07-11 Ethicon Endo-Surgery, Inc. Coupling arrangements and methods for attaching tools to ultrasonic surgical instruments
US8663220B2 (en) 2009-07-15 2014-03-04 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US8257295B2 (en) 2009-09-21 2012-09-04 Alcon Research, Ltd. Intraocular pressure sensor with external pressure compensation
US10441345B2 (en) 2009-10-09 2019-10-15 Ethicon Llc Surgical generator for ultrasonic and electrosurgical devices
US8956349B2 (en) 2009-10-09 2015-02-17 Ethicon Endo-Surgery, Inc. Surgical generator for ultrasonic and electrosurgical devices
US11090104B2 (en) 2009-10-09 2021-08-17 Cilag Gmbh International Surgical generator for ultrasonic and electrosurgical devices
US10172669B2 (en) 2009-10-09 2019-01-08 Ethicon Llc Surgical instrument comprising an energy trigger lockout
US8747404B2 (en) 2009-10-09 2014-06-10 Ethicon Endo-Surgery, Inc. Surgical instrument for transmitting energy to tissue comprising non-conductive grasping portions
US8486096B2 (en) 2010-02-11 2013-07-16 Ethicon Endo-Surgery, Inc. Dual purpose surgical instrument for cutting and coagulating tissue
US8951272B2 (en) 2010-02-11 2015-02-10 Ethicon Endo-Surgery, Inc. Seal arrangements for ultrasonically powered surgical instruments
US8469981B2 (en) 2010-02-11 2013-06-25 Ethicon Endo-Surgery, Inc. Rotatable cutting implement arrangements for ultrasonic surgical instruments
US8696665B2 (en) 2010-03-26 2014-04-15 Ethicon Endo-Surgery, Inc. Surgical cutting and sealing instrument with reduced firing force
US8709035B2 (en) 2010-04-12 2014-04-29 Ethicon Endo-Surgery, Inc. Electrosurgical cutting and sealing instruments with jaws having a parallel closure motion
US8834518B2 (en) 2010-04-12 2014-09-16 Ethicon Endo-Surgery, Inc. Electrosurgical cutting and sealing instruments with cam-actuated jaws
US8685020B2 (en) 2010-05-17 2014-04-01 Ethicon Endo-Surgery, Inc. Surgical instruments and end effectors therefor
GB2480498A (en) 2010-05-21 2011-11-23 Ethicon Endo Surgery Inc Medical device comprising RF circuitry
US8888776B2 (en) 2010-06-09 2014-11-18 Ethicon Endo-Surgery, Inc. Electrosurgical instrument employing an electrode
US9005199B2 (en) 2010-06-10 2015-04-14 Ethicon Endo-Surgery, Inc. Heat management configurations for controlling heat dissipation from electrosurgical instruments
US8613383B2 (en) 2010-07-14 2013-12-24 Ethicon Endo-Surgery, Inc. Surgical instruments with electrodes
US8795327B2 (en) 2010-07-22 2014-08-05 Ethicon Endo-Surgery, Inc. Electrosurgical instrument with separate closure and cutting members
US9192431B2 (en) 2010-07-23 2015-11-24 Ethicon Endo-Surgery, Inc. Electrosurgical cutting and sealing instrument
US9011437B2 (en) 2010-07-23 2015-04-21 Ethicon Endo-Surgery, Inc. Electrosurgical cutting and sealing instrument
US8979843B2 (en) 2010-07-23 2015-03-17 Ethicon Endo-Surgery, Inc. Electrosurgical cutting and sealing instrument
US8979890B2 (en) 2010-10-01 2015-03-17 Ethicon Endo-Surgery, Inc. Surgical instrument with jaw member
US8628529B2 (en) * 2010-10-26 2014-01-14 Ethicon Endo-Surgery, Inc. Surgical instrument with magnetic clamping force
US9259265B2 (en) 2011-07-22 2016-02-16 Ethicon Endo-Surgery, Llc Surgical instruments for tensioning tissue
US9044243B2 (en) 2011-08-30 2015-06-02 Ethcon Endo-Surgery, Inc. Surgical cutting and fastening device with descendible second trigger arrangement
US9383208B2 (en) * 2011-10-13 2016-07-05 Analog Devices, Inc. Electromechanical magnetometer and applications thereof
US9283027B2 (en) 2011-10-24 2016-03-15 Ethicon Endo-Surgery, Llc Battery drain kill feature in a battery powered device
US9339187B2 (en) 2011-12-15 2016-05-17 Alcon Research, Ltd. External pressure measurement system and method for an intraocular implant
US9173564B2 (en) 2011-12-16 2015-11-03 California Institute Of Technology System and method for sensing intraocular pressure
WO2013119545A1 (en) 2012-02-10 2013-08-15 Ethicon-Endo Surgery, Inc. Robotically controlled surgical instrument
US9439668B2 (en) 2012-04-09 2016-09-13 Ethicon Endo-Surgery, Llc Switch arrangements for ultrasonic surgical instruments
US20140005705A1 (en) 2012-06-29 2014-01-02 Ethicon Endo-Surgery, Inc. Surgical instruments with articulating shafts
US20140005640A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Surgical end effector jaw and electrode configurations
US9226767B2 (en) 2012-06-29 2016-01-05 Ethicon Endo-Surgery, Inc. Closed feedback control for electrosurgical device
US9820768B2 (en) 2012-06-29 2017-11-21 Ethicon Llc Ultrasonic surgical instruments with control mechanisms
US9326788B2 (en) 2012-06-29 2016-05-03 Ethicon Endo-Surgery, Llc Lockout mechanism for use with robotic electrosurgical device
US9351754B2 (en) 2012-06-29 2016-05-31 Ethicon Endo-Surgery, Llc Ultrasonic surgical instruments with distally positioned jaw assemblies
US20140005702A1 (en) 2012-06-29 2014-01-02 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments with distally positioned transducers
US9408622B2 (en) 2012-06-29 2016-08-09 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
US9198714B2 (en) 2012-06-29 2015-12-01 Ethicon Endo-Surgery, Inc. Haptic feedback devices for surgical robot
US9393037B2 (en) 2012-06-29 2016-07-19 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
EP2900158B1 (en) 2012-09-28 2020-04-15 Ethicon LLC Multi-function bi-polar forceps
US9095367B2 (en) 2012-10-22 2015-08-04 Ethicon Endo-Surgery, Inc. Flexible harmonic waveguides/blades for surgical instruments
US20140135804A1 (en) 2012-11-15 2014-05-15 Ethicon Endo-Surgery, Inc. Ultrasonic and electrosurgical devices
GB2508908B (en) 2012-12-14 2017-02-15 Gen Electric Resonator device
US9295389B2 (en) 2012-12-17 2016-03-29 Novartis Ag Systems and methods for priming an intraocular pressure sensor in an intraocular implant
US9572712B2 (en) 2012-12-17 2017-02-21 Novartis Ag Osmotically actuated fluidic valve
US9528633B2 (en) 2012-12-17 2016-12-27 Novartis Ag MEMS check valve
US10226273B2 (en) 2013-03-14 2019-03-12 Ethicon Llc Mechanical fasteners for use with surgical energy devices
US9226851B2 (en) 2013-08-24 2016-01-05 Novartis Ag MEMS check valve chip and methods
US9295514B2 (en) 2013-08-30 2016-03-29 Ethicon Endo-Surgery, Llc Surgical devices with close quarter articulation features
US9814514B2 (en) 2013-09-13 2017-11-14 Ethicon Llc Electrosurgical (RF) medical instruments for cutting and coagulating tissue
US9861428B2 (en) 2013-09-16 2018-01-09 Ethicon Llc Integrated systems for electrosurgical steam or smoke control
US9726557B2 (en) * 2013-11-01 2017-08-08 The Regents Of The University Of Michigan Magnetoelastic strain sensor
US9265926B2 (en) 2013-11-08 2016-02-23 Ethicon Endo-Surgery, Llc Electrosurgical devices
US9526565B2 (en) 2013-11-08 2016-12-27 Ethicon Endo-Surgery, Llc Electrosurgical devices
GB2521228A (en) 2013-12-16 2015-06-17 Ethicon Endo Surgery Inc Medical device
GB2521229A (en) 2013-12-16 2015-06-17 Ethicon Endo Surgery Inc Medical device
US9795436B2 (en) 2014-01-07 2017-10-24 Ethicon Llc Harvesting energy from a surgical generator
US9408660B2 (en) 2014-01-17 2016-08-09 Ethicon Endo-Surgery, Llc Device trigger dampening mechanism
US9554854B2 (en) 2014-03-18 2017-01-31 Ethicon Endo-Surgery, Llc Detecting short circuits in electrosurgical medical devices
US10092310B2 (en) 2014-03-27 2018-10-09 Ethicon Llc Electrosurgical devices
US10463421B2 (en) 2014-03-27 2019-11-05 Ethicon Llc Two stage trigger, clamp and cut bipolar vessel sealer
US10524852B1 (en) 2014-03-28 2020-01-07 Ethicon Llc Distal sealing end effector with spacers
US9737355B2 (en) 2014-03-31 2017-08-22 Ethicon Llc Controlling impedance rise in electrosurgical medical devices
US9913680B2 (en) 2014-04-15 2018-03-13 Ethicon Llc Software algorithms for electrosurgical instruments
US9757186B2 (en) 2014-04-17 2017-09-12 Ethicon Llc Device status feedback for bipolar tissue spacer
US9700333B2 (en) 2014-06-30 2017-07-11 Ethicon Llc Surgical instrument with variable tissue compression
US10285724B2 (en) 2014-07-31 2019-05-14 Ethicon Llc Actuation mechanisms and load adjustment assemblies for surgical instruments
US9877776B2 (en) 2014-08-25 2018-01-30 Ethicon Llc Simultaneous I-beam and spring driven cam jaw closure mechanism
US10194976B2 (en) 2014-08-25 2019-02-05 Ethicon Llc Lockout disabling mechanism
US10194972B2 (en) 2014-08-26 2019-02-05 Ethicon Llc Managing tissue treatment
US9689888B2 (en) 2014-11-14 2017-06-27 Honeywell International Inc. In-plane vibrating beam accelerometer
US10823754B2 (en) 2014-11-14 2020-11-03 Honeywell International Inc. Accelerometer with strain compensation
US10639092B2 (en) 2014-12-08 2020-05-05 Ethicon Llc Electrode configurations for surgical instruments
US10092348B2 (en) 2014-12-22 2018-10-09 Ethicon Llc RF tissue sealer, shear grip, trigger lock mechanism and energy activation
US10111699B2 (en) 2014-12-22 2018-10-30 Ethicon Llc RF tissue sealer, shear grip, trigger lock mechanism and energy activation
US9848937B2 (en) 2014-12-22 2017-12-26 Ethicon Llc End effector with detectable configurations
US10159524B2 (en) 2014-12-22 2018-12-25 Ethicon Llc High power battery powered RF amplifier topology
US10245095B2 (en) 2015-02-06 2019-04-02 Ethicon Llc Electrosurgical instrument with rotation and articulation mechanisms
GB201503177D0 (en) 2015-02-25 2015-04-08 King S College London Vibration inducing apparatus for magnetic resonance elastography
US20160261233A1 (en) * 2015-03-02 2016-09-08 Qualcomm Incorporated Method and apparatus for wireless power transmission utilizing two-dimensional or three-dimensional arrays of magneto-mechanical oscillators
US10342602B2 (en) 2015-03-17 2019-07-09 Ethicon Llc Managing tissue treatment
US10321950B2 (en) 2015-03-17 2019-06-18 Ethicon Llc Managing tissue treatment
US10595929B2 (en) 2015-03-24 2020-03-24 Ethicon Llc Surgical instruments with firing system overload protection mechanisms
US10314638B2 (en) 2015-04-07 2019-06-11 Ethicon Llc Articulating radio frequency (RF) tissue seal with articulating state sensing
US10117702B2 (en) 2015-04-10 2018-11-06 Ethicon Llc Surgical generator systems and related methods
US10130410B2 (en) 2015-04-17 2018-11-20 Ethicon Llc Electrosurgical instrument including a cutting member decouplable from a cutting member trigger
US9872725B2 (en) 2015-04-29 2018-01-23 Ethicon Llc RF tissue sealer with mode selection
US11020140B2 (en) 2015-06-17 2021-06-01 Cilag Gmbh International Ultrasonic surgical blade for use with ultrasonic surgical instruments
US10898256B2 (en) 2015-06-30 2021-01-26 Ethicon Llc Surgical system with user adaptable techniques based on tissue impedance
US11051873B2 (en) 2015-06-30 2021-07-06 Cilag Gmbh International Surgical system with user adaptable techniques employing multiple energy modalities based on tissue parameters
US10357303B2 (en) 2015-06-30 2019-07-23 Ethicon Llc Translatable outer tube for sealing using shielded lap chole dissector
US11129669B2 (en) 2015-06-30 2021-09-28 Cilag Gmbh International Surgical system with user adaptable techniques based on tissue type
US10034704B2 (en) 2015-06-30 2018-07-31 Ethicon Llc Surgical instrument with user adaptable algorithms
US11141213B2 (en) 2015-06-30 2021-10-12 Cilag Gmbh International Surgical instrument with user adaptable techniques
US10154852B2 (en) 2015-07-01 2018-12-18 Ethicon Llc Ultrasonic surgical blade with improved cutting and coagulation features
US10561342B2 (en) 2015-09-21 2020-02-18 Board Of Regents, The University Of Texas System Systems and methods for detecting tremors
US10687884B2 (en) 2015-09-30 2020-06-23 Ethicon Llc Circuits for supplying isolated direct current (DC) voltage to surgical instruments
US10959771B2 (en) 2015-10-16 2021-03-30 Ethicon Llc Suction and irrigation sealing grasper
