JP4082907B2 - 振動形圧力センサ - Google Patents

振動形圧力センサ Download PDF

Info

Publication number
JP4082907B2
JP4082907B2 JP2002011528A JP2002011528A JP4082907B2 JP 4082907 B2 JP4082907 B2 JP 4082907B2 JP 2002011528 A JP2002011528 A JP 2002011528A JP 2002011528 A JP2002011528 A JP 2002011528A JP 4082907 B2 JP4082907 B2 JP 4082907B2
Authority
JP
Japan
Prior art keywords
vibrator
diaphragm
pressure
vibration
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002011528A
Other languages
English (en)
Other versions
JP2003214966A (ja
Inventor
正喜 江刺
薫 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikin Inc
Original Assignee
Fujikin Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikin Inc filed Critical Fujikin Inc
Priority to JP2002011528A priority Critical patent/JP4082907B2/ja
Priority to EP03701810A priority patent/EP1471340B1/en
Priority to PCT/JP2003/000442 priority patent/WO2003062778A1/ja
Priority to US10/486,331 priority patent/US6938489B2/en
Priority to DE60323728T priority patent/DE60323728D1/de
Publication of JP2003214966A publication Critical patent/JP2003214966A/ja
Application granted granted Critical
Publication of JP4082907B2 publication Critical patent/JP4082907B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0001Transmitting or indicating the displacement of elastically deformable gauges by electric, electro-mechanical, magnetic or electro-magnetic means
    • G01L9/0008Transmitting or indicating the displacement of elastically deformable gauges by electric, electro-mechanical, magnetic or electro-magnetic means using vibrations
    • G01L9/0016Transmitting or indicating the displacement of elastically deformable gauges by electric, electro-mechanical, magnetic or electro-magnetic means using vibrations of a diaphragm
    • G01L9/0017Optical excitation or measuring

