JP2009259422A - プラズマディスプレイパネルおよびその製造方法 - Google Patents

プラズマディスプレイパネルおよびその製造方法 Download PDF

Info

Publication number
JP2009259422A
JP2009259422A JP2008103945A JP2008103945A JP2009259422A JP 2009259422 A JP2009259422 A JP 2009259422A JP 2008103945 A JP2008103945 A JP 2008103945A JP 2008103945 A JP2008103945 A JP 2008103945A JP 2009259422 A JP2009259422 A JP 2009259422A
Authority
JP
Japan
Prior art keywords
mgo
mgo crystal
crystal particles
display panel
plasma display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008103945A
Other languages
English (en)
Other versions
JP4566249B2 (ja
Inventor
Takashi Kawasaki
孝 川崎
Yasuhito Yamaryo
康仁 山領
Atsuo Otomi
淳生 大富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2008103945A priority Critical patent/JP4566249B2/ja
Priority to US12/394,087 priority patent/US8400058B2/en
Publication of JP2009259422A publication Critical patent/JP2009259422A/ja
Application granted granted Critical
Publication of JP4566249B2 publication Critical patent/JP4566249B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/34Vessels, containers or parts thereof, e.g. substrates
    • H01J11/40Layers for protecting or enhancing the electron emission, e.g. MgO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/10AC-PDPs with at least one main electrode being out of contact with the plasma
    • H01J11/12AC-PDPs with at least one main electrode being out of contact with the plasma with main electrodes provided on both sides of the discharge space
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Manufacturing & Machinery (AREA)
  • Gas-Filled Discharge Tubes (AREA)

Abstract

【課題】PDPの放電遅れを改善する。
【解決手段】基板上に配置された表示電極対であるX、Y電極14、15と、X、Y電極14、15を被覆する誘電体層17と、この誘電体層17を被覆する保護層18とを有する。保護層18は誘電体層17の表面に積層されるMgO膜18aと、MgO膜18a上に付着する複数のMgO結晶粒子18bとを備えている。また、MgO膜18aの表面の被覆率は10%以下であり、複数のMgO結晶粒子18bは、放電空間と対向する面の配向が揃うように配置されている。また、複数のMgO結晶粒子18bは立方体の形状を有している。
【選択図】図2

Description

本発明は、プラズマディスプレイパネルおよびその製造技術に関し、特に、プラズマディスプレイパネルの放電遅れの改善に適用して有効な技術に関する。
プラズマディスプレイパネル(PDP;Plasma Display Panel)は、例えば希ガスなどの放電ガスを封入したセルと呼ばれる放電空間内で、気体放電を発生させ、この際に発生する真空紫外線で蛍光体を励起して、画像を表示する表示パネルである。
現在、一般に商品化されているAC(交流)駆動方式のPDPは面放電型である。面放電型PDPでは、カラー表示のための蛍光体を表示電極対からパネルの厚さ方向に遠ざけて配置することができ、それによって放電時のイオン衝撃(スパッタ)による蛍光体の特性劣化を低減することができる。したがって、面放電型PDPは、対を成す表示電極(X電極およびY電極と呼ばれる)を前面基板と背面基板とに振り分けて配置する対向放電型に比べて、長寿命化に適している。
上記一般の面放電型AC型PDPの前面基板では、XおよびYの表示電極対を覆う誘電体層が放電時のイオンの衝撃により劣化することを防ぐために保護膜を設ける。この保護膜は、誘電体層が放電時のイオンの衝撃により劣化するのを防ぐだけでなく、該保護膜にイオンが衝突することにより、二次電子を放出し、放電を成長させる機能も有する。
上記保護膜として、耐イオン衝撃性や二次電子の放出のしやすさから、酸化マグネシウム(MgO)の薄膜が一般に用いられる(特許文献1参照)。
特開2006−147417号公報
<放電遅れについての検討>
上記MgOの保護膜は二次電子放射係数が高く、放電開始電圧を低減するには有効である。しかし近年、PDPの高精細化の要求に伴って更にアドレス速度を向上させる必要が生じ、この結果、放電遅れの改善が新たに重要な課題となっている。
すなわち、PDPの高精細化をすすめると、表示ライン数が増加する。例えば、いわゆるフルハイビジョン規格では1080本の表示ラインを有することとなる。PDPでは所定のフレーム時間(フィールド)を、複数のサブフィールドに分割し、各サブフィールドで行う維持放電(表示放電)の回数の組み合わせにより階調表示を行う。また、画像を形成するために、サブフィールド毎に、点灯するセルを選択する動作(アドレス(書き込み)動作)を行う。具体的には、選択するセルの走査電極とアドレス電極へパルスを印加して放電(アドレス放電)を発生させて壁電荷を形成する。その後、セル群に対して駆動波形の印加により選択セルで維持放電(表示放電)を発生させる動作(維持動作)を行う。したがって、例えば1080本分の走査(表示ライン毎の放電/非放電の選択)を、所定のフレーム時間の中で階調表示に必要なサブフィールド分行うためには、アドレス動作時間(すなわち電極への電圧(パルス)の印加によりアドレス放電を発生させ壁電荷を形成するのにかかる時間)を短縮することが必要となる。つまり、PDPを高精細化するほど、アドレス動作等における放電遅れを如何に短縮するかが大きな課題となる。
ここで、放電遅れとは、一般に形成遅れと統計遅れの和として考えられる。形成遅れは、電極間に生成した初電子が発生してから明確な放電が形成されるまでの時間であり、多数回放電を実施したときの略最小放電時間と見なされている。一方、統計遅れは、電圧印加から電離が始まって放電が開始するまでの時間であり、多数回放電を繰り返した際の放電遅れのばらつきは、この時間によりほぼ支配されるため、一般に統計遅れと呼ばれている。これらの放電遅れが長いと、表示ミス防止のためにアドレス時間を長くせざるを得ず、画像形成に寄与する表示期間が短くなるなどの悪影響を与える。したがって、PDPにとって、放電遅れが短いことが望ましい。
ガス放電では、空間(放電空間)中の荷電粒子が外部電界によって加速され、他のガス分子に衝突し、該ガス分子が電離することで電離粒子の数を増やし成長するが、最初に荷電粒子が供給されないと放電は始まらず、荷電粒子が供給されるまで放電開始が遅れる。したがって放電の種火となるプライミング電子(初期荷電粒子)を放電空間内により多く供給する程、放電遅れを短くすることができる。
上記した特許文献1では、放電遅れを短くするための一つの解決手段としてMgO膜の上に結晶体粉末を含む結晶酸化マグネシウム層を設ける技術が提案されている。上記特許文献1によれば、200ないし300nm内(特に235nm付近)にピークを有するカソード・ルミネッセンス発光を行う酸化マグネシウム結晶体の粉末を設けることにより、そのピーク波長に対応したエネルギ準位によって電子を長時間トラップできるので、該電子が放電開始に必要な初期電子として取り出され、放電遅れが減少すると推測している。なお、上記特許文献1には、所定波長にピークを有するカソード・ルミネッセンス発光を行うMgO結晶体の粉末を得るために、該粉末の分級を行って所定の粒径以上のMgO結晶体の頻度分布が多くなるようにする旨が記載されている。
<MgO膜の表面に複数のMgO結晶体粉末を配置する技術の検討>
しかしながら、本発明者が上記特許文献1に記載される構成について検討した所、上記構成ではPDP内での特性の分布あるいはPDP個々の特性を一様にそろえることが難しいという課題があることを見出した。
すなわち、PDPの面内において一様に放電遅れを短くするためには、MgO結晶体を配置する量を多くする必要があり、MgO膜の表面がMgO結晶体で覆われることとなる。しかしこの場合、MgO結晶体を形成しない場合と比較して、MgO結晶体が放電空間に露出する表面積が大きくなる。MgOはCOやHOなどの不純物を吸着し易い性質を有しており、表面積の増大に伴って増加した不純物により蛍光体(特に緑色の発光特性を有する蛍光体)が劣化して緑色の発光が弱くなり、表示色に赤みが増す色ムラ(いわゆる画面内における赤ムラ)が顕著になる。
<MgO結晶体の配置量を少なくする技術の検討>
そこで、本発明者は、MgO結晶体を付着させる量を少なくしてMgO膜の露出面積を向上させる技術について検討を行った結果、例えば、上記特許文献1に記載されるMgO結晶体を配置する量を単に少なくした場合に生じる新たな課題を見出した。
すなわち、放電遅れについて、MgO結晶体の配置量を単に少なくするのみでは、プライミング電子の供給量が少なくなるため、結果として放電遅れを短くすることができない。なお、上記特許文献1では、分級によりMgO結晶体における粒径の大きい結晶体の粒度分布(頻度分布)の割合を大きくすることで、MgO結晶体の粉末の量が少なくて済む旨が記載されている。しかし、単に分級を行っただけでは、上記特許文献1の図6あるいは図7に記載されるように各MgO結晶体に付着している微細なMgO結晶粒子を取り除くことができない。また、分級時の衝撃等によりMgO結晶体の一部(特に立方体の頂部)が損傷する場合がある。また、損傷片がMgO結晶体を配置した後にMgO膜に付着する場合もある。このため、MgO結晶体の放電空間に対向する面の配向が揃わず、少ない配置量では、十分にプライミング電子を供給することができなくなるため、放電遅れを短くすることができない。
本発明は、上記課題に鑑みてなされたものであり、その目的は、PDPの放電遅れを改善することができる技術を提供することにある。
本発明の前記ならびにその他の目的と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
上記課題を解決するため、本発明者が検討および実験を行った結果、MgO膜上にMgO結晶粒子を配置し、MgO膜の被覆率を10%以下とすることにより、前記した画面内における赤ムラの発生、あるいは放電電圧の上昇を抑制できることが判明した。また、前記MgO結晶粒子の放電空間に対向する面の配向を揃えることによりMgO結晶粒子を付着させる量を少なくしても、放電遅れが改善できることを実験的に見出した。
本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、次のとおりである。
すなわち、本発明の一つの実施の形態におけるプラズマディスプレイパネルは、放電ガスを封入して形成された放電空間を介して対向する一対の基板構造体を備え、前記一対の基板構造体の一方は、基板上に配置された複数の表示電極対と、前記複数の表示電極対を被覆する誘電体層と、この誘電体層を被覆する保護層とを有している。ここで、前記保護層は前記誘電体層の表面に積層されるMgO膜と、前記MgO膜上に付着する複数のMgO結晶粒子とを備えている。また、前記MgO膜の表面の被覆率は10%以下である。また、前記MgO結晶粒子を構成するMgO結晶単粒子の形状を立方体形状とするものである。
本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば以下のとおりである。
すなわち、PDPの放電遅れを改善することができる。
本願発明を詳細に説明する前に、本願における用語の意味を説明すると次の通りである。
「MgO結晶単粒子」とは、MgOで構成される結晶体の一次粒子(単粒子)をいう。したがって、「MgO結晶単粒子」には複数の単粒子が凝集した凝集体や塊体などの二次粒子は含まれない。一方、「MgO結晶粒子」は、MgO結晶単粒子の他、複数のMgO結晶単粒子が凝集した凝集体や塊体などの二次粒子を含めた総称として用いる。
「累積粒度分布」とは、特定の粒子径以下の粒子が全体に占める割合を示したものである。つまり、累積50%値とは、その粒子径以下の粒子が全体の50%を占めることを意味する。例えば、図8の(B)を用いて説明すると、累積50%値は1.27μmであり、1.27μm以下の粒子が全体の50%を占めることを示している。
以下の実施の形態においては便宜上その必要があるときは、複数のセクションまたは実施の形態に分割して説明するが、特に明示した場合を除き、それらはお互いに無関係なものではなく、一方は他方の一部または全部の変形例、詳細、補足説明等の関係にある。
また、本実施の形態を説明するための全図において同一機能を有するものは同一の符号を付すようにし、その繰り返しの説明は原則として省略する。以下、本発明の実施の形態を図面に基づいて詳細に説明する。
<1.PDPの基本構造>
まず、図1および図2を用いて本実施の形態のPDPの構造の一例についてカラー表示用のAC駆動型の3電極面放電型PDPを例に説明する。図1は本実施の形態のPDPの要部を拡大して示す要部拡大組み立て斜視図、図2は図1に示す前面基板構造体の上下を反転させて保護層の表面状態を示す要部拡大斜視図である。
図1において、PDP1は放電ガスを封入して形成された放電空間24を介して対向する一対の基板構造体である前面基板構造体11と背面基板構造体12とを有している。
前面基板構造体11は、前面基板13(第1基板)上に配置された複数の表示電極対であるX電極14およびY電極15と、これらの表示電極対を被覆する誘電体層17と、この誘電体層を被覆する保護層18とを有している。また、保護層18は、図2に示すように誘電体層17の表面に積層されるMgO(酸化マグネシウム)膜18aと、MgO膜18a上に付着する複数の立方体のMgO結晶粒子18bとを備えている。
前面基板構造体11と背面基板構造体12とは対向配置された状態で重ね合わされ、その間に放電空間24を有している。つまり、前面基板構造体11と背面基板構造体12とは放電空間24を介して対向配置されている。
前面基板構造体11はPDP1の表示面となる第1の面13aを有し、例えばガラス基板である前面基板13を有している。前面基板13の第1の面13aの反対側の面(内面)にはPDP1の表示電極であるX電極(表示電極)14と、Y電極(表示電極、走査電極)15とがそれぞれ複数形成されている。
X電極14およびY電極15は維持放電(表示放電)を行うための一対の表示電極対を構成し、例えば、行方向DXに沿って帯状に延在するようにそれぞれ交互に配置されている。この一対のX電極14とY電極15とがPDP1における行方向DXの表示ラインを構成する。なお、図1では、二対のX電極14およびY電極15を拡大して示しているが、PDP1は、この表示ラインの行数に応じて複数のX電極14およびY電極15を有している。
このX電極14およびY電極15は一般に例えば、ITO(Indium Tin Oxide)やSnOなどの透明な電極材料で構成されるX透明電極14a、Y透明電極15aと、例えば、Ag、Au、Al、Cu、Cr、あるいはこれらの積層体(例えばCr/Cu/Crの積層体)などからなるXバス電極14b、Yバス電極15bとで構成される。
X透明電極14a、Y透明電極15aは主に維持放電に寄与し、蛍光体の発光を前面基板13側から観察することができるように光透過性がXバス電極14b、Yバス電極15bよりも高い。一方Xバス電極14b、Yバス電極15bは駆動用の電流を低抵抗で流すため、X透明電極14a、Y透明電極15aよりも抵抗の低い金属材料を用いる。
前面基板(第1基板)13の一方の面(第1の面13aの反対側に位置する面)に表示電極対(X電極14およびY電極15)を形成する工程は例えば以下のように行う。すなわち、透明な電極材料やAg、Auについてはスクリーン印刷のような厚膜形成技術を用いて、またその他の金属については蒸着法やスパッタ法などの薄膜形成技術とエッチング技術とを用いることにより、所定の本数、厚さ、幅および間隔で形成することができる。
図1では、X透明電極14a、Y透明電極15aが帯状に延びる形状を示しているが、X透明電極14a、Y透明電極15aの電極構造はこれに限定されない。例えば、維持放電の安定化や放電効率の向上のため、一対の電極対間の最短距離(放電ギャップと呼ばれる)がセルに対応して近づくようにXバス電極14b、Yバス電極15bと重なる位置からそれぞれ対向する方向に突出部を形成する構造としても良い。また、突出部の形状もストレート形、T字形又は梯子形等種々の変形例を用いることができる。また、X電極14とY電極15の電極構造も図1に示す形状には限定されず、例えば、これらの表示電極対を等間隔に配置して、隣接するX電極14とY電極15との間がすべて表示ラインになる、いわゆるALIS(Alternate Lighting of Surface Method)と呼ばれる構造としても良い。
これらの電極群(X電極14、Y電極15)は、主にSiOなどのガラス材料で構成される誘電体層17で被覆されている。表示電極対を被覆するように誘電体層17を形成する工程は例えば以下のように行う。すなわち、誘電体層17は、例えば低融点ガラス粉末を主成分とするフリットペーストを、前面基板13上にスクリーン印刷法で塗布し、焼成することにより形成している。他に、いわゆるグリーンシートと呼ばれるシート状の誘電体シートを貼り付けて焼成する方法で形成することもできる。あるいは、プラズマCVD法でSiO膜を成膜することにより形成してもよい。
誘電体層17の内面側には、表示の際の放電(主に維持放電)により生じるイオンの衝突による衝撃から誘電体層17を保護するための保護層18が形成されている。このため保護層18は誘電体層17の表面を被覆するように形成されている。この保護層18の詳細な構造、機能、および誘電体層17の表面に保護層18を形成する工程の詳細については後述する。
一方、背面基板構造体12は、例えばガラス基板である背面基板19を有している。背面基板19の前面基板構造体11と対向する面(内側面)上には、複数のアドレス電極20が形成されている。各アドレス電極20は、X電極14およびY電極15が延在する方向と交差する(略直交する)列方向DYに沿って延在するように形成されている。また、各アドレス電極20は、互いに略平行となるように所定の配置間隔を持って配置されている。
アドレス電極20を構成する材料としては、Xバス電極14b、Yバス電極15bと同様に例えば、Ag、Au、Al、Cu、Cr、あるいはこれらの積層体(例えばCr/Cu/Crの積層体)などを用いることができる。また、アドレス電極20に用いる材料に応じて厚膜形成技術あるいは蒸着法やスパッタ法などの薄膜形成技術とエッチング技術とを用いることにより、所定の本数、厚さ、幅および間隔で形成することができる。
このアドレス電極20と、前面基板構造体11に形成されたY電極15とは、セル25の点灯/非点灯を選択するための放電であるアドレス放電を行うための電極対を構成する。つまり、Y電極15は維持放電用の電極としての機能とアドレス放電用の電極(走査電極)としての機能とを併せ持っている。
アドレス電極20は、誘電体層21で被覆されている。誘電体層21は前面基板13上の誘電体層17と同じ材料、同じ方法を用いて形成することができる。誘電体層21上には背面基板構造体12の厚さ方向に伸びる複数の隔壁22が形成されている。隔壁22はアドレス電極20が延在する列方向DYに沿ってライン状に延在するように形成されている。前面基板構造体11と背面基板構造体12とは、保護層18が形成された面と隔壁22が形成された面とが対向した状態で固定されている。隔壁22の平面上の位置は、隣り合うアドレス電極20の間に配置されている。隔壁22を隣り合うアドレス電極20の間に配置することにより、各アドレス電極の位置に対応して誘電体層21の表面を列方向DYに区分けする放電空間24が形成される。なお、隔壁22の形状は、図1に示すライン状の他、ミアンダ形、格子形又は梯子形など種々の変形例を適用することができる。
隔壁22を形成する工程は、サンドブラスト法、フォトエッチング法などにより形成することができる。例えば、サンドブラスト法では、低融点ガラスフリット、バインダー樹脂、溶媒などからなるフリットペーストを誘電体層21上に塗布して乾燥させた後、そのフリットペースト層上に隔壁パターンの開口を有する切削マスクを設けた状態で切削粒子を吹き付けて、マスクの開口部に露出したフリットペースト層を切削し、さらに焼成することにより形成する。また、フォトエッチング法では、切削粒子で切削することに代えて、バインダー樹脂に感光性の樹脂を使用し、マスクを用いた露光および現像の後、焼成することにより形成する。
アドレス電極20上の誘電体層21の上面、および隔壁22の側面には、真空紫外線により励起されて赤(R)、緑(G)、青(B)の各色の可視光を発生する蛍光体23r、23g、23bがそれぞれ所定の位置に形成されている。隔壁22で区画された領域に蛍光体23r、23g、23bを形成する工程は例えば以下のように行う。まず、各色の発光特性を有する蛍光体粉末とバインダー樹脂と溶媒とを含む蛍光体ペーストをそれぞれ準備する。この蛍光体ペーストを隔壁で区切られた放電空間内にスクリーン印刷またはディスペンサを用いた方法などで塗布し、これを各色ごとに繰り返した後、焼成することにより形成している。
また、蛍光体23r、23g、23bは、蛍光体粉末と感光性材料とバインダー樹脂とを含むシート状の蛍光体層材料(いわゆるグリーンシート)を使用し、フォトリソグラフィー技術で形成することもできる。この場合、所定の色のシートを基板上の表示領域全面に貼り付けて、露光、現像を行い、これを各色ごとに繰り返すことで、対応する隔壁22間に各色の蛍光体23を形成することができる。
また、各放電空間24には、放電ガスと呼ばれる希ガスなどのガスが所定の圧力で封入されている。放電ガスとしては、例えばXeの分圧比が数%〜数十%に調整されたXe−Neなどの混合ガスを用いることができる。
PDP1は、上記した前面基板13の表示電極対を形成した面と、背面基板19とを放電空間24を介して対向配置して組み立てることにより得られる。この組み立てる工程には、前面基板13と背面基板19との位置合わせ工程、各基板(前面基板13および背面基板19)の間の外周部を例えばシールフリットと呼ばれる低融点ガラス材料を用いて封止する封止工程、PDP1の内部空間に残るガスを排気して、放電ガスを充填する工程などが含まれる。
PDP1では、一対のX電極14、Y電極15とアドレス電極20との交差に対応して1個のセル25が構成される。つまり、セル25は表示電極対(X電極14とY電極15の対)とアドレス電極20の交差毎に形成される。セル25の平面積は一対のX電極14とY電極15の配置間隔と、隔壁22の配置間隔により規定される。また、各セル25には、赤用の蛍光体23r、緑用の蛍光体23g、または青用の蛍光体23bのいずれかがそれぞれ形成されている。
このR、G、Bの各セル25のセットにより画素(ピクセル)が構成される。つまり、各蛍光体23r、23g、23bはPDP1の発光素子であり維持放電によって発生する所定波長の真空紫外線に励起されて赤(R)、緑(G)、青(B)の各色の可視光を発光する。
なお、図1ではアドレス電極20を背面基板構造体12に形成する例について示したが、アドレス電極20を前面基板構造体11に形成することもできる。この場合、図1に示す誘電体層17を複数層構造として、第1層目の誘電体層で表示電極対を被覆し、この第1層目と第2層目の誘電体層の間にアドレス電極20を形成することができる。
<2.保護層の詳細構造および機能>
次に図1および図2に示す保護層18の詳細な構造および機能について図1〜図11を用いて説明する。図3および図4は図2に示すMgO結晶粒子の一例を示す図であって、図3はMgO結晶単粒子を示す斜視図、図4は3個のMgO結晶単粒子の側面が密着して凝集した凝集体を示す説明図である。また、図5は図2に示すMgO膜とMgO結晶粒子の微視的な関係を示す拡大断面図である。また、図6は、MgO結晶粒子の粒度分布モデルを説明するための説明図である。また、図7は図2〜図5に示すMgO結晶粒子を調製するための解砕工程における特に好ましい解砕方法の実施態様を説明するための説明図である。また、図8は図2〜図5に示すMgO結晶粒子を調製するための解砕工程における解砕方法毎のMgO結晶粒子の累積粒度分布を示す説明図である。また、図10は本実施の形態に対する比較例であるMgO結晶粒子の一例を示す説明図である。また、図11および図12はそれぞれ本実施の形態に対する比較例であるMgO膜とMgO結晶粒子の微視的な関係を示す拡大断面図である。
図2において、保護層18は誘電体層17の表面に積層されるMgO膜18aと、MgO膜18a上に付着する複数のMgO結晶粒子18bとを備えている。
<2−1.MgO膜>
MgO膜18aは放電空間24(図1参照)との対向面に(111)面の配向面を有している。保護層18には、誘電体層17が放電時のイオンの衝撃により劣化することを防ぐ機能とともに、二次電子を放出して放電の成長、維持を促進する機能が要求される。このため、保護層18には二次電子放出係数の高いMgOが用いられるが、特に放電空間24との対向面を(111)面とすることにより(100)面とした場合よりも高い二次電子放出係数が得られる。PDP1はMgO膜18aの放電空間24との対向面を(111)面とすることにより、二次電子放出係数を向上させることができるので、放電電圧を低減することができる。すなわち、PDP1は消費電力を低減することができる。なお、MgO膜18aの表面の配向は主として(111)面を有しているが、MgO膜18aの表面が(111)面以外の配向面を含んだ実施態様を排除するものではない。
また、MgO膜18aをMgOを主成分として構成されているが、これに耐スパッタ特性や二次電子放出係数を向上させるための添加物(例えばCaOなど)を添加することもできる。この場合、保護層18の耐スパッタ特性あるいは二次電子放出係数をさらに向上させることができる。
MgO膜18aを形成する工程は、例えば電子ビーム蒸着法やスパッタ法のような当該分野で公知な薄膜プロセスで形成することができる。
<2−2.MgO結晶粒子>
<2−2−1.放電遅れについて>
次に、MgO結晶粒子18bは、MgOのみからなってもよいが、結晶構造に影響を与えない程度に少量の別の成分(例えば、フラックスの残渣)を含んでいてもよい。
このMgO結晶粒子18bは、アドレス放電あるいは表示放電などを行う際に放電の種火となるプライミング電子(初期荷電粒子)を放電空間24により多く供給する機能を有している。つまり、複数のMgO結晶粒子18bをMgO膜18a上に付着させることにより、放電空間24内のプライミング電子を増加させることができる。放電空間24内のプライミング電子が増加すると、放電のための電圧を印加してから放電が開始されるまでの時間を短縮することができる。例えば、アドレス放電の場合であれば、図1に示すアドレス電極20とY電極15との間に電圧が印加してからアドレス放電が開始されるまでの時間を短縮することができるので、アドレス放電における放電遅れを短くすることができる。
MgO結晶粒子18bの配置量、すなわちMgO膜18aの表面におけるMgO結晶粒子18bの付着量を多くすると、放電空間24内のプライミング電子の供給量が増加する。
<2−2−2.MgO結晶粒子を付着させることによる課題と解決手段>
しかし、本発明者の検討によれば、MgO結晶粒子18bの付着量を過剰に多くしすぎるとPDP1の表示色に異常が生じる。すなわち、MgO結晶粒子18bを付着させると、MgO結晶粒子18bを付着させない場合と比較して、MgO結晶粒子18bが放電空間に露出する表面積が大きくなる。MgOはCOやHOなどの不純物を吸着し易い性質を有しており、表面積の増大に伴って増加した不純物により蛍光体(特に緑色の発光特性を有する蛍光体)が劣化して緑色の発光が弱くなり、表示色に赤みが増す色ムラ(いわゆる画面内における赤ムラ)が発生する場合がある。MgO結晶粒子18bの付着量が少ない場合、この現象は実効上無視できる程小さいが、付着量が増加するにしたがってこの現象が増大する。本発明者がこの臨界点について実験的に検討を行った結果、MgO膜18aの被覆率が10%を超えると、この現象が特に顕著になる。
また、MgO結晶粒子18bの付着量を過剰に多くしすぎると、放電電圧が上昇することも判った。これは、MgO膜18aの表面がMgO結晶粒子18bで覆われることにより二次電子放出量が低下するためと推察される。
そこで、本実施の形態ではMgO結晶粒子18bの付着量を低減し、MgO膜18aの被覆率を10%以下とした。ここで、「被覆率」とは、MgO結晶粒子18bを分散配置したMgO膜18aの面に対して垂直方向に観察した際の、下地となるMgO膜18aの面積に対するMgO結晶粒子18bの面積の割合である。本実施の形態では、0.6mm×0.6mmの正方形の視野範囲について複数の測定点毎に被覆率を測定し、例えば直線的に10mm間隔で10点の測定点について測定した。視野範囲を0.6mm×0.6mmの正方形としたのは、MgO結晶粒子の累積粒度分布と被覆率の測定精度の関係から特に好ましい範囲を設定した。また、測定点の数および測定間隔については、特に限定されるものではないが、精度を向上させるため、測定点は少なくとも10点以上は測定することが好ましい。
本実施の形態のPDP1は上記した全ての視野範囲において、被覆率が10%以下となっている。また、PDP1が有する全てのセル25において被覆率が10%以下となっている。したがって、本実施の形態におけるPDP1は、MgO結晶粒子18bが略均一に分散配置されている。
このようにPDP1が有する全てのセル25において被覆率が10%以下となるようにMgO結晶粒子18bの付着量を低減することにより、PDP1の表示色の異常(赤ムラ)を抑制することができることを実験的に確認した(詳細は後述する)。
また、MgO結晶粒子18bを付着させない場合と比較して、放電電圧の上昇を抑制することができることを確認した。これは、被覆率を10%以下としたことによりMgO膜18aからの二次電子放出量を確保することが出来るためと推察される。
<2−2−3.付着量を少なくすることによる新たな課題と解決手段−1>
ところで、本実施の形態ではMgO結晶粒子18bの付着量が少なくなるので、単にMgO結晶粒子18bの付着量を低減するのみではプライミング電子を十分に供給することができず、結果として放電遅れを短くすることができない。しかし、本発明者が検討した結果、各MgO結晶粒子18bの放電空間24と対向する面の配向を(100)面で揃えて配置することにより、MgO結晶粒子18bの付着量を低減しても放電遅れを短くすることができることが判明した。ここで、「配向が揃う」とは、各MgO結晶粒子18bの結晶面の法線方向が互いに一致していることを意味し、この方向が一致していれば、各MgO結晶粒子18bがその法線周りに回転していても構わない。また、「放電空間24と対向する面の配向が(100)面で揃う」とは、各MgO結晶粒子18bが有する面のうち、放電空間24と対向する面、すなわち、MgO膜18aとの対向面と反対側に位置する面の配向が(100)面で揃うことを意味する。
複数のMgO結晶粒子18bの配向が揃っているかどうか(すなわち、配向の均一性の程度)は、X線回折(XRD;X-Ray Diffract meter)での(200)面の信号強度と(111)面の信号強度との比に基づいて判断することができる。(200)面は、(100)面と等価であり、(200)面の信号は、複数のMgO結晶粒子18bの配向が揃っている場合に強く、複数のMgO結晶粒子18bの配向が揃っていない場合には非常に弱くなる。一方、(111)面の信号は、主にMgO膜18aからの信号であり、複数のMgO結晶粒子18bの配向が揃っているかどうかにはほとんど依存しない。したがって、{(200)面の信号強度/(111)面の信号強度}の値は、複数のMgO結晶粒子18bの放電空間24に対向する面の配向が揃っているかどうかを示す指標となる。具体的にはMgO膜の厚さ1μm当りの(200)面のX線回折信号強度測定を行い、(111)面と(200)面との信号強度比に応じて規格化した後の値と、(111)面のX線回折信号強度の値との比で評価を行い、規格化後の(200)面の値が(111)面の値の等倍以上であれば、放電遅れを短くすることができる。なお、規格化とは、(111)面と(200)面の存在比が1/1の時、実測の信号強度比は11.6/100となるのを勘案し、(111)面を基準として、(200)面の実測の信号強度に0.116を乗じることである。
まず、本実施の形態のMgO結晶単粒子18b1はそれぞれ図3に示すように立方体の形状を成している。また、MgO結晶単粒子18b1は、(100)面の結晶面に囲まれた立方晶であり、全ての結晶面は、物理的及び化学的性質において等価である。したがって、立方体であるMgO結晶単粒子18b1の各表面はそれぞれ(100)面となっている。また、MgO結晶単粒子18b1の一つの面はMgO膜18aの表面と対向接触している。立方体であるMgO結晶単粒子18b1の一つの面をMgO膜18aの表面と対向接触させることにより、その反対側の面の法線方向は一様に揃えることができる。つまり、複数のMgO結晶粒子18bにおける放電空間24との対向面の配向を(100)面でそれぞれ揃えることができる。また、各MgO結晶単粒子18b1の単粒子はそれぞれ立方体の形状であるが、例えば図4に示すように複数個(図4では3個)の立方体のMgO結晶単粒子18b1の側面が密着して凝集した凝集体18cが含まれている。この場合、凝集体18cの一つの面がMgO膜18aの表面と対向接触することとなるが、凝集体18cを構成する各MgO結晶単粒子18b1は立方体なので、反対面(すなわち放電空間24に対向する面)の配向は(100)面が揃うこととなる。このようにMgO結晶粒子18bの放電空間24と対向する面の配向を揃えることにより、MgO結晶粒子18bの付着量を低減した(MgO膜18aの被覆率が10%以下とした)場合であっても放電遅れを短くすることができることが実験的に判明した(詳細は後述する)。なお、図2では凝集体18cを含んだ状態を示しているが、凝集体18cを含まず、MgO膜18aに付着する全てがMgO結晶単粒子18b1であっても良い。
また、MgO結晶単粒子18b1を立方体形状とすることにより、プライミング電子の供給量をさらに増加させることができる。以下その理由について図4および比較例を示す図10を用いて説明する。なお、図4および図10はMgO結晶粒子18b(凝集体18c)およびMgO結晶粒子29を、それぞれ走査型電子顕微鏡(SEM;Scanning Electron Microscope)を用いて撮影した画像を示している。
図4において、本実施の形態のMgO結晶単粒子18b1はそれぞれ立方体形状の形状を有し、各立方体の外縁を構成する略直線状の辺部18gおよび3つの辺部18gが集合する頂点部18hを有している。一方、図10に示すMgO結晶粒子29は、不定形であり、一部には略直線状の辺部29aおよび頂点部29bを有している場合もあるが、MgO結晶粒子29の外縁の多くは辺部29cのように粗い凹凸を有している。
ここで、MgO結晶粒子18b、29におけるプライミング電子の供給量は、MgO結晶粒子18b、29が有する各面よりも略直線状に形成されたの辺部18g、29aからより多く供給される。また、頂点部18hは辺部18gよりもプライミング電子の供給量がさらに高い。一方、図10に示すMgO結晶粒子29の辺部29cのように粗い凹凸を有する辺では、プライミング電子の供給量は辺部18g、29aと比較しても著しく低い。つまり、本実施の形態では、各MgO結晶単粒子18b1を立方体とすることにより、特にプライミング電子の供給量の多い、辺部18gあるいは頂点部18hをより多く確保することができるので、プライミング電子の供給量を増加させることができる。したがって、MgO結晶粒子18bの付着量を低減した(MgO膜18aの被覆率が10%以下とした)場合であっても放電遅れを短くすることができる。
また、MgO結晶単粒子18b1が有する立方体の一つの面をMgO膜18aの表面と対向接触させることにより、MgO膜18aの表面とMgO結晶粒子18bとの接触が安定した面接触となるため、MgO結晶粒子18bの剥離や飛散による部分的特性変化の問題を抑制することができる。
次に、各MgO結晶粒子18bの粒径については以下に示す粒径とすることが好ましい。MgO結晶粒子18bの下地である例えば電子ビーム蒸着法で成膜したMgO膜18aの表面は図5に示すように微視的には頭頂部を有する柱状結晶構造の凹凸を持ち、柱状結晶の頭頂間に微細な隙間26がある。柱状結晶の頭頂間隔W1は例えば0.05μm程度である。したがって、図11に示す本実施の形態に対する比較例であるMgO結晶粒子30のように粒径が柱状結晶の頭頂間隔W1の2倍よりも小さい(0.1μm未満の)場合、頭頂間の隙間26に挟まってMgO膜18aと対向接触させられない場合がある。この場合、MgO結晶粒子30が立方体の形状を有している場合でもMgO膜18aと対向接触しないため、放電空間24と対向する面の配向は(100)面ではなくなり配向が揃わない。また、図12に示すように柱状結晶の頭頂間隔W1の2倍以上の粒径を有するMgO結晶粒子31を有していても、頭頂間隔W1の2倍よりも小さい(0.1μm未満の)粒径であるMgO結晶粒子30が含まれていると、隙間26に挟まったMgO結晶粒子30がMgO結晶粒子31とMgO膜18aとの対向接触を阻害する要因となるため、配向が揃わない。
一方、本実施の形態のMgO結晶粒子18bは頭頂間隔W1の2倍よりも小さい(0.1μm未満の)粒径の粒子を含まない、あるいは含んでいても僅かである。したがって図5に示すように下地であるMgO膜18aの表面は実質的に平坦と見なすことができ、配向を揃えるのに都合が良い。なお、配向を揃えるためには、頭頂間隔W1の2倍よりも小さい粒径(0.1μm以下)の粒子を全く含まない態様がより好ましいが、上述したようにX線回折を行った後規格化した後の(200)面の値が(111)面の値の等倍以上であれば、放電遅れを短くすることができるので、この範囲に収まる程度であれば頭頂間隔W1の2倍よりも小さい粒径(0.1μm以下)の粒子が含まれていても放電遅れを改善することはできる。
かかる観点から本発明者がMgO結晶粒子18bの好ましい粒径について実験したところ、累積粒度分布により表せることが判った。すなわち、複数のMgO結晶粒子18bの累積粒度分布における累積10%値を0.77μm以上とした場合には特に各MgO結晶粒子18bの配向を(100)面で揃え易く、放電遅れを改善できることが判った。MgO結晶粒子18bの累積粒度分布は、レーザー回折式の粒度分布計を用いて求めることができる。このレーザー回折式の粒度分布形では、各MgO結晶粒子18b(凝集体18cが含まれる場合には凝集体18cを1個の粒子とする)を球体とみなし各球体粒子の粒径を計測することができる。
MgO膜18aに付着されるMgO結晶粒子18bが凝集体18cを含まない単粒子である場合には、MgO結晶粒子18bの累積10%値が0.77μm以上であることが配向を揃えるために特に好ましいが、凝集体18cを含む場合には凝集体18cを構成する各MgO結晶粒子18bの粒径はこれより小さくても良い。各MgO結晶粒子18bの単粒子としての粒径が大きくなると、各MgO結晶粒子18bの粒径にばらつきが生じやすくなるが、凝集体18cを含んだ構造とすることにより、各MgO結晶粒子18bの粒径が所定の粒径よりも小さい場合であっても凝集体18cの凝集の程度を制御することで、累積粒度分布を所定の範囲内に収めることができる。したがって、例えば図4に示すようにMgO結晶粒子18bが凝集した凝集体18cが含まれる構造とすることがより好ましい。上記した累積10%値が0.77μm以上という条件は、凝集体18cが含まれる場合には、該凝集体18cを一つの粒子とみなした場合の累積粒度分布の値となる。ただし、凝集体18cを含む場合であっても凝集体18cを構成する各MgO結晶粒子18bの粒径が過剰に小さい場合、上述したように配向を揃えるための阻害要因となる。したがって、図5に示す頭頂間隔W1の2倍よりも小さい粒径(0.1μm以下)の粒子は極力少なくすることが好ましい。この観点から本発明者が検討した所、凝集体18cに含まれる各MgO結晶粒子18bの単粒子での累積粒度分布が、累積10%値で0.59μm以上とすれば、0.1μm以下の粒径のMgO結晶粒子18bは殆ど存在しない状態となり、特に配向を揃え易いことができることが判った。
ここで、MgO結晶粒子18bの累積粒度分布を累積10%値で規定する理由について説明する。前述の通り、PDP1は複数のMgO結晶粒子18bの放電空間24に対向する面の配向を(100)面で揃えることにより、放電遅れを改善するものである。また、配向を揃えるため各MgO結晶単粒子18b1は立方体の形状をなしている。しかし、配向を(100)面で揃えるためには、前述の通りいかに粒径の小さいMgO結晶粒子18bを排除するかが重要となる。
MgO結晶粒子18bの粒度分布を示す指標として累積粒度分布としては他に累積50%値、累積90%値などがある。また、頻度分布のモード径(存在比率が最も高い粒径の範囲)や平均粒径などもある。しかし、例えば図6に示すような粒度分布であった場合、累積50%値やモード径、あるいは平均粒径は粒度分布曲線(a)、(b)でそれぞれ同じ値となるが、配向を揃える上で特に排除する必要のある粒径の小さいMgO結晶粒子18bの量は大きくことなる。一方、MgO結晶粒子18bの累積粒度分布を累積10%値で規定すれば、粒径の小さいMgO結晶粒子18bの量を一定割合以下とすることができる。
<2−3.保護層を形成する工程>
図1および図2に示す誘電体層17の表面に保護層18を形成する工程には、MgO結晶粒子18bを調製する工程と、誘電体層17の表面にMgO膜18aを形成する工程と、MgO膜18aの表面にMgO膜18aの被覆率が10%以下となるように複数のMgO結晶粒子18bを付着させる工程とが含まれる。以下各工程を詳細に説明するが、誘電体層17の表面にMgO膜18aを形成する工程については、前述のように電子ビーム蒸着法やスパッタ法のような当該分野で公知な薄膜プロセスで形成することができるので詳細な説明は省略する。
<2−3−1.MgO結晶粒子を調製する工程>
MgO膜18aの表面に付着させるMgO結晶粒子の調製方法として、気相法により作製する方法が知られている。しかし、本実施の形態のMgO結晶粒子18bは、以下の方法で調製することが特に好ましい。
すなわち、気相法により得られるMgO種結晶とフラックス(MgO種結晶の溶融を促進させる融剤)とを混合した後焼成し、得られた焼成物を解砕することにより調製する。気相法により得られるMgO種結晶は、粒径が小さく、また、粒径のばらつきが大きい。また、MgO種結晶は立方体の形状とすることが難しく、仮に立方体の形状となった場合であってもその表面には微細なMgO単結晶の粒子が付着している場合が多い。このため、MgO種結晶自体をMgO膜18a上に散布してもその配向を揃えるのは困難である。
一方、上記方法で調製したMgO結晶粒子18bは、粒径が比較的(MgO種結晶と比較して)大きく、また、粒径のばらつきを抑制することができる。したがって、このMgO結晶粒子18bをMgO膜18a上に散布するとMgO結晶粒子18bの累積粒度分布を上記した所定の範囲内に収めやすくなるので、配向を揃えやすくなる。
気相法によるMgO種結晶の作製は、例えば、特開2004−182521号公報に記載された方法や、『材料』昭和62年11月号、第36巻第410号の第1157〜1161頁の『気相法によるマグネシア粉末の合成とその性質』に記載された方法で行うことができる。また、気相法で作製したMgO種結晶は、宇部マテリアルズ株式会社から購入してもよい。
また、フラックスはMgO種結晶の溶融を促進する反応促進剤であって、例えば、マグネシウムのハロゲン化物(フッ化マグネシウム等)を用いることができる。フラックスの添加量は、例えば、0.001〜0.1wt%とすることができる。
また、MgO種結晶とフラックス(融剤)との混合物の焼成は、例えば、1000〜1700℃で、1〜5時間行う。得られるMgO結晶粒子18bの粒径は、焼成温度、焼成時間、あるいはフラックスの添加量に比例して大きくなる。また、MgO種結晶の粒径が小さなものほど焼成時の結晶成長の速度が速い。このため、焼成温度、焼成時間、フラックスの添加量に比例して得られるMgO結晶粒子18bの粒径のばらつきが小さくなる。したがって、MgO結晶粒子18bの累積粒度分布が上記した所定の範囲内に収まるように焼成温度、時間及びフラックスの添加量を適宜設定する。この方法で得られるMgO結晶粒子18bは特に立方体の形状となり易い。また、MgO種結晶の表面には例えば図12に示すような微細なMgO結晶粒子30が付着している場合があるが、上記のようにMgO種結晶を溶融させる方法であれば、MgO種結晶とともに微細なMgO結晶粒子30も溶融するので、得られるMgO結晶粒子18bへの微細なMgO結晶粒子30の付着を防止ないしは抑制することができる。したがって、この方法により得られるMgO結晶粒子18bは、極端に小さい粒子の付着が少なく、各単粒子の粒径がMgO種結晶と比較して大きくなる。詳しくは、この方法でMgO結晶粒子18bを調製すれば、得られる各MgO結晶単粒子18b1の累積粒度分布は、累積10%値で0.59μm以上となる。
焼成物は多数のMgO結晶単粒子18b1が凝集した塊体18dとして得られるので、MgO膜18aに付着させる前に予め該塊体18dを解砕する。また、上記のようにフラックスと混合して焼成しない場合であってもMgO結晶粒子18bは水分などの吸着により凝集し易いため、これを解砕する必要がある。MgO結晶粒子18bの形状および累積粒度分布が上記した所定の範囲内に収まるものであれば解砕方法は特に限定されないが、以下の方法で解砕することが特に好ましい。
すなわち、例えば図7に示すように、焼成物などの塊体18dを溶媒中(分散媒)に分散させて第1のスラリ18eを形成し、第1のスラリ18eを加圧しながらオリフィス(絞り孔)27を通過させることにより解砕する。焼成物などの塊体18dが非常に大きい塊で有る場合、溶媒中に分散させる前に予め小塊としておく。この小塊は、例えば、焼成物を乳鉢に入れて、それを乳棒ですり潰すことにより得られる。しかし、上記した所定の累積粒度分布になるまで乳鉢ですり潰すと立方体であるMgO結晶単粒子18b1の一部が欠損し易くなる。したがって、この段階では以下に述べる解砕工程の前処理として、立方体であるMgO結晶単粒子18b1に欠損が生じない程度に小塊化する。
次に、焼成物などの塊体18dを溶媒中に分散させて第1のスラリ18eを形成する。第1のスラリ18eの分散媒(溶媒)は特に限定されないが、水酸基やカルボニル基やニトリル基のような極性の高い分子構造を持ち、MgO結晶粒子18bの結晶構造をおかさない化合物が好ましく、2−プロパノール(イソプロピルアルコール、IPA)のようなアルコールが特に好ましい。スラリ中におけるMgO結晶粒子18bの濃度は、例えば0.01〜2wt%とする。この濃度の範囲内であれば、MgO結晶粒子18bをMgO膜18a上に分散配布する際にスプレー法を用いる場合に、解砕後の第2のスラリ18fをそのまま(例えば連続的に)用いることができる。
次に解砕工程として、塊体18dが溶媒中に分散された第1のスラリ18eを解砕装置のポンプ(高圧ポンプ)Pの送液圧力により図の矢印28に示す方向に送り込み、第1のスラリ18eを加圧しながらオリフィス27を通過させることにより解砕する。第1のスラリ18e中のMgO結晶単粒子18b1の凝集体である塊体18dは、加圧しながらオリフィス27を通過する際に発生する剪断力により解砕され、第2のスラリ18fを得る。ポンプPには、例えばプランジャポンプなどを用いることができる。また、オリフィス27は第1のスラリ18eが通過する際に発生させる必要のある剪断力に応じて、孔径や孔形状を適宜調整することができる。なお、図7では解砕装置の例として、流体である第1のスラリ18eの流路を複数(図7では2つ)に分流し、各流路がオリフィス27に接続される手前で合流させる方法を示している。この場合、第1のスラリ18eに含まれる塊体18d同士がオリフィス27に流入する際に衝突し、この衝撃により解砕される場合もある。
このような解砕装置としては、例えば、吉田機械興業(株)製の微粒化装置「ナノマイザー(登録商標)」を用いることができる。この方法によれば、凝集体をすり潰すメディアを用いずに解砕するので、解砕工程での異物の混入を防止することができる。また、オリフィス27を通過させる回数あるいは送液圧力などを調整することにより、凝集の程度(凝集度)を制御することができる。また、凝集体に加わる負荷(剪断力)も制御することができるので、MgO結晶単粒子18b1の立方体形状の欠損を防止ないしは抑制することができる。
解砕後の第2のスラリ18f中におけるMgO結晶粒子18bの累積粒度分布は、凝累積10%値が0.77μm以上とすることが好ましい。MgO膜18aの表面にMgO結晶粒子18bを付着した複数のMgO結晶粒子18bの累積粒度分布を上記した所定の範囲内に収めるためである。
なお、MgO結晶単粒子18b1の立方体形状の保形性の観点からは上記の方法が最も好ましいが、焼成物を解砕する別の方法としてはボールミルを用いる方法もある。ボールミルを用いて解砕する場合には、一例として球石にジルコニアを用いて解砕することができる。この場合、球石の量や処理時間を変える事で凝集度を制御することができる。ただし、ボールミルで解砕する場合、メディア(球石)を用いた解砕方法となるので、過度に解砕を行うと、2次粒子(すなわち塊体18d)の凝集を解くだけにとどまらず、1次粒子にもダメージを与えるおそれがある。例えば、図10に示すMgO結晶粒子29のように立方体形状とならない懸念がある。なお、ボールミルで解砕を行う場合にも上記で説明した第1のスラリ18eを用意して、この第1のスラリ18e中に含まれるMgO結晶粒子18bの塊体18dを解砕する点は同様である。
図8に上記した第1のスラリ18eをボールミルあるいは微粒化装置で処理した時の累積粒度分布を示す。図8に示す(A)、(B)、(C)の粒度分布曲線は(A)はボールミルで処理を行った場合、(B)は微粒化装置で3回解砕処理を行った場合、(C)は微粒化装置で1回解砕処理を行った場合について示している。ボールミルで処理したものは微粒化装置で処理したものよりも累積粒度分布が小さくなる傾向がある。(A)では、凝集体18cを含まない状態(すなわちMgO結晶単粒子18b1となる状態)まで解砕されており、(B)および(C)では凝集体18cを含んだ状態となっている。これらを比較すると(A)、(B)、(C)の順で累積粒度分布の値が累積10%値、累積50%値、累積90%値の全てが高い。
また、累積10%値についてみると、(A)では0.60μmであるのに対し、(B)では0.77μm、(C)では0.94μmとなっていた。つまり、(A)の結果は、本実施の形態ではMgO種結晶をそのままMgO結晶粒子18bとするのではなく、フラックスを添加して焼成することにより、MgO結晶単粒子18b1の累積粒度分布を、累積10%値で0.59μm以上とすることができることを示している。また累積90%値についてみると、(A)では1.68μmであるのに対し、(B)では2.93μm、(C)では3.84μmとなっていた。つまり、(B)、(C)では少なくとも一部のMgO結晶単粒子18b1が凝集して凝集体18cを構成していることが判る。また、(B)および(C)の結果は、微粒化装置のようにメディアを用いずに、第1のスラリ18eを加圧しながらオリフィス27を通過させることにより塊体18dを解砕する方法により複数のMgO結晶粒子18bの凝集状態を制御して所定の累積粒度分布の範囲内に収めることができることを示している。
<2−3−2.MgO膜の表面に複数のMgO結晶粒子を付着させる工程>
MgO膜18aの表面に複数のMgO結晶粒子18bを付着させる方法は、MgO結晶粒子18bを均一に分散させることができれば、特に限定されないが、以下に説明するスプレー法はMgO結晶粒子18bを均一に分散させられる点で特に好ましい。
スプレー法では、MgO結晶粒子18bが分散されたスラリ(例えば、<2−3−1>で説明した解砕後の第2のスラリ18f)をスプレーガンと呼ばれる噴霧装置から吐出して付着させる。スプレーガンとしては、第2のスラリ18fと空気とを2液化状態に霧化して吐出するいわゆる2流体エア霧化方式のものを用いることができる。
スラリ中のMgO結晶粒子18bの濃度は、0.01〜2wt%である。またこの時、第2のスラリ18fを霧化するための空気の圧力(霧化圧)を調整することにより、霧化された第2のスラリ18fの液滴の大きさを調整することができるので液滴中でのMgO結晶粒子18bの再凝集、あるいはMgO膜18aへの付着不良を防止することができる。また、MgO結晶粒子18bは、MgO膜18a上の全面または一部に付着させることができる。
<3.効果検証実験>
次に、以上に説明した本実施の形態のPDP1における各構成についての効果を検証するため、本発明者が行った検証実験の結果について説明する。図9は本実施の形態の効果検証実験の結果を示す説明図である。
図9に示す効果実証実験では、MgO結晶粒子18bの累積粒度分布累積10%値が0.59μm(サンプル1)から1.16μm(サンプル10)までの累積粒度分布を有するPDPを作製し、放電遅れおよび点灯時の画面内における明暗のムラ(粒状ムラ)を比較することにより、本実施の形態で説明した構成による効果を実証した。なお、図9において「D10」とは、各サンプルにおける累積10%値を表し、単位はμmである。また、「D50」、「D90」はそれぞれ各サンプルにおける累積50%値、および累積90%値を表し、単位はμmである。以下サンプル1〜10の調製条件などについて順に説明する。
<3−1.MgO結晶粒子の調製条件>
MgO結晶粒子18bの調製方法は以下である。まず、MgO種結晶(宇部マテリアルズ株式会社製、商品名:気相法高純度超微粉マグネシア(2000A))にフラックスとしてMgF2(フルウチ化学株式会社製、純度:99.99%)を48ppm添加した。これを乳鉢と乳棒ですり潰すことによって混合及び粉砕を実施した。次に、混合及び粉砕後の上記原料を大気中で、焼成時間を1時間、温度を1450℃で焼成を行い、MgO結晶粒子18bの焼成物を得た。次に乳鉢と乳棒を用いて得られた焼成物を塊体18dに解砕した。
得られた塊体18dの一部をIPA(関東化学株式会社製、電子工業用)に混合し、球石にジルコニアを用いてボールミルで凝集体18cがなくなる状態まで解砕処理を行い凝集のないスラリ(凝集体18cが含まれていない点で第2のスラリ18fとは異なる)を得た。図9に示すサンプル1ではこのボールミルで処理したスラリをMgO膜18aに分散配布してPDPを作製した。なお、図10に示すMgO結晶粒子29は、ボールミルを用いて解砕したサンプルの一例を示している。
また、得られた塊体18dの別の一部はIPAに混合した後、微粒化装置を用い、処理回数を変える事で凝集が制御された(すなわち、凝集体がない状態に対する累積10%値が制御された)第2のスラリ18fを得た。
ここで得られたMgO結晶粒子18bについて、レーザー回折式の粒度分布計(型式:LA−300、(株)堀場製作所製)を用いて累積粒度分布を求めた。求めた結果は図9に示している。
<3−2.MgO膜への分散配布条件>
次に、MgO膜18aの表面に塗装用スプレーガンを用いて凝集が制御された第2のスラリ18fをスプレー塗布し、MgO結晶粒子18bをMgO膜18aの表面に付着させた。スプレーガンは、2流体エア霧化方式のものを用いた。第2のスラリ18f中のMgO結晶粒子18bの濃度は0.6wt%、スプレーガンにかかる霧化圧は、180kPaに設定した。MgO結晶粒子18bは、MgO結晶粒子18bの密度が1m当り0.1gとなるように付着させた。
<3−3.PDPのその他の製造条件>
図9に示すサンプル1〜10の各PDPのその他の製造条件は、以下の通りである。図1に示すようにガラスからなる前面基板13上に表示電極対(X電極14、Y電極15)、誘電体層17、保護層18(MgO膜18aおよびその上に付着した配向の揃った複数のMgO結晶粒子18b)を形成することによって前面側基板構造体11を作製した。また、ガラスからなる背面基板19上にアドレス電極20、誘電体層21、隔壁22及び蛍光体23を形成することによって背面側基板構造体12を作製した。次に、前面側基板構造体11と背面側基板構造体12とを重ね合わせて周縁部を封着材で封止することによって内部に気密な放電空間を有するパネルを作製した。次に、放電空間24内を排気後、放電ガスを封入し、PDPを完成させた。
各基板構造体の条件は以下である。
(前面側基板構造体11)
X、Y透明電極14a、15aの幅:270μm
X、Yバス電極14b、15bの幅:95μm
放電ギャップの幅:100μm
誘電体層17:低融点ガラスペーストの塗布焼成により形成、厚さ:30μm
MgO膜18a:電子ビーム蒸着によるMgO膜、厚さ:1.1μm
(背面側基板構造体12)
アドレス電極20の幅:70μm
誘電体層21:低融点ガラスペーストの塗布焼成により形成、厚さ:10μm
アドレス電極20の真上での各蛍光体23の厚さ:20μm
隔壁22の高さ:140μm 頂部での幅:50μm
隔壁22のピッチ:360μm
放電ガス:Ne96%−Xe4%、500Torr。
<3−4.点灯試験および評価>
次に、製造した各PDPについて点灯試験を行いMgO膜18aの被覆率、赤ムラの有無、放電電圧、放電遅れ、およびX線回折信号強度測定を評価した。点灯試験の結果は図9に合わせて示している。
まず、被覆率、赤ムラの有無、放電電圧の評価結果について説明する。被覆率の測定では視野範囲を分割して10点の測定点について被覆率を測定したが、サンプル1〜10は全ての測定点でMgO膜18aの被覆率が10%以下であった。また、各PDPについて8時間のいわゆるエージング処理を施し、目視にて前述した赤ムラの確認を行ったが、サンプル1〜10の全てについて赤ムラは確認出来なかった。不純物により蛍光体23が劣化する場合、8時間程度のエージング処理を施せば、赤ムラが顕在化することから、図9に示すサンプル1〜10はMgO膜18aの被覆率を10%以下とすることにより、赤ムラの顕在化を防止することができたと考えられる。また、図9には示していないが、MgO膜18aの表面にMgO結晶粒子18bを付着させないPDPも作成し、このPDPとサンプル1〜10の各PDPの放電電圧を測定したが、放電電圧の上昇も認められなかった。したがって図9に示すサンプル1〜10はMgO膜18aの被覆率を10%以下とすることにより、放電電圧の上昇を防止することができたと考えられる。
次に、放電遅れの評価結果について説明する。放電遅れ試験では、アドレス電極20に電圧を印加し、この電圧印加時から実際に放電が開始されるまでの時間を測定した。放電開始までの時間は1000回測定し、評価方法は1000回の測定データのうち、95%以上が放電を開始するまでの時間(累積放電成功確率が95%の値)を評価した。放電遅れが改善されているかどうかの判定については、上記累積放電成功確率が95%の値が1.1μm未満のサンプルには○を、上記累積放電成功確率が95%の値が1.1μm以上の比サンプルには×をそれぞれ付している。放電遅れの改善効果を判定する閾値を1.1μmとした理由は以下である。すなわち、PDP1をフルハイビジョンの規格に適合させる場合を勘案して決定した。詳しくは、フルハイビジョン規格に適合するPDP1において、1フィールド(16.7m秒)を10のサブフィールドに分割しプログレッシブ方式で駆動させる場合を考えると、1サブフィールドあたりの時間は約1.7m秒である。この時間内に1080回のアドレス放電のスキャンを行うので、アドレス放電における放電遅れは少なくとも1.6μ秒(1.7m秒/1080回)未満である必要がある。また、1サブフィールド内で維持放電と初期化放電(いわゆるリセット放電とも呼ばれる放電)も行う必要があるため、これらに要する時間を鑑みて1.1μ秒を閾値とした。
図9において、MgO結晶粒子18bの累積10%値が0.69μm以下であるサンプル1および2はいずれも放電遅れの改善効果が確認できなかった。一方、0.77μm以上であるサンプル3〜10ではいずれも放電遅れを改善することができた。各サンプルに用いたMgO結晶粒子の形状は、サンプル3〜10については、例えば図5に示すMgO結晶粒子18bのように、立方体の形状のものが殆どであった。一方サンプル1および2については、例えば図10に示すMgO結晶粒子29のように立方体の一部が欠落したものがサンプル3〜10と比較して多く、特にサンプル1では立方体の一部が欠落した形状のものが多く確認された。
各サンプルについてX線回折信号強度測定を行い、上述した規格化を行った結果、サンプル1および2についてはいずれもMgO膜18aの厚さ1μm当りの(111)面のX線回折信号強度に対して等倍未満であった。一方サンプル3〜10ではいずれも等倍以上であった。つまり、サンプル1、2については過剰に解砕をおこなったことにより、立方体形状が破壊された結果、放電空間24と対向する面の配向が(100)面で揃わなかったものと考えられる。一方、サンプル3〜10については解砕の程度を調整することにより、1次粒子(すなわちMgO結晶単粒子18b1)に対するダメージを最小限に留めることができ、この結果、放電空間24と対向する面の配向を(100)面で揃えることができたものと考えられる。
この結果から、MgO結晶粒子18bの形状を立方体形状とすることにより、各MgO結晶粒子18bの配向を(100)面で揃えることができ、この結果放電遅れを改善できることが判った。また、MgO結晶粒子18bの累積10%値を0.77μm以上となるように凝集状態を制御することで、配向を(100)面で揃え易くなり、この結果放電遅れを改善できることが判った。これは累積10%値を0.77μm以上となるように凝集状態を制御することで、解砕時に1次粒子(MgO結晶単粒子18b1)に加わるダメージを最小限に留めることができたため、各MgO結晶単粒子18b1の立方体形状の保型性が向上したものと推察される。また、配向を揃える程度は、X線回折信号強度を測定することにより判断することができ、上述した規格化を行った後の{(200)面の信号強度/(111)面の信号強度}の値を等倍以上となる時に、放電遅れが改善されることが判った。
また、サンプル2〜10ではそれぞれ、サンプル1に示したMgO結晶単粒子18b1に凝集体18cが含まれたものを用い、それぞれ凝集の程度を変化させたものを用いている。したがって、サンプル2〜10における凝集体18cに含まれる各MgO結晶単粒子18b1の累積粒度分布が、累積10%値で0.59μm以上とすれば、凝集の程度を制御して凝集体18cを含むMgO結晶粒子18bの累積10%値を0.77μm以上とすることにより放電遅れを改善できることが実験的に検証された。
また、凝集体18cを含む構成においては、凝集体18cを構成する各MgO結晶単粒子18b1の単粒子での累積粒度分布はこれよりもさらに小さく、累積10%値で0.59μm以上とすれば、放電空間24に対向する面の配向を(100)面で揃えることができるので放電遅れを改善することができることが判った。
また、本実施の形態によれば、MgO結晶粒子18bを分級するなどの新たな工程を追加することなく、MgO結晶粒子18bの累積粒度分布を所定の範囲内に収めることができるので、製造効率の低下を抑制することができる。なお、本実施の形態では、第1のスラリ18e中の塊体18dを解砕する工程が含まれているが、MgOの単結晶体は凝集性が高く、例えば上述したMgO種結晶をMgO結晶粒子としてそのまま用いる場合であっても何らかの方法で凝集体を解砕する必要があるので、本工程をおこなっても製造工程は特に増加しない。
以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は上記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。
本発明は、例えば、パーソナルコンピュータやワークステーション等のディスプレイ装置、平面型のテレビ受像器、あるいは、広告や情報等を表示するための装置として利用されるプラズマディスプレイ装置に用いるプラズマディスプレイパネルに対して幅広く適用することができる。
本発明の一実施の形態であるPDPの要部を拡大して示す要部拡大組み立て斜視図である。 図1に示す前面基板構造体の上下を反転させて保護層の表面状態を示す要部拡大斜視図である。 図2に示すMgO結晶粒子の一例を示す図であって、MgO結晶単粒子を示す斜視図である。 図2に示すMgO結晶粒子の一例を示す図であって、3個のMgO結晶単粒子の側面が密着して凝集した凝集体を示す説明図である。 図2に示すMgO膜とMgO結晶粒子の微視的な関係を示す拡大断面図である。 MgO結晶粒子の粒度分布モデルを説明するための説明図である。 図2〜図5に示すMgO結晶粒子を調製するための解砕工程における解砕方法の実施態様の一例を説明するための説明図である。 図2〜図5に示すMgO結晶粒子を調製するための解砕工程における解砕方法毎のMgO結晶粒子の累積粒度分布を示す説明図である。 本発明の一実施の形態の効果検証実験の結果を示す説明図である。 本発明の一実施の形態に対する比較例であるMgO結晶粒子の一例を示す説明図である。 本発明の一実施の形態に対する比較例であるMgO膜とMgO結晶粒子の微視的な関係を示す拡大断面図である。 本発明の一実施の形態に対する他の比較例であるMgO膜とMgO結晶粒子の微視的な関係を示す拡大断面図である。
符号の説明
1 PDP(プラズマディスプレイパネル)
11 前面基板構造体(第1基板構造体)
12 背面基板構造体(第2基板構造体)
13 前面基板(第1基板)
13a 第1の面(表面)
14 X電極(表示電極)
14a X透明電極
14b Xバス電極
15 Y電極(表示電極)
15a Y透明電極
15b Yバス電極
17 誘電体層
18 保護層
18a MgO膜
18b、29、30、31 MgO結晶粒子
18b1 MgO結晶単粒子
18c 凝集体
18d 塊体
18e 第1のスラリ
18f 第2のスラリ
19 背面基板(第2基板)
20 アドレス電極
21 誘電体層
22 隔壁
23、23r、23g、23b 蛍光体
24 放電空間
25 セル
26 隙間
27 オリフィス(絞り孔)
28 矢印
W1 頭頂間隔

Claims (10)

  1. 放電ガスを封入して形成された放電空間を介して対向する一対の基板構造体を備え、前記一対の基板構造体の一方は、基板上に配置された複数の表示電極対と、前記複数の表示電極対を被覆する誘電体層と、この誘電体層を被覆する保護層とを有し、
    前記保護層は、前記誘電体層の表面に積層されるMgO(酸化マグネシウム)膜と、前記MgO膜上に付着する複数のMgO結晶粒子とを備え、
    前記MgO膜の表面の被覆率は10%以下であり、
    前記複数のMgO結晶粒子は、前記放電空間と対向する面の配向が(100)面で揃うように配置され、
    前記MgO結晶粒子を構成するMgO結晶単粒子は立方体の形状を有していることを特徴とするプラズマディスプレイパネル。
  2. 請求項1に記載のプラズマディスプレイパネルにおいて、
    前記複数のMgO結晶粒子は、前記放電空間と対向する面の配向が(100)面で揃うように配置されていることを特徴とするプラズマディスプレイパネル。
  3. 請求項1または請求項2に記載のプラズマディスプレイパネルにおいて、
    前記MgO膜は前記放電空間と対向する表面に(111)面の配向を有し、
    前記保護層について、(200)面のX線回折信号強度測定を行い、(111)面と(200)面との信号強度比に応じて規格化した後の値は、前記MgO膜の厚さ1μm当りの(111)面のX線回折信号強度の等倍以上であることを特徴とするプラズマディスプレイパネル。
  4. 請求項1〜3のいずれか1項に記載のプラズマディスプレイパネルにおいて、
    前記MgO結晶粒子には複数の前記MgO結晶単粒子が凝集した凝集体が含まれていることを特徴とするプラズマディスプレイパネル。
  5. 請求項1〜4のいずれか1項に記載のプラズマディスプレイパネルにおいて、
    前記複数のMgO結晶粒子は、気相法により得られるMgO種結晶と前記MgO種結晶の溶融を促進させる融剤とを混合した後焼成し、得られた焼成物を解砕することにより得られることを特徴とするプラズマディスプレイパネル。
  6. 請求項5に記載のプラズマディスプレイパネルにおいて、
    前記焼成物の解砕は、前記焼成物を溶媒中に分散させてスラリを形成し、前記スラリを加圧しながらオリフィスを通過させることにより解砕することを特徴とするプラズマディスプレイパネル。
  7. 第1基板の一方の面に表示電極対を形成する工程と、
    前記表示電極対を被覆するように誘電体層を形成する工程と、
    前記誘電体層の表面に保護層を形成する工程とを有し、
    前記保護層を形成する工程には、
    複数のMgO(酸化マグネシウム)結晶粒子を調製する工程と、
    前記誘電体層の表面にMgO膜を形成する工程と、
    前記MgO膜の表面に前記MgO膜の被覆率が10%以下となるように前記複数のMgO結晶粒子を付着させる工程とが含まれ、
    前記複数のMgO結晶粒子を付着させる工程では、前記複数のMgO結晶粒子における前記MgO膜との対向面と反対側に位置する面の配向が(100)面で揃うように配置され、
    前記MgO結晶粒子を構成するMgO結晶単粒子は立方体の形状を有していることを特徴とするプラズマディスプレイパネルの製造方法。
  8. 請求項7に記載のプラズマディスプレイパネルの製造方法において、
    前記MgO結晶粒子には複数の前記MgO結晶単粒子が凝集した凝集体が含まれていることを特徴とするプラズマディスプレイパネルの製造方法。
  9. 請求項7または請求項8に記載のプラズマディスプレイパネルの製造方法において、
    前記複数のMgO結晶粒子を調製する工程には、
    気相法により得られるMgO種結晶と前記MgO種結晶の溶融を促進させる融剤とを混合した後焼成し、得られた焼成物を解砕する工程が含まれることを特徴とするプラズマディスプレイパネルの製造方法。
  10. 請求項9に記載のプラズマディスプレイパネルの製造方法において、
    前記焼成物の解砕は、前記焼成物を溶媒中に分散させてスラリを形成し、前記スラリを加圧しながらオリフィスを通過させることにより解砕することを特徴とするプラズマディスプレイパネルの製造方法。
JP2008103945A 2008-04-11 2008-04-11 プラズマディスプレイパネルおよびその製造方法 Expired - Fee Related JP4566249B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008103945A JP4566249B2 (ja) 2008-04-11 2008-04-11 プラズマディスプレイパネルおよびその製造方法
US12/394,087 US8400058B2 (en) 2008-04-11 2009-02-27 Plasma display panel and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008103945A JP4566249B2 (ja) 2008-04-11 2008-04-11 プラズマディスプレイパネルおよびその製造方法

Publications (2)

Publication Number Publication Date
JP2009259422A true JP2009259422A (ja) 2009-11-05
JP4566249B2 JP4566249B2 (ja) 2010-10-20

Family

ID=41163401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008103945A Expired - Fee Related JP4566249B2 (ja) 2008-04-11 2008-04-11 プラズマディスプレイパネルおよびその製造方法

Country Status (2)

Country Link
US (1) US8400058B2 (ja)
JP (1) JP4566249B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011114701A1 (ja) * 2010-03-15 2011-09-22 パナソニック株式会社 プラズマディスプレイパネル
WO2011114699A1 (ja) * 2010-03-15 2011-09-22 パナソニック株式会社 プラズマディスプレイパネル
JP5549677B2 (ja) * 2010-03-15 2014-07-16 パナソニック株式会社 プラズマディスプレイパネル

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009253313A (ja) * 2008-04-01 2009-10-29 Panasonic Corp プラズマディスプレイ装置
JP2009259512A (ja) * 2008-04-15 2009-11-05 Panasonic Corp プラズマディスプレイ装置
US8508437B2 (en) * 2008-04-16 2013-08-13 Panasonic Corporation Plasma display device having a protective layer including a base protective layer and a particle layer
US9563004B2 (en) * 2009-10-27 2017-02-07 Dai Nippon Printing Co., Ltd. Image source unit and image display unit
US9244204B2 (en) * 2009-10-27 2016-01-26 Dai Nippon Printing Co., Ltd. Image source unit and image display unit
KR20120095467A (ko) * 2010-01-22 2012-08-28 파나소닉 주식회사 플라즈마 디스플레이 패널의 제조 방법
JP5201292B2 (ja) * 2010-03-12 2013-06-05 パナソニック株式会社 プラズマディスプレイパネル
WO2011114649A1 (ja) * 2010-03-15 2011-09-22 パナソニック株式会社 プラズマディスプレイパネル
KR101189042B1 (ko) * 2010-03-18 2012-10-08 파나소닉 주식회사 플라즈마 디스플레이 장치
JPWO2012060074A1 (ja) * 2010-11-05 2014-05-12 パナソニック株式会社 プラズマディスプレイパネル
JP6907602B2 (ja) * 2016-03-22 2021-07-21 Tdk株式会社 誘電体薄膜及び電子部品

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991004246A1 (fr) * 1989-09-15 1991-04-04 Societe Civile Bioprojet Derives d'amino-acides, leur procede de preparation et leurs applications therapeutiques
JPH07296718A (ja) * 1994-04-27 1995-11-10 Nec Corp ガス放電表示パネルの製造方法
JP2002190250A (ja) * 1998-07-08 2002-07-05 Matsushita Electric Ind Co Ltd プラズマディスプレイパネルの製造方法及び蛍光体インキの塗布装置
JP2006127864A (ja) * 2004-10-27 2006-05-18 Matsushita Electric Ind Co Ltd ガス放電表示装置とその製造方法
JP2006147417A (ja) * 2004-11-22 2006-06-08 Pioneer Electronic Corp プラズマディスプレイパネルおよびその製造方法
JP2006244784A (ja) * 2005-03-01 2006-09-14 Ube Material Industries Ltd 交流型プラズマディスプレイパネルの誘電体層保護膜形成用の酸化マグネシウム微粒子分散液
JP2007128894A (ja) * 2005-11-03 2007-05-24 Lg Electronics Inc プラズマディスプレイパネル及びその製造方法
JP2007149384A (ja) * 2005-11-24 2007-06-14 Pioneer Electronic Corp プラズマディスプレイパネルの製造方法、および、プラズマディスプレイパネル
JP2007254269A (ja) * 2006-02-21 2007-10-04 Ube Material Industries Ltd フッ素含有酸化マグネシウム粉末及びその製造方法
JP2008016214A (ja) * 2006-07-03 2008-01-24 Matsushita Electric Ind Co Ltd プラズマディスプレイパネル及びその製造方法
JP2008034390A (ja) * 2006-07-28 2008-02-14 Lg Electronics Inc プラズマディスプレイパネル及びその製造方法
JP2008076735A (ja) * 2006-09-21 2008-04-03 Pioneer Electronic Corp プラズマディスプレイ装置
WO2009104246A1 (ja) * 2008-02-19 2009-08-27 株式会社日立製作所 プラズマディスプレイパネル及びその製造方法
JP2009259433A (ja) * 2008-04-11 2009-11-05 Hitachi Ltd プラズマディスプレイパネルおよびその製造方法
JP2009259434A (ja) * 2008-04-11 2009-11-05 Hitachi Ltd プラズマディスプレイパネルおよびその製造方法
JP2009259436A (ja) * 2008-04-11 2009-11-05 Hitachi Ltd プラズマディスプレイパネルおよびその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08212931A (ja) 1995-02-07 1996-08-20 Oki Electric Ind Co Ltd Ac型ガス放電パネル
TW592840B (en) * 2000-07-12 2004-06-21 Mitsubishi Materials Corp Protective film for FPD, vapor deposited material for production method, FPD, and manufacturing device for FPD protective film
KR100854893B1 (ko) * 2000-08-29 2008-08-28 마츠시타 덴끼 산교 가부시키가이샤 플라즈마 디스플레이 패널 및 그 제조방법과 플라즈마디스플레이 패널 표시장치
JP4195279B2 (ja) 2002-12-02 2008-12-10 宇部マテリアルズ株式会社 高純度酸化マグネシウム微粉末の製造方法
JP4541840B2 (ja) * 2004-11-08 2010-09-08 パナソニック株式会社 プラズマディスプレイパネル
JP4148982B2 (ja) 2006-05-31 2008-09-10 松下電器産業株式会社 プラズマディスプレイパネル
JP4148983B2 (ja) 2006-05-31 2008-09-10 松下電器産業株式会社 プラズマディスプレイパネル

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991004246A1 (fr) * 1989-09-15 1991-04-04 Societe Civile Bioprojet Derives d'amino-acides, leur procede de preparation et leurs applications therapeutiques
JPH07296718A (ja) * 1994-04-27 1995-11-10 Nec Corp ガス放電表示パネルの製造方法
JP2002190250A (ja) * 1998-07-08 2002-07-05 Matsushita Electric Ind Co Ltd プラズマディスプレイパネルの製造方法及び蛍光体インキの塗布装置
JP2006127864A (ja) * 2004-10-27 2006-05-18 Matsushita Electric Ind Co Ltd ガス放電表示装置とその製造方法
JP2006147417A (ja) * 2004-11-22 2006-06-08 Pioneer Electronic Corp プラズマディスプレイパネルおよびその製造方法
JP2006244784A (ja) * 2005-03-01 2006-09-14 Ube Material Industries Ltd 交流型プラズマディスプレイパネルの誘電体層保護膜形成用の酸化マグネシウム微粒子分散液
JP2007128894A (ja) * 2005-11-03 2007-05-24 Lg Electronics Inc プラズマディスプレイパネル及びその製造方法
JP2007149384A (ja) * 2005-11-24 2007-06-14 Pioneer Electronic Corp プラズマディスプレイパネルの製造方法、および、プラズマディスプレイパネル
JP2007254269A (ja) * 2006-02-21 2007-10-04 Ube Material Industries Ltd フッ素含有酸化マグネシウム粉末及びその製造方法
JP2008016214A (ja) * 2006-07-03 2008-01-24 Matsushita Electric Ind Co Ltd プラズマディスプレイパネル及びその製造方法
JP2008034390A (ja) * 2006-07-28 2008-02-14 Lg Electronics Inc プラズマディスプレイパネル及びその製造方法
JP2008076735A (ja) * 2006-09-21 2008-04-03 Pioneer Electronic Corp プラズマディスプレイ装置
WO2009104246A1 (ja) * 2008-02-19 2009-08-27 株式会社日立製作所 プラズマディスプレイパネル及びその製造方法
JP2009259433A (ja) * 2008-04-11 2009-11-05 Hitachi Ltd プラズマディスプレイパネルおよびその製造方法
JP2009259434A (ja) * 2008-04-11 2009-11-05 Hitachi Ltd プラズマディスプレイパネルおよびその製造方法
JP2009259436A (ja) * 2008-04-11 2009-11-05 Hitachi Ltd プラズマディスプレイパネルおよびその製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011114701A1 (ja) * 2010-03-15 2011-09-22 パナソニック株式会社 プラズマディスプレイパネル
WO2011114699A1 (ja) * 2010-03-15 2011-09-22 パナソニック株式会社 プラズマディスプレイパネル
JPWO2011114699A1 (ja) * 2010-03-15 2013-06-27 パナソニック株式会社 プラズマディスプレイパネル
JPWO2011114701A1 (ja) * 2010-03-15 2013-06-27 パナソニック株式会社 プラズマディスプレイパネル
JP5549677B2 (ja) * 2010-03-15 2014-07-16 パナソニック株式会社 プラズマディスプレイパネル

Also Published As

Publication number Publication date
JP4566249B2 (ja) 2010-10-20
US8400058B2 (en) 2013-03-19
US20090256478A1 (en) 2009-10-15

Similar Documents

Publication Publication Date Title
JP4566249B2 (ja) プラズマディスプレイパネルおよびその製造方法
JP4148986B2 (ja) プラズマディスプレイパネル
JP2006147417A (ja) プラズマディスプレイパネルおよびその製造方法
JP2008293803A (ja) プラズマディスプレイパネル及びその製造方法
JP4659118B2 (ja) プラズマディスプレイパネルとその製造方法
WO2008047911A1 (fr) Écran à plasma et procédé de fabrication de celui-ci
JP4966909B2 (ja) プラズマディスプレイパネルおよびその製造方法
JP4966908B2 (ja) プラズマディスプレイパネルおよびその製造方法
JP2009259423A (ja) プラズマディスプレイパネルおよびその製造方法
JP4966907B2 (ja) プラズマディスプレイパネルおよびその製造方法
JP4989634B2 (ja) プラズマディスプレイパネル
JP5188502B2 (ja) プラズマディスプレイパネル
JP4973739B2 (ja) プラズマディスプレイパネル及びその製造方法
JP2009170191A (ja) プラズマディスプレイパネルとその製造方法
JP4637941B2 (ja) プラズマディスプレイパネルおよびこれを用いたプラズマディスプレイ装置
KR101031976B1 (ko) 플라즈마 디스플레이 패널 및 그 제조방법
JP2009259443A (ja) プラズマディスプレイパネルの製造方法
JP5028487B2 (ja) プラズマディスプレイパネル
WO2010095344A1 (ja) プラズマディスプレイパネル
KR101066367B1 (ko) 플라즈마 디스플레이 패널
US20110018169A1 (en) Method of manufacturing plasma display panel and method of producing magnesium oxide crystal powder
WO2010095343A1 (ja) プラズマディスプレイパネル
JP2009259441A (ja) プラズマディスプレイパネル及びその製造方法
JP2012226852A (ja) プラズマディスプレイパネル
JP2012195188A (ja) プラズマディスプレイパネル

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100803

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees