JP2009519435A - 短縮したインデックス時間のためのタンデム・ハンドラ・システムおよび方法 - Google Patents

短縮したインデックス時間のためのタンデム・ハンドラ・システムおよび方法 Download PDF

Info

Publication number
JP2009519435A
JP2009519435A JP2008538882A JP2008538882A JP2009519435A JP 2009519435 A JP2009519435 A JP 2009519435A JP 2008538882 A JP2008538882 A JP 2008538882A JP 2008538882 A JP2008538882 A JP 2008538882A JP 2009519435 A JP2009519435 A JP 2009519435A
Authority
JP
Japan
Prior art keywords
test
socket
dut
tester
handler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008538882A
Other languages
English (en)
Inventor
ロバーツ,ハワード
Original Assignee
ロバーツ,ハワード
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/264,949 external-priority patent/US7508191B2/en
Application filed by ロバーツ,ハワード filed Critical ロバーツ,ハワード
Publication of JP2009519435A publication Critical patent/JP2009519435A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2893Handling, conveying or loading, e.g. belts, boats, vacuum fingers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)
  • Tests Of Electronic Circuits (AREA)

Abstract

自動化された試験設備(ATE)で試験するシステムが、少なくとも一つの試験資源を有する試験器と、タンデム・ハンドラと、試験のたびごとに試験資源を並列接続を介してデュアル・ソケットのいずれか一方に切り換え可能式に接続する多重化リレーとを含む。各アームが、個別ソケットの特定の一方について動作し、試験すべき次のデバイスを取得し、該デバイスをソケット中に置き(他方のソケットであるデバイスに対して試験が実行されている間に)、ソケット中のデバイスについて試験が完了したらソケットからそのデバイスをどけ、その後、すべての載置された試験すべきデバイスが試験され終わるまで(または他の形で試験の中断が起こるまで)繰り返す。多重化リレーはマスターとして作用するタンデム・ハンドラおよびスレーブとしての試験器に応じて、ソケット間の切り換えを行う。一方のソケットの該当するピンについて試験資源を介した試験が完了すると、試験資源は切り換え可能式に多重化リレーを介して他方のソケットの機能的に同じ該当するピンに接続される。タンデム・ハンドラは多重化および試験開始を、試験結果/試験終了信号によって制御する。タンデム・ハンドラは自分自身、多重化リレーおよび試験器を論理的および機械的にデュアル・ソケット構成のために論理的および機械的に動作させる。タンデム・ハンドラによる試験器のコントロール/マスターは、試験の、無視できるインデックス時間および短縮されたダウン時間を許容する。輸送のようなある種のハンドラ要素、ステージなどは、それぞれのソケットについてのデュアルな試験進行経路に沿って複製される。論理およびコントロールを含む他の要素はデュアルな経路に共通である。

Description

本願は、それぞれ本願と同じ発明者の“Test System and Method for Reduced Index Time”という名称の2004年1月29日に出願された米国特許出願第10/767,932号および“Pin Electronics Implemented System and Method for Reduced Index Time”という名称の2005年11月1日(部分継続)に出願された米国特許出願第10/767,932号に関係しており、その部分継続出願である。これらの出願は本願明細書に組み込まれる。
本発明は概括的には自動化された製造システムおよび方法に関するものであり、より詳細には自動化されたロボット式の、特に試験および品質管理のための半導体設備のシステムおよび方法ならびにその改良に関するものである。該改良は、インデックス・タイミング遅延の短縮などを含む。
自動化された製造設備は多くの産業で製造工程を効率化した。さらに、そのような自動化は信頼性および結果を増した。自動化のマイナス面は、設備動作におけるタイミング遅延であった。特に、高価な製造設備が関わるところでは、試験対象のデバイスを移送する際の機械的な動きの間などにおける設備の動作の遅延がそのような設備のコストに対する見返りを制限する。機械的な操作、リセットなどの間のアイドルな、すなわち試験をしていない使用期間のためである。したがって、製造技術および動作における勢いは、たとえばロボット式に次の試験片を換装しているときの、高価な試験設備がアイドルであって、応用可能な試験機能を実行していない時間を制限することであった。
半導体製造においては、半導体デバイス試験設備は高価な資本要件である。通常、そのような試験設備は、試験されるデバイスを扱うロボット式マニピュレータを含んでいた。このロボット式マニピュレータ・システムは普通、「ハンドラ(handler)」と称され、典型的には「マニピュレータ(manipulator)」と称される一つまたは複数のロボット式アームを具備する。マニピュレータは試験するためのデバイスを機械的にピックアップし、そのデバイスをインターフェース試験ボード・ソケットに挿入し、試験器に対して試験開始信号を発する。次いで試験器がそのデバイスに対する試験を実施し、試験結果および試験終了信号をハンドラに返す。するとハンドラはそのデバイスをどけて、試験済みデバイスを保持するための試験後トレイまたは容器に入れる。このプロセスは、ハンドラが試験すべきさらなるデバイスがあることを感知する限り繰り返される。全体としてのこのシステムは時に「試験セル(test cell)」と称される。
ハンドラが試験されたばかりのデバイス(単数または複数)をどけて、その代わりに試験すべき次のデバイス(単数または複数)を置くために要求される時間の間、試験器は実質的にアイドルなままである。特定の試験器およびシステムについての「インデックス時間(index time)」と時に称されるこのアイドル時間は、試験を待つデバイスおよび試験済みデバイスの機械的操作に関わる。これらの機械的操作の動作スピードは、さまざまな要因によって制限される。そうした要因としては、たとえば、試験されるデバイスが傷つけられたり、汚染されたり、落とされたりなどしないことを保証するための物理的およびスピードの制約を含む。
デバイスを試験するために必要とされる時間はしばしば、特定のデバイス、試験、試験器およびシステムについての「試験時間(test time)」と称される。システムが製造役割において動作するとき、システムはインデックス時間の間にインデックスしている(indexing)か、あるいはそうでなければ試験時間の間に試験しているかである。
これまでは、試験設備製造業者は、機械的な動作のスピードを上げるために、操作(manipulation)設備の設計に際してインデックス時間を短縮するよう努力を集中させてきた。試験デバイスを扱う(handling)際の機械的動作のスピードは時とともに著しく上がったが、それでも、試験と試験の間でロボット式ハンドラによって試験デバイスを操作するために要求されるかなりの機械的なインデックス時間が残っている。さらに、機械的な操作設備動作の向上したスピードとともに、較正、入れ換え頻度、メンテナンス、部品その他を含む設備のコストが増大する。多くの型の試験デバイスの機械的操作の高速化およびハンドラにおいて対処しなければならない制約および用心を考えると、機械的動作のさらなる高速化は、経済的および物理的な障壁を受ける。
いずれにせよ、インデックス時間の短縮は、試験設備が高価な場合には特に、試験設備への投資に対するより大きな見返りを提供できる。したがって、製造環境における試験動作に関わるインデックス時間をさらに短縮することは、当技術分野における著しい改善であろう。特に、半導体製造においては、半導体デバイスの試験においてインデックス時間が短縮されれば、経済的およびその他の利益および利点が可能である。試験のためのデバイス・ハンドラおよび同様のロボット式もしくは自動化されたコンポーネントの既存の機械的動作における著しい変化や新たな開発を必要とすることなく、短縮されたインデックス時間を達成するための新しい改良されたシステムおよび方法を提供することも、改善であろう。
背景理解のために、従来式の試験システムおよび動作についてこれから述べる。
図1を参照すると、デバイス102(本稿では「試験対象デバイス(device under test)」および/または「DUT」とも称される)を試験するための従来式システム100は、試験器104と、試験対象デバイス102に対して試験器104資源(たとえば、試験プロトコル、信号および試験器が実行する手順)を利用可能にする、試験器104に接続されたインターフェース・ボード106と、ロボット式ハンドラ108とを含む。デバイス102は単一のデバイスであっても、並行試験動作のために試験器および試験器資源に同時に接続される複数デバイスであってもよいが、そのように同時に接続され、並行して試験される複数のデバイスを指すために本稿では単数形の用語「デバイス」が使われることは理解しておくものとする。ロボット式ハンドラ108は試験器104に通信上接続されている。インターフェース・ボード106は試験器104に通信上接続されている。インターフェース・ボード106は、試験の間、デバイス102を受け容れ、維持するための試験ソケット110を含んでいる。
試験ソケット110は、試験対象デバイス102の整列においてハンドラ108のマニピュレータ・アーム109を補助する物理的機構を提供する。よって、デバイス102が電気的試験を受けている間、試験対象デバイス102と試験器104との間の電気的接触は十分に維持される。典型的には、マニピュレータ・アーム109の精度は、それだけで試験対象デバイス102と試験器104および関連する試験器資源との間の適正な電気的接触を提供し、維持するためには粗すぎる。試験の間、適正な電気的接触を維持するために要求される細かい整列の仕組みを提供するのは試験ソケット110である。試験ソケット110が、ロボット式ハンドラ108のマニピュレータ・アーム109によって、試験すべき次のデバイス(単数または複数)の各逐次操作において試験のために同時に操作され、保持され、移送または位置付けされるデバイス(単数または複数)のための単一のソケットまたは複数ソケットであることができることも理解しておくものとする。
たとえば、ある種の構成において、マニピュレータ・アーム109のチャック(すなわち、デバイス保持機構)が試験のために二つ以上のデバイス(たとえば、マニピュレータ・アーム109の同じパス[pass]における二つのデバイス)をピックアップし、次いでそれらのデバイスのそれぞれをそれらのデバイスのために利用可能な個別のソケット内に位置させることができる。そのような構成における個別的なソケットは、試験器104(およびその試験資源)に対して物理的に並列に接続されているが、試験器104(および試験資源)は、それぞれの別個の試験を実行する際、どの時点においても一つのソケット(およびその中の一つのデバイス)にのみ電気的に接続する。一つのソケット(およびその中の一つのデバイス)の試験後、本構成において適用可能なチャックは、試験するための次のデバイスを、この次のデバイスのための別の個別的ソケットに入れ、そのソケットの並列な電気接続性のためその個別的ソケットを介して試験するか;あるいは、その一つのソケットから試験済みデバイスを除去して、次のデバイスを、該次のデバイスのその同じソケットを介した試験のために、その同じソケットに位置させる。
さらに、ある種の他の構成では、単一のインターフェース・ボードが二つ以上の試験ソケットをもつことができ、それらのソケットは並列に接続されず(すなわち、同じ試験器資源を並行使用するような並列でない)、試験器104は、各ソケットにそれぞれ接続された別個の個別的な相異なる試験器資源を有する。インターフェース・ボード上のそのような複数ソケットはそれぞれ、単一の試験器104からの個別的な区別される(異なる)試験器資源にのみ接続される。実際上、試験器104は各ソケットに対して異なる複数の試験を実行できるが、各ソケット上で並行して同じ複数の試験は実行できない。そのような構成では、マニピュレータ・アーム109のチャックは同様に、マニピュレータ・アーム109の各パスにおける二つ以上のデバイス(たとえば、アーム109のパスにおける二つのデバイス)をピックアップし、位置付け、ソケット中に位置決めする。それでも、同じ試験をいっぺんにではなく、個別的な相異なるソケットについて異なる複数の試験が実行される。本稿での目的のためには、単数形の用語「ソケット」は、この種の(二つ以上のソケットの)構成をも含むものとして意図されており、そのように理解されるものとする。
試験器資源が試験器からの信号を同時に複数デバイス(複数の個別的ソケット内にある)に駆動できるある種の他の特別な場合の構成があることもできる。そのような資源は、電源、デジタル・ドライバおよびアナログ波形発生器を含む。しかしながら、それぞれの特別な場合において、資源は特定の試験器からの出力資源と考えられ、そのような使用における試験器は特別に構成されねばならず、並行した仕方で別個の相異なる試験を実行するために要求される機能性をもたねばならない。たいていの従来式試験器はそのような特別な構成や機能性をもたず、いずれにせよ、そのような特別な試験器は、たいていの従来式試験器に比べたとき、著しくより高価であり、および/または用途が限定されていることがある。本稿での目的のためには、単数形の用語「ソケット」は、そのような機能をもつこの種の特別な場合の試験器についての複数ソケット配置をも意味し、含む。
典型的なところでは、以上の構成のそれぞれにおけるロボット式ハンドラ108は、試験すべき一つまたは複数のデバイスのうちから、デバイス102(これは実際には、たった今論じたように、チャック、アームおよびハンドラの設計および機能に依存して二つ以上のデバイスであってもよい)をピックアップし、扱うよう、機械的に動き、動作する。ひとたび試験すべきデバイス102がハンドラ108のマニピュレータ・アーム109によってピックアップされると、ハンドラ108はマニピュレータ・アーム109を制御して、デバイス102を、インターフェース・ボード106の適切なソケット110内の位置に移送する(同様に、このソケットは実際には、たった今論じたように、設計および機能に依存して、並列または特別な場合の試験器と同じような二つ以上のソケットであってもよい)。次いで、試験器104デバイス102を試験しはじめる。試験器104によって試験が完了されたのち、マニピュレータ・アーム109およびその動作の制御を介して、ハンドラ108はソケット110からデバイス102を機械的に取り除き、デバイス102を試験済みデバイスの位置に移送する。
従来式システム100の動作において、試験すべき一組のデバイスが、人間のオペレーターによってハンドラ108への入力に載置される。次いでオペレーターがハンドラ108に、試験すべきデバイスの取得を開始して、それを試験ソケット110に挿入することによって次の入手可能なデバイスを載置するよう指示する。ひとたびハンドラ108が第一のデバイス102が試験ソケット110内に位置されて試験のための準備ができていると感知したら、ハンドラ108は試験器104に対して試験開始信号を発する。この試験開始信号に応答して、試験器104は、試験ソケット110を介して試験対象デバイス102を電気的に刺激する試験プログラムを実行し、デバイス102からの出力応答を測定する。試験器104は、その出力応答を、一組の期待される応答データと比較して、その結果をデバイス102の「合格」または「不合格」のいずれかとして判断する。
インターフェース・ボードが複数の試験ソケットを含んでおり、先述したある種の特化した試験器のように試験器が試験器の異なる試験器資源を用いて並行的な試験をする機能がある場合、試験器は、どの試験ソケットが試験のための準備ができたデバイスを有しており、どのソケットが有していないかを判別するために、ハンドラ状態を問い合わせしなければならない。すると試験器は、空の試験ソケットからの不合格の試験結果を無視し、デバイスが挿入されたアクティブな試験ソケット・サイトのみを試験することができる。もちろん、先述したように、これらの機能をもつそのような特別な試験器は比較的まれで、高価で、用途が限られている。
ひとたび試験プログラムがデバイス102についての試験を完結し、試験器104によって試験結果の合格/不合格判定がなされたら、試験器104はハンドラ108に、試験されたばかりのデバイス102についての試験結果データを通信して返し、それにハンドラ108への試験終了信号を続ける。ハンドラ108は試験器104から試験終了信号を受信し、ハンドラ108はその試験結果データを使って、ハンドラ108のマニピュレータ・アーム109の制御および動作によって、試験されたばかりのデバイス102をどけて、試験済みデバイスのための出力載置領域中に入れる。出力載置領域とは、合格したデバイスおよび不合格のデバイスについてのそれぞれ別個の保持領域などである。
インターフェース・ボードが複数の試験ソケットを含んでおり、先述したある種の特化した試験器のように試験器が試験器の異なる試験器資源を用いて並行的な試験をする機能がある場合、試験器は、サイト固有なアクティブな試験ソケット位置のそれぞれについての結果データを通信しなければならず、ハンドラはそれらのデバイスのそれぞれをしかるべくどけなければならない。ここでもまた、そのようないかなる配列も、特化された試験器および可能性としては特別なハンドラ設備を必要とし、これらはそれぞれ費用の問題および限られた用途をもつ。
システム100の進行中の動作において、ひとたびハンドラ108が試験されたばかりのデバイス102をどけたら、プロセスは、試験すべきさらなる未試験のデバイスが残っていなくなるまで、あるいはハンドラ状態または試験器における何らかのエラー条件が動作を停止させるまで、あるいは人間のオペレーターが試験を停止させるよう介入するまで、逐次、繰り返される。
この従来式システム100における試験のそれぞれの場合において、ハンドラ108は、そのとき試験されている個別的なデバイス102を個々に取得して、移送する。ピックアップ、ソケット110中への設置および試験後の位置決めにおけるハンドラ108の(そして特にそのマニピュレータ・アーム109の)機械的な動作の間、試験器104は何らの試験も実施することなくアイドルなままである。システム100についてのインデックス時間は実質的に、試験済みデバイスを取り外し、どけて、次いでそれぞれの次の逐次的な未試験デバイスを試験するために取得し、挿入するときに、ハンドラ108の機械的な動作のために要求される時間である。インデックス時間はまた、試験器104からハンドラ108への試験終了信号とハンドラ108から試験器104への次の試験開始信号との間の時間間隔があればそれも含む。
図4を参照すると、デバイスを試験するための従来式のプロセス400は、第一のマニピュレータを開始するステップ402を含む。ステップ402では、たとえば、前記第一のマニピュレータをもつロボット式ハンドラに信号が通信される。その信号は、前記第一のマニピュレータが試験するためのデバイスを取得し、位置させるためのアクションを開始すべきであることを前記ハンドラに示すために、試験器または他の源によって通信される。前記デバイスはたとえば、その特定の試験器によって試験すべき、半導体デバイスまたは他の任意の製造された部品もしくは要素である。
ステップ404では、前記第一のマニピュレータは、試験するための第一のデバイスを取得するために、そのアームを機械的に動かす。前記第一のマニピュレータは、前記第一のデバイスをつかむまたは他の仕方で保持する。次いで、ステップ406において、前記第一のマニピュレータは、前記第一のデバイスを機械的にピックアップし、操作して、たとえば試験するために前記第一のデバイスを適切に配向させる。ステップ408では、前記第一のマニピュレータは前記第一のデバイスを、前記試験器に接続されたインターフェース・ボードに機械的に動かし、前記第一のデバイスを前記インターフェース・ボードのソケットまたはその他の試験セルに挿入する。
ひとたび前記第一のデバイスが前記ソケットまたはその他の試験セル内に位置されたら、試験器は前記デバイスを試験するステップ412を開始する。試験は、電力試験、論理試験および多様な他の品質管理またはデバイス準拠性試験のいずれをも含むことができる。試験は、実行される試験に依存して、完了のために、何らかの時間期間をとることもありうる。試験の間、前記第一のマニピュレータは前記第一のデバイスを、その試験のために前記インターフェース・ボードの位置に維持する。
試験ステップ412が完了すると、試験器は前記ハンドラに信号を送り、前記デバイスをステップ414において前記ソケットまたはその他の試験セルから機械的に取り除くために前記第一のマニピュレータが作動させられる。次いでステップ416で、前記第一のマニピュレータは前記第一のデバイスを所望される試験後位置に動かす。ステップ418では、前記第一のデバイスは、前記試験後位置で前記第一のマニピュレータによって解放される。
次の試験デバイスおよび該デバイスの次の試験に関して前記の諸ステップを繰り返すために、プロセス400は次いでステップ402に戻る。先述したように、プロセス400の間で、前記ハンドラの前記第一のマニピュレータが各デバイスをピックアップし、動かし、位置させ、取り除き、補給する動作のために要求される時間は、その試験システムのための「インデックス時間」と称される。前記第一のマニピュレータの動作のインデックス時間の間、試験器は、何らの試験も実施されていないアイドル状態に留まる。そのようなプロセス400において要求されるインデックス時間は、プロセス400全体を送らせ、制限する。
図13を参照すると、従来式試験器は、アナログおよび/またはデジタルの両方で、該試験器によって実行可能なさまざまな試験のための備えをするピン電子回路カード1302を含む。各ピン電子回路カード1302は、ブロック1302a〜1302cで表されている一つまたは複数の試験資源を含む。各ピン電子回路カード1302の試験資源は、単に例示の目的のためであるブロック1302a〜1302cの要素とは異なる、該要素よりも多い、該要素よりも少ない、あるいは該要素とは別の要素を含んでいてもよく、限定することなく、次のようなものを含みうる:
1.試験対象デバイス(「DUT」)上の入力ピン(またはパッド)に電圧を駆動するドライバ;
2.DUTの出力ピン(またはパッド)上の電圧を測定する受信器または比較器;
3.可変終端電圧への50オーム抵抗性接続の電流負荷と、前記50オーム抵抗を固定されたプログラム可能な値での電流負荷を保持するために要求されるものに変える電流クランプ;
4.データ状態(駆動および受信)、タイミングおよび電圧閾値を記憶するメモリ;
5.プログラムされたレートでDUTへの駆動データおよびDUTからの受信データを配列するコントローラ;
6.期待されるデータが受信器によって測定される実際のデータにマッチしないときについての情報を記憶する不合格メモリ;
7.カードのピン電子回路の動作を、個々に、および他の試験器資源と同期して、管理するソフトウェア;
8.ピン電子回路からDUT資源への、該DUT上の対応するピン上での、通信接続の長さを測定する較正システム。
カード1302のピン電子回路はまた、アナログ‐デジタル変換器、デジタル‐アナログ変換器および時間測定システムといったアナログの性質の試験ハードウェアをも含むことができる。カード1302の試験資源の特定の型が、試験器による試験対象デバイス(「DUT」)の試験を可能にする。
各ピン電子回路カード1302は、一つまたは複数の試験器チャネル1304のための試験資源を含む。各試験器チャネル1304は、典型的には、DUTの単一のピンにおいて試験するはたらきをする。先述のように、試験器資源が試験器から複数のピンに同時に信号を駆動できるある種の特別な構成および機能性があるが、たいていの従来式試験器はこの機能をもたず、いずれにせよ、この機能は著しくより高価であり、用途もごく限られている。よって、議論および理解の目的のため、本稿で述べられるのは、単一のデバイスの単一のピンを、該デバイスの該単一のピンに接続された試験器チャネルを介して駆動する試験資源という典型的な状況である。(しかしながら、たとえ「特別な機能」の状況に直面したとしても、目下開示されている実施形態は利点を与えるものであり、当業者はそのことがわかり、認識するであろう。)
図14を図13とともに参照すると、以上のことの別の機能的表現がさまざまなピン電子回路カード1402を示している。各カードは、さまざまな個別的な試験資源1402a〜1402dを含み、別個の個別的な試験器チャネル1404が該当する試験資源1402a〜1402dをDUT(詳細には図示せず)の単一のピンに接続する。
図15を参照すると、従来式試験器は、例示的なピン電子回路カード1500のACリレーのようなリレーを含むピン電子回路カードを有する。ACリレーはたとえば、試験器チャネル1504を通じて提供されるピン電子回路カードの試験資源を、試験器チャネル1504が接続されているDUT(詳細には図示せず)の単一のピンから電気的に切断する。
図18を参照すると、従来式試験システム1800(例示的な構成としていくぶんより詳細に呈示してある)は、試験セル1803のハンドラ1802および自動化された試験設備(automated test equipment)(「試験器(tester)」、「ATE」としても知られる)1806を含む。システム1800のハンドラ1802は、さまざまな機械的(典型的には物理的に動いている)コンベヤー/輸送機構およびロボット式操作アームならびに一連のDUTを試験する際に個別的なDUTを位置付けし、どけるための個別的要素を含む。たとえば、DUTは、複数の試験すべきDUTを保持できる入力トレイ1820に、試験するために位置付けされる。システム1800の入力マニピュレータ1822は、前記試験すべきDUTのうち一連の一つ(または一連のペアまたは他の数のDUT)をシステム1800の入力トレイ1820から入力ステージ1810に動かす。DUTは、該DUTの試験において、試験セル1802への輸送および試験セル1802を通じた輸送のために、入力ステージ1810に位置付けされる。試験セル1802は、温度ソークおよび保持ステージ(temp soak and hold stage)1812(および同様のまたは他の試験前および/または試験後のユニット/準備[prepping])のようなさまざまな処理ユニットを含むことができる。
試験セル1802は、コア1814を具備する。コア1814は、他の電気的インターフェース要素および接続要素のうちでも、電気的に刺激可能なソケット1808を含む。ソケット1808は、試験器1806の個別的な試験資源へのピン・コネクタを有する。ソケット1808の個別的なピン/コネクタは、試験のためにソケット1808中の適切な位置に位置されているDUTについての電気的な入出力ピンに対応する。(先述したように、該当するならハンドラおよび試験器のある種の構成では、可能性としては二つ以上のソケットおよびその中のDUTが、特定の試験資源(単数または複数)を介して並行して試験可能である;しかしながら、そのような構成およびシステムは一般に実用的でも現実的でもなく、制限、問題、障害などの結果として、広く用いられてはこなかった。)よって、試験すべきDUTは、試験器1806による試験のためにソケット1808内に位置付け可能である(のちにさらに詳述する)。システム1806の試験器1806は、ソケット1808の配置されたDUTに対して、そのようにソケット1808内に位置付けされたDUTの各対応するピンにおける試験器1806の特定の個別的な試験器資源を介して、試験を実行する。各個別的試験資源を介して試験器1806によって実施される試験は、システム1800を介してそのとき実施可能であるその特定の試験について試験器1806の試験プロトコルおよび機能に従う。
先述したように、ハンドラ1802はコア・マニピュレータ1804(すなわち、「マニピュレータ・アーム」)を含む。ハンドラ1802のコア・マニピュレータ1804は、それぞれの次の試験すべきDUTを、試験器1806による該DUTの試験のために、ソケット1808内に位置付ける。コア・マニピュレータ1804は、それぞれの次の試験すべきDUTについて、該DUTを取得することによって、ロボット式に、機械的に動作する。たとえば、コア・マニピュレータ1804は、該DUTを温度ソークおよび保持ステージ1812で取得し、次いで該DUTを試験のために、たとえばコア1814の空のソケット1808中に位置付ける。ひとたびハンドラ1802が、DUTを取得/位置付けする際のコア・マニピュレータ1804の動作を介して、該DUTがソケット1808内でしかるべき位置にあり、試験のための準備ができていると感知すると、ハンドラ1802は、試験器1806に信号を送ることによって試験開始をトリガーする。応答して、試験器1806は、そのとき実施されている試験のための試験プロトコルに従って試験プログラムを実行する。試験において、試験器1806は、各ピンおよび該ピンのための個別的な試験資源でソケット1808を介して、ソケット1808内のDUTを電気的に刺激し、出力応答を測定する。そのときソケット1808内にあるDUTについての試験器1806による試験が完了すると、試験器1806は、試験終了結果をハンドラ1802に通信する。次いでコア・マニピュレータ1804は、ソケット1808からDUTをどけ、該DUTをハンドラ1802の適用可能な外置ステージ1816中に位置させるよう、ハンドラ1802によって制御される。(コア・マニピュレータ1804のそのようなどける動作および特定の適用可能な外置ステージ1816は、その試験の合格/不合格結果に対応し、その特定のDUTについてハンドラ1802に示されたとおりである。)
そのとき試験器1806によって試験され終わっており、よってソケット1808からどけられたDUTは、ハンドラ1802の輸送機構によって、たとえば出力ステージ1818に進む。出力マニピュレータ1824がさらに、そのとき試験済みのDUTを出力ステージ1818から、そのDUTのための対応するビン・トレイ1826に進める。たとえば、試験済みDUTはハンドラ1802およびシステム1800の出力として、そのDUTのために得られた試験結果に応じてそれに応じた位置に位置付けされる。
その後、(試験のための入力として載置されたDUTの残っているもののうちからの)次の試験すべきDUTの試験を続けるために、コア・マニピュレータ1804は、任意の次の逐次の試験すべきDUTを取得する。該DUTは次いで温度ソークおよび保持ステージ1812に位置される(入力マニピュレータの動作およびハンドラ1802の輸送を介して)。該次のDUTは、コア・マニピュレータ1804によってコア1814のソケット1808に位置付けされ、次に試験器1806による試験がソケット1808にそのとき配置されているDUTに対して、ソケット1808を介して実行される。このDUTの試験完了に際して、コア・マニピュレータ1804は次に、そのとき試験済みのDUTをソケット1808からどけて、このDUTをハンドラ1802を介した試験後の扱いのさらなる進行のために外置ステージ1816に移す。ハンドラ1802による各試験すべきDUTの入力進行、各逐次DUTのコア・マニピュレータ1804によるソケットへの位置付け/ソケットからどけることならびに試験完了に際してのDUTの出力進行は、すべてのDUTが試験されるまで(またはシャットダウン、エラーまたは他の中断が発生するまで)続く。
実際は、試験セル1802を介したDUTの逐次の試験の間の試験開始に際して、試験プロセスを制御することにおいて、試験器1806はスレーブとして作用し、ハンドラ1802はマスターとして作用する。すなわち、ハンドラ1802は、コア・マニピュレータ1804を介して、各逐次DUTを機械的に動かして該DUTを試験のためにソケット1808内に位置させ、該DUTに対する試験が完了したのちソケット1808からどける。DUTがソケット1808内に配置されたとき、ハンドラ1802は試験器1806に、適用可能な試験を開始するよう信号を送る(すなわち、ソケット1808およびその中に配置されたDUTへの資源チャネル上の試験器資源を介して)。通常では、ハンドラ1802は、コア・マニピュレータ1804ならびに適宜ハンドラ1802およびシステム1800の他の機能要素(たとえば、入力ステージ1810、温度ソークおよび保持1812、コア1814、外置1816、出力ステージ1818および関連する輸送)を介して、関連するプロセス・プロトコルおよびステップに従って、かつ概して本稿において記載されるように、各DUTを位置付けし、試験し、どけるために必要とされる適用可能なステージ/手順を通じて動かす/輸送する。
試験器1806は、先に論じたように、試験のどの時点においても、ソケット1808のピンに単一の試験資源を接続する。たとえば、DUTがソケット1808内に位置されるときは常に、試験器1806は前記ピンでの単一の試験資源を介して、それによりソケット1808内の前記ピンへの接続を通じてそのDUTに対して電気的に、試験を実施する。したがって、各個別的な試験すべきDUTは、試験器1806(および、該当し、個別的な該当するピン(単数または複数)に対応するその各試験資源)による試験のために、逐次的にソケット1808内に位置され、該当するピン(単数または複数)を電気的に接続しなければならない。そのようにしてそれぞれの次の個別的な試験すべきDUTをソケット1808内に位置させ、その後試験器1806の試験完了に際してそれぞれをソケット1808からどけることにおいて、コア・マニピュレータ1804は一連のステップ/移動を通じて動作し、全部のDUTが試験されるまで、これらを何度も繰り返す。特に、それぞれの次の試験すべきDUTのためのコア・マニピュレータ1804は、ロボット的に、次の試験すべきDUTを(たとえば温度ソークおよび保持ステージ1812で)取得し、該DUTをソケット1808に位置付け、該DUTをソケット1808内に配置するよう進まなければならない。ひとたびソケット1808内のDUTの試験器1806(および各ピンにおけるその個別的な試験資源)による試験が完了すると、ハンドラ1802は、システム1800の処理における次のDUTに対する試験の次の逐次動作のために、コア・マニピュレータ1804を介して、ロボット的にそのDUTをソケット1808から取り外し、ロボット的に他所(たとえば外置ステージ1816など)に位置し直さすことにさらに進まねばならない。もちろん、それぞれの次の試験すべきDUTについて試験器1806による何らかの能動的試験を実行するのに先立って、コア・マニピュレータ1804(および全体としてのハンドラ1802)は、たとえば直前の試験動作からの、ソケット1808内に残っているDUTがあればそれを、前もってどけてしまっている必要がある。その後はじめて、ハンドラ1802は、マニピュレータ・アーム1804を介して、ロボット的に次の試験すべきDUTを取得し、ソケット1808内に位置させるなどしていくことに進み、全部のDUTが試験されるか動作が他の何らかの理由で停止されるまで繰り返すことによって、試験動作を続けることができる。
もちろん、ひとたび試験すべきDUTのそれぞれの次のものがソケット1808内に位置されたら、次の試験が、試験器1806および個別的なピンに対応するその各試験資源によって、該次のDUTに対して実行される。試験器1806による逐次DUTに対する能動的な試験と試験の間には時間経過が生じる。それは、コア・マニピュレータ1804が次の試験すべきDUTを取得し、ソケット1808内に位置させ、その後、試験済みDUTをソケット1808からどけるために必要とされる時間の間である。それぞれの次の逐次的な試験すべきDUTについても同様であり、能動的な試験の時間経過期間が繰り返される。さらに、任意の時点においてそのときソケット1808内に配置されている何らかのDUTに対する試験器1806による能動的な試験の間―すなわち、DUTがソケット1808内に位置されており、個別的な試験資源がその対応するピンを電気的に刺激する(配置の際/能動的試験の際/どける前)とき――コア・マニピュレータ1804は試験器1806によってそのとき試験されているDUTを扱うことに占有されたままである。したがって、コア・マニピュレータ1804は、そのとき試験されているDUTとともに動作するのに占有されており、どけ、次に位置付け、次に試験し、次にどけるといった反復のためには時間が要求される。実際上、従来システム1800の動作では、コア・マニピュレータが作動している時点では、試験器1806は実質的にアイドルであって、能動的に試験していない。すなわち、試験器1806が能動的に試験しているときは、コア・マニピュレータ1804は、試験のための次のDUTの何らかの進行ではなく、そのとき試験対象になっているDUTを試験用の位置付けすること/試験/どけることを通じて扱うのに占有されてしまう。
能動的試験がアイドルで、コア・マニピュレータが占有された/使用中の時間期間が集まると、システム1800の試験動作における、かなりのインデックス時間の損失になる。位置付けし/試験し/どける間の、試験器による試験が不活動で、コア・マニピュレータ/ハンドラ要素が占有されている/使用中である期間は、各DUTについて、かつ各逐次DUTについて経験される。通例の用途であるように複数のDUTが試験されるとき(実際、典型的には多数のDUTが連続動作で試験される)、インデックス時間の各成分は、複数DUTのための非最適な設備利用および試験動作完了までのより長い時間の原因となる。よって、従来式のシステム1800およびその要素ならびにシステム1800のハンドラ1802(およびそのコア・マニピュレータ1804)の動作は、逐次のDUTに関してそれらのコア・マニピュレータが動作する間、試験器1806による能動的な試験挙動が中断されてしまうことと組み合わされて、試験動作時間、装置使用最適化および全体的な試験プロセスに対して悪影響をもつ。
本願に関係するおよび/または本願に組み込まれた出願において開示されているように、そして本稿においてさらに開示されるように、試験器(ATE)およびピン電子回路カードならびにハンドラおよびハンドラ動作の従来式の設計は、試験プロセスにおいて望ましくないインデックス時間が発生する結果につながる。本願および関係する出願/組み込まれた出願は、主として、試験器1806の各試験器チャネルは個別的な試験器資源を、どの時点においてもそのとき試験されているDUTの単一のピンにのみ接続できる(そしてその結果として、ハンドラおよび試験器のマスター/スレーブ動作において、ハンドラ動作は、試験器による一連のDUTの能動的な試験と試験の間で、DUTをどけてからそれぞれの次の個別的DUTを配置するまでの進行に要求される期間にわたって中断されねばならない)ために、望ましくないインデックス時間につながる、ある種の問題を開示する。
さらに、本願においてさらに開示されるように、関係した出願/組み込まれた出願との関連で、また該出願でも指摘されたように、主として、ハンドラのマニピュレータ・アームおよび処理のための各単一経路(たとえば、単一の入力ステージ、単一の温度ソークおよび保持ステージ、単一の外置および出力ステージならびに試験セルなどへの、試験セルなどを通る、および試験セルなどからの単一の輸送機構)のようなハンドラの他の諸側面を含めてハンドラ要素/機能が占有されている/使用中であるために望ましくないインデックス時間につながるある種の問題が、試験システムならびにハンドラ要素などのものも含めて試験動作およびプロセスを最適化および改善するために、対処される。
さらに、主として、ハンドラならびにハンドラのステージ、プロセスおよび要素(これに限られないがマニピュレータ・アームおよび他のステージを含む)の機械的またはその他の動作不良およびメンテナンスのために帰結する従来式の試験システムおよびプロセスのある種の他の諸問題が、本開示によって対処される。
デバイスを試験するための従来式のシステムおよび方法の以上の記述から、従来式システムおよび方法において必要とされるインデックス時間の短縮が著しい利点を与えるであろうことが容易に認識され、理解されることができる。さらに、何らかのこれまで知られている特化された試験器およびハンドラ設備を必要とする短縮はどれも、異常に高価で用途も限定されていることがありうることが認識され、理解されることができる。
さらに、以上の記述から、ハンドラの動作不良、メンテナンスまたは他の同様の理由のためといった試験設備の遅延やアイドル状態が問題であることも容易に認識され、理解されることができる。これらの問題の発生および可能性を減らすことによって、著しい利点が達成されるであろう。
本発明は、以上の点における改良および微妙な差を含め、これらのおよびその他の利点および改良を、従来式の慣行、システムおよび動作でこれまで被られてきた問題および欠点なしに、提供する。
本発明のある実施形態は、第一の試験対象デバイス(DUT)および第二のDUTを試験するためのシステムである。当該システムは、相異なる試験のための試験器資源を提供する試験器を含む。試験器資源は、第一のDUTまたは第二のDUTのいずれかに、そのための個別的ソケットの並列構成において、独立して/分離して接続可能である。当該システムはハンドラを含み、該ハンドラは、第一の位置付け器および第一のユニットならびに第二の位置付け器および第二のユニットを含み、該ハンドラは第一のDUTを第一のユニットのところまで操作し、該ハンドラは第二のDUTを第二のユニットのところまで操作する。当該システムは、前記ハンドラおよび前記試験器に接続されたリレーを含む。当該システムは、前記リレーによって前記相異なる試験のために前記試験器資源に前記リレーによって接続可能な第一のソケットを含み、前記ハンドラの前記第一の位置付け器は、第一のDUTを前記第一のユニットから前記第一のソケットまで前記相異なる試験のために操作する。当該システムは、前記相異なる試験のために前記試験器資源に前記リレーによって接続可能な第二のソケットを含み、前記ハンドラの前記第二の位置付け器は、第二のDUTを前記第二のユニットから前記第二のソケットまで前記相異なる試験のために操作する。前記相異なる試験は、前記ハンドラによって第二のDUTが前記第二のユニットからどけられて前記第一のソケット内に配置される際に、前記第一のソケット中の第一のDUTに対して実行され、前記ハンドラによって第一のDUTが前記第一のユニットからどけられて前記第二のソケット内に配置される際に、前記第二のソケット中の第二のDUTに対して実行される。前記ハンドラは前記リレーを制御して、それぞれ、前記相異なる試験が前記第二のソケット内の第二のDUTに対して実行されたのちに前記第一のソケットに接続し、前記相異なる試験が前記第一のソケット内の第一のDUTに対して実行されたのちに前記第二のソケットに接続するようにする。試験を待っている残りの載置されたDUTのうちそれぞれの次の逐次DUTは、それぞれタンデム・ハンドラ構成の個別的コンポーネントを介して扱われ/操作され、個別的に、逐次的に同じ試験器の試験資源によって、別個のソケットを介して、全部のDUTが試験され終わるか、試験が他の仕方で終了または中断されるまで、試験される。
本発明のもう一つの実施形態は、試験方法である。当該試験方法は、複数の試験すべきデバイス(TBTD: to-be-tested device)のうちのあるTBTDを第一のロボットを介して操作して、試験器の試験資源によって刺激できる第一のピンと接続させる第一の操作段階と、前記試験器を制御して、前記試験資源を前記第一のピンに接続し、該第一のピンに接続されたTBTD上の前記第一のピンにおける前記試験器資源による試験を開始させる第一の制御段階と、前記複数のうちの別のTBTDを第二のロボットを介して操作して、前記試験器の前記試験資源によって刺激できる第二のピンと接続させる第二の操作段階と、前記試験器を制御して、前記試験資源を前記第二のピンに接続し、該第二のピンに接続されたTBTD上の前記第二のピンにおける前記試験器資源による試験を開始させる第二の制御段階と、前記第二のピンにおける前記試験器資源による試験の間に、前記複数のTBTDのそれぞれの次のTBTDについて前記第一の操作段階の少なくとも一部を実行し、前記第一のピンにおける前記試験器資源による試験の完了に際して前記第二の制御段階を実行し、前記第一のピンにおける前記試験器資源による試験の間に、前記複数のTBTDのそれぞれの次のTBTDについて前記第二の操作段階の少なくとも一部を実行し、前記第二のピンにおける前記試験器資源による試験の完了に際して前記第二の制御段階を実行するようマスター制御することを含む。前記試験器に関連付けられたタンデム・ハンドラと、前記試験器およびその試験資源への並列に接続されたデュアル・ソケットとが、個別的かつ分離された機械的な試験前の準備(prepping)/載置(staging)/位置付け(positioning)および試験後の準備/載置/位置付けの諸ステップを、最適で、望まれるように許容する。前記方法の諸段階は、試験される一連のデバイスについて、ハンドラおよびそのタンデム(すなわち、デュアル)特徴のいくぶん別個の試験進行経路/動作に沿って、繰り返される。しかし、逐次にデュアル・ソケットのそれぞれにおいて試験するためには単一の試験器が用いられる。(すなわち、各試験器資源は、一方のソケットの個別的な機能的に等価なピンからの接続において、そこでの試験の完了後、実質的にすぐ、他方のソケットの前記個別的な機能的に等価なピンに、そこでの試験のために、切り換えられる。逆もしかりであり、これがすべての試験すべきデバイスに対する試験が完了されるか、試験の停止もしくは中断が発生するまで繰り返される。)
本発明は、付属の図面において、限定ではなく例として図解されている。
図2を参照すると、デバイス(すなわち、本明細書および請求項において、「試験対象デバイス」および/または「DUT」とも称され、背景技術において先に論じたように、一つまたは複数のそのようなデバイスを意味する)を試験するためのシステム200は、試験器204と、試験器204に通信上接続され、試験器資源を試験対象デバイスに相互接続するためのインターフェース・ボードと、ロボット式ハンドラ208とを含む。ロボット式ハンドラ208は試験器204に通信上接続されている。インターフェース・ボード206は試験器および二つ以上の試験ソケット210および212に通信上接続されている(すなわち、背景技術において先に論じたように、本明細書および請求項における「ソケット」の用語は一つまたは複数のソケットを意味する;単数形で言及されたとき、ソケットは、同じ試験資源による非並行的な試験のために試験器に並列に接続された一つまたは複数を意味し、そうでなければ背景技術において論じた特別な場合の試験器構成の、限られた、まれな状況の二つ以上のソケットをいう)。試験ソケット210および221は、試験器204とのインターフェース・ボード206接続を介して、試験器204に、そして試験器204の試験器資源に並列に結線される。試験ソケット210および212の並列接続のため、各ソケット210、212は別個に試験器204に、そして試験器204の同じ試験資源にインターフェースをもつ。しかしながら、試験器204は、どの時点においても、同じ試験器資源を介して、ソケット210、212の一方または他方のみを試験できる。
システム200において、ハンドラ208および試験器204は、実質的に図1およびシステム100を参照してハンドラ108および試験器104に関して述べたように通信する。つまり、ハンドラ208は試験器204による試験を開始するために試験開始信号を発し、その後、試験器204は試験完了に際してハンドラ208にさまざまな結果データおよび試験終了信号を返し、するとハンドラ208は次の試験デバイスの機械的配置動作を開始する。マルチサイト構成(マルチサイト構成では、複数のソケットが試験器の異なる区別される試験資源に結線され、別個の試験資源を介した並行的な試験が許容される)においても、そのようなマルチサイト構成において欠けているデバイスを同定するために必要とされる同じ情報が同様にしてハンドラ208によって試験器204に通信される。これらの通信は実質的に従来式なので(試験器が異なる試験資源を介した並行的な試験の備えをしていてもいなくても)、システム200における試験器204は、個別的なデバイスまたはデバイスのセットについての逐次的な試験機能をもつ任意の従来式試験器であることができる。よって、同じ試験器資源の次の試験は、それらの試験器資源の先行する試験の完了に際して、その試験器を介してすぐ開始できる。
ロボット式ハンドラ208は、第一のマニピュレータ212および第二のマニピュレータ214を含み、そのそれぞれはロボット式ハンドラ208に接続され、ロボット式ハンドラ208によって協調され、自律的な仕方で制御される。第一のマニピュレータ212および第二のマニピュレータ214のそれぞれは、別個の試験デバイス(あるいはマニピュレータ212、214がそれぞれの機械的操作において二つ以上の試験デバイスを扱う機能をもつなら複数のデバイス)を扱うことができる。第一のマニピュレータ212が試験すべき第一のデバイスをピックアップしてインターフェース・ボード206のソケット210内に位置付けしたとき、他方の第二のマニピュレータ214は並行して次の第二の試験すべきデバイスを取得する。ソケット210における第一のデバイスの試験の間に、第二のマニピュレータは第二の試験すべきデバイスをピックアップし、ソケット211に載置する。
上で使った「載置(staging)」の用語は、マニピュレータ214によって扱われる第二のデバイスがソケット211に挿入されるのではなく、ソケット211での挿入に機械的に近く位置されることを意味する。次いで、ハンドラ208が試験器204から試験終了信号を受信すると、マニピュレータ・アーム212は第一のデバイスをソケット210から取り出し、その間、マニピュレータ・アーム214は同時に第二のデバイスをソケット211に挿入する。マニピュレータ・アーム214が第二のデバイスをソケット211に完全に挿入し、第二のデバイスとソケット211との間に完全な電気的接触ができるとすぐ、ハンドラ208は次の試験開始信号を試験器204に発し、ソケット211に挿入されたデバイスに対して試験が開始される。
試験器204に通信され、試験器204によって制御され、試験器204において試験されることという観点からは、ソケット210とソケット211との間に差はない。どちらも試験器204およびその同じ試験器資源のセットに接続されるからである。しかしながら、試験器204は、どの特定の試験器資源を介してであれ、それぞれの時点においてソケット210、211の一方についてのみ試験を実施する。試験器204では、試験器204がハンドラ208に発するそれぞれの試験終了信号とハンドラ204が試験器208に発するそれぞれの試験開始信号との間の何らかの遅延期間の間の無視できるインデックス時間が帰結する。インターフェース・ボード206を介してソケット210、211が試験器208に並列にインターフェースされているため、どの時点においても、それぞれの同じ試験資源のセットに結線されたソケット210、211のうちの一方のみにデバイスが挿入される。以下では、それぞれの次の試験すべきデバイスの、ソケット中への挿入に近いがソケットへの電気的接続はしない載置の動作は、「事前位置付け(pre-positioning)」と称される。「マニピュレータがデバイスを位置させる(manipulator locating a device)」の句は、電気的な接触のための完全な挿入も、ソケットに対するデバイスの事前位置付けも含む。
システム200において、ソケット211内で第二のデバイスに対して試験が始まるとき、第一のマニピュレータ212は、システム200のための要求として(そしてあらゆる従来式試験器の動作についての構成であるように)、すでにソケット210から第一のデバイスを取り出しており、遅延なく試験されたばかりの第一のデバイスをどけ、次の未試験のデバイスを試験するために取得し、事前位置付けすることに進む。次の未試験デバイスの事前位置付けに向け、すでに試験済みの第一のデバイスを引っ込めることにおけるマニピュレータ212の機械的な動きは、ソケット211内の第二のデバイスが試験されている時間期間の間に行われる。他方のマニピュレータ(マニピュレータ214または212)がアクティブな試験のためにソケット中に次のデバイスを維持している時間期間の間のマニピュレータ(それぞれマニピュレータ212またはマニピュレータ214)のこれらの機械的な動きは、本稿では「マニピュレータ・インデクシング(manipulator indexing)」と称される。マニピュレータ212でのマニピュレータ・インデクシングは、マニピュレータ214がソケット211内の第二のデバイスを試験することに携わっている間に、およびまたマニピュレータ214が機械的にインデクシングしていない間に行われる。同様に、マニピュレータ214でのマニピュレータ・インデクシングは、マニピュレータ212がソケット210内の第二のデバイスを試験することに携わっている間に、およびまたマニピュレータ212が機械的にインデクシングしていない間に行われる。それぞれのマニピュレータ機械的動作および関連するマニピュレータ・インデクシングは、さらなる未試験デバイスが残っていて試験を待っている、システム200の動作を停止させるエラー条件がない、あるいは人間のオペレーターが工程を中断するよう介入していない限り、繰り返される。
図3を参照すると、デバイス302を試験するためのシステム300は、試験器304と、第一のマニピュレータ312および第二のマニピュレータ311をもつロボット式ハンドラ308と、第一のソケット310および第二のソケット311をもつインターフェース・ボードと、リレー316とを含む。ハンドラ308は、試験器304に通信上接続され、インターフェース・ボード306を介してリレー316にも通信上接続されている。インターフェース・ボード306は試験器304、ハンドラ308、リレー316およびソケット310および311に通信上接続されている。第一のソケット310および第二のソケット311はリレー316を介して並列に通信上試験器304に接続されている。それにより試験器304は、通信接続において、ソケット310における試験とソケット311における試験との間で選択的に切り換えられる。
リレー316は、それぞれ第一のソケット310と第二のソケット311との間の試験接続を切り換えるためのスイッチ要素(詳細には図示せず)を含む。リレー316は、低頻度の試験においては必要とされない(図2に示されるように)。というのも、試験器304からの信号を第一および第二のソケット310、311に分けることは、著しいタイミングおよびインピーダンスの問題を引き起こす非対称につながらないからである。インターフェース・ボード306およびインターフェース・ボード206(図2に示すような)の設計におけるトレース長整合(trace length matching)の規則は常に実施されるべきである。というのも、たいていの半導体試験システムは、試験器と試験対象デバイス上のすべてのインターフェース・ピントの間のすべての信号接続の間の伝搬遅延を較正して除くために、TDR(Time Domain Reflectometry[時間分解反射測定法])を使うからである。分割した信号についての不均等なトレース長整合は、システム300におけるようにリレーによって切り換えられるときでさえ、TDRシステムを混乱させ、誤った較正データおよび無効な試験結果につながる。さらに、可能な限り、所与のTDRシステムによって要求される伝送線インピーダンス・プロファイルは、どの試験セル・インターフェース・ハードウェアの設計においても観察されるべきである。
しかしながら、より高頻度の試験が実施される場合、試験器304からの信号のソケット310、311への分割は、タイミングおよびインピーダンスの問題が重要になりうる非対称につながりうる。そこで、高頻度試験のそのような状況では、異なる時間区間におけるソケット310および311におけるそれぞれの試験における試験信号のインピーダンス非対称を防ぐために、(図3の)システム300は適宜試験ソケット310と試験ソケット311との間で試験信号を切り換える。インターフェース・ボード306の設計においてトレース長整合の規則を遵守することは、TDRが通常のように、エラーなしに、システム300で実行されることを許容する。
システム300において、ハンドラ308および試験器304は実質的に図1およびシステム100を参照してハンドラ108および試験器104に関して述べたように通信する。つまり、ハンドラ308は試験器304による試験を開始するために試験開始信号を発し、その後、試験器304は試験完了に際してハンドラ308にさまざまな結果データおよび試験終了信号を返し、するとハンドラ308は次の試験デバイスの機械的配置動作を開始する―すなわち、マニピュレータが次のデバイスを試験のために位置させる。
さらに、システム300において、ハンドラ308とリレー316との間の通信上の接続は、インターフェース・ボード306を介して、ハンドラ308に、適切なハンドラ308動作のための、従来式の信号および試験器302との通信を提供する。ハンドラ308自身が、ソケット310またはソケット311のどちらがその中に試験を待っている次のデバイスを位置されているかを検出する(または「知る」)。したがって、ハンドラ308は、試験のための次のデバイスを保持しているのがソケット310か311かに従って、第一のソケット310または第二のソケット311の間で試験器302および試験器資源を切り換えるようリレー316の切り換えを制御できる。リレー316制御のためのアルゴリズムは、マニピュレータ311、312を制御するハンドラ308の同じプログラムに統合される。特に、ひとたび試験終了信号が試験器304からハンドラ308に発されると、ハンドラ308は制御信号をリレー316に送り、ハンドラ308によって検出されるソケット310または311にある次の準備できた試験デバイスに従って、リレー316を切り換える。試験器304動作は事実上、変更される必要がない。というのも、試験器304は単に次のデバイスの試験を続け、それぞれのソケット310、311を試験器304動作の目的のために同じ試験器資源のセットに接続された単一のソケットとして個々に遇するからである。
試験器は、二つの異なる物理的なソケット位置(ソケット310およびソケット311)があることを検出しないし、その指標ももたない(すなわち、「意識しない」)。したがって、試験器308は、リレー316の切り換えを制御するために必要な情報をもたないし、もつ必要もない。ハンドラ308が、リレー316の切り換えの制御に適用可能な情報を有するので、ハンドラ308がリレー316を切り換えるはたらきをすることができる。
ただし、代替的に、試験器304がリレー316を制御しなければならないとすると(ある種の用途において、あるいは本稿における代替的な諸実施形態においてこのようなことが該当しうる)、試験器308上で実行される試験プログラムは、ハンドラ308に問い合わせをし、切り換えデータを受信し、ソケットの間での切り換えおよび試験デバイス位置についての決定をするために前記データを処理して情報にし、制御信号をリレーに送ることが必要である。この代替は、コード修正、再コンパイル、コード試験、相関および解放を必要とする。切り換えの試験器308制御のそのような変形は、ハンドラ308設計にさらにコストを上乗せすると予想される。というのも、ハンドラ308が、ハンドラ308システム・ソフトウェアにおける更新されたコマンド・セットを有することを要求されるであろうからである。この機能は高価であり、時間がかかるが、コストをかければ、リレー316の切り換えの制御および複数ソケットにおけるデバイスの逐次的な個別的試験のための代替的な構成として実装できる。
システム300の動作では、第一のソケット310内におかれたデバイスの試験のために、第一のソケット310がリレー316を通じて試験器304に通信上接続する。次いで、リレー316が、第一のソケット310が試験器304から通信上切断されるようにし、リレー316を通じて第二のソケット311が試験器304に通信上接続する。このようにして、第一のソケット310におけるデバイスが試験器308によって試験され、その後すぐ、第二のソケット311における別のデバイスの試験が行われる。第一のマニピュレータ312は、他のデバイスが第二のソケット311において試験されている間に、第一のソケット310のためのデバイスを第一のソケット310に入れ、第一のソケット310から出す操作をする。逆もまたしかり。こうして、システム300は、普通なら第一のマニピュレータ312および第二のマニピュレータ311がそれぞれ、試験動作においてデバイスをピックアップし、ソケットに位置付けし、取り出すよう機械的に動作しているときに経験される試験器308のアイドル時間をなくす。
図5を参照すると、方法500が図2のシステム200または図3のシステム300において動作する。方法500では、第一のマニピュレータがステップ502で、試験器に接続されたインターフェース・ボードの第一のソケットにおける試験のために第一の試験デバイスの取得を始めるよう、開始される。方法500における試験器は第二のソケットにも接続されているが、第一のソケットとは並列な通信上の接続である。方法500は、高頻度試験環境における図3のシステム300において起こるように、試験器の信号のリレーを含むことができる。あるいはまた、試験器の信号が分割され、試験ソケット試験信号のリレーがないようにもできる。同じ方法500は、リレーがあるかどうかに関わりなく、試験のためのマニピュレータの動作に適用される。
ステップ504では、第一のマニピュレータが次いで試験するための第一のデバイスに動く。ステップ506で、第一のマニピュレータは第一のデバイスをピックアップする。ステップ508で、第一のマニピュレータは第一のデバイスを第一のインターフェース・ボードまで動かし、ステップ510で、第一のデバイスを第一のインターフェース・ボードの第一のソケットに挿入する。
その後、ステップ512で、試験器が、第一のソケットを介して第一のデバイスを試験することを開始する。
ひとたびステップ510で第一のデバイスが第一のインターフェース・ボードに位置され、第一のデバイスを試験するステップ512が始まると、第二のマニピュレータがステップ520において開始される。ステップ522では、第二のマニピュレータが第二のデバイスに動く。ステップ524で、第二のマニピュレータは第二のデバイスをピックアップし、ステップ526で、第二のデバイスを第二のインターフェース・ボードまで動かす。ステップ528で、第二のマニピュレータは、第二のデバイスをインターフェース・ボードの第二のソケットに挿入する(リレーのあるシステム構成で、第一のデバイスの試験が行われているのと同時か、あるいはさもなければ、リレーがない場合には、第一のデバイスの試験後に第一のソケットから第一のデバイスを除去し、第二のデバイスの第二のソケットへの挿入が完全にされてすぐ)。
第一のデバイスの試験が完了すると、ステップ514で、第一のマニピュレータは第一のインターフェース・ボードにおける第一のソケットから第一のデバイスを除去する。第一のデバイスの試験が完了するとすぐ、ステップ530で、試験器は第二のデバイスの試験を開始する。試験環境が試験器の高頻度信号に関わる場合、第二のデバイスの試験を開始するため、(図3の)リレーが試験器の試験信号を、第一のソケットから第二のソケットに切り換える。先述したように、低頻度の試験では、リレーは必要でなく、タイミングおよびインピーダンスの問題の非対称性の懸念なしに、試験器の試験信号は第一のソケットおよびその中のデバイスと、第二のソケットおよびその中のデバイスとの間で分割できる。いずれにせよ、第一のデバイスの試験が完結し、第二のデバイスの試験がすぐ始まる。こうして、事実上、試験器のアイドル時間はなく、方法500におけるインデックス時間は最小限である。
ステップ530における第二の装置の試験の間に、第一のマニピュレータは、ステップ514において、第一のデバイスを第一のソケットから除去する。その後、第一のマニピュレータは、ステップ516で、第一のデバイスを、たとえば試験済みデバイスのための試験後位置に動かす。ステップ518では、第一のマニピュレータは第一のデバイスを解放する。次のデバイスがステップ512での試験のために第一のマニピュレータによってピックアップされるべく待っているというハンドラからの信号指示に応答して、第一のマニピュレータは再びステップ502で開始される。方法500は次いで、第一のマニピュレータに関し、方法500の諸ステップを再び続ける。
第二のデバイスの試験がステップ530で完了されると、方法500は、第一のマニピュレータについて、ステップ510に従って第一のソケットに次の逐次の試験デバイスを位置させている(システムにリレーがない場合には、第二のデバイスの試験完了および第二のソケットからの除去と、次の地区医デバイスが第一のソケットに挿入されたときか、あるいはさもなければ、システムがリレーを含む場合には、第二のソケットの試験の完了に際して試験器資源を第一のソケットに切り換える際)。こうして、この、次の逐次デバイスのすぐの試験が、ステップ512を介して始まる。
次の逐次デバイスの試験の間、方法500は、第二のマニピュレータに関して、第二のデバイスを第二のインターフェース・ボードから除去するステップ532に続く。次に、ステップ534において、第二のマニピュレータは第二のデバイスを試験後位置に動かす。ステップ536では、第二のデバイスはその位置で第二のマニピュレータによって解放される。
方法500は、第二のマニピュレータに関して、ステップ512における第一のソケットでの試験の間、再びステップ520で第二のマニピュレータを開始することによって続く。ステップ512において第一のインターフェース・ボードにおける試験が進行する際、第二のマニピュレータは方法500のステップ522、524、526および528を経て進行する。ひとたび第一のインターフェース・ボードにおける試験が完了すると、第二のマニピュレータは、方法500を介して、第二のインターフェース・ボードに次の逐次試験デバイスを位置させており、デバイスの試験がステップ530に進む。
もちろん、第二のデバイスの試験の間、方法500は、第一のマニピュレータに関しては、方法500のステップ514、516、518そして戻って502を経て続く。このようにして、試験器は事実上連続的に、逐次ステップ512、530における個別的なデバイスの一連の試験を実行する。ステップ512で試験が進行している間は、第二のマニピュレータは方法500のステップ532、534、536そして戻って520を経て動くなどする。同様に、試験が次にステップ530において進む間、第一のマニピュレータは方法500のステップ514、516、516そして戻って502、504、506、508および510を経て動く。方法500はこのようにして中断される(たとえば、試験監督者によって手動で、不履行(default)のために自動的に、あるいは他の原因で)まで、あるいはそうでなければ試験のためのすべてのデバイスが方法500において試験され、処理されるまで、連続的に進行する。
(図2および図3の)上記のシステム200、300および(図5の)方法500に関し、さまざまな代替および追加が可能である。特に、ある種の従来式のインターフェース・ボードは、試験器を介した複数デバイスの同時試験のためのいくつかの試験ソケットまたはセルを有することがある。そのような場合において、ロボット式ハンドラは、インターフェース・ボードにおける複数の試験デバイスを単一のパスで同時に操作し、動かし、位置させるマニピュレータをもつことができる。システム200、300は同様に、試験器との並列接続のデュアル・インターフェース・ボード(あるいは、もしあてはまれば、並列接続された複数のソケットおよび/または複数のインターフェース・ボードのセット)を含む。しかしながら、各インターフェース・ボードは、各個別的ボード上でのデバイスの同時的な配置および試験のためにいくつかのソケットを有することになる。方法500は、それにもかかわらず、複数のデバイスが個別的なマニピュレータによって同時に扱われるという点を除いて、同様に進行する。
他の代替では、二つを超える多マニピュレータおよび二つを超える多インターフェース・ボードを用いることもできる。そのような事例において、各インターフェース・ボードは同様に、複数デバイスの各ボードにおける同時試験のための複数の試験ソケットを有することができる。インターフェース・ボードは、試験器に並列に通信上接続されることができる。必要ならリレーが必要に応じて試験信号を切り換えるはたらきをできる。
さらに、システム200、300に基づく試験システムならびに方法500に基づく試験ステップおよびプロセスは、多様な製造および試験動作において用いることができる。たとえば、半導体デバイスは、前記のシステムおよび方法で好適に試験されるデバイスのほんと一つの型である。他のデバイスとしては、適切な光学式試験ボード、リレーおよび試験器を用いれば光学式デバイス;適切な機械的および物理的試験セルおよび試験器を用いれば機械的デバイス;および多様なその他の可能性のうちの任意のものが含まれることができる。そのようなそれぞれの可能性において、試験器への並列接続された複数インターフェースが、複数マニピュレータ動作と組み合わされて、試験プロセスにおけるインデックス時間を減らし、なくすことができる。
異常に鑑み、本稿における記載の範囲を限定することなく、例示的な半導体試験設備の詳細を与える。
1.半導体の自動化された試験設備(ATE)―例示的な実施形態:
図6を参照すると、デジタル・デバイス試験システム600は、半導体チップなどを試験するために使うことができる。システム600は従来式の自動化試験設備(ATE)602を含む。ATE602は、動力供給(図示せず)によって駆動され、ATE602を介して適用可能な試験を制御および実行するための試験コンピュータ603を含む。ATE602は電源604、接地606およびデジタル・ピン電子回路608、610、612、614、616のためのコネクタ・ポートをもつ。ATE602は、ATE602の通信ポート619においてコネクタ618を介して、デュアル・マニピュレータ・アームをもつロボット式デバイス・マニピュレータ630に通信上接続される。ロボット式デバイス・マニピュレータ620は、ATE602からコネクタ618を介して信号および試験情報を受け取り、処理するための、ロボット式コントローラ622を含む。
デバイス・ハンドラ620のユーティリティ・ポート624は、リレー・コントロール626とその制御ポート628において接続される。リレー・コントロール626はまた、ATE602の接地606ポートにも接続される。出力制御信号は、リレー・コントロール626のポート629から、リレー・バンク630に接続される。
リレー・バンク630はたとえば、一連のリレー・スイッチ630aないし630eを含む。リレー・バンク630およびリレー・コントロール626の詳細は、本稿で図7との関連でのちにより個別的に記述する。図6との関連での議論の目的には、各リレー・スイッチ630aないし630eは、第一の試験対象デバイス(DUT1)640および第二の試験対象デバイス(DUT2)の個別的な対応するデジタル・ピンに接続されている。図6では、スイッチ630aないし630eは、DUT1640に試験信号を通信するよう設定されている。図5における方法500に関して先述したように、DUT1640およびDUT2650の両方がそれぞれのインターフェース・ボード(図6には示さず)を介してリレー・バンク630に接続されている。このようにして、DUT1640の試験完了後、リレー・コントロール626は、次のDUT2650を試験するために、リレー・バンク630のスイッチ630aないし630eの切り換えを実施する。
リレー・コントロール626は、リレー・バンク630のスイッチ630aないし630eの切り換えを、ロボット式デバイス・マニピュレータ624からの制御信号に基づいて選択する。ロボット式デバイス・マニピュレータ624は、たとえばデバイスの試験が完了したときに、ATE602の試験コンピュータ603と(信号のやりとりによって)通信する。今の例では、ロボット式デバイス・マニピュレータ624は、リレー・バンク630を通じてATE602に接続されたインターフェース・ボードにDUT1640を置くことを完了すると、ATE602の試験プロセスを開始する。次いでATE602は、ATE602の試験コンピュータ603によってプログラムされ、制御される試験プロトコルに従って、試験を実施する。
ATE602によるDUT1640の試験の完了に際し、ATE602はロボット式デバイス・ハンドラ620に試験完了を、たとえばDUT1640についての試験結果をハンドラ620に通信することによって、信号伝達する。次いでハンドラ620は、マニピュレータ・アームを適宜制御して、DUT1640を、ATE602に接続されたインターフェース・ボード上のそのソケットから除去する。ATE602から試験終了信号を受信すると、ハンドラ620はリレー・コントロール626に信号を送り、リレー・コントロール626はリレー・バンク630のスイッチ630aないし630eを反転させ、DUT2650をリレー・バンク630を通じてATE602に通信上接続する。次いでハンドラ620は次の試験開始信号をATE602に対して発し、次いでATE602はDUT2650の試験を開始する。
図5における方法500との関連で述べたように、ロボット式デバイス・ハンドラ620は、そのマニピュレータ・アームの一つを操作して、デバイスが試験されるたびに、すでに試験済みのデバイスを除去し、動かし、新しい試験のためのデバイスを取得し、置く。リレー・バンク630およびATE602と協調されたデバイス・ハンドラ620のこの動作は、ATE602が、他方のデバイスが除去され置換される間、実質的に連続的にデバイスを試験することを保証する。
図7を参照すると、図6との関連で述べたようなリレー700は、リレー・コントロール626およびリレー・バンク630を含む。図7での図示およびリレー700の記述の目的については、リレー・コントロール626およびリレー・バンク630はそれぞれ、単一のスイッチ630aのみを具備する。スイッチ630aは二つの可能な接続、DUT1のピンAへのコネクタ632またはDUT2のピンAへのコネクタ634の間で動作する。スイッチ630aは、そのようなコネクタ632、634のいずれかの試験器(図7には示さず)からの単一の試験信号636への通信上の接続を実現する。リレー700において典型的であるように、ロボット式デバイス・マニピュレータ(図7には示さず)からの724a、724bのような関連する信号入力関連する信号入力は、信号636を、スイッチ630aを通じて、個別的なDUT1またはDUT2の試験のために望まれるのに応じてコネクタ632または634のいずれかに接続させる。
リレー・コントロール626は、図6のロボット式デバイス・ハンドラ620のユーティリティ・ポート624(図7には示さず)からの第一の制御信号724aおよび第二の制御信号724bの入力を有している。各制御信号724a、724bはそれぞれ「ダーリントン・ドライバ(Darlington Drivers)」または等価なパワー・トランジスタ・ドライバ726a、726bに接続される。ドライバ726a、726bは、たとえばNTEエレクトロニクス社から入手可能である。パーツ番号NTE215シリコンNPNトランジスタ・ダーリントン・ドライバ。それぞれのドライバ726a、726bは大地に接続され、リレー・バンク730にも接続される。
図7に示されているリレー・バンク730は、図6のシステム600で使われているものからは実質的に簡略化されている。図6では、各試験対象デバイス(すなわちDUT1およびDUT2)の複数ピンが並行的に試験器602にリレー・バンク630を通じて接続されていた。にもかかわらず、図7のリレー・バンク630は、図6における対応するリレー・バンク630の単一のスイッチ630aを示す。スイッチ630aは、コイル631a、631bの間でリレー・バンク630のところに配されている。コイル631a、631bはそれぞれ、リレー・コントロール626のそれぞれのトランジスタ・ドライバ726a、726bの出力によって駆動される。このようにして、リレー・コントロール626は、各試験インスタンスにおいて試験信号636を介した試験のためにDUT1のピンA 632、DUT2のピンA 634のいずれかを選択的に通信上接続するために、スイッチ630aを切り換える。
一般に、前記諸実施形態において、完全な試験プロトコルが第一の試験デバイスに対して実行され、次いでリレー・コントロール626が試験のための第二のデバイスへの切り換えを引き起こす。その後これが繰り返される。何らかのデバイスの試験の間、試験のための次のデバイスが取得され、次の試験のためにインターフェース・ボードに位置される。次いで、デバイスに対する試験の完了に際して、リレー・コントロール626はリレー・バンク630を試験のための次の逐次デバイスに切り換え、それぞれの次の逐次デバイスの試験はすぐ始まり、このようにして著しいインデックス時間遅延なしに続く。
図8を参照すると、図6のシステム600が示され、試験におけるデバイスのデジタル・パワーについての接続を示している。特に、システム600はATE602、ロボット式デバイス・ハンドラ620、リレー・コントロール626およびリレー・バンク830を含んでおり、パワー・コネクタ802、802および接地コネクタ806、808とDUT1 640およびDUT2 650のそれぞれの個別的なデジタル・パワー・ピンとの間のスイッチ830aないし830dを通じて接続されている。図6のシステム600と同様に、図7のシステム600は、他方のDUTがリレー・バンク830のスイッチ830aないし830dによって試験のために試験器602に通信上接続されている間にロボット式マニピュレータがそれぞれの個別的DUTを扱い、置き換えることで、DUT1 640のあとにDUT2 650が続く、実質的に連続的な逐次パワー試験を提供するはたらきをする。
図9を参照すると、図6および図8のシステム600が示され、個別的なデバイスDUT1 640およびDUT2 650のアナログ・ピン試験についての接続を示している。図9のシステム600では、ATE602はアナログ・デジタイザ接続902、904、906、908において、リレー・バンク930の個別的なスイッチ930d、930c、930b、930aに接続されている。スイッチ930a、930b、930c、930dのそれぞれは、そのアナログ・ピンにおける個別的なDUT1640およびDUT2650に接続される。これまでの図のシステム600と同様、スイッチ930a、930b、930c、930dは、試験器602を、事実上中断されない連続におけるそれぞれの個別的なDUT1640およびDUT2650の試験のために、個別的に通信上接続するために、マニピュレータ630を介してリレー・コントロール626によって制御される。DUTの一方が試験されている間、他方のDUTがハンドラ620によって動かされ、試験のための次のデバイスで置き換えられる。
図10を参照すると、図6、図8および図9のシステム600が示され、個別的なデバイスDUT1 640およびDUT2 650のアナログ・パワー試験についての接続を示している。図10のシステム600では、ATE602はユーティリティ・パワー接続1002、1004において、リレー・バンク1030のコイルを通じて、リレー・コントロール626と接続されている。スイッチ1030d、1030c、1030b、1030aが試験器602のDUTパワー接続1006、1008、1010、1012に接続されている。これまでの議論と同様、リレー・バンク1030の個別的なスイッチ1030d、1030c、1030b、1030aはそれぞれ、そのアナログ・パワー・ピンにおける個別的なDUT1640およびDUT2650のそれぞれに試験器602を選択的に通信上接続する。スイッチ1030a、1030b、1030c、1030dは、試験器602を、事実上中断されない連続におけるそれぞれの個別的なDUT1640およびDUT2650の試験のために、個別的に通信上接続するために、マニピュレータ630を介してリレー・コントロール626によって制御される。DUTの一方が試験されている間、他方のDUTがハンドラ620によって動かされ、試験のための次のデバイスで置き換えられる。
図6ないし図10をまとめて参照すると、リレー・バンク630、830、930、1030の複数のものが、即座の連続におけるDUT1640およびDUT2650のそれぞれの試験を実行するために、システム600において同時に用いられることができることが示されており、理解されることができる。DUTの一方の試験の間に、ハンドラ620が他方のDUTを動かし、置き換える。そのような構成において、リレー・コントロール626は、各DUTがDUT1640およびDUT2650として逐次試験されうるよう、リレー・バンク630、830、930、1030のそれぞれの切り換えを制御する。ハンドラ620は他方のDUTの試験の間に、DUTを試験のための新しいデバイスと換えるので、システム600についてのインデックス時間は無視でき、試験器602による一連のデバイスの試験は実質的に連続的である。
2.光学式デバイス自動化試験設備(ATE)―例示的な実施形態:
図11を参照すると、光学式デバイスを試験するための別の試験システム1100が、試験器1102による連続的な逐次的試験を実行するために、同様のリレー要素を用いる。試験器1102は、CCD受容器(receptor)およびCCD画像プロセッサを有する画像取り込み器1104を含む。試験器1102は動力源1106およびそこからの接続1110、1112、1114をも含む。
試験器1102の試験コンピュータ1108はコネクタ1116を介してロボット式マニピュレータ1118に通信上接続する。ロボット式マニピュレータ1118は実質的にこれまで記載されてきたようなものであり、マニピュレータ1118はデュアル・マニピュレータ・アームを有し、個別的なデュアル・デバイスDUT11050およびDUT21040の試験情報を、先に詳述したようなリレー・コントロール626への接続を介して受信し、その試験を制御する。リレー・コントロール626は、リレー1130のスイッチ1130aの切り換えを制御する。切り換えは、リレー1130を通じた、試験器1102とそれぞれ対応するDUT11032およびDUT21034についての個別的な試験取り込み要素1032、1034との間の通信上の接続を実現する。システム600のこれまでの記載(図6、図8、図9および図10の)と同様に、システム1100は、即座の連続において、試験をDUT1 1040とDUT2 1050との間で切り換える。一方のDUTの試験の間に、他方のDUTがマニピュレータ1118によって動かされ、試験のための次のデバイスで置き換えられる。このようにして、試験器1102はそれぞれの逐次的な次のデバイスについて、無視できるアイドル・インデックス時間で、実質的に試験動作を続ける。
図12を参照すると、タイミング図1200が、本稿で記載するような型の試験システムにおいて個別的な第一および第二のデバイス(すなわち、DUT1およびDUT2)についての試験サイクルを示している。タイミング図1200において注目されるのは、マニピュレータがデュアル・マニピュレータ・アームを介して、他方のデバイスが試験されている間に一方のデバイスを操作し、またその逆もできるので、インデックス時間が無視できるということである。こうして、各時点において、試験するためのデバイスは、試験のためにソケット内に位置される。システムは、そのような各時点において試験するために準備ができたデバイスの試験を続けるよう、デバイス間で試験を切り換える。ひとたびあるデバイスの試験が完了すると、試験を次のデバイスに切り換えた際に、他方のデバイスがすぐ試験されることができる。
多重化リレーを含むピン電子回路カード
図16を参照すると、ある種の実施形態のピン電子回路カード1600は多重化リレー1602を含む。多重化リレー1602は、カード1600の試験器チャネル1604の電子回路を、二つの別個のリード1610と1620の間で切り換える。別個のリード1610および1620は二つの別個のDUT(すなわち、詳細には図示しないDUTAおよびDUTB)の等価なピンに接続される。
多重化リレー1602はスイッチ制御信号1606にも接続される。スイッチ制御信号1606はハンドラ(図示しないが本稿で既述)に接続される。先に論じたように、ハンドラは、インターフェース・ボードの試験ソケットにはいっているDUTの試験のために、制御信号を試験器に与えることができる。あるいはまた、制御信号は別の源からであったり、オペレーターによって手動で差し向けられたり、あるいは他の形であることもできる。
動作では、ハンドラは二つの別個の試験対象デバイスDUTAおよびDUTBを扱い、該デバイスを試験サイトにおいて試験器のデュアル試験ソケットに置き、置き換えることができる。デュアル試験ソケットは、少なくとも試験対象でソケットに挿入されたデバイスについての前記等価なピンの接続に関しては動作上等価である。たとえば、ソケットの一方にDUTAがあるとき、多重化リレー1602はハンドラからの信号によって、試験器チャネルの電子的試験資源をDUTAを含むソケットに切り換えるよう制御される。試験器チャネルはそれにより、試験器による試験のために適用可能なようにDUTAの単一のピンに電気的に接続される。
DUTAの試験の間、DUTBがハンドラによって他方のソケットに位置される。ひとたびDUTAの試験が完了すると、多重化リレー1602はハンドラの信号によって、試験器チャネルの電子的試験資源をDUTBを含むソケットに切り換えるよう制御される。DUTBの試験の間に、次の試験対象デバイスがハンドラによって取得され、DUTAを含んでいたソケット中に置き換えられる。こうしてプロセスは続いていく。
もちろん、先述したように、デュアル・マニピュレータは、他方のソケットであるデバイスを試験している間に一方のソケットで準備配置を実行するようはたらくことができる。
さらに図16を参照すると、多重化リレー1602は、例示目的でピン電子回路カード1600からの最後のコンポーネントで、DUTAおよびDUTBへのリード1610、1620を与えるものとして図示されているが、その代わりに、ピン電子回路カード1600における任意の適切な接続に配位/位置されることもできる。多重化リレー1602が記載されるような多重化機能を実行する効果をもつ限り、多重化リレー1602は、代替的に、ピン電子回路カード1600の他のコンポーネント/要素内に接続されることもできる。具体的な配位/位置は、信号完全性(integrity)への最小限の擾乱のために、カード製造または経済のために、あるいは他の目的のために最適化できる。
さらに、ピン電子回路カード1600の試験器チャネル1604からのリード1610、1620は好ましくはトレース長整合される。リード1610、1620のトレース長整合は、当業者にはよく知られており、理解されているように、リード1610、1620を通じた試験器チャネルを介して同じ試験を、全く較正や補正なしに可能にする。トレースの長さが整合されていないと、試験器および/またはハンドラは、それぞれのソケットにおける試験のために異なる較正データのセットを測定し、実装しなければならない。これは複雑であり、設計および実装においてコスト高になる可能性が高い。しかしながら、リード1610、1620のトレース長整合は必ずしも要求されず、他の構成では、試験器および/またはハンドラのソフトウェアまたは他の要素が、所望されるままに前記それぞれのソケットを用いて適用可能かつ適切な試験の備えをすることもできる。
試験器チャネル1604の特定のピン電子回路はデジタルもしくはアナログまたは他の任意のものであることができる。いずれにせよ、試験器チャネル1604は、無視できるインデックス時間で別個のデバイスの等価なピンの間で電気的な切り換えをするために、デュアル・リードの間で切り換え可能である。
多重化リレー1600の具体的な設計は、試験器、ピン電子回路カード、試験、ハンドラなどの任意の具体的な構成における数多くの要因に依存する。異なる信号または信号は設計によって対応できる。その際、信号およびその作動的な対応物または大地基準が一貫したインピーダンスを維持するまたは最小限の電流ループを維持するなどの仕方で切り換えなければならない。しかしながら、そのようないずれの設計でも、一つのピンと接続し、それが二つに変換されるという基本概念は同じままである。ピンとの接続についての具体的な電気的性質がどうだろうと違いはない(たとえば、大地、デジタル信号、アナログ信号、作動信号またはその他のいずれだろうと構わない)。いかなる具体的な実装においても、当業者はさまざまな設計上の可能性、選択肢および手法を理解し、知るであろう。それらのすべてはここに含まれることが意図されている。
図17を参照すると、方法1700が、試験資源のセットを提供する試験チャネルに接続されたデュアル・リードを介して試験を実行する。方法1700では、ステップ1702で、試験器のハンドラがDUT(すなわちDUTA)を試験ソケットに位置させることによって、DUTAの第一のピンがリードの一方に接続される。ハンドラはステップ1704において、試験器のピン電子回路カードの多重化リレーに信号を送り、試験を、前記リードのうちDUTAのピンに接続しているほうに切り換えさせる。DUTAの試験が進行する間、ハンドラ(先に論じたように、別のマニピュレータを介して、あるいはその他の適用可能な仕方で)はステップ1706(上記の方法500におけるハンドラ動作に対応)で、等価な試験機能をもつ別の試験ソケットにデバイスがあればそれをどけて、次のデバイス(すなわちDUTB)を取得し、DUTBを他方の試験ソケットに位置させる。したがって、DUTBは一般に、DUTAの試験の完了に際して他方の試験ソケットにすでに位置されている。
ステップ1708では、ハンドラは、第一の試験ソケットでのDUTAの試験の完了に際して、多重化リレーを制御して、試験を、前記リードのうち他方の試験ソケット内のDUTBに接続するもう一つのほうに切り換えさせ、試験器にDUTBの試験を開始させるよう信号を送る。ステップ1710では、試験器チャネルおよびDUTBの単一の等価なピンに接続されたリードを介したDUTBの試験が進行する。
DUTBの試験の間、ハンドラは次に、DUTAをどけ、DUTAを「試験完了」位置に置き、DUTAを置き換える次の試験対象デバイスを取得し、この、次のデバイスをDUTAの代わりにDUTAを保持していたソケットに位置させることによって、ステップ1702に戻る。方法1700は、すべてのデバイスについて試験が完了するか、あるいは他の何らかの中断機構が発生するまで続く(たとえば、先述したように、試験はオペレーターによって、エラーのために、などの原因で停止されることができる)。
例示的な試験システム―多重化リレー
図19を参照すると、短縮された(すなわち無視できる)インデックス時間を達成するための試験システム1900はハンドラ1902および試験器1906を含んでいる。ハンドラ1902は、並列コア1014を有する試験セル1903を含む。並列コア1908はデュアル・ソケット1908(AおよびB)をもつ。並列コア1014は多重化リレー1907に接続されている。多重化リレー1907は試験器チャネル上の試験器資源をデュアル・ソケット1908の間で切り換えて、任意の時点において(リレー1907を介した信号切り換えのために必要とされる実質的に長さ0の時間以外において)試験器1906の試験器資源がデュアル・ソケット1908の一方または他方に接続されるようにするために接続されている。ハンドラ1902および試験器1906に関連してのそのような多重化リレー1907の動作は、すぐ前に述べたとおりである。
ハンドラ1902は同様に、デュアル・コア・マニピュレータ1804を含め、先に論じた諸要素を含む。デュアル・コア・マニピュレータ1804はそれぞれ、個別的DUTを位置させる/試験の間保持する/どける。それにより、DUTがマニピュレータ1804の一方によって扱われてソケット1908の一つにおいて試験されている間、他方のソケット1908にそのとき試験済みになっているDUTがあれば、それは他方のマニピュレータ1804によってどけられ、次の試験すべきDUTが取得され、置換として位置される。説明してきたように、試験器1906の試験資源の切り換えは、ソケット1908とソケット1908の間で実質的に即時に起こる。こうして、各時点において、一方のソケット1908はその中のDUTを試験しており、他方のソケット1908にあるDUTは試験済みなっており、どけられるところであり、そのソケット内には次の試験すべきDUTが位置される。反対側のソケット1908でのそのとき進行中のDUTの試験の完了に際してすぐ試験をそれに切り換えるためである。
システム1900のハンドラ1902は、先述したようなDUTの入力および出力の載置のために、他のさまざまな機械的(典型的には物理的に動く)コンベヤー/輸送機構およびロボット式操作アームを含む。入力トレイ1920は、入力マニピュレータ・アーム1922がピックアップし、試験セル1903のための入力ステージ1910に位置させるためのDUTを保持する。入力ステージ1910にある各DUTは、たとえば輸送機構などによって、温度ソークおよび保持ステージ1912(該当すれば適宜)に進む。デュアル・マニピュレータ・アーム1908の一方がDUTを取得し(そのDUTについて利用可能なソケット1908の具体的な一方に従って)、そのDUTをソケット1908のうちの適用可能な利用可能なほうに位置させる。前記のように、DUTを取得し、位置させることは、その時点で他方のソケット1908で何らかのDUTに対して試験器1906による試験が実行されている際に行われる。ひとたび試験器資源が多重化リレー1907によって切り換えられると、すなわち、他方のソケット1908におけるそのDUTの試験の完了後すぐに、試験器資源はそのときそのように位置されているDUTを刺激する。試験が完了し、それから試験資源が切り換えによって解放されたばかりのDUTおよびソケット1908についての他方のマニピュレータ・アーム1904は、DUTをそのソケット1908からどけ、DUTを外置ステージに移送し(先に論じたように)、次いで次の試験すべきDUTを取得し、置き換えとして位置させることに進む(他方のDUT試験の間に、など)。
その特定の試験動作についてのハンドラ1902の他の要素―たとえば試験前および試験後の進行のためのような―に含まれるものとしては、出力輸送機構、出力ステージ1918(試験結果に対応またはその他)、試験済みDUTを出力ステージ1918からの移送し、ビン・と例1926のうち個別的な該当するものに置くための出力マニピュレータ・アーム1924がある。
システム1900による試験は、(試験のための入力として載置されたDUTのうち残っているもののうちから)それぞれの次の試験すべきDUTについて、継続する仕方で進行する。システム1900を介して、デュアル・マニピュレータ・アーム1904および並列コア1908のデュアル・ソケット1908をもつハンドラ1902のため、そしてまたデュアル・ソケット1908の交互のものおよびそこにあるDUTについての実質的に連続な試験をするための、試験器1906の試験資源の、デュアル・ソケット1908の一方から他方への即座の切り換えのため、実質的に試験におけるインデックス時間は解消される。
タンデム・ハンドラおよび多重化リレーとの組み合わせ
図20を参照すると、試験器2006に接続されたタンデム・ハンドラ2000は、DUTのためのデュアルな機械的進行経路を含んでいる。すなわち、ハンドラ2000は、個別的なDUTについて試験経路に沿った段階の少なくともある種のデュアル性を提供するための、別個の個別的要素および機構を有する試験セル2003を提供する。ハンドラ2000のある種の電子回路および機械的要素は共通であり、デュアルな経路両方によって/両方の動作のために用いられる。特に、ハンドラ1900は一般に、ハンドラ試験処理を通じたそれぞれのDUTの進行のための経路Aおよび経路Bを含む。しかしながら、ハンドラ2000は、先述したように、それぞれのDUTのためのデュアル・ソケット2008A、Bをもつ並列コア2014を有する。ハンドラ2000は、それぞれの経路および該経路に沿った動作に対応する(あるいは他の仕方でそれらの経路のために調整された)第一のコア・マニピュレータ・アーム1904Aおよび第二のコア・マニピュレータ・アーム1904Bをも含む。第一および第二のコア・マニピュレータ・アーム1904A、Bのそれぞれは、ハンドラ2000によって、主として共通の回路および論理を介して制御されるが、それぞれは、それぞれの経路A、Bについて、ハンドラ2000の適用可能な機械的およびその他の動作のための独立した要素を有している。多重化リレー2007は、動作の各時点においてソケット2008A、Bの一方または他方において試験するために、切り換え可能的に試験器2006の試験器資源をデュアル・ソケット2008A、Bのそれぞれに接続する。
図20の例におけるタンデム・ハンドラ2002は、デュアル進行経路のそれぞれのための個別的要素をいくつか有している。それには、それぞれ第一および第二の入力ステージ2010A、B、温度ソークおよび保持ステージ2012A、B、外置ステージ2016A、Bおよび出力ステージ2018A、Bが含まれる。デュアル経路の共通要素は、たとえば、入力トレイ2020およびビン・トレイ2026および/またはその他の諸側面が含まれうる。いずれにせよ、タンデム・ハンドラ2000は、多重化リレー2007および並列コア2014/デュアル・ソケット2008A、B配置を切り換えることを介して、インデックス時間、ダウン時間または望ましくない形で試験器2006の動作中能動的な試験を止めるような他の懸念を有利に無視できる(または著しく軽減された)ものに維持することを視野に、多様な理由(たとえば、経済/経費、空間的配置、試験上の要件、工学上の制限/慣行および実際上またはその他の理由を含む)のうちの任意のもののために利用されるまたは利用されうるある種の共通要素を有する(または有することができる)。
タンデム・ハンドラ2002のある種の要素は、試験セル2003を通過するそれぞれのDUT進行のための経路A、Bに共通ではない。これらの要素は同様に、経済的、空間的、光学的、設計上、動作上またはその他の要求、現実性、機能性またはその他の考慮によって規定されることができる/規定されることになる/規定されることがありうる。構成および軽減されたダウン時間およびその他の要因を介して達成される無視できるインデックス時間からの利点は、タンデム・ハンドラ2002およびシステム2000の他の諸側面を介して理解され、実感されるであろう。図20では、システム2000は、次のDUTを入力トレイ2020からピックアップしてそれぞれの入力ステージA、Bに位置させるためのデュアル入力マニピュレータ2022A、Bを含んでいる。輸送機構および同様の機構も、入力ステージA、Bおよび経路A、Bのそれぞれについて分離されている。別個の温度ソークおよび保持ステージA、Bならびに別個の外置ステージA、Bがタンデム・ハンドラ2002の試験セル2003のそれぞれの試験経路A、Bに対応する。同様に、出力輸送および機構およびデュアル出力マニピュレータ2024A、Bは、それぞれの次のDUTを、試験完了に際して(試験結果および示し合わせによるなど)、出力載置および出力ビン・トレイ2026などに進行させる。
図20のタンデム・ハンドラ2002についてより具体的に見ると、試験器2006の試験器資源と並列コア2014の個別的なデュアル・ソケット2008A、Bとを切り換え可能的に接続する多重化リレー2007と一緒に動作して、デュアル・コア・マニピュレータ・アーム2004A、Bのそれぞれは、並列コア2014およびそれぞれのDUTのためのデュアル・ソケット2008A、Bおよび試験資源の切り換え可能なリレーに関して上記したのと同様に、シーケンスで動作する。動作では、タンデム・ハンドラ2002は、デュアル・マニピュレータ・アーム2004A、Bおよび並列コア2014のそれぞれのソケット2008A、Bを介して、経路Aに沿ってDUT(a)を、経路Bに沿ってDUT(b)を続けて、試験のために位置付けし、試験のために維持し、試験後にどける。DUT(a)が(コア・マニピュレータの一方2004Aを介して)ソケットの個別的なもの2008Aに位置付けされ、試験が行われるとき、DUT(b)が(他方のコア・マニピュレータ2004Bを介して)取得され、他方のソケット2008Bに位置付けされる(たとえば、そのときには試験済みになっており、コア・マニピュレータ2004Bによってそこからどけられている、そこにあった何らかの先行するデバイスの置換として)。DUT(a)の試験の完了に際して、タンデム・ハンドラ2002は、試験結果/試験器2006の試験終了に応答して(または他の仕方で制御またはトリガーされて)、多重化リレー2007を制御して、試験器2006の試験資源をDUT(b)の試験に切り換えさせる。タンデム・ハンドラ2002の動作のための制御論理およびシステム2000の他の諸側面の結果として得られる制御/動作は、先に扱ったように、ソフトウェア、ハードウェアまたは両者の組み合わせによって提供される。
さらに、DUT(a)の試験完了時に、タンデム・ハンドラ2002は、多重化リレー2007を介したDUT(b)への切り換えと並行して、コア・マニピュレータ2004AによってDUT(a)をどけ、それによりDUT(a)を対応する外置ステージ2016Aにシステム2000からの出力のために位置させる。そのとき試験済みのDUT(a)をそのように出力のために位置させると、コア・マニピュレータ2004Aは次の試験すべきDUT(a)を(たとえば、温度ソークおよび保持ステージ2012Aにおいて)取得し、この、次のDUT(a)を該当する空のソケット2008Aに位置付ける。同時に、試験器資源は試験およびその試験器資源のための試験器2006プロトコルに従ってソケット2008B内のDUT(b)を刺激する。ソケット2008BにおけるDUB(b)の試験完了に際して実質的にすぐ(たとえば、DUT(b)およびハンドラ2002の応答/制御についての試験結果/試験終了のため)、多重化リレー2007は試験器2006の試験資源を再び、DUT(a)を保持しているもとのソケット2008に切り換える。ソケット2008BにおけるこのDUT(b)の試験の完了時に、タンデム・ハンドラ2002は、多重化リレー2007を介して試験をDUT(a)に戻すのと並行して、コア・マニピュレータ2004Bによってそのとき試験済みのDUT(b)をどけ、それによりDUT(b)を、システム2000からの出力のために、対応する外置ステージ2016Bに位置させる。システム2000の、試験器2006と一緒に動作可能で、多重化リレー2007を介して試験資源をデュアル・ソケット2008A、Bの一つから次へと切り換える、タンデム・ハンドラ2002のデュアル試験経路A、Bは、一連のどける/取得する/位置付ける/試験するの動作と組み合わさって、デュアル・コア・マニピュレータ2004A、Bを介してそれらの別個の逐次的で反復される動作において、動作を繰り返し、試験のための入力として載置されたすべてのDUTが試験されるまで(あるいは継続と整合しない何らかの中断が発生するまで)試験を続ける。
このように、システム2000内に実装されるようなタンデム・ハンドラ2002はさらに、試験動作におけるダウン時間およびインデックス時間の発生を制限/軽減する。たとえば、いずれかの試験経路A、Bの何らかの側面/要素が故障するかメンテナンス、修理などの間シャットダウンされた場合、タンデム・ハンドラ2002は、それぞれの次のDUTの、試験前、試験器2006による試験および試験後についての試験セル中の進行を続ける。コア・マニピュレータ・アーム2004A、Bのいずれかが故障またはシャットダウンの原因である場合、一例では、アーム2004B、Aの他方がそれでも次のDUT試験のための継続された動作をできる。それぞれの次のDUTは、経路A、Bのうち、利用可能/動作可能ないずれか一つ、あるいはタンデム・ハンドラ2002の特徴および制御論理に依存したいずれか一つに沿って試験されることができ、そのようなイベントにおける最適化された試験シーケンシングに一致する。
このように、以上では、システム2000において、デュアル・ソケット2008A、Bの間の多重化リレー2007を介した試験器2006の試験器資源の切り換えと、タンデム・ハンドラ2002のさまざまな要素の試験動作のためのデュアル経路A、Bとを組み合わせることで提供されるものとして、短縮されたインデックス時間および短縮されたダウン時間の両方ならびに可能性/選択肢/構成の幅広い自由度および変形がある。そうした幅広い自由度および変形は、試験および試験動作のプログラミング、制御およびシーケンシング;イベント、故障およびエラー応答;経済的、工学上またはその他の最適化または根拠のための設計および構成の代替;ならびにその他、についてのものである。さらに、さらなるおよびその他の利点および改良がその実施形態および側面において実現される。
以上の明細書では、本発明は、個別的な実施形態を参照して記載されてきた。しかしながら、当業者は、付属の請求項に記載される本発明の範囲から外れることなくさまざまな修正および変更ができることを認識するものである。したがって、明細書および図面は制限する意味ではなく例示する意味に見なすべきものであり、そのようなすべての修正は本発明の範囲内に含められることが意図されている。
上記では、恩恵、他の利点および諸問題への解決策が個別的な実施形態に関して記載されてきた。しかしながら、恩恵、利点諸問題への解決策および何らかの恩恵、利点もしくは解決策を引き起こしうる要素(単数または複数)でより顕著に現れる、あるいはより顕著になるものが、請求項のいずれかまたは全部の決定的、必須または本質的な特徴または要素であると解釈されるべきではない。ここでの用法では、「有する」「含む」の用語またはそれらの任意の他の変形は、非排他的な包含をカバーすることが意図されている。よって、要素の列挙を含むプロセス、方法、物品または装置は、それらの要素のみを含むのではなく、そのようなプロセス、方法、物品または装置に明示的に挙げられておらず内在的でもない他の要素を含んでもよい。
従来の、試験器と、試験器資源を試験対象デバイスに相互接続するインターフェース・ボードと、インターフェース・ボード上の一つの試験ソケットと、単一のマニピュレータ・アームをもつ自動化ハンドラとを含む、試験するためのシステムを示す図である。 本発明のある種の諸実施形態に基づく、試験器と、該試験器およびその試験資源を試験対象の試験デバイス(単数または複数)に相互接続するインターフェース・ボードと、同じ試験器資源のセットに並列に接続されインターフェース・ボードにマウントされた二つの試験ソケットと、デュアル・マニピュレータ・アームをもつ自動化ハンドラとを含む、試験するためのシステムを示す図である。 本発明のある種の諸実施形態に基づく、図2と実質的に同様の試験するためのシステムであって、試験器とその資源を、インターフェース・ボード上の二つの試験ソケットの間で試験の切り換えをするため、インターフェース・ボード上の二つの試験ソケットの間で、試験対象の試験デバイス(単数または複数)に相互接続する、インターフェース・ボード上のスイッチをも含む、システムを示す図である。 マニピュレータ・アームが試験するためにそれぞれの次の逐次試験デバイスを動かし、置き換えるために要求されるインデックス時間を含む、試験するための方法であって、マニピュレータ・アームがそれぞれの逐次の試験デバイスを動かし、置き換える動作の期間中は、逐次のデバイスの試験が中断され、アイドルになる、従来の方法を示す図である。 無視できる所要インデックス時間を含む、試験するための方法であって、一対の試験ソケットおよび二つのマニピュレータ・アームが、インターフェース・ボード上の試験ソケットのそれぞれにおいて、デバイスのすぐの逐次的試験を実施し、該ソケットは、同じ試験器資源のセットを試験対象の諸デバイスに相互接続するインターフェース・ボード上の同じ試験器資源のセットに並列に結線されており、無視できるインデックス時間は、本発明のある種の諸実施形態に基づき、一方の試験ソケットにおいて試験が実行される間に他方の試験ソケットにおいてデバイスを動かし、置き換え、またその逆をすることによって達成される、方法を示す図である。 図5の方法に基づく、デバイスのデジタル・ピンを試験するためのシステムであって、インデックス時間は無視でき、同じ試験資源のセットに並列に結線されている一対の試験ソケットのそれぞれの間で選択を行うインターフェース・ボード上のスイッチと、一方の試験ソケットで試験が実行されている間に他方の試験ソケットにおいて試験するためのデバイスを操作し、またその逆を行うための二つのマニピュレータ・アームとを含む、システムを示す図である。 図6のシステムにおいて使用するための、インターフェース・ボード上の一対の試験ソケットの各試験ソケットの間の電気的接続の切り換えを制御するための、電気回路およびハードウェア・コンポーネントを示す図であって、前記スイッチは、同じ試験器資源のセットに並列に結線された前記一対の試験ソケットの一つの間で選択を行い、いかなる所与の時点においても、前記対の一方のソケットのみが試験器に接続されるよう動作を制約し、前記スイッチはまた、前記試験ソケットの一方のソケットが試験器に電気的に接続され、試験における使用のために利用可能である間、前記試験ソケットの他方について前記試験器からの電気的絶縁を提供し、逆も行う、本発明のある種の諸実施形態に基づく図ある。 本発明のある種の諸実施形態に基づく、図5の方法に基づいて試験デバイスのデジタル・パワーを試験するための、実質的に図6のようなシステムを示す図である。 本発明のある種の諸実施形態に基づく、図5の方法に基づいて試験デバイスのアナログ・ピンを試験するための、実質的に図6および図8のようなシステムを示す図である。 本発明のある種の諸実施形態に基づく、図5の方法に基づいて試験デバイスのアナログ・パワーを試験するための、実質的に図6、図8および図9のようなシステムを示す図である。 本発明のある種の諸実施形態に基づく、図5、図6、図8、図9および図10の概念に実質的に基づいて光学デバイスを試験するためのシステムを示す図である。 本発明のある種の諸実施形態に基づく、無視できるインデックス時間が要求される、図5の方法ならびに図6、図8、図9および図10の諸システムの試験サイクルにおけるタイミング関係を示す図である。 本発明のある種の諸実施形態に基づく、従来式の試験器のピン電子回路カードであって、前記ピン電子回路カードは試験資源のセットを含み、前記試験資源は個別的な資源についての試験器チャネルによって試験対象デバイスの単一のピンに接続可能である、ピン電子回路カードの簡略化された機能的な例を示す図である。 本発明のある種の諸実施形態に基づく、従来式の試験器のピン電子回路であって、やはり試験資源のセットを含み、前記試験資源は試験器チャネルによって試験対象デバイスの単一のピンに接続される、ピン電子回路のもう一つの例を示す図である。 本発明のある種の実施形態に基づく、典型的な試験器の従来式のピン電子回路カードの、試験器チャネルの試験資源を電気的に切断する/オフにするためのリレーを示す図である。 本発明のある種の実施形態に基づく、本発明のピン電子回路カードの多重化リレー(muxing relay)であって、ピン電子回路カードに含まれ、該カードの試験器チャネル(すなわち、特定の試験器資源のセット)に接続され、試験器チャネルの二つの別個のデバイスの等価なピンへの接続のためのデュアル・リードを提供し(「等価なピン」とは二つの別個のデバイスの同じ型/モデルなどの同じピンである)、デュアル・リードとはトレース長整合されている(being trace length matched)、多重化リレーを示す図である。 本発明のある種の実施形態に基づく、前記多重化リレーおよび前記試験器チャネルのデュアル・リードを有する図16のピン電子回路カードによる試験のための方法であって、前記デュアル・リードは二つの別個のデバイスの等価なピンに接続可能であり、多重化は、前記デュアル・リードの間の電気的な切り換えを介して、逐次的に試験器チャネルをそれぞれの次のデバイスに切り換える、あるデバイスの試験と次のデバイスの試験との間に無視できるインデックス時間がある、方法を示す図である。 ハンドラおよび単一のマニピュレータ・アームと、試験器と、試験対象デバイスのためのソケットと、その他の関係する特徴とを含む従来式の試験システムを示す図である。 本発明のある種の実施形態に基づく、当該システムの試験器による試験がアイドル/不活動であることに起因するインデックス時間が実質的に無視できることを達成するよう動作可能な試験システムであって、当該システムの試験セルのデュアル操作アームを有するハンドラと、それぞれの試験対象デバイスについてのデュアル・ソケットと、試験器の試験資源を、一方のソケットから他方のソケットに、個別的ソケットにあらかじめ位置付けされた個別的な試験対象デバイスの試験後実質的に即座に切り換え、そのような即座の切り換えで試験器による試験を許容するリレーとを含む、システムを示す図である。 本発明のある種の実施形態に基づく、やはり実質的に無視できるインデックス時間ならびにダウン時間短縮およびその他の利点を達成するよう動作可能な試験システムであって、タンデム・ハンドラ(たとえば、単一のハンドラ・ユニットとして組み込まれている)のデュアル試験経路の個別的な試験セルを含んでおり、該タンデム・ハンドラはデュアル・マニピュレータ・アームおよび個別的な前記デュアル試験経路について少なくともある種の特徴/ステージおよび輸送要素を有しており、当該試験システムはさらにディア(dia);試験対象の個別的デバイスについてのソケットを含んでおり、ソケット間での試験器の試験器資源の即座の切り換えを許容するようになっている、当該システムにおける短縮された(実質的に無視できる)インデックス時間およびタンデムなハンドリング(handling)のための、システムを示す図である。

Claims (14)

  1. 第一の試験対象デバイス(DUT)および第二のDUTを試験するシステムであって、当該システムは、相異なる試験のための試験器資源を提供する試験器を含んでおり、前記試験器資源は、第一のDUTおよび第二のDUTのそれぞれに分離して接続可能であり、
    当該システムはハンドラを含み、該ハンドラは、第一の位置付け器および第一のユニットならびに第二の位置付け器および第二のユニットを含み、該ハンドラは第一のDUTを第一のユニットのところまで操作し、該ハンドラは第二のDUTを第二のユニットのところまで操作し;
    当該システムは、前記ハンドラおよび前記試験器に接続されたリレーを含み;
    当該システムは、前記リレーによって相異なる試験のために前記試験器資源に前記リレーによって接続可能な第一のソケットを含み、前記ハンドラの前記第一の位置付け器は、第一のDUTを前記第一のユニットから前記第一のソケットまで相異なる試験のために操作し;
    当該システムは、相異なる試験のために前記試験器資源に前記リレーによって接続可能な第二のソケットを含み、前記ハンドラの前記第二の位置付け器は、第二のDUTを前記第二のユニットから前記第二のソケットまで相異なる試験のために操作し;
    相異なる試験は、前記ハンドラによって第二のDUTが前記第二のユニットからどけられて前記第一のソケット内に配置される際に、前記第一のソケット中の第一のDUTに対して実行され;
    相異なる試験は、前記ハンドラによって第一のDUTが前記第一のユニットからどけられて前記第二のソケット内に配置される際に、前記第二のソケット中の第二のDUTに対して実行され;
    前記ハンドラは前記リレーを制御して、それぞれ、相異なる試験が前記第二のソケット内の第二のDUTに対して実行されたのちに前記第一のソケットに接続し、相異なる試験が前記第一のソケット内の第一のDUTに対して実行されたのちに前記第二のソケットに接続するようにする、
    システム。
  2. 前記ハンドラの第一の試験後ユニットおよび第二の試験後ユニットをさらに有する請求項1記載のシステムであって:
    前記ハンドラの前記第一の位置付け器は、前記第一のソケットにおける第一のDUTに対する相異なる試験の実行後、第一のDUTを前記第一の試験後ユニットまで操作し、前記ハンドラの前記第二の位置付け器は、前記第二のソケットにおける第二のDUTに対する相異なる試験の実行後、第二のDUTを前記第二の試験後ユニットまで操作する、
    システム。
  3. 第三のDUTを試験する、請求項2記載のシステムであって:
    前記ハンドラが、前記第一のソケットにおける第一のDUTに対する相異なる試験の完了前に、第三のDUTを前記第一のユニットまで操作し;
    第一のDUTが前記第一の試験後ユニットにきたのちの、もし該当するなら前記第二のソケットにおける第二のDUTに対する相異なる試験の実行中も含む期間に、前記第一の位置付け器が第三のDUTを前記第一のユニットから前記第一のソケットまで相異なる試験のために操作し;
    相異なる試験は、前記第一の位置付け器によって第二のDUTが前記第二のユニットからどけられ、前記第一のソケットに配置される際に、前記第一のソケット中の第一のDUTに対して実行される、
    システム。
  4. 第四のDUTを試験する、請求項4記載のシステムであって:
    前記ハンドラが、前記第一のソケットにおける第三のDUTに対する相異なる試験の完了前に、第四のDUTを前記第二のユニットまで操作し;
    第二のDUTが前記第二の試験後ユニットにきたのちの、もし該当するなら前記第一のソケットにおける第三のDUTに対する相異なる試験の実行中も含む期間に、前記第一の位置付け器が第四のDUTを前記第二のユニットから前記第二のソケットまで相異なる試験のために操作し;
    相異なる試験は、第三のDUTの相異なる試験の完了時に第四のDUTに対して実行される、
    システム。
  5. 請求項2記載のシステムであって、前記第二のソケットに関する相異なる試験の完了時に、前記ハンドラがマスターとして作用して、前記リレーを切り換えて、前記試験器の試験器資源を前記第一のソケットに接続し、スレーブとしての前記試験器に、相異なる試験を前記試験資源を介して前記第一のソケットにおいて、その中に前記ハンドラによって配置された次の試験すべきDUTに対して実行するよう指令し、前記第一のソケットに関する相異なる試験の完了時に、前記ハンドラがマスターとして作用して、前記リレーを切り換えて、前記試験器の試験器資源を前記第二のソケットに接続し、スレーブとしての前記試験器に、相異なる試験を前記試験資源を介して前記第二のソケットにおいて、その中に前記ハンドラによって配置された次の試験すべきDUTに対して実行するよう指令する、システム。
  6. 前記第一のDUTおよび第二のDUTを含む複数のDUTを試験する請求項5記載のシステムであって、前記ハンドラは続いて、前記複数のDUTのうちの別のDUTを操作して、前記第一のソケットおよび前記第二のソケット中の前記複数のDUTのうちのそれぞれのそのとき試験済みのDUTを置き換え、前記試験器は続いて、前記第一のソケットおよび前記第二のソケットの他方における試験の完了時に、前記第一のソケットおよび前記第二のソケット中の前記ハンドラによって置き換えられた前記複数のDUTのうちそれぞれ他方のDUTを試験する、システム。
  7. 複数の試験すべきデバイス(TBTD)のうちのあるTBTDを第一のロボットを介して操作して、試験器の試験資源によって刺激できる第一のピンと接続させる第一の操作段階と;
    前記試験器を制御して、前記試験資源を前記第一のピンに接続し、該第一のピンに接続されたTBTD上の前記第一のピンにおける前記試験器資源による試験を開始させる第一の制御段階と;
    前記複数のうちの別のTBTDを第二のロボットを介して操作して、前記試験器の前記試験資源によって刺激できる第二のピンと接続させる第二の操作段階と;
    前記試験器を制御して、前記試験資源を前記第二のピンに接続し、該第二のピンに接続されたTBTD上の前記第二のピンにおける前記試験器資源による試験を開始させる第二の制御段階と;
    前記第二のピンにおける前記試験器資源による試験の間に、前記複数のTBTDのそれぞれの次のTBTDについて前記第一の操作段階の少なくとも一部を実行し、前記第一のピンにおける前記試験器資源による試験の完了に際して前記第二の制御段階を実行し、前記第一のピンにおける前記試験器資源による試験の間、前記複数のTBTDのそれぞれの次のTBTDについて前記第二の操作段階の少なくとも一部を実行し、前記第二のピンにおける前記試験器資源による試験の完了に際して前記第二の制御段階を実行するようマスター制御することとを含む、
    方法。
  8. 前記第一のピンに接続されるべきそれぞれの逐次のTBTDを、前記第一の操作段階を介して前記第一のピンに接続するのに先立ち、かつ、そのように接続されるべきTBTDに対応する第一の制御段階に先立ち、機械的に準備する第一の準備段階と;
    前記第二のピンに接続されるべきそれぞれの逐次のTBTDを、前記第二の操作段階を介して前記第二のピンに接続するのに先立ち、かつ、そのように接続されるべきTBTDに対応する第二の制御段階に先立ち、機械的に準備する第二の準備段階と;
    前記第一のピンにおける前記試験器資源における試験の完了後、前記第一のピンに接続されているそれぞれの逐次のTBTDを機械的に出力する第一の機械的出力段階と;
    前記第二のピンにおける前記試験器資源における試験の完了後、前記第二のピンに接続されているそれぞれの逐次のTBTDを機械的に出力する第二の機械的出力段階とをさらに有する、
    請求項7記載の方法。
  9. 前記第一のロボットおよび前記第二のロボットが同じではない、請求項6記載の方法。
  10. 前記第一のロボットおよび前記第二のロボットが、機械的に接続されており、共通の論理によって制御される、請求項9記載の方法。
  11. 前記第一の機械的出力段階が第一の出力ロボットによって実行され、前記第二の機械的出力段階が第二の出力ロボットによって実行され、前記第一の出力ロボットおよび前記第二の出力ロボットが機械的に接続されており、共通の論理によって制御される、請求項9記載の方法。
  12. 前記第一の機械的出力段階が第一の出力ロボットによって実行され、前記第二の機械的出力段階が第二の出力ロボットによって実行され、前記第一の出力ロボットおよび前記第二の出力ロボットが機械的に接続されており、共通の論理によって制御され;前記第一のロボットおよび前記第二のロボットのそれぞれが前記第一の出力ロボットおよび前記第二の出力ロボットに機械的に接続されており、前記共通の論理によって制御される、請求項10記載の方法。
  13. 前記第一のロボットおよび前記第二のロボットがそれぞれ:輸送、準備器、試験ユニットおよびマニピュレータからなる群より選択され、前記第一の出力ロボットおよび前記第二の出力ロボットがそれぞれ、出力輸送、および出力載置器、出力試験ユニット、および出力マニピュレータからなる群より選択される、請求項12記載の方法。
  14. 前記第一のロボットおよび前記第二のロボットがそれぞれ、試験器に接続されたハンドラの個別的なコア・マニピュレータである、請求項13記載の方法。
JP2008538882A 2005-11-01 2006-09-14 短縮したインデックス時間のためのタンデム・ハンドラ・システムおよび方法 Pending JP2009519435A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/264,949 US7508191B2 (en) 2004-01-29 2005-11-01 Pin electronics implemented system and method for reduced index time
US11/469,817 US7619432B2 (en) 2004-01-29 2006-09-01 Tandem handler system and method for reduced index time
PCT/US2006/035798 WO2007053240A2 (en) 2005-11-01 2006-09-14 Tandem handler system and method for reduced index time

Publications (1)

Publication Number Publication Date
JP2009519435A true JP2009519435A (ja) 2009-05-14

Family

ID=38006364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008538882A Pending JP2009519435A (ja) 2005-11-01 2006-09-14 短縮したインデックス時間のためのタンデム・ハンドラ・システムおよび方法

Country Status (6)

Country Link
US (2) US7619432B2 (ja)
EP (1) EP1949117A4 (ja)
JP (1) JP2009519435A (ja)
KR (1) KR101286625B1 (ja)
CN (1) CN201464585U (ja)
WO (1) WO2007053240A2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103675573A (zh) * 2012-09-14 2014-03-26 宝钢不锈钢有限公司 多回路线路故障快速定位数显装置及其方法
US10324127B2 (en) 2017-06-08 2019-06-18 Advantest Corporation Electronic component handling apparatus, electronic component testing apparatus, and electronic component testing method

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7650255B2 (en) * 2008-05-02 2010-01-19 Texas Instruments Incorporated Automatic selective retest for multi-site testers
US9733301B2 (en) * 2010-02-05 2017-08-15 Celerint, Llc Universal multiplexing interface system and method
CN101806815A (zh) * 2010-04-08 2010-08-18 中国电子科技集团公司第十三研究所 用于SiC MESFET直流测试的夹具
SG192859A1 (en) 2011-03-01 2013-09-30 Celerint Llc Method and system for utilizing stand-alone controller in multiplexed handler test cell for indexless tandem semiconductor test
SG194193A1 (en) * 2011-05-19 2013-11-29 Celerint Llc Parallel concurrent test system and method
US9817062B2 (en) * 2011-05-19 2017-11-14 Celerint, Llc. Parallel concurrent test system and method
JP2013053991A (ja) * 2011-09-06 2013-03-21 Seiko Epson Corp ハンドラー及び部品検査装置
US10161962B2 (en) * 2014-06-06 2018-12-25 Advantest Corporation Universal test cell
MY188472A (en) * 2013-11-27 2021-12-10 Celerint Llc System and method for semiconductor device handler throughput optimization
CN105960594B (zh) 2014-02-04 2019-03-15 塞勒林特有限责任公司 用于减少半导体测试转位时间的模块化复用接口组件
US9618574B2 (en) * 2014-06-06 2017-04-11 Advantest Corporation Controlling automated testing of devices
US9678148B2 (en) 2014-06-06 2017-06-13 Advantest Corporation Customizable tester having testing modules for automated testing of devices
US9618570B2 (en) 2014-06-06 2017-04-11 Advantest Corporation Multi-configurable testing module for automated testing of a device
US9638749B2 (en) * 2014-06-06 2017-05-02 Advantest Corporation Supporting automated testing of devices in a test floor system
KR102243278B1 (ko) 2014-09-18 2021-04-23 삼성전자주식회사 핸들러 및 그의 관리 방법
CN105203895A (zh) * 2015-09-14 2015-12-30 珠海迈科智能科技股份有限公司 一种流水线上检测方法与装置
US9880195B2 (en) 2015-10-14 2018-01-30 Texas Instruments Incorporated Test systems and methods of testing devices
CN106997201B (zh) * 2016-01-25 2020-11-03 上海电气集团股份有限公司 多机器人协作的路径规划方法
EP3217183B1 (en) * 2016-03-07 2019-05-01 Multitest elektronische Systeme GmbH A positioning device and a system for determining a site of a wear part of a handler
CN105807208A (zh) * 2016-04-25 2016-07-27 航天科工防御技术研究试验中心 一种基于Multi-port的异步复合测试方法
US10474553B2 (en) * 2017-07-18 2019-11-12 Nxp Usa, Inc. Built-in self test for A/D converter
KR102096233B1 (ko) * 2018-03-05 2020-04-02 호서대학교 산학협력단 병렬 테스트에 적합한 반도체 패키지 테스트 시스템 및 이를 이용한 테스트 방법
US11131718B2 (en) * 2018-07-24 2021-09-28 Astee International Limited Systems and methods for automated testing of power supply units
WO2020202364A1 (ja) * 2019-03-29 2020-10-08 平田機工株式会社 測定装置
CN109946592B (zh) * 2019-04-16 2020-07-10 合肥工业大学 自动测试设备ate中异步测试周期的自适应计算方法
TWI708252B (zh) * 2019-07-05 2020-10-21 全何科技股份有限公司 記憶體晶片超頻測試模組及其方法
CN110596432A (zh) * 2019-09-09 2019-12-20 武汉电信器件有限公司 一种用于多向光电器件的测试系统
US11328789B2 (en) * 2019-12-18 2022-05-10 Micron Technology, Inc. Intelligent memory device test rack
US11268980B1 (en) * 2021-05-20 2022-03-08 Invantest, Inc. Method and system for detecting stuck components in automated test systems
CN115061032A (zh) * 2022-06-14 2022-09-16 无锡华大国奇科技有限公司 一种多时钟域芯片的功能测试方法及测试装置
TWI832311B (zh) * 2022-06-30 2024-02-11 美商金士頓數位股份有限公司 用於積體電路裝置的自動化測試系統及自動化測試方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3183591B2 (ja) * 1993-07-02 2001-07-09 三菱電機株式会社 半導体デバイスのテストシステム、半導体デバイスのテスト方法、半導体デバイス挿抜ステーション及びテスト用チャンバ
KR0140931B1 (ko) * 1995-01-11 1998-07-15 이헌조 슬랫 컨베이어상에서 제품의 전기 특성 자동 검사 장치
US5968193A (en) * 1996-11-15 1999-10-19 Integrated Device Technology, Inc. Dual site loadboard tester
JP3344548B2 (ja) * 1997-04-16 2002-11-11 株式会社アドバンテスト Ic試験装置
JPH1183935A (ja) 1997-09-05 1999-03-26 Advantest Corp 半導体試験装置
US6075358A (en) * 1998-01-09 2000-06-13 Siemens Aktiengesellschaft Device in a semiconductor manufacturing installation in particular for integrated circuits
JP3037673B1 (ja) * 1998-12-28 2000-04-24 川崎重工業株式会社 複数ロボットの制御方法および装置
JP3584845B2 (ja) * 2000-03-16 2004-11-04 日立ハイテク電子エンジニアリング株式会社 Icデバイスの試験装置及び試験方法
SG114493A1 (en) * 2001-07-06 2005-09-28 Jie Wu A test handling apparatus and method
US6831454B2 (en) * 2003-02-20 2004-12-14 Mirae Corporation Indexing device in semiconductor device handler and method for operating the same
US6958617B1 (en) * 2004-01-16 2005-10-25 Unisys Corporation Electromechanical module, for holding IC-chips in a chip testing system, that synchronizes and translates test signals to the IC-chips
US7183785B2 (en) * 2004-01-29 2007-02-27 Howard Roberts Test system and method for reduced index time
US7508191B2 (en) * 2004-01-29 2009-03-24 Howard Roberts Pin electronics implemented system and method for reduced index time
US7196508B2 (en) * 2005-03-22 2007-03-27 Mirae Corporation Handler for testing semiconductor devices
JP2008014847A (ja) * 2006-07-07 2008-01-24 Matsushita Electric Ind Co Ltd ハンドラとこのハンドラを使用した半導体デバイスの検査方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103675573A (zh) * 2012-09-14 2014-03-26 宝钢不锈钢有限公司 多回路线路故障快速定位数显装置及其方法
US10324127B2 (en) 2017-06-08 2019-06-18 Advantest Corporation Electronic component handling apparatus, electronic component testing apparatus, and electronic component testing method

Also Published As

Publication number Publication date
CN201464585U (zh) 2010-05-12
EP1949117A2 (en) 2008-07-30
WO2007053240A3 (en) 2009-04-30
KR20080100805A (ko) 2008-11-19
US7619432B2 (en) 2009-11-17
US20070063724A1 (en) 2007-03-22
US8400180B2 (en) 2013-03-19
EP1949117A4 (en) 2012-03-21
WO2007053240A2 (en) 2007-05-10
KR101286625B1 (ko) 2013-07-23
US20090309620A1 (en) 2009-12-17

Similar Documents

Publication Publication Date Title
JP2009519435A (ja) 短縮したインデックス時間のためのタンデム・ハンドラ・システムおよび方法
JP5401514B2 (ja) 低減されたインデックスタイムのための検査システム及び方法
US7508191B2 (en) Pin electronics implemented system and method for reduced index time
US9551740B2 (en) Parallel concurrent test system and method
CN110268277B (zh) 用于印刷电路板的功能性测试器,以及相关的系统和方法
JP7308924B2 (ja) 試験システムと、デバイスを試験する方法
US20110204914A1 (en) Muxing interface platform for multiplexed handlers to reduce index time system and method
US20080007285A1 (en) Handler and method of testing semiconductor device by means of the handler
US9817062B2 (en) Parallel concurrent test system and method
TW200931025A (en) Method and apparatus for testing devices using serially controlled intelligent switches
US20070022347A1 (en) Systems, methods and computer programs for calibrating an automated circuit test system
WO2003005041A2 (en) A test handling apparatus and method
KR101336345B1 (ko) 반도체 테스트 시스템에서의 모듈 단위 테스트 이벤트 신호 제어 장치
KR100977060B1 (ko) 반도체칩 테스터용 프로브 카드와 이를 사용하는 테스터 및그 테스터를 이용한 반도체칩의 검사방법
US20200088828A1 (en) Wafer testing apparatus and method of diagnosing wafer testing apparatus
US20220341967A1 (en) Probe card having power converter and test system including the same
JPH03186942A (ja) 電子装置の自己診断方式

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090911

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20110125