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Fluid Pressure (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は主として半導体製造設備や化学プラント等で使用される振動形圧力センサに関し、更に詳細には、腐食性流体に対しても使用でき、電気的なノイズが発生しない耐熱性を有した高感度・高精度の振動形圧力センサに関する。
【0002】
【従来の技術】
半導体製造設備や化学プラントなどでは、原料となる複数のガスを所定の流量で供給し、原料ガスを反応炉の中で化学反応させて高純度の目的ガスを生成する場合が多い。このような場合に、原料ガスの圧力を検出調整してガス流量を目的値に自動制御することが通常に行なわれている。従って、ガス流量を高精度に制御するにはガス圧力を高感度に検出できることが前提となる。
【0003】
このガス圧力を測定するために圧力トランスデューサが用いられるが、この中でも高精度測定を行なうために、振動形圧力センサが使用されることがある。従来、この種振動形圧力センサとしては、特公平4−68574号に開示されるシリコン半導体製の振動形圧力センサが知られている。
【0004】
このシリコン半導体製の振動形圧力センサは、ガス圧力を感受するダイアフラムにシリコン基板を使用し、このシリコン基板に半導体プレーナ技術を使用してH形の振動子を埋め込み形成し、この振動子を半導体からなるカプセルより包囲して、カプセル内を真空に形成したものである。この振動形圧力センサは、半導体技術により極めて小型に成形できるため、微小領域の圧力測定用としてマイクロ圧力センサとも呼ばれている。
【0005】
この圧力測定の原理は、振動子を所定の振動数で強制振動させながらダイアフラムが圧力を受けると、ダイアフラムに組み込まれた振動子が変形して、その共振周波数が変化することである。共振周波数の変化量と圧力が特定の関係を有するため、共振周波数の変化量を測定して圧力を導出することができる。
【0006】
前記したH形の振動子を強制振動させるために、磁界中に交流電流を流したときに電流に交流電磁力が生起する方式が利用されている。即ち、シリコン基板及びそのカプセル内に通電用の導線をプレーナ技術により形成する。外部に配置された永久磁石の磁界を振動子に加えながら、前記導線に交流電流を通電すると、交流電磁力の作用で振動子が強制振動する。
【0007】
【発明が解決しようとする課題】
しかし、この振動形圧力センサは重大な弱点を有している。一般に、シリコンは腐食性ガスにより腐食される性質を有するため、シリコン基板から形成されるダイアフラムを直接腐食性ガスに曝すことはできない。このダイアフラムをガスに対し直接使用できるのは非腐食性ガスに限定される。
【0008】
従って、腐食性ガスの圧力測定に使用するには少し工夫が必要となる。つまり、この振動形圧力センサをシリコンオイルが充填されたケース内に配置し、このケースの開口部に腐食性ガスと接触するステンレススチール製のダイアフラムを密閉状に配置した構造を採用する。ステンレスは耐食性を有するから、このダイアフラムが腐食性ガスの圧力を受けて変形し、この圧力がシリコンオイルに伝達して、シリコンオイルの液圧を振動形圧力センサでが検出する。換言すれば、ガス圧力をオイル圧力として間接的に検出する方式である。
【0009】
このように、間接的にガス圧力を検出する方式では、ガス圧力がオイル圧力に変換される際に圧力の散逸が生じ、センサの感度や精度が大幅に減衰する。また、シリコンオイルを使用しているため高熱のガスを検出すると発火などの危険があり、耐熱性においても制限を受けることが多い。
【0010】
また、振動子はシリコン基板の中に埋設状に配置されているから、振動外力に対して振動子の感度が少し鈍いという欠点もある。振動子はシリコン基板に密着するのではなく、できるだけ結合部位が小さい方が感度が高いはずである。
【0011】
更に、この振動形圧力センサの振動子は電磁力で強制振動されるため、電気的なノイズが生じやすい。つまり、導線がシリコン基板から振動子の間を走っているから外部誘導を拾いやすく、強制振動を生起させる周波数に誤差を誘導するだけでなく、ガス圧力による共振周波数の変化の検出にも電気ノイズの混入は避けがたく、誤差を誘引する原因となっている。
【0012】
従って、本発明は、圧力センサが有するダイアフラムにより腐食性ガスを直接受圧する構造にすることにより測定精度を向上でき、シリコンオイルを使用しない構造にして耐熱性を発現でき、しかも振動子に対する電気回路を除去することにより電気的ノイズが混入することのない高感度・高精度の振動形圧力センサを提供することを目的とする。
【0013】
【課題を解決するための手段】
上記目的を達成するため、請求項1の発明は、内部を受圧用空間部6とするステンレス鋼製の環状枠体2と、環状枠体2の上方開口を閉鎖するようこれと一体に形成されて裏面側から流体圧力を受ける受圧用ダイヤフラム4と、受圧用ダイヤフラム4の表面側に間隔を置いて突設された左右一対の脚部14、14とこの脚部14、14の間に架橋された金属製の振動板16とから成るブリッジ構造を有する振動子12と、振動子12の周囲を取り囲むように前記環状枠体2の上面側に気密状に固定した環状壁体8と、環状壁体8の上方開口部を密閉して前記振動子12の存在する内部空間を真空室10とする光透過用の透光部20と、前記真空室10の外方に位置して設けられ、受圧用ダイヤフラムの振動子12を共振させるピエゾアクチェータ55と、前記透光部20を介して真空室10に光ビームを入射させ、ピエゾアクチェータ55の振動外力により共振する振動子12によって反射された光ビームを透光部20から外側に射出させ、この反射ビームを検出して振動子の共振周波数を検出する測定用光学手段22とから構成され、前記測定用光学手段22により検出した共振周波数から受圧用ダイアフラム4が感受する流体圧力Pを検出することを発明の基本構成とするものである。
【0014】
請求項2の発明は、内部を受圧用空間部6とするステンレス鋼製の環状枠体2と、環状枠体2と一体に形成されて裏面側から流体圧力を受ける受圧用ダイヤフラム4と、受圧用ダイヤフラム4の表面側に間隔を置いて突設された左右一対の脚部14、14とこの脚部14、14の間に架橋された金属製の振動板16とから成るブリッジ構造を有する振動子12と、振動子12の周囲を取り囲むように前記環状枠体2の上面側に気密状に固定した環状壁体8と、環状壁体8の上方開口部を密閉して前記振動子12の存在する内部空間を真空室10とする光透過用の透光部20と、前記透光部20の外側に配置され、受圧用ダイヤフラム4を静電力により強制振動させて振動子12を共振させる電極部76と、前記透光部20を介して真空室10に光ビームを入射させ、ピエゾアクチェータ55の振動外力により共振する振動子12によって反射された光ビームを透光部20から外側に射出させ、この反射ビームを検出して振動子の共振周波数を検出する測定用光学手段22とから構成され、前記測定用光学手段22により検出した共振周波数から受圧用ダイアフラム4が感受する流体圧力Pを検出することを発明の基本構成とするものである。
【0015】
請求項3の発明は、請求項1又は請求項2の発明において、測定用光学手段22は、光ビームを入射させる入射用光ファイバ28と、入射ビームを振動子12の表面に集中させる入射用レンズ24と、振動子12による反射ビームを集束させる反射用レンズ26と、反射ビームを誘導する反射用光ファイバ30とから構成するようにしたものである。
【0016】
請求項4の発明は、請求項1又は請求項2の発明において、測定用光学手段22は、振動子12による反射ビームを受光するレーザドップラ振動計74から構成するようにしたものである。
【0017】
請求項5の発明は、測定用光学手段22は、反射ビームを受光する二分割受光素子84から構成され、反射ビームの変動を二分割受光素子84の差動出力により検出して振動子12の共振周波数を導出するようにしたものである。
【0021】
【発明の実施の形態】
以下に、本発明に係る振動形圧力センサの実施形態を添付する図面に従って詳細に説明する。
【0022】
図1は本発明に係る振動形圧力センサの実施形態の縦断面図である。この振動形圧力センサ1は、ガス等の流体が流入する受圧用空間部6を有した環状の枠体2と、枠体2の上面に流体圧力を直接受けるように形成された受圧用ダイアフラム4と、更にその上面に配置された環状の壁体8と、壁体8の上方開口部を密閉する透光部20から構成されている。
【0023】
枠体2と受圧用ダイアフラム4は腐食性流体と接触する場合を考慮して高耐食性ステンレススチールで構成され、例えばSUS316Lのステンレスが好適である。受圧用ダイアフラム4と壁体8と透光部20で画成された空間は真空に設定されて真空室10となっている。
【0024】
真空室10の中において、受圧用ダイアフラム4の表面には振動子12が配置されている。この振動子12は、受圧用ダイアフラム4に突設された左右一対の脚部14・14と、その上に架橋された振動板16から構成されている。
【0025】
脚部14・14は雑音である空間誘導を遮断するためにSiO2などの絶縁体で形成されることが好ましく、振動板16は真空室外から印加される振動外力に良く追従して共振しやすい金属で形成されている。しかも、振動板16は両端を脚部14・14で支持されるだけであるから、振動板16は共振性が高く、高感度である。
【0026】
この実施形態では、壁体8はFe−42%Ni合金で形成されているが、材質は特に問わない。透光部20は光ビームを外側から入射させるため透光性材料で形成されており、例えば高耐熱性のパイレックスガラスが利用できる。また、真空室10にはゲッター18が配置されており、その吸着性により真空室を高真空に保持している。ゲッター18としては非蒸発型ゲッターNEG(Non Evaporable Getter)が好ましく、具体的にはFe−V−Zr系材料などが利用できる。
【0027】
透光部20の上方には測定用光学手段22が配置されている。この測定用光学手段22の構成には種々の方式が有り、この実施形態では、レーザビームを自在に誘導する入射用光ファイバ28と、レーザビームを集光して振動板16の表面で焦点を結ぶようにする入射光用レンズ24と、共振する振動板16から反射された反射ビームを集光する反射光用レンズ26と、集光された反射ビームを自在に誘導する反射用光ファイバ30から構成されている。反射用光ファイバ30により誘導された反射ビームは分析器(図示せず)に接続され、共振周波数の測定を通して受圧用ダイアフラム4への流体圧力が検出される。
【0028】
図2は受圧用ダイアフラムと振動子の取付構造を示す斜視図である。受圧用ダイアフラム4の形状は円板で、その中央上面に脚部14・14により両端を支持された振動板16が配置されている。従って、脚部14・14と振動板16からなる振動子は架橋構造のブリッジ体を形成する。
【0029】
このブリッジ体を構成する振動子16の共振周波数fnは理論的に次式で表される。
n=[b/(2π)](E/ρ)1/2(h/L2)[1+γ(L/h)20+εP)]1/2
ここで、b・γは各共振モードにおける固有値、E・ρ・h・Lはブリッジ体のヤング率・密度・厚さ・長さであり、ε0・εPはブリッジ体の初期歪及び印加歪である。
【0030】
受圧用ダイアフラム4に適当な流体圧力Pが印加されると、ブリッジ体の印加歪εPは理論的に次式で与えられる。
εP=3P(1−ν2)[1−[L/(2r)]2]×r2/(8EH2)
ここで、ν・Eは受圧用ダイアフラム4のポアソン比・ヤング率であり、r・Hは受圧用ダイアフラム4の半径・厚さである。
【0031】
このように、図2で示されるブリッジ体の振動子12の共振周波数fnは流体圧力Pから理論的に演算できる。即ち、流体圧力Pから印加歪εPを計算し、この印加歪εPを用いて共振周波数fを計算する。但し、初期歪ε0は実測によって得られる。しかし、この共振周波数fnは理論値であり、実際に出現する共振周波数の概算値を与えるに過ぎない。この実施形態では、反射ビームの方向振動や強度振動や周波数振動などをフーリエ変換して直接共振周波数fnを実測する方式を採用する。
【0032】
図3は振動板の共振状態を示す説明図である。前述したように、受圧用ダイアフラム4の表面には、脚部14、14を介して振動板16が架橋されたブリッジ構造の振動子12が配置されている。(A)に示されるように、この振動子12に対して振動外力を加えると、振動板16は矢印c方向に共振周波数f0で共振する。
【0033】
次に、(B)に示されるように、受圧用ダイアフラム4の裏面に流体圧力Pが直接加わると、ダイアフラム4は上方に撓み、振動板16は左右方向に引張力Fを受けて変形する。振動板16の変形はその共振周波数をf0からf0+Δfへとシフトさせる。このf0+Δfが測定すべき共振周波数fnである。
【0034】
図4は振動板の共振周波数が流体圧力により変化する状態の説明図である。横軸は周波数で縦軸は共振強度を示している。流体圧力Pがゼロのとき、共振周波数はf0であり、流体圧力P(>0)が印加されると共振周波数がf0+Δf=fnへと増大方向にシフトすることが示されている。この共振周波数fnから流体圧力Pを一意的に導出する事ができる。共振ピークはシャープなほど共振性能が高いことを意味する。本発明の振動子はブリッジ構造を採用しているから振動板16の外力応答性が極めて高く、共振ピークのシャープ性が極めて先鋭であると言える。
【0035】
図5は本発明のブリッジ構造の振動子の製造工程図である。(A)では、SUS316Lステンレス製の円形の受圧用ダイアフラム4が配置される。(B)では、受圧用ダイアフラム4の表面と裏面に、TEOS−PLASMA−CVD法(Tetra-Ethoxy-Silan Plasma Chemical Vapor Deposition)により、5μm厚のSiO2膜32と裏面側SiO2膜32aが形成される。
【0036】
(C)では、TEOS−PLASMA−CVD法により受圧用ダイアフラム4の裏面側に廻り込んで成膜された裏面側SiO2膜32aが、CF4プラズマにより全面エッチングされて除去される。
【0037】
(D)では、SiO2膜32の表面に、電子ビーム蒸着によりAu/Cr膜34が30nm/10nmだけ積層形成される。(E)では、このAu/Cr膜34の表面にポジレジストであるPMER P−AR900(高精度厚膜メッキ用ポジタイプフォトレジスト 東京応化工業株式会社製)のフォトレジスト膜36が塗着形成される。
【0038】
(F)では、フォトマスクを介してフォトレジスト膜36の所要部に紫外線を照射し、現像処理により照射領域のフォトレジストを除去してフォトレジスト膜36に除去領域38を形成する。
【0039】
(G)では、この除去領域38にNiを電界メッキしてNi膜40を形成する。使用したNi電解メッキ液は硫酸ニッケル96g、塩化ニッケル18g、ホウ酸12gをDI水(Deionized Water)400mLに溶解して形成されている。電解メッキの条件は浴温度60℃、電流値5mA、デューティサイクル10msecである。Ni膜40はI字状に形成される。
【0040】
(H)では、ポジレジスト剥離液によりフォトレジスト膜36を全面的に剥離し、同時にフォトレジスト膜36の下面にあるAu/Cr膜34も専用のウェットエッチング液により除去する。
【0041】
(I)では、フッ酸(Buffered HF)によりSiO2膜34をエッチングする。このとき、Ni膜40の下側にあるSiO2膜32もフッ酸の廻り込みによりエッチングされ、SiO2膜34の一部が脚部14・14として残留する。
【0042】
最後に、DI水により洗浄される。製作されたNiブリッジ構造の振動子と下部のステンレス製ダイアフラム4のスティッキングを防止するため、DI水からメタノール→ジエチルエーテル→フロリナートに置換されながら洗浄される。最終的に、145℃のベーク炉でフロリナートと共に乾燥される。
【0043】
図6は本発明に係る振動式圧力センサの組立工程図である。(A)では、削り出しにより製作されたFe−42%Niの環状の壁体8をステンレス製の枠体2の上に載置し、レーザ溶接により接合される。
【0044】
次に(B)では、パイレックスガラス製の円板状の透光部20を壁体8の上に載置して開口部8aを直流電源Eを用いて陽極接合により密閉する。この密閉作業は真空中で行なわれ、封止内部には非蒸発型ゲッター(NEG)であるゲッター18を設置する。真空中で密閉されるから、真空室10が簡単に形成される。
【0045】
(C)では、透光部20の外側上方に測定用光学手段22が配置される。この光学手段22は、入射用光ファイバ28、入射用レンズ24、反射用レンズ26及び反射用光ファイバ30から構成されている。
【0046】
図7はピエゾアクチュエータ駆動によるブリッジ型振動子の性能測定図である。チャンバ50の中は真空室66であり、前述した真空室10に対応している。この真空室66は排気パイプ68を介してドライポンプ(図示せず)により矢印e方向に排気されて適度の真空に設定される。この真空室66の圧力は基礎圧力(Base Pressure)Pbと称する。
【0047】
真空室66の中には模擬圧力センサ52が配置されている。この模擬圧力センサ52は、容器54の上面を受圧用ダイアフラム4で密閉し、ダイアフラム4の上に振動板16の両端を脚部14・14で支持したブリッジ型振動子12を配置して構成されている。
【0048】
容器54の内部空間は圧力室56になり、注入パイプ58及び挿入パイプ60を介してN2ガスを矢印d方向に供給し、N2ガスにより所要の圧力に調節される。従って、この圧力室56は前述した流体を流入させる受圧用空間部6に相当する。この圧力室56の圧力は印加圧力(Applied Pressure)Pと称する。
【0049】
容器54の外周面には、強制振動手段57の一つとしてピエゾアクチュエータ55が固定され、ネットワークアナライザ70からパワーアンプ72を介して電圧駆動される。その結果、ピエゾアクチュエータ57は振動し、この振動外力により振動板16は共振状態に入る。
【0050】
チャンバ50の上面はOリング62を介してガラス窓64により密閉されている。このガラス窓64は透光部20に相当している。ガラス窓64の上方にはレーザドップラ振動計74が配置され、ネットワークアナライザ70によって制御される。このレーザドップラ振動計74は測定用光学手段22として配置されている。
【0051】
レーザドップラ振動計74から特定周波数のレーザビームを矢印a方向に入射させると、レーザビームはガラス窓64を透過して振動板16の表面により反射される。矢印b方向の反射ビームは再びガラス窓64を透過してレーザドップラ振動計74に入射する。