US10595930B2 (en) 2015-10-16 2020-03-24 Ethicon Llc Electrode wiping surgical device
US10018686B1 (en) * 2015-10-21 2018-07-10 The Charles Stark Draper Laboratory, Inc. Ultra-low noise sensor for magnetic fields
WO2017095825A1 (en) * 2015-11-30 2017-06-08 California Institute Of Technology System and method for measuring intraocular pressure
US10179022B2 (en) 2015-12-30 2019-01-15 Ethicon Llc Jaw position impedance limiter for electrosurgical instrument
US10959806B2 (en) 2015-12-30 2021-03-30 Ethicon Llc Energized medical device with reusable handle
US10575892B2 (en) 2015-12-31 2020-03-03 Ethicon Llc Adapter for electrical surgical instruments
US11129670B2 (en) 2016-01-15 2021-09-28 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization
US10716615B2 (en) 2016-01-15 2020-07-21 Ethicon Llc Modular battery powered handheld surgical instrument with curved end effectors having asymmetric engagement between jaw and blade
US10709469B2 (en) 2016-01-15 2020-07-14 Ethicon Llc Modular battery powered handheld surgical instrument with energy conservation techniques
US11229471B2 (en) 2016-01-15 2022-01-25 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization
US10555769B2 (en) 2016-02-22 2020-02-11 Ethicon Llc Flexible circuits for electrosurgical instrument
US10702329B2 (en) 2016-04-29 2020-07-07 Ethicon Llc Jaw structure with distal post for electrosurgical instruments
US10485607B2 (en) 2016-04-29 2019-11-26 Ethicon Llc Jaw structure with distal closure for electrosurgical instruments
US10856934B2 (en) 2016-04-29 2020-12-08 Ethicon Llc Electrosurgical instrument with electrically conductive gap setting and tissue engaging members
US10646269B2 (en) 2016-04-29 2020-05-12 Ethicon Llc Non-linear jaw gap for electrosurgical instruments
US10987156B2 (en) 2016-04-29 2021-04-27 Ethicon Llc Electrosurgical instrument with electrically conductive gap setting member and electrically insulative tissue engaging members
US10456193B2 (en) 2016-05-03 2019-10-29 Ethicon Llc Medical device with a bilateral jaw configuration for nerve stimulation
CA3024891A1 (en) 2016-05-31 2017-12-07 Qura, Inc. Implantable intraocular pressure sensors and methods of use
US10245064B2 (en) 2016-07-12 2019-04-02 Ethicon Llc Ultrasonic surgical instrument with piezoelectric central lumen transducer
US10893883B2 (en) 2016-07-13 2021-01-19 Ethicon Llc Ultrasonic assembly for use with ultrasonic surgical instruments
US10842522B2 (en) 2016-07-15 2020-11-24 Ethicon Llc Ultrasonic surgical instruments having offset blades
US10376305B2 (en) 2016-08-05 2019-08-13 Ethicon Llc Methods and systems for advanced harmonic energy
US10285723B2 (en) 2016-08-09 2019-05-14 Ethicon Llc Ultrasonic surgical blade with improved heel portion
USD847990S1 (en) 2016-08-16 2019-05-07 Ethicon Llc Surgical instrument
US10828056B2 (en) 2016-08-25 2020-11-10 Ethicon Llc Ultrasonic transducer to waveguide acoustic coupling, connections, and configurations
US10952759B2 (en) 2016-08-25 2021-03-23 Ethicon Llc Tissue loading of a surgical instrument
US10751117B2 (en) 2016-09-23 2020-08-25 Ethicon Llc Electrosurgical instrument with fluid diverter
US10603064B2 (en) 2016-11-28 2020-03-31 Ethicon Llc Ultrasonic transducer
US11266430B2 (en) 2016-11-29 2022-03-08 Cilag Gmbh International End effector control and calibration
US11033325B2 (en) 2017-02-16 2021-06-15 Cilag Gmbh International Electrosurgical instrument with telescoping suction port and debris cleaner
US10799284B2 (en) 2017-03-15 2020-10-13 Ethicon Llc Electrosurgical instrument with textured jaws
US11497546B2 (en) 2017-03-31 2022-11-15 Cilag Gmbh International Area ratios of patterned coatings on RF electrodes to reduce sticking
US10603117B2 (en) 2017-06-28 2020-03-31 Ethicon Llc Articulation state detection mechanisms
US10820920B2 (en) 2017-07-05 2020-11-03 Ethicon Llc Reusable ultrasonic medical devices and methods of their use
US11033323B2 (en) 2017-09-29 2021-06-15 Cilag Gmbh International Systems and methods for managing fluid and suction in electrosurgical systems
US11484358B2 (en) 2017-09-29 2022-11-01 Cilag Gmbh International Flexible electrosurgical instrument
US11490951B2 (en) 2017-09-29 2022-11-08 Cilag Gmbh International Saline contact with electrodes
CN109444617B (zh) * 2018-12-27 2023-08-25 国网河南省电力公司洛阳供电公司 一种具有快速检测安装结构的电压互感器消谐装置测试仪
US11612445B2 (en) 2019-06-27 2023-03-28 Cilag Gmbh International Cooperative operation of robotic arms
US11723729B2 (en) 2019-06-27 2023-08-15 Cilag Gmbh International Robotic surgical assembly coupling safety mechanisms
US11413102B2 (en) 2019-06-27 2022-08-16 Cilag Gmbh International Multi-access port for surgical robotic systems
US11607278B2 (en) 2019-06-27 2023-03-21 Cilag Gmbh International Cooperative robotic surgical systems
US11547468B2 (en) 2019-06-27 2023-01-10 Cilag Gmbh International Robotic surgical system with safety and cooperative sensing control
US11986201B2 (en) 2019-12-30 2024-05-21 Cilag Gmbh International Method for operating a surgical instrument
US11759251B2 (en) 2019-12-30 2023-09-19 Cilag Gmbh International Control program adaptation based on device status and user input
US11660089B2 (en) 2019-12-30 2023-05-30 Cilag Gmbh International Surgical instrument comprising a sensing system
US11779387B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Clamp arm jaw to minimize tissue sticking and improve tissue control
US11937863B2 (en) 2019-12-30 2024-03-26 Cilag Gmbh International Deflectable electrode with variable compression bias along the length of the deflectable electrode
US11911063B2 (en) 2019-12-30 2024-02-27 Cilag Gmbh International Techniques for detecting ultrasonic blade to electrode contact and reducing power to ultrasonic blade
US11812957B2 (en) 2019-12-30 2023-11-14 Cilag Gmbh International Surgical instrument comprising a signal interference resolution system
US11779329B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Surgical instrument comprising a flex circuit including a sensor system
US11589916B2 (en) 2019-12-30 2023-02-28 Cilag Gmbh International Electrosurgical instruments with electrodes having variable energy densities
US11944366B2 (en) 2019-12-30 2024-04-02 Cilag Gmbh International Asymmetric segmented ultrasonic support pad for cooperative engagement with a movable RF electrode
US11786291B2 (en) 2019-12-30 2023-10-17 Cilag Gmbh International Deflectable support of RF energy electrode with respect to opposing ultrasonic blade
US11696776B2 (en) 2019-12-30 2023-07-11 Cilag Gmbh International Articulatable surgical instrument
US11707318B2 (en) 2019-12-30 2023-07-25 Cilag Gmbh International Surgical instrument with jaw alignment features
US11937866B2 (en) 2019-12-30 2024-03-26 Cilag Gmbh International Method for an electrosurgical procedure
US11974801B2 (en) 2019-12-30 2024-05-07 Cilag Gmbh International Electrosurgical instrument with flexible wiring assemblies
US11452525B2 (en) 2019-12-30 2022-09-27 Cilag Gmbh International Surgical instrument comprising an adjustment system
US11950797B2 (en) 2019-12-30 2024-04-09 Cilag Gmbh International Deflectable electrode with higher distal bias relative to proximal bias
US20230070316A1 (en) * 2020-02-13 2023-03-09 The University Of North Carolina At Chapel Hill Self-sensing cantilever-based devices for determining corneal biomechanics
CN112327228A (zh) * 2020-10-22 2021-02-05 西安中车永电捷力风能有限公司 一种利用电流对永磁体失磁状态进行检测的方法和装置
EP4014856A1 (en) * 2020-12-18 2022-06-22 Koninklijke Philips N.V. Passive wireless coil-based markers and sensor compatible with a medical readout system for tracking magneto-mechanical oscillators
US11974829B2 (en) 2021-06-30 2024-05-07 Cilag Gmbh International Link-driven articulation device for a surgical device
US11931026B2 (en) 2021-06-30 2024-03-19 Cilag Gmbh International Staple cartridge replacement
US11957342B2 (en) 2021-11-01 2024-04-16 Cilag Gmbh International Devices, systems, and methods for detecting tissue and foreign objects during a surgical operation
CN114563113B (zh) * 2022-03-03 2023-11-21 中国工程物理研究院总体工程研究所 空心谐振式应力组件及应力计
CN114706025B (zh) * 2022-04-15 2024-03-22 深圳技术大学 一种基于磁电效应的谐振式dc磁传感器

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05245115A (ja) * 1983-08-18 1993-09-24 Carlos A Hakim 生体内の圧力を測定し伝達する装置
JP2000517231A (ja) * 1996-09-04 2000-12-26 アブリュー・マルシオ・マルク・オウレリオ・マーチン 偏平化及び/又はくぼみにより眼圧を測定する方法及び装置
JP2001242024A (ja) * 2000-02-25 2001-09-07 Seiko Instruments Inc 体内埋込式圧力感知装置並びに該感知装置を用いた圧力検出システム及び圧力調整システム
JP2003509098A (ja) * 1999-09-17 2003-03-11 エンドルミナル セラピューティクス, インコーポレイテッド 医用移植片のセンシング、インタロゲーティング、記憶、遠隔機器を用いた通信、測定および応答
JP2003518973A (ja) * 2000-01-07 2003-06-17 イマテック アーゲー 骨内または骨上の圧力および圧力変化の生体内測定用装置
JP2003535651A (ja) * 2000-06-22 2003-12-02 プロテウス ビション エルエルシー 調整可能な眼内レンズ
JP2004532051A (ja) * 2001-02-14 2004-10-21 アドバンスト・バイオ・プロスゼティック・サーフィスズ・リミテッド 生体内センサ及びその製造方法
JP2005510336A (ja) * 2001-12-03 2005-04-21 ザ クリーブランド クリニック ファウンデーション 体腔内の状態を監視するための装置および方法
WO2005058133A2 (en) * 2003-12-11 2005-06-30 Proteus Biomedical, Inc. Implantable pressure sensors

Family Cites Families (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3958558A (en) * 1974-09-16 1976-05-25 Huntington Institute Of Applied Medical Research Implantable pressure transducer
US4026276A (en) * 1976-04-05 1977-05-31 The Johns Hopkins University Intracranial pressure monitor
US4127110A (en) * 1976-05-24 1978-11-28 Huntington Institute Of Applied Medical Research Implantable pressure transducer
US4305399A (en) * 1978-10-31 1981-12-15 The University Of Western Australia Miniature transducer
DE8712331U1 (ja) * 1986-09-26 1988-01-28 Flowtec Ag, Reinach, Basel, Ch
GB2197069B (en) * 1986-11-03 1990-10-24 Stc Plc Sensor device
US5005577A (en) * 1988-08-23 1991-04-09 Frenkel Ronald E P Intraocular lens pressure monitoring device
SE8902330D0 (sv) * 1989-06-28 1989-06-28 Carl H Tyren Frequency carried mechanical stress information
US5188983A (en) * 1990-04-11 1993-02-23 Wisconsin Alumni Research Foundation Polysilicon resonating beam transducers and method of producing the same
US5090254A (en) * 1990-04-11 1992-02-25 Wisconsin Alumni Research Foundation Polysilicon resonating beam transducers
US5165289A (en) * 1990-07-10 1992-11-24 Johnson Service Company Resonant mechanical sensor
FR2674627B1 (fr) * 1991-03-27 1994-04-29 Commissariat Energie Atomique Capteur de pression resonant.
US5275055A (en) * 1992-08-31 1994-01-04 Honeywell Inc. Resonant gauge with microbeam driven in constant electric field
US5417115A (en) * 1993-07-23 1995-05-23 Honeywell Inc. Dielectrically isolated resonant microsensors
US5368040A (en) * 1993-08-02 1994-11-29 Medtronic, Inc. Apparatus and method for determining a plurality of hemodynamic variables from a single, chroniclaly implanted absolute pressure sensor
US5866805A (en) * 1994-05-19 1999-02-02 Molecular Imaging Corporation Arizona Board Of Regents Cantilevers for a magnetically driven atomic force microscope
US5513518A (en) * 1994-05-19 1996-05-07 Molecular Imaging Corporation Magnetic modulation of force sensor for AC detection in an atomic force microscope
US5515719A (en) * 1994-05-19 1996-05-14 Molecular Imaging Corporation Controlled force microscope for operation in liquids
DE4433104C1 (de) * 1994-09-16 1996-05-02 Fraunhofer Ges Forschung Einrichtung zur Messung mechanischer Eigenschaften von biologischem Gewebe
US5836203A (en) * 1996-10-21 1998-11-17 Sandia Corporation Magnetically excited flexural plate wave apparatus
IT1287123B1 (it) * 1996-10-31 1998-08-04 Abb Kent Taylor Spa Dispositivo per la misura di una pressione
US5808210A (en) * 1996-12-31 1998-09-15 Honeywell Inc. Thin film resonant microbeam absolute pressure sensor
US5747705A (en) * 1996-12-31 1998-05-05 Honeywell Inc. Method for making a thin film resonant microbeam absolute
DE69724781T2 (de) * 1997-01-03 2004-07-01 Biosense, Inc., Miami Stent zur druckmessung
US6278379B1 (en) * 1998-04-02 2001-08-21 Georgia Tech Research Corporation System, method, and sensors for sensing physical properties
US6015386A (en) * 1998-05-07 2000-01-18 Bpm Devices, Inc. System including an implantable device and methods of use for determining blood pressure and other blood parameters of a living being
US6201980B1 (en) * 1998-10-05 2001-03-13 The Regents Of The University Of California Implantable medical sensor system
US6312380B1 (en) * 1998-12-23 2001-11-06 Radi Medical Systems Ab Method and sensor for wireless measurement of physiological variables
US6182513B1 (en) * 1998-12-23 2001-02-06 Radi Medical Systems Ab Resonant sensor and method of making a pressure sensor comprising a resonant beam structure
US6397661B1 (en) * 1998-12-30 2002-06-04 University Of Kentucky Research Foundation Remote magneto-elastic analyte, viscosity and temperature sensing apparatus and associated methods of sensing
US6193656B1 (en) * 1999-02-08 2001-02-27 Robert E. Jeffries Intraocular pressure monitoring/measuring apparatus and method
US6393921B1 (en) * 1999-05-13 2002-05-28 University Of Kentucky Research Foundation Magnetoelastic sensing apparatus and method for remote pressure query of an environment
US6429652B1 (en) * 1999-06-21 2002-08-06 Georgia Tech Research Corporation System and method of providing a resonant micro-compass
US6165135A (en) * 1999-07-14 2000-12-26 Neff; Samuel R. System and method of interrogating implanted passive resonant-circuit devices
US6311557B1 (en) * 1999-09-24 2001-11-06 Ut-Battelle, Llc Magnetically tunable resonance frequency beam utilizing a stress-sensitive film
US6579235B1 (en) * 1999-11-01 2003-06-17 The Johns Hopkins University Method for monitoring intraocular pressure using a passive intraocular pressure sensor and patient worn monitoring recorder
US6277078B1 (en) * 1999-11-19 2001-08-21 Remon Medical Technologies, Ltd. System and method for monitoring a parameter associated with the performance of a heart
US6939299B1 (en) * 1999-12-13 2005-09-06 Kurt Petersen Implantable continuous intraocular pressure sensor
US6328699B1 (en) * 2000-01-11 2001-12-11 Cedars-Sinai Medical Center Permanently implantable system and method for detecting, diagnosing and treating congestive heart failure
IT1318295B1 (it) * 2000-07-31 2003-07-28 Abb Ricerca Spa Dispositivo per la misura della pressione di un fluido
US6447449B1 (en) * 2000-08-21 2002-09-10 Cleveland Clinic Foundation System for measuring intraocular pressure of an eye and a MEM sensor for use therewith
WO2002056763A2 (en) * 2001-01-22 2002-07-25 Integrated Sensing Systems, Inc. Mems capacitive sensor for physiologic parameter measurement
US6639402B2 (en) * 2001-01-31 2003-10-28 University Of Kentucky Research Foundation Temperature, stress, and corrosive sensing apparatus utilizing harmonic response of magnetically soft sensor element (s)
US6676813B1 (en) * 2001-03-19 2004-01-13 The Regents Of The University Of California Technology for fabrication of a micromagnet on a tip of a MFM/MRFM probe
US7151914B2 (en) * 2001-08-21 2006-12-19 Medtronic, Inc. Transmitter system for wireless communication with implanted devices
JP4082907B2 (ja) * 2002-01-21 2008-04-30 正喜 江刺 振動形圧力センサ
WO2004098910A2 (en) * 2003-05-02 2004-11-18 Intertech Engineering Associates, Inc. An apparatus for monitoring tire pressure
US6820469B1 (en) * 2003-05-12 2004-11-23 Sandia Corporation Microfabricated teeter-totter resonator
JP4222513B2 (ja) * 2003-08-19 2009-02-12 日本碍子株式会社 質量測定装置および方法
DE60313327T2 (de) * 2003-11-07 2007-12-27 Varian S.P.A., Leini Druckaufnehmer
US7252006B2 (en) * 2004-06-07 2007-08-07 California Institute Of Technology Implantable mechanical pressure sensor and method of manufacturing the same
JP2006029984A (ja) * 2004-07-16 2006-02-02 Yokogawa Electric Corp 振動式圧力センサ
US7059195B1 (en) * 2004-12-02 2006-06-13 Honeywell International Inc. Disposable and trimmable wireless pressure sensor for medical applications

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05245115A (ja) * 1983-08-18 1993-09-24 Carlos A Hakim 生体内の圧力を測定し伝達する装置
JP2000517231A (ja) * 1996-09-04 2000-12-26 アブリュー・マルシオ・マルク・オウレリオ・マーチン 偏平化及び/又はくぼみにより眼圧を測定する方法及び装置
JP2003509098A (ja) * 1999-09-17 2003-03-11 エンドルミナル セラピューティクス, インコーポレイテッド 医用移植片のセンシング、インタロゲーティング、記憶、遠隔機器を用いた通信、測定および応答
JP2003518973A (ja) * 2000-01-07 2003-06-17 イマテック アーゲー 骨内または骨上の圧力および圧力変化の生体内測定用装置
JP2001242024A (ja) * 2000-02-25 2001-09-07 Seiko Instruments Inc 体内埋込式圧力感知装置並びに該感知装置を用いた圧力検出システム及び圧力調整システム
JP2003535651A (ja) * 2000-06-22 2003-12-02 プロテウス ビション エルエルシー 調整可能な眼内レンズ
JP2004532051A (ja) * 2001-02-14 2004-10-21 アドバンスト・バイオ・プロスゼティック・サーフィスズ・リミテッド 生体内センサ及びその製造方法
JP2005510336A (ja) * 2001-12-03 2005-04-21 ザ クリーブランド クリニック ファウンデーション 体腔内の状態を監視するための装置および方法
WO2005058133A2 (en) * 2003-12-11 2005-06-30 Proteus Biomedical, Inc. Implantable pressure sensors
JP2007516746A (ja) * 2003-12-11 2007-06-28 プロテウス バイオメディカル インコーポレイテッド 移植可能な圧力センサ

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012525921A (ja) * 2009-05-04 2012-10-25 アルコン リサーチ, リミテッド 眼内圧力センサー
JP2014533983A (ja) * 2011-10-07 2014-12-18 スンシル ユニバーシティー リサーチ コンソルティウム テクノーパークSoongsil University Research Consortium Techno−Park 眼圧センサー及びその製造方法
US9125721B2 (en) 2011-12-13 2015-09-08 Alcon Research, Ltd. Active drainage systems with dual-input pressure-driven valves
JP2022000178A (ja) * 2013-03-13 2022-01-04 グローコス コーポレーション 眼内生理センサ
JP7254134B2 (ja) 2013-03-13 2023-04-07 グローコス コーポレーション 眼内生理センサ
JP2017520337A (ja) * 2014-07-01 2017-07-27 インジェクトセンス, インコーポレイテッド 患者を監視するための、無線インターフェイスを備える超低電力充電式植え込みセンサ
JP2021528142A (ja) * 2018-06-20 2021-10-21 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 遠隔圧力感知のための圧力感知ユニット、システム及び方法
JP7401469B2 (ja) 2018-06-20 2023-12-19 コーニンクレッカ フィリップス エヌ ヴェ 遠隔圧力感知のための圧力感知ユニット、システム及び方法

Also Published As

Publication number Publication date
AU2007319761A2 (en) 2008-10-16
WO2008060649A3 (en) 2008-09-25
EP1998664A4 (en) 2010-12-01
US20070236213A1 (en) 2007-10-11
EP1998664A2 (en) 2008-12-10
US20090099442A1 (en) 2009-04-16
AU2007319761A1 (en) 2008-05-22
WO2008060649A2 (en) 2008-05-22

Similar Documents

Publication Publication Date Title
JP2009532113A (ja) 磁気駆動式mems共振構造を使用する遠隔計測の方法および装置
US10667754B2 (en) Devices and methods for parameter measurement
Baldi et al. A self-resonant frequency-modulated micromachined passive pressure transensor
CA2156831C (en) Locating an interventional medical device by ultrasound
JP2023505402A (ja) 追跡システムと追跡システムによる追跡対象のマーカデバイス
Khoshnoud et al. Recent advances in MEMS sensor technology–biomedical applications
JP4109640B2 (ja) 自動励振マッサージ器
US20130247644A1 (en) Implantable pressure sensor
US20100262021A1 (en) Hypertension system and method
US20010016683A1 (en) Chemical sensor system
JP2007256287A (ja) 圧力センサ
JP2012510632A (ja) 充填管を用いた圧力測定方法および装置
US20170219450A1 (en) Pressure/force sensors for measuring fluid pressures; calibration methods for fluid pressure/force sensors; fluid drainage systems
CN107525744B (zh) 用于测量血液黏弹力的磁弹性传感器
Denisov et al. Micromechanical actuators driven by ultrasonic power transfer
MX2013007890A (es) Dispositivo de sensor para detectar densidad de fluido corporal y/o resistencia de membrana.
JP5896832B2 (ja) 検体情報処理装置及び検体情報処理方法
CN111855032A (zh) 一种基于柔性铰链对称结构的压电触觉传感器
GB2383846A (en) Passive biological sensor
Plewes et al. An inductive method to measure mechanical excitation spectra for MRI elastography
US20230363735A1 (en) Contactless cmut operation
Moradian Development of RF-MEMS Based Passive Wireless Respiratory Monitoring Systems
Green et al. Wireless magnetoelastic transducers for biomedical applications
RU2806618C2 (ru) Датчик давления для введения в систему кровообращения человека
KR100763022B1 (ko) 초음파 공간 진동에 의한 자계 교란 검출을 이용한 무전원 및 무선 센서 그리고 그 센서를 이용한 센싱 시스템

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121023