JP2009288161A - 光測定装置及び光測定方法 - Google Patents

光測定装置及び光測定方法 Download PDF

Info

Publication number
JP2009288161A
JP2009288161A JP2008142892A JP2008142892A JP2009288161A JP 2009288161 A JP2009288161 A JP 2009288161A JP 2008142892 A JP2008142892 A JP 2008142892A JP 2008142892 A JP2008142892 A JP 2008142892A JP 2009288161 A JP2009288161 A JP 2009288161A
Authority
JP
Japan
Prior art keywords
calibration data
molecule
polarization
degree
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008142892A
Other languages
English (en)
Inventor
Mitsushiro Yamaguchi
光城 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2008142892A priority Critical patent/JP2009288161A/ja
Publication of JP2009288161A publication Critical patent/JP2009288161A/ja
Withdrawn legal-status Critical Current

Links

Images

Abstract

【課題】複数の分子量の異なるサンプルを用いることなく分子量対偏光度の校正を行うことのできる光測定装置及び光測定方法を提供する。
【解決手段】所定の波長の偏光を用いて溶液中の色素と結合する分子を励起し、発生する蛍光の偏光成分から偏光度を測定して、分子に関するデータ値を取得する光測定装置の光測定方法において、分子を含まず色素のみを含む粘性係数の異なる溶液を測定して得られた偏光度と粘性係数との対応を表す校正データを取得し、上記取得と異なる時間において、分子を含まず色素のみを含む粘性係数の異なる溶液を測定して得られた偏光度と粘性係数との対応を表す他の校正データを取得し、校正データと他の校正データとから光測定装置の測定精度の良否を判断する。
【選択図】 図9

Description

本発明は、所望の分子に蛍光物質を標識した生物学的な試料溶液中に偏光を照射し、蛍光物質から発せられた蛍光の偏光の強度を解析して、試料分子の反応や反応による状態変化を測定する光測定装置及び光測定方法に関する。
近年の光を用いた測定技術の進歩に伴い、生体の細胞内外に極めて小さな光スポットを形成し、細胞内外の分子の挙動を動的に調べる方法が注目されている。例えば、蛍光物質を細胞内のターゲットとする生体分子に標識し、蛍光物質から発せられる蛍光の強度の時間的な変化を解析することにより、分子の溶液中での振舞いを高感度に捉えることができる。
このような解析方法として、蛍光相関分光解析法(Fluorescence Correlation Spectroscopy : FCS)や蛍光強度分布解析法(Fluorescence Intensity Distribution Analysis : FIDA)等が良く用いられている。
FCSでは、測定したい分子に蛍光物質を標識し、マイクロプレートなど試料容器内に収納する。そして試料容器の試料槽の中にレーザ光を微小な光スポットとして照射して、蛍光物質を励起する。このとき蛍光物質から発せられる蛍光の強度は時間と共にゆらぐ。これは、媒質中の蛍光分子がブラウン運動をしているためである。蛍光分子のブラウン運動の拡散速度は、分子の化学反応や結合反応などにより変化する。従って、蛍光分子の拡散速度は、標識した蛍光分子の見かけの大きさの変化や媒質の温度の変化に伴って変化する。
そこでこの分子の溶液内での化学反応や結合反応などによるブラウン運動の速度の変化を、蛍光の光強度の時系列信号の統計的な変化として捉えて相関解析を行なうことで、分子や微粒子の並進拡散係数や、平均の分子数などを測定することができる。そして、測定結果として分子の化学反応や結合反応などを動的に捉えることができる。
FIDAでは、FCSと同様に測定したい分子に蛍光物質を標識し、マイクロプレートなど試料容器の試料槽の中にレーザ光を微小な光スポットとして照射して、蛍光物質を励起する。そして、単位時間当たりに蛍光物質から発せられる蛍光の光強度を測定し、これの統計分布を解析する。単位時間に検出される蛍光の光子の数の統計分布を解析することによって、蛍光分子の明るさと濃度、即ち、対象とする分子の数と明るさについての情報を得ることができる。この明るさに関する情報を用いることにより、化学反応や結合反応などによる蛍光標識された分子の見かけの大きさの変化を高感度で検出することができる。
さらに偏光を用いたFIDA-Polarization(Fluorescence Intensity Distribution Analysis-Polarization)では、例えば、所定の波長の偏光を用いて分子を励起し、発生する蛍光の偏光成分から偏光度を測定することで、回転ブラウン運動を行なう分子の数や分子の見かけの大きさの変化を調べることができる。
さらにFIDAでは、溶液中で光の照射領域を積極的に移動させて、試料中のできるだけ広い領域で測定を行ない、1回当たりの測定時間を短縮させることもできる。なお、FIDAは光強度の統計分布を求めるためにFCSに比べて光照射領域を大きめにとる必要がある。
FIDAについては、特許文献1、非特許文献1,2等に記述されている。
米国特許第6,376,843号 Peet Kask, Kaupo Palo, Dirk Ullmann and Karsten Gall PNAS Nov23, 1999, vol.96, No24, p.13756-13761 Biophysical Journal Vol.79, (2000) p.2858-2866
ところで、蛍光強度の偏光特性である偏光度から、分子の大きさに関する情報を得ることができる1分子蛍光分析の手法であるFIDA−PO測定を行う場合、先ず、それ自体の偏光度が既知である標準の蛍光色素分子、及びその色素が結合した分子量の大きい分子の測定を行い、分子量に対して偏光度をプロットし、分子量対偏光度の校正を行う必要がある。しかし校正用として分子量の異なる複数の分子のサンプルを用意することは、費用を要するだけでなく、煩雑な手間を要する。
本発明は係る事情に鑑みてなされたものであり、複数の分子量の異なるサンプルを用いることなく分子量対偏光度の校正を行うことのできる光測定装置及び光測定方法を提供することを目的とする。
上記課題を解決するための光測定装置は、所定の波長の偏光を用いて溶液中の色素と結合する分子を励起し、発生する蛍光の偏光成分から偏光度を測定して、分子に関するデータ値を取得する光測定装置において、偏光度と分子に関するデータ値との対応を表す第1の校正データに基づいて、測定した偏光度から対応する前記分子に関するデータ値を算出する算出手段と、前記分子を含まず前記色素のみを含む粘性係数の異なる溶液を測定して得られた偏光度と、前記粘性係数との対応を表す第2の校正データを取得する第2の校正データ取得手段と、前記第1の校正データと前記第2の校正データとから、前記粘性係数と前記分子に関するデータ値との対応を表す第3の校正データを取得する第3の校正データ取得手段と、前記分子を含まず前記色素のみを含む粘性係数の異なる溶液を測定して得られた偏光度と、前記粘性係数との対応を表す第4の校正データを取得する第4の校正データ取得手段と、前記第2の校正データと前記第4の校正データとから前記第1の校正データの精度良否を判断する精度良否判断手段とを備えた。
また本発明の光測定装置は、上記記載の発明である光測定装置において、前記精度良否判断手段が前記第1の校正データの精度が不良と判断したときは、前記第4の校正データに使用した粘性係数から前記第3の校正データを用いて分子量を算出し、この算出した分子量と前記第4の校正データに使用した偏光度との対応を表す新たな校正データを前記第1の校正データとする校正データ更新手段を備えた。
また本発明の光測定装置は、上記記載の発明である光測定装置において、前記精度良否判断手段が前記第1の校正データの精度が不良と判断したときは、前記光測定装置の調整あるいは修理を促す旨を出力する警告手段を備えた。
また本発明の光測定装置は、上記記載の発明である光測定装置において、前記粘性係数の異なる溶液は、粘度調整剤を用いて作成される。
また本発明の光測定装置は、上記記載の発明である光測定装置において、前記粘度調整剤は、グリセリンである。
また本発明の光測定装置は、上記記載の発明である光測定装置において、前記溶液の粘度係数は、0.001以上0.5N・sec/m以下である。
また本発明の光測定装置は、上記記載の発明である光測定装置において、前記第2の校正データ取得手段は、溶液の温度を測定し、この測定温度での粘性係数を用いる。
また本発明の光測定装置は、上記記載の発明である光測定装置において、前記溶液の温度を所定温度に制御する温度制御手段を備える。
また本発明の光測定装置は、上記記載の発明である光測定装置において、前記分子に関するデータ値は、分子量であり、前記第1の校正データは、前記分子の形状に従った分類毎に取得される。
また本発明は、所定の波長の偏光を用いて溶液中の色素と結合する分子を励起し、発生する蛍光の偏光成分から偏光度を測定して、分子に関するデータ値を取得する光測定装置の光測定方法において、前記分子を含まず前記色素のみを含む粘性係数の異なる溶液を測定して得られた偏光度と、前記粘性係数との対応を表す校正データを取得し、上記取得と異なる時間において、前記分子を含まず前記色素のみを含む粘性係数の異なる溶液を測定して得られた偏光度と、前記粘性係数との対応を表す他の校正データを取得し、前記校正データと他の校正データとから前記光測定装置の測定精度の良否を判断する。
また本発明は、所定の波長の偏光を用いて溶液中の色素と結合する分子を励起し、発生する蛍光の偏光成分から偏光度を測定して、分子に関するデータ値を取得する光測定装置の光測定方法において、偏光度と分子に関するデータ値との対応を表す第1の校正データに基づいて、測定した偏光度から対応する前記分子に関するデータ値を算出し、前記分子を含まず前記色素のみを含む粘性係数の異なる溶液を測定して得られた偏光度と、前記粘性係数との対応を表す第2の校正データを取得し、前記第1の校正データと前記第2の校正データとから、前記粘性係数と前記分子に関するデータ値との対応を表す第3の校正データを取得し、前記分子を含まず前記色素のみを含む粘性係数の異なる溶液を測定して得られた偏光度と、前記粘性係数との対応を表す第4の校正データを取得し、前記第2の校正データと前記第4の校正データとから前記第1の校正データの精度良否を判断する。
本発明の光測定装置によれば、複数の分子量の異なるサンプルを用いることなく分子量対偏光度の校正を行うことができる。
以下、図面を参照して本発明の実施の形態を詳細に説明する。
図1は光測定装置の基本的な構成を示す図である。
本発明による光測定装置は、主な構成部として、光源部15、光量モニタ機構7、ビーム走査機構9、対物レンズ10、液浸水供給機構11、試料保持機構18、光検出部16及び信号処理部17を備えている。
以下、光測定装置の詳細の構成と動作について説明する。
光源部15には、レーザ光源1、シャッター23、ビーム径可変機構5、回転式NDフィルタ36、ビームシフタ102、ミラー100及びダイクロイックミラー3が設けられている。光源部15には少なくとも2種類のレーザ光源1(1a、1b)を載置することができる。レーザ光源1は、試料を励起して蛍光を発生させるための光源である。
例えば、蛍光色素としてRhodamine 110を使用する場合は、レーザ光源1はアルゴンレーザ(波長:488nm)を用いる。また、蛍光色素としてFITCを使用する場合は、レーザ光源1はアルゴンレーザ(波長:488nm)を用いる。更に、蛍光色素としてGFPを使用する場合は、レーザ光源1はアルゴンレーザ(波長:488nm)を用いる。蛍光色素としてTAMRAを使用する場合は、レーザ光源1はヘリウムネオンレーザ(波長:543nm)を用いる。蛍光色素としてAtto633を使用する場合は、レーザ光源1はヘリウムネオンレーザ(波長:633nm)を用いる。
従って、レーザ1a、1bを切り換えることで、使用する蛍光色素に対応した測定を迅速に行うことができる。
このレーザ1a、1bはいずれも偏光レーザである。即ち、このレーザ1a、1bから照射されるレーザ光の振動方向は一つの方向に固定されている。
以下では、レーザ1a、1bを区別せず、レーザ光源1として説明する。
なお、光源として用いるレーザは、音響光学チューナブルフィルタ(AOTF)を搭載したマルチラインのレーザも載置可能である。マルチラインのレーザには、複数の波長のレーザ光が含まれているため、AOTFによって発振波長の切り替えを行なうように構成することで、載置するレーザの台数を減少することができる。
各レーザ光源1の出射端近傍にはシャッター23がそれぞれ設置されており、シャッター23はそれぞれ電子制御により開閉される機構(図示せず)になっている。出射されたレーザ光はレンズを組み合わせたビーム径可変機構5でビーム直径を拡大され、平行光にされる。ビーム径可変機構5を構成するレンズの組み合わせを変えることで、焦点距離を変えて射出ビーム直径を調整することができる。
それぞれ平行光とされたレーザ光は各々の光路に用意された回転式ND(Neutral Density)フィルタ36、ビームシフタ102を通過した後、ミラー100、ダイクロイックミラー3で選択的に反射、または透過される。2つのレーザ光源1からの光は同一の光路を進行する。2つの光路を同一の光路とする操作は、ビームシフタ102を調整することで行われる。
レーザビームは、ミラー4で方向を曲げられ、円板状のハーフミラー6に入射する。そして、レーザビームの一部はハーフミラー6で反射されて光量モニタ機構7に入る。光量モニタ機構7はレンズ51、ピンホール52を備え、レーザビームはこれらの光学素子を通って光検出器53の受光面に集光する。光検出器53は半導体光検出器を用いる。
光検出器53の検知出力は、コンピュータ14に入力され、コンピュータ14は、この値に基づいて、あらかじめ設定した光源出力光強度になるように、レーザ駆動電源(図示しない)の駆動電流を制御する。あるいは回転式NDフィルタ36をコンピュータ14が制御(図示しない)することで、レーザ光源1からの光出力強度を調整することもできる。
ハーフミラー6を通過したレーザビームは偏芯回転ミラー40に達する。このとき偏芯回転ミラー40は回転に伴って反射光の方向が中心軸の周りに回転運動するように傾いて調整されている。そのため、レーザビームは対物レンズ10の光軸に対して、ある傾き角を持って入射する。偏芯回転ミラー40をモータ41で回転させることで、対物レンズ10を通過した光ビームの集光スポットは試料内で略楕円状に走査される。
なお、集光スポットを走査させるのは、FIDA測定を行なう場合であり、FCS測定を行なう場合には集光スポットは固定される。
即ち、FIDA測定を行なう場合は、モータ41を回転させ、それに伴って偏芯回転ミラー40が回転運動を行ない、光軸を通った光は対物レンズを通って溶液内のフォーカス位置で略楕円を描きながら試料を照射する。
FCS測定を行なう場合は、コンピュータ制御によりモータ41を停止し、偏芯回転ミラー40を適切な位置で固定する。このとき、偏芯回転ミラー40のミラー面の向きは光軸を通った光が対物レンズを光軸に沿って通過する向きに設定されるようにあらかじめモータ41の停止位置がプログラムされている。
また、FCS測定の場合に、偏芯回転ミラー40とは別の、光軸に対して偏芯していないミラー90に切り替えるようにしても良い。
レーザ光は続いて切り替え式ダイクロイックミラー101で反射され、対物レンズ10に入射する。対物レンズ10として、例えば×40水浸対物レンズ(NA1.15)を用いる。対物レンズ10は補正環が無いドライタイプを用いても良いし、あるいは液浸タイプで補正環を具備しているものを用いてもよい。
この切り替え式ダイクロイックミラー101は円板状のガラス板の表面に多層膜コーティングを施して、透過、反射のスペクトル特性が最適になるように製作されている。切り替え式ダイクロイックミラー101としては円板状に限らず、プリズムタイプのものを用いても良い。また切り替え式ダイクロイックミラー101は裏面反射によるノイズ光が信号光に混入するのを防ぐため、基板となるガラスの厚さを最適に調整してあるものを用いる。
この切り替え式ダイクロイックミラー101は光源としてのレーザ光と試料から発せられた蛍光信号を分離する役割がある。測定に用いる波長を変更するときは、透過、反射特性の異なる複数個のダイクロイックミラー101の内から最適なものを選択して切り替えて用いる。
試料ステージ19にはX軸、Y軸方向に沿ってステッピングモータ(図示しない)が取り付けられており、マイクロプレート20を精密に水平方向(X−Y軸方向)に移動させることができる。そして試料ステージ19をXY平面内で作動させて、マイクロプレート20を移動調整しながら、順次測定を繰り返し行なう。
対物レンズ10の周囲には対物レンズZ軸保持機構43が具備されており、コンピュータの指令により、対物レンズZ軸保持機構43を光軸方向(Z軸方向)に移動させる。すなわち、ウェル22内でのレーザ光のフォーカス位置を光軸方向に沿って上下動させることができる。
レーザ光は対物レンズ10を通って集光されたあと、試料を収容したマイクロプレート20のウェル22内で極めて微小な光スポットを形成する。レーザ光の集光位置は水平方向(X−Y軸方向)についてはウェルの中央部分となっている。このとき、ウェル22内で得られるレーザ光の共焦点領域の大きさは直径0.6μm程度、長さ2μm程度の略円筒状の光スポットとなる。
試料に直接ラベルして用いる蛍光物質は、例えばTAMRAであり、TAMRAは波長543nmのヘリウム・ネオンレーザで励起する。
対物レンズ10で集光されたレーザ光はウェル22内で試料内の蛍光分子を励起し、蛍光分子から蛍光が発せられる。この蛍光は波長が580nm付近に強度の最大値を有している。この蛍光は再び信号光として対物レンズ10に取り込まれ、続いて切り替え式ダイクロイックミラー101に到達する。信号光の波長は入射レーザ光の波長より長く、そのため切り替え式ダイクロイックミラー101を透過して、反射プリズム200で反射され、レンズ210でレンズ210の後方に配置されたピンホール220のピンホール面に集光される。対物レンズ10の焦点位置と共役な光軸上の位置にピンホール220が位置決めされるようにピンホールホルダー50が配置されている。
ピンホール220の手前にバリア・フィルタ45が配置されている。バリア・フィルタ45は蛍光の発光スペクトルに合わせて、透過光のスペクトルが調整されるようになっている。すなわち、バンドパスフィルタとなっており、信号光となる蛍光の発光スペクトルの波長域の光のみが通過する。これにより、試料容器内で発生する散乱光やウェル22の壁などから反射して入射光路に戻ってくる入射光の一部などのノイズ光をカットすることができる。蛍光の波長とバックグラウンド光の波長が異なるためノイズ光を遮断できる。なお、バリア・フィルタ45として、音響光学素子によるビームスプリッター(AOBS)を用いても良い。
レンズ210の焦点面とピンホール220の開口面とが一致するように配置されている。このピンホール220には光位置検出器とピンホール駆動装置が取り付けられており(図示しない)、ピンホール220はピンホール駆動装置により、X−Y−Z軸方向に位置調整できるようになっている。従って、レンズ210の焦点面にピンホール220の開口面を一致させることができる。
また、ピンホール220の位置はバリア・フィルタ45の切り替え、あるいは音響光学素子によるビームスプリッター(AOBS)の切り替えに対して、デフォルト位置に自動的に戻る機構を有している。このピンホール220により、ウェル内に形成された光の共焦点領域外からのバックグラウンド光が除去される。
ピンホール220を通過した信号光はコリメートレンズ59により平行光とされて偏光ビームスプリッター38により、互いに垂直な2方向に分離される。偏光ビームスプリッター38は、反射光、および透過光で異なる偏光成分を分離する。分離されたそれぞれの信号光はバンドパスフィルタ64で更に信号光のS/N比を向上させる。
バンドパスフィルタ64を通過した信号光はレンズ12により集光されて、光検出器2の受光面に到達する。それぞれの光検出器2には光位置検出器と光検出器駆動装置が取り付けられており、光検出器2の受光面は光検出器駆動装置により、X−Y−Z軸方向に沿って位置調整できるようになっている。光検出器2は例えばアバランシェ・フォトダイオード(APD)、あるいは光電子増倍管などの微弱光検出器を用いる。光位置検出器は半導体光位置検出器を用いる。
光検出器2で受光される信号光は微弱光であり、フォトンカウンティングレベルである。光検出器2によって、このフォトンは電気信号(パルス信号)に変換され、信号処理装置8に送られる。信号処理装置8によって、単位時間当たりのパルス数がカウントされて、コンピュータ14に導かれ、続いて所要の演算が行なわれる。
次に、偏光レーザ光による分子量の測定について説明する。
溶液中の蛍光色素に偏光レーザ光が照射されると蛍光が発生する。ここで静止している蛍光色素を偏光レーザ光で励起したときに発生する蛍光の偏光面は保存される。しかし、蛍光色素が周囲の溶液の影響を受けて高速な回転運動を行っている場合は、発生する蛍光の偏光面はあらゆる方向の成分を備えたほぼ等方的な光である。
あらゆる方向の成分を備えているとは、偏光レーザ光から照射される光の振動方向の成分(P偏光)とそれに直交する方向に振動する光の成分(S偏光)が等しい強度を備えていることを意味する。
図1の光測定装置の動作で説明すると、ウェル内で発生した蛍光は、対物レンズ10、ピンホール220を通過し、偏光ビームスプリッター38により異なる偏光成分(P偏光、S偏光)に分離され、それぞれの光検出器2でその強度が検出される。
2つの光検出器2をそれぞれチャンネル1及びチャンネル2と呼び、測定した偏光強度をそれぞれa及びbとして、偏光度Pを式(1)で定義する。
P = (a−b)/(a+b) ・・・式(1)
そうすると、蛍光が完全に等方的である場合は、a=bとなるためP=0となる。
一方、仮に蛍光色素が静止している場合は、発生する蛍光の偏光度Pは最大で0.5となる。
ところで溶液中では、この蛍光色素と分子とが結合して存在しているため、蛍光色素と分子とはともに周囲の溶液の影響を受けて回転運動を行っている。
ここで分子の周囲の溶液の影響を受けた回転運動は、分子の体積によってその回転速度が異なる。即ち、体積の小さい分子の回転は高速であり、体積の大きい分子の回転は低速となる。従って、体積の大きい分子から発生する偏光成分と、体積の小さい分子から発生する偏光成分とでは、P偏光成分とS偏光成分の割合が異なる。このことから偏光度を測定することによって、分子量の大きさを推定することが可能となる。
測定によって得られる偏光度Pは、理論的には式(2)のように表される。
Figure 2009288161
式(2)において、分子の体積Vは、分子量と関連している。即ち、分子量が大きくなれば体積Vは増加し、分子量が小さくなれば体積Vは減少する。
図2は、分子量と偏光度との関係を示す図である。横軸に分子量(kDa:キロダルトン)を対数目盛で表示し、縦軸に偏光度(mP:ミリピー)を線形目盛で表示している。この図2に示された曲線は、式(2)で示される分子の体積と偏光度との関係と同様の特性カーブを示している。
なお、図2に示す特性曲線は、装置の光学系の状態、例えばレーザの偏光状態、偏光板の状態、偏光成分を分離するビームスプリッタの特性、さらには偏光分離後の2つの検出器の検出特性などが関係する。従って、これらの条件が変化した場合は、この特性曲線も変化することになる。
次に、本発明の基本的な考え方を説明する。
上述のように、式(2)において分子の体積Vを分子量で置き換えても、近似的に式(2)の関係が成立する。そうすると、分子量の異なる分子を測定することは、式(2)において分子の体積Vを変化させることに相当する。これに対して、分子が入っている溶液の粘性係数ηを変化させることができれば、一つの分子でありながら、実効的に分子の体積Vを変化させることが可能となる。
即ち、溶液の粘性と分子量との関連を予め把握しておくことによって、分子量が変化したときの偏光度を校正することが可能となる。
続いて、本実施の形態に係る校正方法について説明する。
図3は、本実施の形態に係る校正方法を適用するための事前準備内容を示す図である。
ステップS01において、所定溶液温度の下でそれぞれ分子量の異なる分子を含む複数の溶液を用いて偏光量を測定する。
図4は、測定に用いる複数の溶液サンプルを模式的に示す図である。図4(a)に示す溶液は色素分子300のみを含んでいる。図4(b)に示す溶液は色素分子300と結合した分子量が中の分子301を含んでいる。図4(c)に示す溶液は色素分子300と結合した分子量が大の分子302を含んでいる。
ステップS02において、コンピュータ14は測定した偏光度と分子量とに基づいて校正曲線Aを作成する。そして、コンピュータ14は作成した校正曲線Aを不図示のメモリに格納する。なお、校正曲線Aは、同じ蛍光色素の下で測定したデータに基づいて規定される。即ち、蛍光色素毎に校正曲線Aが規定される。
図5は、蛍光色素にTAMRAを使用して測定した分子量と偏光度との関係を示す図である。丸印は種々の分子量について測定したデータであり、角印は実測データをフィッティングして求めた校正曲線Aのデータである。このフィッティングは、例えば、最小二乗法などの統計手法を用いても良い。
なお、図5において、実測データにバラツキが見られるが、この原因は、測定誤差によるものの他、測定する分子の形状によって生じたものと考えられる。例えば、分子の形状が球形である場合は、回転方向によって回転速度に差が生じないため分子量が変化しても理論式に良い精度で適合する。しかし、分子の形状が楕円あるいは棒状である場合は、回転方向によって回転速度が異なるため、測定した偏光度にバラツキが発生することになる。従って、校正曲線Aを算出する場合は、上述の点を考慮してバラツキを低減するように統計的手法を用いるのが効果的である。
また、バラツキが少なくなる様に、測定する分子を形状に従って分類し、それぞれの分類毎に適した校正曲線Aを算出しても良い。
ステップS03において、所定溶液温度の下で濃度の異なる、即ち粘性係数の異なる複数のグリセリン溶液を用いて色素分子の偏光量を測定する。
図6は、測定に用いる複数の溶液サンプルを模式的に示す図である。図6(d)に示す溶液は色素分子300のみを含み、グリセリン濃度が0%である。図6(e)に示す溶液は色素分子300のみを含み、グリセリン濃度が中の濃度である。このグリセリン濃度は、図4(b)に示す溶液に対応している。図6(f)に示す溶液は色素分子300のみを含み、グリセリン濃度が大の濃度である。このグリセリン濃度は、図4(c)に示す溶液に対応している。
ステップS04において、コンピュータ14は測定した偏光度とグリセリン濃度とに基づいて校正曲線Bを作成する。そして、コンピュータ14は作成した校正曲線Bを不図示のメモリに格納する。
図7は、蛍光色素にTAMRAを使用して測定したグリセリン濃度と偏光度との関係を示す図である。
ステップS05において、校正曲線Aと校正曲線Bとに基づいて、偏光度をパラメータとしてグリセリン溶液の濃度と分子量とを対応付けて校正曲線Cを算出してメモリに格納する。
図8は、偏光度をパラメータとしてグリセリン溶液の濃度と分子量との関係を示す図である。
続いて、測定値において使用する校正曲線を獲得する方法について、図9のフローチャートを参照しつつ説明する。
ステップS11において、測定対象の水溶液に含まれる分子の分子量の範囲が推定できる場合は、校正曲線Cに基づいて校正に使用するグリセリン溶液の濃度範囲を定める。もし、分子量の範囲が不明の場合は、所定範囲の濃度の複数のグリセリン溶液を使用する。
ステップS12において、濃度の異なる複数のグリセリン水溶液を、本光測定装置を用いて測定し、濃度毎に偏光度を得る。ステップS13において、グリセリン溶液の濃度毎に、測定した偏光度と校正曲線Bより求めた偏光度とを比較する。
この比較は、例えば、それぞれの偏光度の差を基準値と比較しても良く、それぞれの偏光度の差の2乗和を求めて、基準値との差をとることで行っても良い。
ステップS14でYesの場合、即ち差が大きい場合は、以前校正曲線Bを定めたときの光測定装置の状態と、現在の光測定装置の状態とが異なっていることが考えられる。光測定装置の光学系の偏光の特性に起因する要素、つまりレーザの偏光状態、偏光板の状態、あるいは偏光成分を分離するビームスプリッタの特性、さらには偏光分離後の2つの検出器の検出特性などが、常に同一であるという保証がないからである。
ステップS15において、光測定装置に異常が発生していると判断し、ステップS16において、コンピュータ14の表示装置に光測定装置の測定精度が低下している旨、あるいは装置の調整、修理が必要である旨の警報を出力して本処理を終了する。
警報が出力されたときは、操作者は光測定装置を元の状態に復旧させるため、不良個所の特定とその修理、交換などの処置を実行する。
ステップS14でNoの場合、即ち差が小さい場合は、ステップS20において校正曲線Aを変更するかどうかを判断する。即ち、元の校正曲線Aの使用を継続するかどうかを判断する。この判断は、偏光度の差が第2の基準値よりも大きいかどうかで判断しても良く、操作者の指示に従っても良い。
ステップS20でNoの場合、即ち、元の校正曲線Aの使用を継続すると判断した場合は、ステップS21において、光測定装置は正常であり、元の校正曲線Aを継続して使用する旨をコンピュータ14の表示装置に出力して本処理を終了する。
ステップS20でYesの場合、即ち、新たな校正曲線A’を採用すると判断した場合、新たな校正曲線A’は、グリセリン水溶液を測定したとき元の校正曲線Cで定まる分子量が出力されるように変更する。従って、ステップS25において、サンプルとして測定したグリセリン水溶液の濃度から元の校正曲線Cを用いて分子量を算出する。
ステップS21において、グリセリン水溶液を測定したときの偏光度と、算出した分子量とから新たな校正曲線A’を求める。そして、ステップS21において、以降新たな校正曲線A’に基づいて測定を実行する。
[バリエーション]
図9のステップS12において、濃度の異なるグリセリン水溶液毎に偏光度を求めたが、この際粘性係数をグリセリン水溶液の温度で補正しても良い。
即ち、図1に示すように、ウェル内に温度計80を設けてグリセリン水溶液の温度T1を測定する。そして、図3のステップS03で偏光度を測定した際のグリセリン水溶液の温度T0との温度差ΔTを求め、この温度差ΔTから温度T1におけるグリセリン水溶液の粘性係数を算出する。この算出した粘性係数から温度T1におけるグリセリン水溶液の濃度を求め、ステップS04で使用した校正曲線Bを用いて新たな偏光度を得る。こうして得られた新たな偏光度を用いてステップS13以降の処理を実行する。
さらに、図9のステップS12において、濃度の異なるグリセリン水溶液毎に偏光度を求める際に、温度により偏光度を補正しても良い。
また、温度による補正を不必要とするため、グリセリン水溶液の温度が所定値となるように制御しても良い。
なお、上述の実施の形態では、グリセリンを用いて溶液の粘度を上昇させているが、この実施例に限定されず、溶液の粘度を上昇させる物質、即ち増粘性化合物あるいは粘度調整剤を用いても良い。
例えば、水の室温での粘性係数は0.001N・sec/mであるが、これにグリセリンなどの増粘性化合物を加えて、0.5N・sec/mで程度まで上昇させれば、一分子蛍光分析の偏光測定が対象とする大きさの分子量までカバーすることが可能となる。
以上説明した実施の形態によれば、種々の効果を奏することができる。
測定を行う際、光測定装置の光学系の偏光の特性に起因する要素が同一であるという保証がないため、測定前に偏光特性の確認、校正を行うことが必要である。
(1)従来は、蛍光色素分子、及び、その色素が結合した分子量の大きい分子の測定を行い、校正を行っていた。これに対し、本実施の形態では、単一の蛍光色素分子を濃度を変化させたグリセリンなどの水溶液中で測定する。そして溶液の粘性係数を変化させることで実質的に分子量を変化させることに対応させて校正を行う。このため、分子量の異なる一連の分子を用意する費用、煩雑な操作が不要となる。また、安価なグリセリンを用いることで簡便に校正を行うことができる。
(2)また、一度グリセリンの濃度と分子量の関係が求められれば、それをデータとして保存しておき、次回の校正時に自動的に校正が行われるようにソフトウエアを構成することができる。
(3)さらに、予め濃度の決まった複数のグリセリン溶液と、励起波長に合った色素の組合せを用意し、それらを混ぜるだけで校正が行える試薬のキットを提供することができる。
なお、上述の実施の形態で説明した各機能は、ハードウエアを用いて構成しても良く、また、ソフトウエアを用いて各機能を記載したプログラムをコンピュータに読み込ませて実現しても良い。また、各機能は、適宜ソフトウエア、ハードウエアのいずれかを選択して構成するものであっても良い。
更に、各機能は図示しない記録媒体に格納したプログラムをコンピュータに読み込ませることで実現させることもできる。ここで本実施の形態における記録媒体は、プログラムを記録でき、かつコンピュータが読み取り可能な記録媒体であれば、その記録形式は何れの形態であってもよい。
なお、この発明は、上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合せにより種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。更に、異なる実施形態に亘る構成要素を適宜組み合せてもよい。
光測定装置の基本的な構成を示す図。 分子量と偏光度との関係を示す図。 本実施の形態に係る校正方法を適用するための事前準備内容を示す図。 測定に用いる複数の溶液サンプルを模式的に示す図。 蛍光色素にTAMRAを使用して測定した分子量と偏光度との関係を示す図。 測定に用いる複数の溶液サンプルを模式的に示す図。 蛍光色素にTAMRAを使用して測定したグリセリン濃度と偏光度との関係を示す図。 偏光度をパラメータとしてグリセリン溶液の濃度と分子量との関係を示す図。 測定値において使用する校正曲線を獲得する方法を示すフローチャート。
符号の説明
1…レーザ光源、1…レーザ光源、2…光検出器、3…ダイクロイックミラー、7…光量モニタ機構、9…ビーム走査機構、11…液浸水供給機構、14…コンピュータ、15…光源部、16…光検出部、20…マイクロプレート、36…回転式NDフィルタ、40…偏芯回転ミラー、41…モータ、45…バリアフィルタ、102…ビームシフタ、300…蛍光色素、301,302…分子。

Claims (11)

  1. 所定の波長の偏光を用いて溶液中の色素と結合する分子を励起し、発生する蛍光の偏光成分から偏光度を測定して、分子に関するデータ値を取得する光測定装置において、
    偏光度と分子に関するデータ値との対応を表す第1の校正データに基づいて、測定した偏光度から対応する前記分子に関するデータ値を算出する算出手段と、
    前記分子を含まず前記色素のみを含む粘性係数の異なる溶液を測定して得られた偏光度と、前記粘性係数との対応を表す第2の校正データを取得する第2の校正データ取得手段と、
    前記第1の校正データと前記第2の校正データとから、前記粘性係数と前記分子に関するデータ値との対応を表す第3の校正データを取得する第3の校正データ取得手段と、
    前記分子を含まず前記色素のみを含む粘性係数の異なる溶液を測定して得られた偏光度と、前記粘性係数との対応を表す第4の校正データを取得する第4の校正データ取得手段と、
    前記第2の校正データと前記第4の校正データとから前記第1の校正データの精度良否を判断する精度良否判断手段と
    を備えたことを特徴とする光測定装置。
  2. 前記精度良否判断手段が前記第1の校正データの精度が不良と判断したときは、前記第4の校正データに使用した粘性係数から前記第3の校正データを用いて分子量を算出し、この算出した分子量と前記第4の校正データに使用した偏光度との対応を表す新たな校正データを前記第1の校正データとする校正データ更新手段を備えたことを特徴とする請求項1に記載の光測定装置。
  3. 前記精度良否判断手段が前記第1の校正データの精度が不良と判断したときは、前記光測定装置の調整あるいは修理を促す旨を出力する警告手段を備えたことを特徴とする請求項1に記載の光測定装置。
  4. 前記粘性係数の異なる溶液は、粘度調整剤を用いて作成されることを特徴とする請求項1に記載の光測定装置。
  5. 前記粘度調整剤は、グリセリンであることを特徴とする請求項4に記載の光測定装置。
  6. 前記溶液の粘度係数は、0.001以上0.5N・sec/m以下であることを特徴とする請求項1に記載の光測定装置。
  7. 前記第2の校正データ取得手段は、溶液の温度を測定し、この測定温度での粘性係数を用いることを特徴とする請求項1に記載の光測定装置。
  8. 前記溶液の温度を所定温度に制御する温度制御手段を備えることを特徴とする請求項1に記載の光測定装置。
  9. 前記分子に関するデータ値は、分子量であり、
    前記第1の校正データは、前記分子の形状に従った分類毎に取得されることを特徴とする請求項1に記載の光測定装置。
  10. 所定の波長の偏光を用いて溶液中の色素と結合する分子を励起し、発生する蛍光の偏光成分から偏光度を測定して、分子に関するデータ値を取得する光測定装置の光測定方法において、
    前記分子を含まず前記色素のみを含む粘性係数の異なる溶液を測定して得られた偏光度と、前記粘性係数との対応を表す校正データを取得し、
    上記取得と異なる時間において、前記分子を含まず前記色素のみを含む粘性係数の異なる溶液を測定して得られた偏光度と、前記粘性係数との対応を表す他の校正データを取得し、
    前記校正データと他の校正データとから前記光測定装置の測定精度の良否を判断すること
    を特徴とする光測定方法。
  11. 所定の波長の偏光を用いて溶液中の色素と結合する分子を励起し、発生する蛍光の偏光成分から偏光度を測定して、分子に関するデータ値を取得する光測定装置の光測定方法において、
    偏光度と分子に関するデータ値との対応を表す第1の校正データに基づいて、測定した偏光度から対応する前記分子に関するデータ値を算出し、
    前記分子を含まず前記色素のみを含む粘性係数の異なる溶液を測定して得られた偏光度と、前記粘性係数との対応を表す第2の校正データを取得し、
    前記第1の校正データと前記第2の校正データとから、前記粘性係数と前記分子に関するデータ値との対応を表す第3の校正データを取得し、
    前記分子を含まず前記色素のみを含む粘性係数の異なる溶液を測定して得られた偏光度と、前記粘性係数との対応を表す第4の校正データを取得し、
    前記第2の校正データと前記第4の校正データとから前記第1の校正データの精度良否を判断すること
    を特徴とする光測定方法。
JP2008142892A 2008-05-30 2008-05-30 光測定装置及び光測定方法 Withdrawn JP2009288161A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008142892A JP2009288161A (ja) 2008-05-30 2008-05-30 光測定装置及び光測定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008142892A JP2009288161A (ja) 2008-05-30 2008-05-30 光測定装置及び光測定方法

Publications (1)

Publication Number Publication Date
JP2009288161A true JP2009288161A (ja) 2009-12-10

Family

ID=41457507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008142892A Withdrawn JP2009288161A (ja) 2008-05-30 2008-05-30 光測定装置及び光測定方法

Country Status (1)

Country Link
JP (1) JP2009288161A (ja)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011108369A1 (ja) * 2010-03-01 2011-09-09 オリンパス株式会社 光分析装置、光分析方法並びに光分析用コンピュータプログラム
WO2012014778A1 (ja) * 2010-07-26 2012-02-02 オリンパス株式会社 発光プローブを用いて溶液中の希薄粒子を検出する方法
WO2012039352A1 (ja) * 2010-09-21 2012-03-29 オリンパス株式会社 単一発光粒子検出を用いた光分析方法
WO2012050011A1 (ja) * 2010-10-13 2012-04-19 オリンパス株式会社 単一発光粒子検出を用いた粒子の拡散特性値の測定方法
WO2012053355A1 (ja) * 2010-10-19 2012-04-26 オリンパス株式会社 単一発光粒子の偏光特性を観測する光分析装置、光分析方法及びそのための光分析用コンピュータプログラム
CN103221806A (zh) * 2010-09-10 2013-07-24 奥林巴斯株式会社 使用两个以上的波长带的光的测量的光学分析方法
CN103733049A (zh) * 2011-08-15 2014-04-16 奥林巴斯株式会社 利用单个发光粒子检测的光分析装置、光分析方法以及光分析用计算机程序
US8785886B2 (en) 2010-09-10 2014-07-22 Olympus Corporation Optical analysis method using the light intensity of a single light-emitting particle
US8900812B2 (en) 2011-01-26 2014-12-02 Olympus Corporation Method for identifying polymorphism of nucleic acid molecules
US8911944B2 (en) 2011-01-26 2014-12-16 Olympus Corporation Method for identifying polymorphism of nucleic acid molecules
EP2725347A4 (en) * 2011-06-27 2015-02-25 Olympus Corp METHOD FOR DETECTING TARGET PARTICLES
US9068944B2 (en) 2011-04-13 2015-06-30 Olympus Corporation Optical analysis device, optical analysis method and computer program for optical analysis using single light-emitting particle detection
US9103718B2 (en) 2010-11-25 2015-08-11 Olympus Corporation Optical analysis device and optical analysis method using a wavelength characteristic of light of a single light-emitting particle
US9116127B2 (en) 2011-04-18 2015-08-25 Olympus Corporation Quantitative determination method for target particles, photometric analysis device, and computer program for photometric analysis
US9188535B2 (en) 2012-04-18 2015-11-17 Olympus Corporation Single particle detection device, single particle detection method, and computer program for single particle detection, using optical analysis
US9329117B2 (en) 2011-11-10 2016-05-03 Olympus Corporation Optical analysis device, optical analysis method and computer program for optical analysis using single light-emitting particle detection
US9354176B2 (en) 2011-08-11 2016-05-31 Olympus Corporation Method for detecting a target particle
US9428796B2 (en) 2012-02-22 2016-08-30 Olympus Corporation Method for detecting a target particle
US9435727B2 (en) 2011-03-29 2016-09-06 Olympus Corporation Optical analysis device, optical analysis method and computer program for optical analysis using single light-emitting particle detection
US9488578B2 (en) 2011-08-26 2016-11-08 Olympus Corporation Single particle detection device, single particle detection method, and computer program for single particle detection, using optical analysis
US9494779B2 (en) 2012-02-17 2016-11-15 Olympus Corporation Optical analysis device, optical analysis method and computer program for optical analysis using single particle detection
US9528923B2 (en) 2011-08-30 2016-12-27 Olympus Corporation Optical analysis device, optical analysis method and computer program for optical analysis using single light-emitting particle detection
US9575060B2 (en) 2012-04-18 2017-02-21 Olympus Corporation Method for detecting a target particle
US9739698B2 (en) 2013-10-07 2017-08-22 Olympus Corporation Optical analysis device, optical analysis method and computer program for optical analysis using single light-emitting particle detection
US9771612B2 (en) 2012-03-21 2017-09-26 Olympus Corporation Method for detecting a target nucleic acid molecule
US9841418B2 (en) 2011-08-30 2017-12-12 Olympus Corporation Method for detecting target particle
US9863806B2 (en) 2011-01-20 2018-01-09 Olympus Corporation Optical analysis method and optical analysis device using the detection of light from a single light-emitting particle
US10310245B2 (en) 2013-07-31 2019-06-04 Olympus Corporation Optical microscope device, microscopic observation method and computer program for microscopic observation using single light-emitting particle detection technique
US10371631B2 (en) 2011-08-26 2019-08-06 Olympus Corporation Optical analysis device, optical analysis method and computer program for optical analysis using single light-emitting particle detection
US11016026B2 (en) 2015-12-09 2021-05-25 Olympus Corporation Optical analysis method and optical analysis device using single light-emitting particle detection

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011108369A1 (ja) * 2010-03-01 2011-09-09 オリンパス株式会社 光分析装置、光分析方法並びに光分析用コンピュータプログラム
US8471220B2 (en) 2010-03-01 2013-06-25 Olympus Corporation Optical analysis device, optical analysis method and computer program for optical analysis
CN102782480A (zh) * 2010-03-01 2012-11-14 奥林巴斯株式会社 光学分析装置、光学分析方法和用于光学分析的计算机程序
CN102869982A (zh) * 2010-03-01 2013-01-09 奥林巴斯株式会社 光学分析装置、光学分析方法和用于光学分析的计算机程序
US8541759B2 (en) 2010-03-01 2013-09-24 Olympus Corporation Optical analysis device, optical analysis method and computer program for optical analysis
WO2011108371A1 (ja) * 2010-03-01 2011-09-09 オリンパス株式会社 光分析装置、光分析方法並びに光分析用コンピュータプログラム
WO2011108370A1 (ja) * 2010-03-01 2011-09-09 オリンパス株式会社 光分析装置、光分析方法並びに光分析用コンピュータプログラム
US8710413B2 (en) 2010-03-01 2014-04-29 Olympus Corporation Optical analysis device, optical analysis method and computer program for optical analysis
CN102782479A (zh) * 2010-03-01 2012-11-14 奥林巴斯株式会社 光学分析装置、光学分析方法和用于光学分析的计算机程序
WO2012014778A1 (ja) * 2010-07-26 2012-02-02 オリンパス株式会社 発光プローブを用いて溶液中の希薄粒子を検出する方法
US9395357B2 (en) 2010-07-26 2016-07-19 Olympus Corporation Method of detecting sparse particles in a solution using a light-emitting probe
CN103221806A (zh) * 2010-09-10 2013-07-24 奥林巴斯株式会社 使用两个以上的波长带的光的测量的光学分析方法
US8958066B2 (en) 2010-09-10 2015-02-17 Olympus Corporation Optical analysis method using measurement of light of two or more wavelength bands
US8785886B2 (en) 2010-09-10 2014-07-22 Olympus Corporation Optical analysis method using the light intensity of a single light-emitting particle
WO2012039352A1 (ja) * 2010-09-21 2012-03-29 オリンパス株式会社 単一発光粒子検出を用いた光分析方法
JP5914341B2 (ja) * 2010-09-21 2016-05-11 オリンパス株式会社 単一発光粒子検出を用いた光分析方法
US8680485B2 (en) 2010-09-21 2014-03-25 Olympus Corporation Optical analysis method using the detection of a single light-emitting particle
CN103154708B (zh) * 2010-10-13 2015-01-14 奥林巴斯株式会社 利用单个发光粒子检测的粒子的扩散特性值的测量方法
CN103154708A (zh) * 2010-10-13 2013-06-12 奥林巴斯株式会社 利用单个发光粒子检测的粒子的扩散特性值的测量方法
US8681332B2 (en) 2010-10-13 2014-03-25 Olympus Corporation Method of measuring a diffusion characteristic value of a particle
WO2012050011A1 (ja) * 2010-10-13 2012-04-19 オリンパス株式会社 単一発光粒子検出を用いた粒子の拡散特性値の測定方法
JP5904947B2 (ja) * 2010-10-13 2016-04-20 オリンパス株式会社 単一発光粒子検出を用いた粒子の拡散特性値の測定方法
WO2012053355A1 (ja) * 2010-10-19 2012-04-26 オリンパス株式会社 単一発光粒子の偏光特性を観測する光分析装置、光分析方法及びそのための光分析用コンピュータプログラム
JP5907882B2 (ja) * 2010-10-19 2016-04-26 オリンパス株式会社 単一発光粒子の偏光特性を観測する光分析装置、光分析方法及びそのための光分析用コンピュータプログラム
CN103210302B (zh) * 2010-10-19 2015-05-27 奥林巴斯株式会社 观测单个发光粒子的偏振特性的光分析装置、光分析方法
US8803106B2 (en) 2010-10-19 2014-08-12 Olympus Corporation Optical analysis device, optical analysis method and computer program for optical analysis for observing polarization characteristics of a single light-emitting particle
CN103210302A (zh) * 2010-10-19 2013-07-17 奥林巴斯株式会社 观测单个发光粒子的偏振特性的光分析装置、光分析方法以及用于该方法的光分析用计算机程序
US9103718B2 (en) 2010-11-25 2015-08-11 Olympus Corporation Optical analysis device and optical analysis method using a wavelength characteristic of light of a single light-emitting particle
US9863806B2 (en) 2011-01-20 2018-01-09 Olympus Corporation Optical analysis method and optical analysis device using the detection of light from a single light-emitting particle
US8911944B2 (en) 2011-01-26 2014-12-16 Olympus Corporation Method for identifying polymorphism of nucleic acid molecules
US8900812B2 (en) 2011-01-26 2014-12-02 Olympus Corporation Method for identifying polymorphism of nucleic acid molecules
US9435727B2 (en) 2011-03-29 2016-09-06 Olympus Corporation Optical analysis device, optical analysis method and computer program for optical analysis using single light-emitting particle detection
US9068944B2 (en) 2011-04-13 2015-06-30 Olympus Corporation Optical analysis device, optical analysis method and computer program for optical analysis using single light-emitting particle detection
US9116127B2 (en) 2011-04-18 2015-08-25 Olympus Corporation Quantitative determination method for target particles, photometric analysis device, and computer program for photometric analysis
EP2725347A4 (en) * 2011-06-27 2015-02-25 Olympus Corp METHOD FOR DETECTING TARGET PARTICLES
US9354176B2 (en) 2011-08-11 2016-05-31 Olympus Corporation Method for detecting a target particle
CN103733049A (zh) * 2011-08-15 2014-04-16 奥林巴斯株式会社 利用单个发光粒子检测的光分析装置、光分析方法以及光分析用计算机程序
US9423349B2 (en) 2011-08-15 2016-08-23 Olympus Corporation Optical analysis device, optical analysis method and computer program for optical analysis using single light-emitting particle detection
US9488578B2 (en) 2011-08-26 2016-11-08 Olympus Corporation Single particle detection device, single particle detection method, and computer program for single particle detection, using optical analysis
US10371631B2 (en) 2011-08-26 2019-08-06 Olympus Corporation Optical analysis device, optical analysis method and computer program for optical analysis using single light-emitting particle detection
US9841418B2 (en) 2011-08-30 2017-12-12 Olympus Corporation Method for detecting target particle
US9528923B2 (en) 2011-08-30 2016-12-27 Olympus Corporation Optical analysis device, optical analysis method and computer program for optical analysis using single light-emitting particle detection
US9329117B2 (en) 2011-11-10 2016-05-03 Olympus Corporation Optical analysis device, optical analysis method and computer program for optical analysis using single light-emitting particle detection
US9494779B2 (en) 2012-02-17 2016-11-15 Olympus Corporation Optical analysis device, optical analysis method and computer program for optical analysis using single particle detection
US9428796B2 (en) 2012-02-22 2016-08-30 Olympus Corporation Method for detecting a target particle
US9771612B2 (en) 2012-03-21 2017-09-26 Olympus Corporation Method for detecting a target nucleic acid molecule
US9188535B2 (en) 2012-04-18 2015-11-17 Olympus Corporation Single particle detection device, single particle detection method, and computer program for single particle detection, using optical analysis
US9575060B2 (en) 2012-04-18 2017-02-21 Olympus Corporation Method for detecting a target particle
US10310245B2 (en) 2013-07-31 2019-06-04 Olympus Corporation Optical microscope device, microscopic observation method and computer program for microscopic observation using single light-emitting particle detection technique
US9739698B2 (en) 2013-10-07 2017-08-22 Olympus Corporation Optical analysis device, optical analysis method and computer program for optical analysis using single light-emitting particle detection
US11016026B2 (en) 2015-12-09 2021-05-25 Olympus Corporation Optical analysis method and optical analysis device using single light-emitting particle detection

Similar Documents

Publication Publication Date Title
JP2009288161A (ja) 光測定装置及び光測定方法
JP5526191B2 (ja) 光測定装置
JP2009145242A (ja) 光測定装置
JP5097247B2 (ja) 共焦点顕微鏡装置及び共焦点顕微鏡装置を用いた観察方法
US5689110A (en) Calibration method and apparatus for optical scanner
Hassler et al. High count rates with total internal reflection fluorescence correlation spectroscopy
US7369220B2 (en) Measuring apparatus
JP2012510066A (ja) 分解能増進顕微鏡法
JP2011002415A (ja) 蛍光相関分光装置
JP2005099662A (ja) 共焦点顕微鏡
JP6534658B2 (ja) スキャニング顕微鏡、およびスキャニング顕微鏡の点像分布関数(psf)を決定する方法
JP2006243731A (ja) スポット走査式レーザ走査型顕微鏡及び同顕微鏡を調整する方法
Diaspro et al. Two-photon microscopy and spectroscopy based on a compact confocal scanning head
US7474403B2 (en) Device and method for measuring the optical properties of an object
JP2004004678A (ja) 共焦点顕微鏡装置及び共焦点顕微鏡装置を用いた観察方法
JP2004317741A (ja) 顕微鏡およびその光学調整方法
JP2006125970A (ja) 分光装置および分光システム
JP2004309458A (ja) 時間分解蛍光顕微鏡
JP4583723B2 (ja) 試料を染色した蛍光試薬のレーザ走査顕微鏡を用いた判別方法
JP2001255463A (ja) 走査型光学装置
JP2004354346A (ja) 測定装置
JP2006300808A (ja) ラマン分光測定装置
JP2004354347A (ja) 蛍光測定装置
TWI661222B (zh) 光學測量器與光學測量方法
JP2865298B2 (ja) 光ヘテロダイン螢光顕微鏡

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110802