【0052】
振動板16は上下に振動しており、この振動により光ドップラー効果により反射ビームの周波数が変化し、この周波数変動から振動板の共振周波数が測定される。この共振周波数の導出はレーザドップラ振動計74の内部回路で行なってもよいが、ネットワークアナライザ70で分析してもよい。
【0053】
図8は印加圧力Pに対する振動板の共振周波数fnの関係図である。印加圧力PはN2ガスの供給量によって自在に制御され、50〜100(kPa)の間で変化された。そのとき、共振周波数fnは171〜180.5(kHz)まで直線的に変化することが分った。
【0054】
共振周波数fnと印加圧力Pとが極めて高い直線性を示すことから、共振周波数fnから印加圧力Pの導出が極めて簡単になり、特別な電子回路構成が不要であるという利点がある。
【0055】
つまり、本発明では、振動子を外界から全く分離して構成しており、外界のノイズが振動子に影響しない構成を採用している。しかも、振動子と非接触状態で振動子を共振させ、同時に振動子と非接触状態で光学的に検出を行なっているから、全てのプロセスにおいて振動子が外乱を受ける事は全くないのである。この外乱遮断構成が本発明に係る振動形圧力センサの高性能性を保証しているのである。
【0056】
前述した理論式を用いて、共振周波数fnと印加歪εPの関係を図8に破線で示す。この破線の直線性も極めて高いが、その勾配は実験直線と多少異なっていることが分る。実験条件が理論条件と多少ずれるために勾配のずれが生じることは理解できるが、実験的直線性の高さはこの振動形圧力センサの構造的単純性と高ノイズ遮断性の結果であると考えられる。
【0057】
図9は真空室内の基礎圧力PbとQ値の関係図である。真空室66の真空度はゼロである事が好ましいが、実験的には不純物ガスが混入することは避けられない。そこで、その真空度を基礎圧力Pbで表現している。
【0058】
基礎圧力Pbが小さくなるに従ってQ値は大きくなっており、Q値が大きいほど共振性能が高いことを示すから、基礎圧力Pbが高いほど振動子の共振性能がよくなる事が分る。
【0059】
この理由はスクイズドフィルム効果で説明できる。スクイズドフィルム効果とは、狭い空間にある流体が押し出される際に大きな粘性抵抗が生じる事である。つまり、基礎圧力Pbを低下させると、分子の平均自由行程が大きくなり、粘性係数が小さくなって、ブリッジ構造の振動板16の振幅が減衰し難くなると考えられ、このことによりQ値が上昇するのである。
【0060】
従って、本発明の振動形圧力センサでは振動子を真空室内に配置しているから、共振性能が極めて高く保持されることになる。そして、この真空室の真空度を出来るだけ高真空値に設定する事が重要になる。図8及び図9が本発明の振動形圧力センサの高共振特性を実証している。
【0061】
図10は静電駆動による振動形圧力センサの性能測定図である。この方式では、強制振動手段57として交流静電誘導を利用する。ステンレス製の受圧用ダイアフラム4をアースに接続し、このアースとガラス窓64の表面に配置された電極部76の間に交流電圧を印加する。電極部76としては例えば銅箔テープが利用できる。
【0062】
交流電圧はネットワークアナライザ70からパワーアンプ78を介して電極部76に印加される。図11は静電駆動に用いられる交流電圧の一例の波形図である。交流電圧の印加によって、電極部76に静電誘導される誘導電荷が正負に変化し、電極部76と受圧用ダイアフラム4の間に静電引力と機械的復元力が交互に作用する。この現象を本発明では交流静電誘導と称している。その結果、振動板16が間接的に強制振動され、共振状態になる。
【0063】
脚部14・14は絶縁性のSiO2によって形成されるから、振動板16がNi金属から形成されていても、振動板16に電荷が静電誘導される事はない。しかし、脚部14・14をNiなどの導体から形成した場合には、振動板16自体に静電誘導が生じ、電極部76との間に交流静電誘導が生じて強制振動される事になる。
【0064】
このように、振動板16を強制振動させるためには、脚部14・14を導体および絶縁体のどちらで形成しても構わない。但し、SiO2などの絶縁体で形成した場合には、振動板16が外部空間に存在する電磁波の誘導を受けないから、ノイズ信号が振動板16に混入することはない。この点において、脚部14・14が絶縁性であるほうが導電性であるよりも好ましい。
【0065】
図10の装置の構成は、強制振動手段57が静電駆動である点を除いて図7と同一であるから、同一部分の説明はここでは省略する。
【0066】
図12は静電駆動による振動板の周波数特性の一例図である。反射ビームをレーザドップラ振動計74に入力し、その信号を高速フーリエ変換してパワースペクトルに変換する。図に示す曲線はこのパワースペクトルに相当する。このパワースペクトルのピーク周波数は172.7kHzであり、このピーク周波数が共振周波数に相当し、これから流体圧力Pを導出することができる。
【0067】
図13は2分割受光素子を用いた測定用光学手段の説明図である。2分割受光素子には2分割フォトダイオードや2分割フォトトランジスタなど各種の素子が知られているが、ここでは2分割フォトダイオードを用いて説明する。
【0068】
レーザ光源80からレーザビーム82を矢印方向に射出し、入射用光ファイバ28を用いてレーザビームを自在に誘導しながら、入射用レンズ24から矢印a方向に振動板16に入射させる。振動板16は共振状態に有り、反射ビームは反射方向に振動しながら矢印b方向に反射する。
【0069】
2分割フォトダイオード84は、2個のフォトダイオードが並設されて構成されており、振動板16が圧力を印加されない状態で共振するときに、2個のフォトダイオードは等しい強度の反射ビームを受けるように構成されている。
【0070】
振動板16が振動すると、反射ビームの反射方向が振動するから、2個のフォトダイオードが受ける受光量が変化し、受光量の差を前述したネットワークアナライザ70に出力する。この差動出力は振動板16の共振周波数に等しい周波数で振動するから、ネットワークアナライザ70で高速フーリエ変換などを利用して周波数分析すると、その共振周波数を測定できる。
【0071】
図14は2分割受光素子を用いた測定用光学手段の変形例の説明図である。本変形例では、入射用光ファイバや入射用レンズを用いずに、レーザダイオード等のレーザ光源80から透光部20を介して直接レーザビームを振動板16に入射させるものである。この方式でも図13と同様の作用効果を生じるので、その詳細は省略する。また、レーザ光源などの発光素子と2分割受光素子などの受光素子を集積化してもよいことは勿論である。
【0072】
以上のように、本発明では、測定用光学手段22として光ファイバとレンズを組み合わせる方式、レーザドップラ振動計を用いる方式、2分割受光素子を用いる方式を例示したが、その他の公知の方式も採用できる。また、振動子の強制振動手段として、ピエゾアクチュエータ駆動方式と交流静電駆動方式を使用したが、外部から振動外力を与える他の公知の方式も当然使用する事ができる。
【0073】
このように、本発明は上記実施形態に限定されるものではなく、本発明の技術的思想を逸脱しない範囲における種々の変形例・設計変更などをその技術的範囲内に包含することは云うまでもない。
【0074】
【発明の効果】
本願請求項1又は請求項2の発明によれば、ステンレス製の受圧用ダイヤフラム流体圧力を受けるから、腐食性流体の圧力測定に使用しても高耐久性を実現できる。また、振動子の周囲を取り囲むように配置された壁体と、この壁体の開口部を密閉して振動子の存在する内部空間を真空室とする光透過用の透光部を設けたから、透光部を介した光ビームにより振動子の共振周波数を非接触で高精度に検出できる特性がある。しかも、振動板が真空中に存在するから、振動板の振幅が減衰し難く、高感度に共振することができる特徴を有する。
また、振動子が左右一対の脚部に振動板を架橋したブリッジ構造をとるから、振動板が共振しやすい構造であり、振動外力に対し高感度に応答共振できる。従って、共振周波数の測定精度が向上し、その結果流体圧力の測定精度を向上させることができる。
更に、真空室外から振動外力を印加する構造にしているから、振動子に対する配線が不要となり、外部空間に散在する電磁波ノイズの誘導混入を遮断できる。また、光透過用の透光部を介して振動子に対し非接触に光ビームを入射且つ反射させることができるから、振動子に外乱が作用する事がなく、非接触の光学手段により共振周波数の高精度測定が可能になる。
ことに、請求項1の発明では、受圧用ダイアフラム、壁体又は透光部にピエゾアクチュエータと当接させ、ピエゾアクチュエータを振動させて受圧用ダイアフラムの振動子を強制振動させる構造を採用するから、受圧用ダイアフラムや振動子から回路配線を排除でき、電気的ノイズの混入を遮断できる。
同様に、請求項2の発明では、透光部の外側に配置された電極とステンレス製の受圧用ダイアフラムを静電気力により強制振動させるから、ダイアフラムや振動子から回路配線を除去でき、電気的ノイズを遮断して共振周波数を正確に測定することを可能にする。
【0077】
請求項3の発明では、測定用光学手段を、光ビームを入射させる入射用光ファイバと、入射ビームを振動子の表面に集中させる入射用レンズと、振動子による反射ビームを集束させる反射用レンズと、反射ビームを誘導する反射用光ファイバから構成するから、入射ビームと反射ビームの誘導が自在になり、しかもレンズによりビームを集束させて振動子に入射させるから、振動子の共振が反射ビームの方向振動(揺らぎ)に正確に変換され、反射用光ファイバに入射する反射ビームの光強度の変化が確実に得られる。
【0078】
請求項4の発明によれば、測定用光学手段を反射ビームを受光するレーザドップラ振動計から構成するから、振動子の共振周波数をレーザドップラ法により正確に検出でき、高速且つ高精度測定を実現する。
【0079】
請求項5の発明によれば、測定用光学手段を、二分割受光素子から構成するから、反射ビームの方向振動を二分割受光素子の差動出力の振動に即座に変換でき、この振動に対し高速フーリエ変換などの周波数分析を行う事により、共振周波数を単純且つ正確に導出できる。
【図面の簡単な説明】
【図1】本発明に係る振動形圧力センサの実施形態の縦断面図である。
【図2】受圧用ダイアフラムと振動子の取付構造を示す斜視図である。
【図3】振動板の共振状態を示す説明図である。
【図4】振動板の共振周波数が流体圧力により変化する状態の説明図である。
【図5】本発明のブリッジ構造の振動子の製造工程図である。
【図6】本発明に係る振動式圧力センサの組立工程図である。
【図7】ピエゾアクチュエータ駆動によるブリッジ型振動子の性能測定図である。
【図8】印加圧力Pに対する振動板の共振周波数fnの関係図である。
【図9】真空室内の基礎圧力PbとQ値の関係図である。
【図10】静電駆動による振動形圧力センサの性能測定図である。
【図11】静電駆動に用いられる交流電圧の一例の波形図である。
【図12】静電駆動による振動板の周波数特性の一例図である。
【図13】2分割受光素子を用いた測定用光学手段の説明図である。
【図14】2分割受光素子を用いた測定用光学手段の変形例の説明図である。
【符号の説明】
1は振動形圧力センサ、2は枠体、4は受圧用ダイアフラム、6は受圧用空間部、8は壁体、10は真空室、12は振動子、14は脚部、16は振動板、18はゲッター、20は透光部、22は測定用光学手段、24は入射用レンズ、26は反射用レンズ、28は入射用光ファイバ、30は反射用光ファイバ、32はSiO2膜、32aは裏面SiO2膜、34はAu/Cr膜、36はフォトレジスト膜、38は除去領域、40はNi膜、50はチャンバ、52は模擬圧力センサ、54は容器、55はピエゾアクチュエータ、56は圧力室、57は強制振動手段、58は注入パイプ、60は挿入パイプ、62はOリング、64はガラス窓、66は真空室、68は排気パイプ、70はネットワークアナライザ、72はパワーアンプ、74はレーザドップラ振動計、76は電極部、78はパワーアンプ、80はレーザ光源、82はレーザビーム、84は2分割フォトダイオード、Eは直流電源、f0は共振周波数、Δfは共振周波数の変化量、fnは共振周波数、hは厚さ、Hは厚さ、Lは長さ、Pは流体圧力(印加圧力)、Pbは基礎圧力、rは半径。

Claims (5)

  1. 内部を受圧用空間部とするステンレス鋼製の環状枠体と環状枠体と一体に形成されて裏面側から流体圧力を受ける受圧用ダイヤフラムと、受圧用ダイヤフラムの表面側に間隔を置いて突設された左右一対の脚部とこの脚部の間に架橋された金属製の振動板とから成るブリッジ構造を有する振動子と、振動子の周囲を取り囲むように前記環状枠体の上面側に気密状に固定した環状壁体と、環状壁体の上方開口部を密閉して前記振動子の存在する内部空間を真空室とする光透過用の透光部と、前記真空室の外方に位置して設けられ、受圧用ダイヤフラムの振動子を共振させるピエゾアクチェータと、前記透光部を介して真空室に光ビームを入射させ、ピエゾアクチェータの振動外力により共振する振動子によって反射された光ビームを透光部から外側に射出させ、この反射ビームを検出して振動子の共振周波数を検出する測定用光学手段とから構成され、前記測定用光学手段により検出した共振周波数から受圧用ダイアフラムが感受する流体圧力を検出することを特徴とする振動形圧力センサ。
  2. 内部を受圧用空間部とするステンレス鋼製の環状枠体と、環状枠体と一体に形成されて裏面側から流体圧力を受ける受圧用ダイヤフラム4、受圧用ダイヤフラムの表面側に間隔を置いて突設された左右一対の脚部とこの脚部の間に架橋された金属製の振動板とから成るブリッジ構造を有する振動子と、振動子の周囲を取り囲むように前記環状枠体の上面側に気密状に固定した環状壁体と、環状壁体の上方開口部を密閉して前記振動子の存在する内部空間を真空室とする光透過用の透光部と、前記透光部の外側に配置され、受圧用ダイヤフラムを静電力により強制振動させて振動子を共振させる電極部と、前記透光部を介して真空室に光ビームを入射させ、ピエゾアクチェータの振動外力により共振する振動子によって反射された光ビームを透光部から外側に射出させ、この反射ビームを検出して振動子の共振周波数を検出する測定用光学手段とから構成され、前記測定用光学手段により検出した共振周波数から受圧用ダイアフラムが感受する流体圧力を検出することを特徴とする振動形圧力センサ。
  3. 前記測定用光学手段は、光ビームを入射させる入射用光ファイバと、入射ビームを振動子の表面に集中させる入射用レンズと、振動子による反射ビームを集束させる反射用レンズと、反射ビームを誘導する反射用光ファイバとから構成される請求項1又は請求項2に記載の振動形圧力センサ。
  4. 前記測定用光学手段は、振動子による反射ビームを受光するレーザドップラ振動計から構成される請求項1又は請求項2に記載の振動形圧力センサ。
  5. 前記測定用光学手段は、反射ビームを受光する二分割受光素子から構成され、反射ビームの変動を二分割受光素子の差動出力により検出して振動子の共振周波数を導出する請求項1又は請求項2に記載の振動形圧力センサ。
JP2002011528A 2002-01-21 2002-01-21 振動形圧力センサ Expired - Fee Related JP4082907B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2002011528A JP4082907B2 (ja) 2002-01-21 2002-01-21 振動形圧力センサ
EP03701810A EP1471340B1 (en) 2002-01-21 2003-01-20 Vibrating type pressure sensor
PCT/JP2003/000442 WO2003062778A1 (fr) 2002-01-21 2003-01-20 Capteur de pression de type vibrant
US10/486,331 US6938489B2 (en) 2002-01-21 2003-01-20 Oscillatory type pressure sensor
DE60323728T DE60323728D1 (de) 2002-01-21 2003-01-20 Drucksensor des vibrationstyps

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002011528A JP4082907B2 (ja) 2002-01-21 2002-01-21 振動形圧力センサ

Publications (2)

Publication Number Publication Date
JP2003214966A JP2003214966A (ja) 2003-07-30
JP4082907B2 true JP4082907B2 (ja) 2008-04-30

Family

ID=27606017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002011528A Expired - Fee Related JP4082907B2 (ja) 2002-01-21 2002-01-21 振動形圧力センサ

Country Status (5)

Country Link
US (1) US6938489B2 (ja)
EP (1) EP1471340B1 (ja)
JP (1) JP4082907B2 (ja)
DE (1) DE60323728D1 (ja)
WO (1) WO2003062778A1 (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7162918B2 (en) * 2001-05-15 2007-01-16 Baker Hughes Incorporated Method and apparatus for downhole fluid characterization using flexural mechanical resonators
US7444880B2 (en) * 2003-12-12 2008-11-04 California Institute Of Technology Method and apparatus for measuring the mechanical response of micro-electro-mechanical systems
KR20050111662A (ko) * 2004-05-21 2005-11-28 삼성전자주식회사 압력 및 진동감지장치
ITTO20050316A1 (it) * 2005-05-10 2006-11-11 Varian Spa Sensore di pressione
US20070236213A1 (en) * 2006-03-30 2007-10-11 Paden Bradley E Telemetry method and apparatus using magnetically-driven mems resonant structure
US7465916B2 (en) 2006-10-19 2008-12-16 Fujikura Ltd. Optical detection sensor
US7615736B2 (en) 2007-05-31 2009-11-10 Fujikura Ltd. Optical sensor
US20100233353A1 (en) * 2009-03-16 2010-09-16 Applied Materials, Inc. Evaporator, coating installation, and method for use thereof
RU2470274C1 (ru) * 2011-07-29 2012-12-20 Государственное учреждение "Арктический и Антарктический научно-исследовательский Институт" (ГУ "ААНИИ") Способ и устройство для измерения давления внутри трубопроводов
KR101253334B1 (ko) * 2011-10-07 2013-04-11 숭실대학교산학협력단 안압 센서 및 그 제조 방법
US20130300571A1 (en) * 2012-04-18 2013-11-14 Farrokh Mohamadi Interrogation of active and passive proppants for real-time monitoring of fractured wells
TWI477752B (zh) * 2012-05-02 2015-03-21 Nat Applied Res Laboratories Piezoelectric vacuum gauge and its measuring method
GB2509105B (en) * 2012-12-20 2017-02-22 Oxsensis Ltd Mechanical resonator sensor
RU2521275C1 (ru) * 2013-02-15 2014-06-27 Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук Устройство для измерения давления
US9454158B2 (en) 2013-03-15 2016-09-27 Bhushan Somani Real time diagnostics for flow controller systems and methods
US10570061B2 (en) * 2013-11-29 2020-02-25 Calix Ltd Process for manufacture of Portland cement
US9671303B2 (en) 2015-03-10 2017-06-06 Ford Global Technologies, Llc Method and system for laser pressure transducer
US20180164134A1 (en) * 2015-07-28 2018-06-14 Nazhiyuan Technology (Tangshan), LLC. Pneumatic sensor in electronic cigarette, device for processing airflow, and electronic cigarette
US10983538B2 (en) 2017-02-27 2021-04-20 Flow Devices And Systems Inc. Systems and methods for flow sensor back pressure adjustment for mass flow controller
LU102636B1 (en) * 2021-03-04 2022-09-05 Stratec Se Sensor for determining the oscillating frequency in a fluidic oscillating nozzle and a method using the sensor
CN116222870B (zh) * 2023-05-09 2023-07-11 山东杨嘉汽车制造有限公司 一种干粉罐车罐体及其监控系统

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56122925A (en) * 1980-02-29 1981-09-26 Shimadzu Corp Sensor
JPS57153233A (en) * 1981-03-18 1982-09-21 Matsushita Electric Ind Co Ltd Water pressure detecting device
GB2197069B (en) * 1986-11-03 1990-10-24 Stc Plc Sensor device
GB2223582B (en) * 1988-10-04 1992-06-17 Stc Plc Transducer device
US5188983A (en) * 1990-04-11 1993-02-23 Wisconsin Alumni Research Foundation Polysilicon resonating beam transducers and method of producing the same
US5090254A (en) * 1990-04-11 1992-02-25 Wisconsin Alumni Research Foundation Polysilicon resonating beam transducers
FR2680574B1 (fr) * 1991-08-23 1996-04-12 Schlumberger Ind Sa Microcapteur a poutre vibrante compense en temperature.
JPH076852A (ja) 1993-06-15 1995-01-10 Toshiba Corp 避雷装置及びその劣化検出方法
JPH10132691A (ja) * 1996-10-31 1998-05-22 Hitachi Ltd ダイアフラム
US5844236A (en) * 1997-01-17 1998-12-01 Honeywell Inc. Multi-wavelength optical drive/sense readout for resonant microstructures
JP2002267558A (ja) * 2001-03-14 2002-09-18 Akebono Brake Ind Co Ltd テレメトリック圧力センサ

Also Published As

Publication number Publication date
US6938489B2 (en) 2005-09-06
DE60323728D1 (de) 2008-11-06
EP1471340A4 (en) 2006-09-06
US20040231424A1 (en) 2004-11-25
WO2003062778A1 (fr) 2003-07-31
EP1471340B1 (en) 2008-09-24
JP2003214966A (ja) 2003-07-30
EP1471340A1 (en) 2004-10-27

Similar Documents

Publication Publication Date Title
JP4082907B2 (ja) 振動形圧力センサ
US8272274B2 (en) Microfluidic device and methods of operation and making
US7895905B2 (en) Flowmeter
US7921737B2 (en) Microfluidic device and method of operation
US6647778B2 (en) Integrated microtube sensing device
US7581429B2 (en) Microfluidic device and method of operation
JP5118785B2 (ja) Mems圧力センサ
JPS6263828A (ja) 振動式トランスジューサ
GB2221302A (en) Coriolis-effect fluid mass flow and density sensor made by a micromachining method
US11879832B2 (en) Photoacoustic spectroscope having a vibrating structure as sound detector
JP2008232886A (ja) 圧力センサ
US8695418B2 (en) Fluidic systems and methods of determining properties of fluids flowing therein
JP2006322935A (ja) 圧力センサー
JP4930941B2 (ja) カンチレバー型センサ
Schlögl et al. Mechanical and electrical characterization of resonant piezoelectric microbridges for strain sensing
JPH10293077A (ja) 広範囲圧力計
JP2012233779A (ja) Sprセンサとsprセンサを搭載する検査システム
JP2008196932A (ja) 絶対圧センサ
Corman Low pressure Encapsulation techniques for silicon resonators
KR20130142046A (ko) 정전 구동형 캔틸레버 센서
Ying et al. Direct bonding SOI Wafer based MEMS cantilever resonator for trace gas sensor applicaiton
GB2484454A (en) Sensing a property of a fluid using two resonant elements
Beeby et al. Silicon resonant strain gauges fabricated using SOI wafers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080212

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4082907

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140222

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees