JP2009236669A - 検査装置、突状体の検査方法及び液滴吐出装置 - Google Patents
検査装置、突状体の検査方法及び液滴吐出装置 Download PDFInfo
- Publication number
- JP2009236669A JP2009236669A JP2008082852A JP2008082852A JP2009236669A JP 2009236669 A JP2009236669 A JP 2009236669A JP 2008082852 A JP2008082852 A JP 2008082852A JP 2008082852 A JP2008082852 A JP 2008082852A JP 2009236669 A JP2009236669 A JP 2009236669A
- Authority
- JP
- Japan
- Prior art keywords
- imaging
- substrate
- inspection apparatus
- unit
- image
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Optical Filters (AREA)
- Coating Apparatus (AREA)
Abstract
【課題】正常に塗布されたインクと連結して塗布されたインクとを液状体のまま識別することが可能な検査装置、突状体の検査方法及び液滴吐出装置を提供する。
【解決手段】基板2の上面2aに形成されたのカラーインク5の輪郭形状を検査する検査装置にかかわり、上面2aと垂直な方向に対して斜めの方向から基板2に照射光58を照射する照明装置28と、上面2aと略垂直な方向からカラーインク5を撮像する撮像装置24と、撮像装置24により撮像された画像を用いて、画像の明部と暗部の形状からカラーインク5の輪郭形状を識別する識別演算部と、を有する。
【選択図】図6
【解決手段】基板2の上面2aに形成されたのカラーインク5の輪郭形状を検査する検査装置にかかわり、上面2aと垂直な方向に対して斜めの方向から基板2に照射光58を照射する照明装置28と、上面2aと略垂直な方向からカラーインク5を撮像する撮像装置24と、撮像装置24により撮像された画像を用いて、画像の明部と暗部の形状からカラーインク5の輪郭形状を識別する識別演算部と、を有する。
【選択図】図6
Description
本発明は、検査装置、突状体の検査方法及び液滴吐出装置にかかわり、特に、簡便な構成の検査装置で突状体の輪郭形状を判別する装置に関するものである。
従来、ワークに対して液滴を吐出する装置として、インクジェット式の液滴吐出装置が知られている。液滴吐出装置は、基板等のワークを載置してワークを一方向に移動させるテーブルと、テーブルの上方位置において、テーブルの移動方向と直交する方向に配置されるガイドレールに沿って移動するキャリッジとを備えている。キャリッジはインクジェットヘッド(以下、液滴吐出ヘッドと称す)を配置し、ワークに対して液滴を吐出して、塗布していた。
この液滴吐出装置を用いてカラーフィルタを製造する方法が特許文献1に紹介されている。これによると基板上に格子状のブラックマトリクスを形成し、液滴吐出装置はブラックマトリクスに囲まれるフィルタエレメントにインクジェットヘッドから赤青緑色の各色のインクを吐出している。このとき、インクがブラックマトリクスの面より突出するようにインクが吐出される。そして、インクを加熱してインク内の溶媒を蒸発させて、インクの膜を形成している。
フィルタエレメントは配列して形成され、各フィルタエレメントに吐出されたインクが隣接するフィルタエレメント間で連結する場合がある。例えば、液滴吐出ヘッドに塵が付着するとき、付着した塵がフィルタエレメント内に吐出されているインクに触れることがある。このとき、塵に触れたインクがブラックマトリクス上にのりあげて、隣接するフィルタエレメントに配置されたインクが連結する。インクが連結した場所のフィルタエレメントでは混色することにより色が不良な色合いになるときや、色が薄くなるときがある。このとき、カラーフィルタは不良となる。
そして、乾燥工程にてカラーフィルタのインクを乾燥することにより、インクを固化した後、検査工程にてカラーフィルタが検査される。その検査装置が特許文献2に開示されている。これによると、カラーフィルタに光を照射し、透過した光の量をセンサにて検出する。そして、透過した光の量の分布を分析して不良を検出している。
カラーフィルタのインクを乾燥して固化するには時間がかかるので、生産性良くカラーフィルタを生産するために、インクを乾燥する間にも、液滴吐出装置を用いて基板にインクが塗布される工程が行われる。そして、不良となる原因が発生するとき、検査されるまで、不良のカラーフィルタが製造されることがある。従って、インクを乾燥する前にインクの塗布状況を検査することにより、不良のカラーフィルタが製造され難くする必要がある。そのために、正常に塗布されたインクと連結して塗布されたインクとを液状体のまま識別する簡便な構成の装置が望まれていた。
本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態又は適用例として実現することが可能である。
[適用例1]
本適用例にかかる検査装置は、基板の突状体形成面に形成された突状体の輪郭形状を検査する検査装置であって、前記突状体形成面と垂直な方向に対して斜めの方向から前記基板に光を照射する照射部と、前記突状体形成面と略垂直な方向から前記突状体を撮像する撮像部と、前記撮像部により撮像された画像を用いて、前記画像の明部と暗部の形状から前記突状体の前記輪郭形状を識別する識別部と、を有することを特徴とする。
本適用例にかかる検査装置は、基板の突状体形成面に形成された突状体の輪郭形状を検査する検査装置であって、前記突状体形成面と垂直な方向に対して斜めの方向から前記基板に光を照射する照射部と、前記突状体形成面と略垂直な方向から前記突状体を撮像する撮像部と、前記撮像部により撮像された画像を用いて、前記画像の明部と暗部の形状から前記突状体の前記輪郭形状を識別する識別部と、を有することを特徴とする。
この検査装置によれば、基板上の突状体形成面に突状体が形成され、この突状体に対して照射部が突状体形成面と平行な方向に対して斜めの方向から光を照射する。そして、撮像部が突状体形成面と略垂直な方向から突状体を撮像する。このとき、基板を照射する光は基板で反射して、反射光は入射角と同じ角度の反射角の方向に進行する。撮像部は突状体形成面と略垂直な方向に配置されていることから、基板における反射光は撮像部に入射しない。従って、撮像部が撮像する画像において、基板は暗く撮像される。
同様に、突状体において基板と平行に近い面を照射部が照射する光は撮像部に入射しない。従って、撮像部が撮像する画像では、基板と平行に近い突状体の面は暗く撮像される。突状体は基板と平行に近い面以外にも基板の法線方向に対して斜めに形成されている斜面を有している。この斜面のうち、照射する光の反射光が撮像部に進行する場所は撮像部によって明るく撮像される。従って、撮像部は突状体の斜面のうち、反射光が撮像部に入射する部分の形状に応じた画像を撮像することができる。
突状体の周囲が斜面になっているとき、撮像された画像情報において、暗部と明部の構成から突状体の輪郭形状が所定の形状となっているか否かを識別部が検査することができる。このとき、突状体に対して斜めからの光を照射して突状体の輪郭形状を識別することから、簡便な構成で突状体の輪郭形状を識別することができる。
[適用例2]
上記適用例にかかる検査装置において、前記斜めの方向は前記突状体形成面と垂直な方向との成す角度が45度以上であることを特徴とする。
上記適用例にかかる検査装置において、前記斜めの方向は前記突状体形成面と垂直な方向との成す角度が45度以上であることを特徴とする。
この検査装置によれば、突状体形成面と平行な方向に対して45度以下となる方向から照射部は突状体に光を照射する。つまり、照射部は突状体の側面に光を照射し、突状体の側面にて反射する光の一部が撮像部を照射する。そして、撮像部が撮像する画像には、突状体の側面が明るく撮像される。そして、撮像される画像において突状体の側面は突状体の輪郭の一部を形成することから、識別部が突状体の輪郭形状を識別し易くすることができる。
[適用例3]
上記適用例にかかる検査装置において、前記突状体は前記基板上に複数配置され、前記照射部は複数の前記突状体に略平行な光を照射することを特徴とする。
上記適用例にかかる検査装置において、前記突状体は前記基板上に複数配置され、前記照射部は複数の前記突状体に略平行な光を照射することを特徴とする。
この検査装置によれば、複数の突状体に略平行な光が照射されるので、略同じ形状の突状体は略同じ形状の画像として撮像される。また、形状が異なる突状体は、異なる形状の画像として撮像される。その結果、複数の突状体の輪郭形状を識別し易くすることができる。
[適用例4]
上記適用例にかかる検査装置において、前記照射部は複数の前記突状体に対して同時に照射し、前記撮像部は複数の前記突状体を同時に撮像することを特徴とする。
上記適用例にかかる検査装置において、前記照射部は複数の前記突状体に対して同時に照射し、前記撮像部は複数の前記突状体を同時に撮像することを特徴とする。
この検査装置によれば、複数の突状体に光が照射され、複数の突状体が同時に撮像される。そして、1度の撮像により、複数の突状体の輪郭形状を識別できる画像を撮像部は撮像することができる。従って、1回の撮像において1個の突状体を撮像部が撮像する場合に比べて、少ない回数で撮像する予定の突状体を撮像部は撮像することができる。その結果、撮像部は生産性良く突状体を撮像することができる。
[適用例5]
上記適用例にかかる検査装置において、前記照射部が光を照射する光の照射方向を変更させる照射方向変更部を備えることを特徴とする。
上記適用例にかかる検査装置において、前記照射部が光を照射する光の照射方向を変更させる照射方向変更部を備えることを特徴とする。
この検査装置によれば、照射部が光を照射する方向を照射方向変更部が変更している。突状体の斜面の形状が変わるとき、反射光の進行方向が変わる。この装置では、突状体の形状を識別部が認識し易い画像にするために、突状体に対して光を照射する方向を照射方向変更部が変更することができる。従って、識別部が突状体の輪郭形状を識別し易くすることができる。
[適用例6]
上記適用例にかかる検査装置において、前記撮像部が撮像する撮像方向を変更させる撮像方向変更部を備えることを特徴とする。
上記適用例にかかる検査装置において、前記撮像部が撮像する撮像方向を変更させる撮像方向変更部を備えることを特徴とする。
この検査装置によれば、撮像部が突状体を撮像する撮像方向を撮像方向変更部が変更している。突状体の斜面の形状が変わるとき、反射光の進行方向が変わる。この装置では、突状体の形状を識別部が認識し易い画像にするために、突状体に対して撮像する撮像方向を撮像方向変更部が変更することができる。従って、突状体の輪郭形状を識別し易くすることができる。
[適用例7]
上記適用例にかかる検査装置において、前記照射部は前記基板上の前記突状体形成面と平行な方向において前記突状体に複数の方向から光を照射することを特徴とする。
上記適用例にかかる検査装置において、前記照射部は前記基板上の前記突状体形成面と平行な方向において前記突状体に複数の方向から光を照射することを特徴とする。
この検査装置によれば、照射部により突状体形成面と平行な方向のうち、複数の方向から突状体に光が照射され、突状体における反射光が撮像される。従って、照射部が1方向から突状体に光を照射するときに比べて、画像の明部が多く撮像される。この明部は突状体の形状に応じてできるので、突状体の特徴を含む明部を多く含む画像を撮像部が撮像することができる。従って、識別部が突状体の輪郭形状を識別し易くすることができる。
[適用例8]
上記適用例にかかる検査装置において、前記照射方向変更部は前記突状体形成面に平行な方向において、前記照射部が照射する方向を変更することを特徴とする。
上記適用例にかかる検査装置において、前記照射方向変更部は前記突状体形成面に平行な方向において、前記照射部が照射する方向を変更することを特徴とする。
この検査装置によれば、突状体形成面と平行な方向において、照射部が光を照射する方向を照射方向変更部が変更している。突状体が回転体でないとき、突状体の斜面が多い方向と少ない方向とがある。そして、斜面が多い方に光を照射する方が、斜面が少ない方に光を照射する方に比べて、突状体の形状を識別部が認識し易い画像を撮像部が撮像可能となる。そして、突状体の形状を識別部が認識し易い画像を撮像部が撮像するために、突状体に対して照射部が光を照射する方向を照射方向変更部が変更することができる。従って、識別部が突状体の輪郭形状を識別し易くすることができる。
[適用例9]
上記適用例にかかる検査装置において、前記照射方向変更部は前記突状体形成面と垂直な方向と前記照射部が照射する方向との成す角度を変更することを特徴とする。
上記適用例にかかる検査装置において、前記照射方向変更部は前記突状体形成面と垂直な方向と前記照射部が照射する方向との成す角度を変更することを特徴とする。
この検査装置によれば、突状体形成面と垂直な面上の方向に対して照射部が光を照射する方向を照射方向変更部が変更している。突状体の斜面に対して照射部が照射する方向を変えて光を照射するとき、撮像部に反射光が多く進行する方向と少なく進行する方向とがある。そして、斜面から撮像部に反射光が多く進行する方が、斜面から撮像部に反射光が少なく進行する方に比べて、突状体の形状を識別部が認識し易い画像を撮像部が撮像可能となる。そして、識別部が突状体の形状を認識し易い画像を撮像部が撮像するために、照射部が突状体に対して照射する方向を照射方向変更部が変更することができる。従って、識別部が突状体の輪郭形状を識別し易くすることができる。
[適用例10]
上記適用例にかかる検査装置において、前記撮像部は前記突状体を拡大又は縮小して撮像する倍率変更部を備えることを特徴とする。
上記適用例にかかる検査装置において、前記撮像部は前記突状体を拡大又は縮小して撮像する倍率変更部を備えることを特徴とする。
この検査装置によれば、操作者が突状体の形状を詳細に確認したいとき、操作者は確認したい突状体を拡大して撮像し、撮像した拡大画像を用いて突状体の形状を確認することができる。従って、操作者は突状体の形状を詳しく確認することができる。
[適用例11]
上記適用例にかかる検査装置において、前記基板と前記撮像部とを相対移動させるステージと、前記ステージを制御するステージ制御部と、前記突状体の前記画像から前記画像の特徴を示す特徴量を演算し、前記特徴量と良否判定するための判定値とを比較して、不良突状体を検出する不良検出部と、前記不良突状体の場所を記憶する記憶部と、を有し、前記記憶部が記憶する前記不良突状体の場所の情報を用いて、前記不良突状体が前記撮像部の視野に入るように前記ステージ制御部は前記ステージを移動させることを特徴とする。
上記適用例にかかる検査装置において、前記基板と前記撮像部とを相対移動させるステージと、前記ステージを制御するステージ制御部と、前記突状体の前記画像から前記画像の特徴を示す特徴量を演算し、前記特徴量と良否判定するための判定値とを比較して、不良突状体を検出する不良検出部と、前記不良突状体の場所を記憶する記憶部と、を有し、前記記憶部が記憶する前記不良突状体の場所の情報を用いて、前記不良突状体が前記撮像部の視野に入るように前記ステージ制御部は前記ステージを移動させることを特徴とする。
この検査装置によれば、ステージ制御部がステージを駆動して基板を移動させて、撮像部が突状体の画像を順次撮像する。そして、撮像された画像を用いて不良検出部が不良突状体を検出し、記憶部はその不良突状体のある場所を記憶する。そして、操作者が不良突状体を観察するとき、撮像部の視野に不良突状体が入るように、不良突状体のある場所の情報を用いて、基板が載置されたステージをステージ制御部が移動させる。従って、観測者は不良突状体の場所を探す必要がなく、容易に不良突状体を観測することができる。
[適用例12]
上記適用例にかかる検査装置において、前記突状体は着色された液状体であり、前記突状体が固化されて、カラーフィルタを構成する色素子になることを特徴とする。
上記適用例にかかる検査装置において、前記突状体は着色された液状体であり、前記突状体が固化されて、カラーフィルタを構成する色素子になることを特徴とする。
この検査装置によれば、突状体が固化されてカラーフィルタの色素子となる。そして、この突状体は簡便な構成で検査される為、この検査装置を用いることにより、簡便な装置で品質の良いカラーフィルタを製造するための検査をすることができる。
[適用例13]
本適用例にかかる検査装置は、基板に形成された複数の着色体の色を検査する検査装置であって、複数の前記着色体に光を照射する照射部と、複数の前記着色体のカラー画像を撮像する撮像部と、前記カラー画像から不良着色体を検出する不良検出部と、を有し、前記不良検出部は、前記カラー画像における波長分布を演算し、分布の存在する波長と良否判定するための波長範囲とを比較して、所定の色と異なる不良着色体を検出することを特徴とする。
本適用例にかかる検査装置は、基板に形成された複数の着色体の色を検査する検査装置であって、複数の前記着色体に光を照射する照射部と、複数の前記着色体のカラー画像を撮像する撮像部と、前記カラー画像から不良着色体を検出する不良検出部と、を有し、前記不良検出部は、前記カラー画像における波長分布を演算し、分布の存在する波長と良否判定するための波長範囲とを比較して、所定の色と異なる不良着色体を検出することを特徴とする。
この検査装置によれば、照射部が複数の着色体を照射して、撮像部が複数の着色体を撮像する。そして、不良検出部はカラー画像内に配置される複数の着色体における波長に対する波長分布を演算し、波長分布と良否判定するための波長範囲とを比較して、不良着色体を検出している。従って、1度の撮像で複数の着色体の中に予め設定された色以外の色を有する不良着色体があるとき、この不良着色体を検出することができる。従って、生産性良く着色体の色を検査することができる。
[適用例14]
本適用例にかかる液滴吐出装置は、液滴吐出ヘッドと基板とを相対的に走査し、前記液滴吐出ヘッドのノズルから液状体を前記基板上の突状体形成面に吐出して前記液状体からなる突状体を形成する液滴吐出装置であって、前記突状体形成面と垂直な方向に対して斜めの方向から複数の前記突状体に光を照射する照射部と、前記突状体形成面と略垂直な方向から複数の前記突状体を撮像する撮像部と、前記撮像部が撮像する画像を用いて液状体の輪郭形状を識別する識別部とを有することを特徴とする。
本適用例にかかる液滴吐出装置は、液滴吐出ヘッドと基板とを相対的に走査し、前記液滴吐出ヘッドのノズルから液状体を前記基板上の突状体形成面に吐出して前記液状体からなる突状体を形成する液滴吐出装置であって、前記突状体形成面と垂直な方向に対して斜めの方向から複数の前記突状体に光を照射する照射部と、前記突状体形成面と略垂直な方向から複数の前記突状体を撮像する撮像部と、前記撮像部が撮像する画像を用いて液状体の輪郭形状を識別する識別部とを有することを特徴とする。
この液滴吐出装置によれば、基板に液状体を吐出する機能と、吐出した液状体の輪郭形状を識別して検査する機能とを有している。従って、液状体が吐出された基板を、同じ装置において検査することができる為、液状体を吐出してから吐出された液状体の輪郭形状を検査するまでの時間を短くすることができる。そして、操作者が検査結果を用いて、吐出条件を反映することにより、この装置は基板に塗布される液状体における不良の発生を低減することができる。その結果、品質よく液状体を吐出することができる。
[適用例15]
上記適用例にかかる液滴吐出装置において、前記液滴吐出ヘッドによる前記基板への前記液状体の吐出と、前記撮像部による前記液状体の撮像とが並行して行われることを特徴とする。
上記適用例にかかる液滴吐出装置において、前記液滴吐出ヘッドによる前記基板への前記液状体の吐出と、前記撮像部による前記液状体の撮像とが並行して行われることを特徴とする。
この液滴吐出装置によれば、液状体の吐出と、液状体の撮像とが並行して行われる。従って、基板上に総て吐出した後、液状体の撮像を行う場合に比べて、短い時間で液状体の吐出と、液状体の撮像とを行うことができる。その結果、生産性良く、液状体の吐出と、液状体の撮像とを行うことができる。
[適用例16]
上記適用例にかかる液滴吐出装置において、前記液滴吐出ヘッドと前記基板とが走査する方向において、前記液滴吐出ヘッドと前記撮像部とが近い場所に配置されることを特徴とする。
上記適用例にかかる液滴吐出装置において、前記液滴吐出ヘッドと前記基板とが走査する方向において、前記液滴吐出ヘッドと前記撮像部とが近い場所に配置されることを特徴とする。
この液滴吐出装置によれば、液滴吐出ヘッドと撮像部とが近い場所に配置されている。従って、液滴吐出ヘッドが吐出した液状体を、撮像部が撮像する場所に移動するのに短時間で移動することができる。その結果、生産性良く、液状体の吐出と、液状体の撮像とを行うことができる。
[適用例17]
本適用例にかかる突状体の検査方法は、基板の突状体形成面に形成された複数の突状体の輪郭形状を検査する突状体の検査方法であって、前記突状体形成面と垂直な方向に対して斜めの方向から複数の前記突状体に光を照射し、前記突状体形成面と略垂直な方向から複数の前記突状体を撮像部が撮像する撮像工程と、前記撮像部が撮像する画像を用いて前記突状体の特徴量を演算し、前記特徴量と良否判定するための判定値とを比較して、不良突状体を検出する不良検出工程と、を有することを特徴とする。
本適用例にかかる突状体の検査方法は、基板の突状体形成面に形成された複数の突状体の輪郭形状を検査する突状体の検査方法であって、前記突状体形成面と垂直な方向に対して斜めの方向から複数の前記突状体に光を照射し、前記突状体形成面と略垂直な方向から複数の前記突状体を撮像部が撮像する撮像工程と、前記撮像部が撮像する画像を用いて前記突状体の特徴量を演算し、前記特徴量と良否判定するための判定値とを比較して、不良突状体を検出する不良検出工程と、を有することを特徴とする。
この検査方法によれば、基板上の突状体形成面に突状体が形成され、撮像工程では、この突状体に対して突状体形成面と垂直な方向に対して斜めの方向から光を照射する。そして、突状体形成面と略垂直な方向から突状体を撮像する。このとき、突状体の斜面の形状に応じた画像を撮像することができる。不良検出工程では、撮像した画像から突状体の斜面の形状を識別する。突状体形成面と垂直な方向から観測するとき、突状体の斜面の形状から突状体の輪郭を推測することができる。従って、突状体の輪郭形状を識別することができる。そして、不良検出工程では、突状体の輪郭の特徴を示す特徴量を演算し、特徴量と良否判定するための判定値とを比較して、不良突状体を検出する。従って、突状体に対して斜めからの光を照射して突状体の輪郭形状を識別することから簡便な方法で突状体の輪郭形状を識別し、不良を検出することができる。
[適用例18]
上記適用例にかかる突状体の検査方法において、前記不良検出工程にて検出した前記不良突状体の場所を記憶する記憶工程と、前記不良突状体を前記撮像部の視野に移動させて、前記不良突状体を拡大して撮像し、前記不良突状体の輪郭形状を表示する不良確認工程と、を有することを特徴とする。
上記適用例にかかる突状体の検査方法において、前記不良検出工程にて検出した前記不良突状体の場所を記憶する記憶工程と、前記不良突状体を前記撮像部の視野に移動させて、前記不良突状体を拡大して撮像し、前記不良突状体の輪郭形状を表示する不良確認工程と、を有することを特徴とする。
この検査方法によれば、記憶工程にて不良突状体の場所を記憶し、不良確認工程では、不良突状体を拡大して撮像し、不良突状体の輪郭形状を表示する。従って、観測者は容易に不良突状体を観測することができる。
[適用例19]
上記適用例にかかる突状体の検査方法において、前記基板に液状体を吐出して前記突状体を形成する吐出工程を有し、前記吐出工程と前記撮像工程とが並行して行われることを特徴とする。
上記適用例にかかる突状体の検査方法において、前記基板に液状体を吐出して前記突状体を形成する吐出工程を有し、前記吐出工程と前記撮像工程とが並行して行われることを特徴とする。
この検査方法によれば、吐出工程と撮像工程とが並行して行われる。基板に吐出する予定の場所総てに吐出した後、基板を撮像する方法に比べて、短い時間で吐出と撮像とを行うことができる。従って、生産性良く吐出と撮像とを行うことができる。
以下、具体化した実施形態について図面に従って説明する。
尚、各図面における各部材は、各図面上で認識可能な程度の大きさとするため、各部材毎に縮尺を異ならせて図示している。
尚、各図面における各部材は、各図面上で認識可能な程度の大きさとするため、各部材毎に縮尺を異ならせて図示している。
(第1の実施形態)
本実施形態において検査する対象となるカラーフィルタと、カラーフィルタを検査する特徴的な検査装置と、この検査装置を用いて、カラーフィルタを検査する場合の例について図1〜図8に従って説明する。
本実施形態において検査する対象となるカラーフィルタと、カラーフィルタを検査する特徴的な検査装置と、この検査装置を用いて、カラーフィルタを検査する場合の例について図1〜図8に従って説明する。
(カラーフィルタ)
最初に、カラーフィルタ1について図1を用いて説明する。図1(a)は、カラーフィルタを示す模式平面図であり、図1(b)は、カラーフィルタを示す模式断面図である。そして、図1(b)は図1(a)におけるA−A’線から見た図である。カラーフィルタ1は液晶テレビ等の表示装置に用いられる。表示装置は画像信号に応じた輝度分布をもつ白色光をカラーフィルタ1に通過させることにより、カラー画像を形成する。このときにカラーフィルタ1が用いられる。図1に示すように、カラーフィルタ1は基板2を備えている。この基板2は光透過性があり、張力に対して破れ難い強度があればよく、ガラス板、プラスチック板、プラスチックシート等を用いることができる。本実施形態においては、例えば、ガラス板を採用している。基板2の突状体形成面としての上面2aにはカラー素子領域3が縦横並んで配列して形成されている。そして、カラー素子領域3は赤、青、緑色のカラー素子領域3により構成され、各色のカラー素子領域3が列毎に配列して配置されている。図1(a)において、左から赤色素子領域3a、青色素子領域3b、緑色素子領域3cの順に配置される。そして、図中に左から右へ、この順番を繰り返してストライプ状に配置されている。
最初に、カラーフィルタ1について図1を用いて説明する。図1(a)は、カラーフィルタを示す模式平面図であり、図1(b)は、カラーフィルタを示す模式断面図である。そして、図1(b)は図1(a)におけるA−A’線から見た図である。カラーフィルタ1は液晶テレビ等の表示装置に用いられる。表示装置は画像信号に応じた輝度分布をもつ白色光をカラーフィルタ1に通過させることにより、カラー画像を形成する。このときにカラーフィルタ1が用いられる。図1に示すように、カラーフィルタ1は基板2を備えている。この基板2は光透過性があり、張力に対して破れ難い強度があればよく、ガラス板、プラスチック板、プラスチックシート等を用いることができる。本実施形態においては、例えば、ガラス板を採用している。基板2の突状体形成面としての上面2aにはカラー素子領域3が縦横並んで配列して形成されている。そして、カラー素子領域3は赤、青、緑色のカラー素子領域3により構成され、各色のカラー素子領域3が列毎に配列して配置されている。図1(a)において、左から赤色素子領域3a、青色素子領域3b、緑色素子領域3cの順に配置される。そして、図中に左から右へ、この順番を繰り返してストライプ状に配置されている。
カラー素子領域3を囲んで格子状に形成されたバンク4が配置され、バンク4によって矩形に仕切られたカラー素子領域3に突状体及び液状体としてのカラーインク5が塗布されている。赤色素子領域3aには赤色カラーインク5aが塗布され、青色素子領域3b、緑色素子領域3cにはそれぞれ青色カラーインク5b、緑色カラーインク5cが塗布されている。
カラーインク5の液面5dはバンク4のバンク上面4aを超えてよりZ方向に突出して塗布されている。そして、カラーインク5は乾燥させられることにより、カラーインク5に含まれる溶媒または分散媒が蒸発して体積が減少するようになっている。従って、乾燥させられる前のカラーインク5はバンク上面4aより突出するように塗布される。そして、基板2を乾燥することにより、このカラーインク5が固化されるとき、乾燥したカラーインク5によって色素子が形成される。
図2(a)及び(c)はカラーフィルタを示す要部模式平面図であり、図2(b)及び(d)はカラーフィルタを示す要部模式断面図である。図2(a)及び(b)はカラー素子領域3に正常にカラーインク5が塗布されている状態を示している。図2(c)及び(d)はカラー素子領域3にカラーインク5が塗布され、カラーインク5がバンク上面4aに乗り上げた不良な状態を示している。
図2(a)及び(b)に示すように、カラーインク5が正常に塗布されている場合には、カラーインク5はバンク上面4aに乗り上げていない。そして、隣り合う場所に塗布されたカラーインク5は連結することなく、各々のカラー素子領域3に配置される。バンク4にはカラーインク5に対して撥液性を有するように撥液化処理が施されている。この撥液化処理は、四フッ化炭素(テトラフルオロメタン)、フルオロカーボン系のガス、SF6、SF5CF3等の撥液化処理ガスを用いてプラズマ処理する方法を用いることができる。本実施形態では、例えば、テトラフルオロメタンをプラズマ処理する方法を採用している。従って、カラーインク5はバンク上面4aに乗り上げ難くなっている。
図2(c)及び(d)に示すように、カラーインク5が正常に塗布されていない場合には、カラーインク5がバンク上面4aに乗り上げている。そして、隣り合うカラー素子領域3に塗布されたカラーインク5が連結する。連結したカラーインク5は色が混じるので、正常な色に変換するフィルタとならないので、不良品となる。
(検査装置)
次に、基板2にカラーインク5を塗布した後、塗布状態を検査する検査装置について図3及び図4に従って説明する。図3は、検査装置の構成を示す概略斜視図である。検査装置8により、カラーフィルタ1におけるカラーインク5の塗布状態の検査が実施される。図3に示すように、検査装置8は、直方体形状に形成される基台9を備えている。本実施形態では、この基台9の長手方向をY方向とし、Y方向と直交する方向をX方向とする。
次に、基板2にカラーインク5を塗布した後、塗布状態を検査する検査装置について図3及び図4に従って説明する。図3は、検査装置の構成を示す概略斜視図である。検査装置8により、カラーフィルタ1におけるカラーインク5の塗布状態の検査が実施される。図3に示すように、検査装置8は、直方体形状に形成される基台9を備えている。本実施形態では、この基台9の長手方向をY方向とし、Y方向と直交する方向をX方向とする。
基台9の上面9aには、Y固定テーブル10が配置され、Y固定テーブル10の上面10aには、Y方向に延在する一対の案内レール11が、Y固定テーブル10のY方向全幅にわたり凸設されている。その案内レール11の上側には、一対の案内レール11に対応する図示しない直動機構を備えたステージとしてのYステージ12が取付けられている。そのYステージ12の直動機構は、例えば、案内レール11に沿ってY方向に延びるネジ軸(駆動軸)と、同ネジ軸と螺合するボールナットを備えたネジ式直動機構であって、その駆動軸が、所定のパルス信号を受けてステップ単位で正逆転するY軸モータ13に連結されている。そして、所定のステップ数に相当する駆動信号をY軸モータ13に入力すると、Y軸モータ13が正転又は逆転して、Yステージ12が同ステップ数に相当する分だけ、Y方向に移動するようになっている。さらに、Y固定テーブル10の上面10aには、案内レール11と平行に図示しないYテーブル位置検出装置が配置され、Yステージ12の位置が測定できるようになっている。
そのYステージ12の上面12aには、X方向に延在する一対の案内レール14が、Yステージ12のX方向全幅にわたり凸設されている。その案内レール14の上側には、一対の案内レール14に対応する図示しない直動機構を備えたステージとしてのXステージ15が取付けられている。そのXステージ15の直動機構は、例えば、本実施形態では、Yステージ12が備える直動機構と同様の機構となっている。そして、その直動機構が備える駆動軸には、X軸モータ16が連結されている。所定のステップ数に相対する駆動信号をX軸モータ16に入力すると、X軸モータ16が正転又は逆転して、Xステージ15が同ステップ数に相当する分だけ、X方向に移動するようになっている。
Xステージ15の上面には、載置面17が形成され、その載置面17には、図示しない吸引式の基板チャック機構が設けられている。そして、載置面17に基板2を載置すると、基板チャック機構によって、その基板2が載置面17の所定の位置に位置決めされて、固定されるようになっている。
基台9の上面9aにおいて、Y方向の逆方向の側には、略矩形のZ固定テーブル20が立設され、Z固定テーブル20において、Y方向の側面には、図示しない一対の案内レールが、Z方向に配置されている。その案内レールにおいて、Y方向側には、一対の案内レールに対応する図示しない直動機構を備えたZステージ21が配置されている。そのZステージ21の直動機構は、例えば、本実施形態では、Yステージ12が備える直動機構と同様の機構となっている。そして、その直動機構が備える駆動軸には、Z軸モータ22が連結されている。所定のステップ数に相対する駆動信号をZ軸モータ22に入力すると、Z軸モータ22が正転又は逆転して、Zステージ21が同ステップ数に相当する分だけ、Z方向に移動するようになっている。
そして、Zステージ21のY方向側には支持部23が凸設して形成され、支持部23のY方向側には撮像部としての撮像装置24が配置されている。撮像装置24は内部に固体撮像素子等からなるエリアセンサを備え、エリアセンサが撮像する画像を電気信号に変換して出力することが可能になっている。撮像装置24の下側には、倍率変更部としての倍率切換装置25を介して撮像レンズ26が配置されている。撮像レンズ26は低倍率レンズ26aと高倍率レンズ26bとを備え、この低倍率レンズ26a及び高倍率レンズ26bはY方向に並んでレンズ配置板25aに配置されている。倍率切換装置25はレンズ配置板25aをY方向に応動及び復動する直動機構を備え、倍率切換装置25は撮像装置24と対向する場所に低倍率レンズ26aもしくは高倍率レンズ26bを配置することが可能になっている。そして、撮像装置24は内部に落射照明装置を備え、撮像レンズ26を通してカラーフィルタ1に光を照射可能になっている。そして、撮像装置24にはエリアセンサに入射する光の波長や特性を限定する光学フィルタが配置されている。このフィルタは撮像するカラーインク5や外光の状態に応じて変更することが可能になっており、予備実験で撮像しフィルタを選定するのが望ましい。
基台9の上面9aにおいて、Y方向の側には、コの字形の支持台27が立設され、その支持台27には照射部としての照明装置28が配置されている。照明装置28の内部には白色光を発光するLEDがX方向に配列して配置され、各LEDの光軸上にはコリメートレンズが配置されている。そして、LEDが発光する白色光はコリメートレンズにより略平行光に変換された後、投光面28aからカラーフィルタ1に向けて照射される。そして、照明装置28には照射する光の波長や特性を限定する光学フィルタが配置されている。このフィルタは撮像するカラーインク5に応じて変更することが可能になっており、予備実験で撮像しフィルタを選定するのが望ましい。
照明装置28はX方向を回転中心にして回動可能に支持台27と配置されている。従って、照明装置28が照射する光の進行方向と、基板2の上面2aと水平な方向とが成す角度は変更可能になっている。この角度は、0度〜45度が好ましく、この角度にて照射するとき、突状に塗布されたカラーインク5の斜面を照射する光が撮像装置24の配置された方向に進行する。基板2の上面2aと水平な方向とが成す角度は25度〜35度のときがさらに好ましい。この角度で照射するとき、カラーインク5の輪郭に近い場所で反射する反射光が撮像装置24の配置された方向に進行する。さらには、基板2の上面2aと水平な方向とが成す角度は30度の場合が好ましい。この角度で照射するとき、カラーインク5の輪郭に近い場所で反射する反射光が撮像装置24の配置された方向に進行し、輪郭を認識し易い画像を撮像することができる。突状に塗布されたカラーインク5の斜面を照射する光が撮像装置24によって撮像され易い角度に照明装置28の角度を調整するのが好ましい。従って、実際の加工対象物を用いた予備調整を実施して、最適な照射角度を調整することが望ましい。基台9のX方向には、制御装置29が配置され、この制御装置29が検査装置8を制御する。
図4は、検査装置の電気制御ブロック図である。図4において、制御装置29はプロセッサとして各種の演算処理を行うCPU(演算処理装置)32と、各種情報を記憶する記憶部としてのメモリ33とを有する。
Xステージ駆動装置34、Xステージ位置検出装置35、Yステージ駆動装置36、Yステージ位置検出装置37は、入出力インターフェース38及びデータバス39を介してCPU32に接続されている。さらに、撮像装置24、倍率切換装置25、オートフォーカス装置40、Zステージ駆動装置41、Zステージ位置検出装置42、も入出力インターフェース38及びデータバス39を介してCPU32に接続されている。さらに、照明装置28、入力装置43、表示装置44も入出力インターフェース38及びデータバス39を介してCPU32に接続されている。
Xステージ駆動装置34は、X軸モータ16を駆動して、Xステージ15の移動を制御する装置であり、Xステージ位置検出装置35は、Xステージ15のX方向の位置を検出する装置である。同様に、Yステージ駆動装置36は、Y軸モータ13を駆動してYステージ12の移動を制御する装置であり、Yステージ位置検出装置37は、Yステージ12のY方向の位置を検出する装置である。Xステージ位置検出装置35及びYステージ位置検出装置37が、Xステージ15のX方向及びYステージ12のY方向の位置を検出した後、Xステージ駆動装置34及びYステージ駆動装置36が、Xステージ15及びYステージ12を移動することにより、載置面17に搭載された基板2を所望の位置に移動して停止することが可能になっている。
Zステージ駆動装置41は、Z軸モータ22を駆動して、Zステージ21の移動を制御する装置であり、Zステージ位置検出装置42は、Zステージ21のZ方向の位置を検出する装置である。Zステージ位置検出装置42が、Zステージ21のZ方向の位置を検出した後、Zステージ駆動装置41がZステージ21を駆動することにより、Zステージ21を所望の位置に移動して停止することが可能になっている。そして、Zステージ21は支持部23を介して撮像装置24に配置されているので、撮像装置24と基板2との距離が所望の距離になる場所に撮像装置24を移動して停止することが可能になっている。
撮像装置24は撮像した画像をデジタル信号に変換する変換回路を内蔵しており、画像の情報をデジタル信号にして送信可能になっている。そして、CPU32から画像を撮像する指示信号を受信すると、画像を撮像した後、その画像のデジタル信号をCPU32へ送信する。さらに、倍率切換装置25は、撮像する倍率を切り換える機能を備え、CPU32の指示により、撮像する画像の倍率を切り換えることが可能になっている。
オートフォーカス装置40は、撮像レンズ26により投影される画像の焦点が撮像装置24のエリアセンサにあうように、Zステージ駆動装置41に移動もしくは停止する指示信号を出す装置である。
照明装置28は白色の略並行な光を照射する装置であり、CPU32が出力する指示信号に従って、照射する光の強度を切り換えることが可能になっている。そして、照射する光の強度を検出する手段と検出した光の強度をCPU32に送信する機能を備えている。
入力装置43は、塗布されたカラーインク5の状態を測定する各種条件を入力する装置であり、例えば、基板2に塗布されたカラーインク5を測定する手順を、入力する装置である。表示装置44は、検査条件や、作業状況を表示する装置であり、操作者は、表示装置44に表示される情報を基に、入力装置43を用いて入力操作を行う。
メモリ33は、RAM、ROM等といった半導体メモリや、ハードディスク、CD−ROMといった外部記憶装置を含む概念である。機能的には、検査装置8における動作の制御手順が記述されたプログラムソフト45を記憶する記憶領域が設定される。さらに、検査装置8が検査する場所を示す検査位置データ46を記憶するための記憶領域も設定される。他にも、撮像装置24が撮像したデータである撮像データ47や、撮像データ47の特徴量を演算するときに比較するための撮像比較データ48を記憶するための記憶領域も設定される。さらに、画像の特徴量を演算した演算結果のデータである特徴量データ49や、検査した後に良否判断するときの判定値等のデータである良否判定値データ50等の記憶領域やCPU32のためのワークエリアやテンポラリファイル等として機能する記憶領域やその他各種の記憶領域が設定される。
CPU32は、メモリ33内に記憶されたプログラムソフト45に従って、カラーフィルタ1に塗布されたカラーインク5の状態を検査する制御を行うものである。具体的な機能実現部として、ステージの移動を制御するための演算を行うステージ制御部としてのステージ制御演算部51を有する。他にも、照明の明るさ調整や撮像するタイミングを演算して、撮像装置24や照明装置28を制御する撮像制御演算部52を有する。さらに、撮像装置24が撮像する画像データから特徴量を演算する識別部としての識別演算部53を有する。加えて、画像の特徴量と良否判定値データ50とを比較してカラーフィルタ1の良否を判断する不良検出部としての不良検出演算部54や、不良と判断された場所を観測するときに撮像装置24が撮像するときの倍率を変更する倍率制御演算部55等を有する。
(検査方法)
次に、上述した検査装置8を使って、カラーインク5の塗布状態を検査する検査方法について図5〜図8にて説明する。図5は、塗布状態を検査する製造工程を示すフローチャートである。図6〜図8は、検査装置を使った塗布状態の検査方法を説明する図である。
次に、上述した検査装置8を使って、カラーインク5の塗布状態を検査する検査方法について図5〜図8にて説明する。図5は、塗布状態を検査する製造工程を示すフローチャートである。図6〜図8は、検査装置を使った塗布状態の検査方法を説明する図である。
図5において、ステップS1は、基板配置工程に相当し、検査装置の載置面に基板を配置して固定する工程である。次にステップS2に移行する。ステップS2は、移動工程に相当し、Xテーブル及びYテーブルを駆動して、撮像レンズと対向する場所に基板の検査する場所を移動する工程である。次にステップS3に移行する。ステップS3は、撮像工程に相当し、基板の検査する場所の画像を撮像する工程である。次にステップS4に移行する。ステップS4は、特徴量抽出工程に相当し、撮像した画像から特徴となる部分を明確にし易いパラメータである特徴量を演算する工程である。次にステップS5に移行する。ステップS5は、不良検出工程に相当し、算出した特徴量と良否判定値データとを比較して、正常か不良かを判断する工程である。次にステップS6に移行する。ステップS6は、不良記憶工程に相当し、不良と判断されたカラー素子領域の場所を記憶する工程である。次にステップS7に移行する。
ステップS7は、検査終了判断工程に相当し、検査する予定の場所を総て検査したかを判断する工程である。まだ検査していない領域があるとき、ステップS2に移行する。予定した総ての検査領域を検査したとき、ステップS8に移行する。ステップS8は、不良確認工程に相当し、不良と判断された場所を撮像レンズと対向する場所に移動し、高倍率の画像を撮像し、不良場所を確認する工程である。次にステップS9に移行する。ステップS9は、基板除去工程に相当し、載置面から基板を除去する工程である。以上の工程により塗布状態を検査する製造工程を終了する。
次に、図6〜図8を用いて、図5に示したステップと対応させて、製造方法を詳細に説明する。図6(a)はステップS1及びステップS2に対応する図である。ステップS1では、図6(a)に示すように、カラーインク5が塗布された基板2をXステージ15の載置面17に載置する。載置面17には吸引式の基板チャック機構が形成されているので、この基板チャック機構を作動することにより、基板2を載置面17に固定する。
ステップS2では、倍率制御演算部55が倍率切換装置25を駆動して、撮像装置24と対向する場所に低倍率レンズ26aを配置する。次に、ステージ制御演算部51がXステージ15及びYステージ12を駆動することにより、低倍率レンズ26aと対向する場所に基板2の検査する場所が位置するように基板2を移動させる。
図6(b)〜図7(b)はステップS3に対応する図である。図6(b)に示すように、ステップS3では、撮像制御演算部52が照明装置28を駆動することにより、照明装置28から略平行光である照射光58を照射する。図6(c)に示すように、照射光58はカラーインク5及びバンク4を照射し、表面で反射した光は反射光59となって進行する。そして、カラーインク5を照射する照射光58のうち、インク上面5eで反射する反射光59aは、Y方向と逆方向に進行する。そして、反射光59aが進行する方向には低倍率レンズ26aがないので、撮像されない。同様に、バンク上面4aで反射する反射光59も撮像されない。
また、カラーインク5の側面であるインク側面5fを照射する照射光58が反射した反射光59bはY方向に反射する。そして、反射光59bが進行する方向には低倍率レンズ26aがないので、撮像されない。そして、インク上面5eとインク側面5fとに挟まれた場所であるインク斜面5gを照射する照射光58が反射した反射光59cはZ方向に反射する。そして、反射光59cが進行する方向には低倍率レンズ26aが配置されているので、インク斜面5gが撮像される。
図7(a)は、図2(a)及び図2(b)に示す形状のカラーインク5を撮像したときの画像を示している。図7(a)に示すように、バンク4は撮像されず、カラーインク5では照射光58が照射される側のインク斜面5gが撮像される。予め、この画像を撮像比較データ48としてメモリ33に保存しておく。
図7(b)は、図2(c)及び図2(d)に示す形状のカラーインク5を撮像したときの画像を示している。図7(b)に示すように、バンク4は撮像されず、カラーインク5では照射光58が照射される側のインク斜面5gが撮像される。隣り合うカラー素子領域3の間のバンク4にカラーインク5が乗り上げて連結している部分を異常体としてのインク連結部5hとするとき、インク連結部5hに照射光58が照射され、照射される側の斜面である連結部インク斜面5iが撮像される。従って、インク斜面5gに加えて、連結部インク斜面5iが撮像される。この画像を撮像データ47としてメモリ33に記憶する。
図7(c)はステップS4に対応する図であり、図8はステップS4及びステップS5に対応する図である。図7(c)は、図7(b)に示す画像から図7(a)に示す画像の差を演算した差分画像を示している。このとき、識別演算部53が撮像データ47に記憶した画像データ及び撮像比較データ48に記憶した画像データを用いて演算することにより実施している。図7(c)に示すように、図7(b)のインク斜面5gに比べて、インク斜面5gにおける画像の面積が小さくなっている。そして、連結部インク斜面5iにおける画像の面積は変わっていないので、この画像は連結部インク斜面5iを検出し易い画像になっている。次に、インク斜面5gに対応する部分の画像や連結部インク斜面5iに対応する部分の画像のように、明るく撮像されている領域であって閉曲線により囲まれている領域を明領域60と捉え、各明領域60の面積を演算する。
図8(a)は差分画像における各明領域60の面積に対する分布を示している。図8(a)において、横軸は各明領域60の面積61を示し、右側が左側より面積61が大きくなっている。縦軸は各面積における明領域60の個数62を示し、上側が下側より個数が多くなっている。そして、1つ画像に対して明領域60の面積61の分布を演算するとき、面積61の分布における1例を分布曲線63が示している。
分布曲線63は2つの分布に分かれている。面積61が小さい方の分布を小面積分布63aとし、面積61が大きい方の分布を、大面積分布63bとする。この小面積分布63aは図7(c)におけるインク斜面5gに相当する領域や画像上のノイズによる明領域60の分布を示している。大面積分布63bは図7(c)における連結部インク斜面5iの明領域60の分布を示している。
ステップS5において、大面積分布63bがある場合を不良と判断する。つまり、大面積分布63bがある場合はインク連結部5hが発生していると判断する。一方、大面積分布63bがない場合を正常と判断する。このとき、予め、小面積分布63aに属する明領域60であるか、大面積分布63bに属する明領域60であるかを判定する判定値64を設定しておく。この判定値64は面積61を規定したものであり、判定値64以上の不良判定範囲65に属する面積61を有する明領域60があるとき、この撮像した場所を不良の場所と判断する。
ステップS5において、撮像した場所を不良の場所と判断するとき、ステップS6において不良の場所を検査位置データ46として記憶領域に記憶する。詳しくは、撮像したときの、Xステージ15及びYステージ12の位置を示す座標を記憶する。さらに、大面積分布63bに相当する明領域60の画像における座標を記憶する。そして、Xステージ15及びYステージ12の位置を示す座標と、画像における明領域60の座標を用いて明領域60の座標を演算して記憶する。
ステップS7において、検査する予定の領域において、総ての領域の検査を終了したかを判断する。予め、検査する場所と検査順を検査位置データ46に登録しておき、その検査順に従って検査を行い、検査した場所を検査位置データ46に記憶する。そして、検査する場所と検査が済んだ場所とを比較する。登録した場所のうち、まだ検査していない場所があるときステップS2に移行して検査を行う。総ての場所を検査したときステップS8に移行する。
図8(b)及び図8(c)はステップS8に対応する図である。図8(b)に示すように、倍率制御演算部55が倍率切換装置25を駆動することにより、撮像装置24と対向する場所に高倍率レンズ26bを移動する。そして、ステージ制御演算部51が検査位置データ46を用いてXステージ駆動装置34及びYステージ駆動装置36を駆動することにより、高倍率レンズ26bと対向する場所に不良と判断した場所が位置するように基板2を移動する。そして、撮像装置24が内蔵する落射照明装置からカラーフィルタ1に光を照射する。次に、オートフォーカス装置40がZステージ駆動装置41を駆動することにより、撮像装置24の撮像する画像の焦点が基板2に合うようにする。
図8(c)は撮像装置24が撮像した画像の例を示す。図8(c)に示すように、3つのカラー素子領域3のカラーインク5が連結している場所が撮像される。操作者はこの画像を観察して不良検出演算部54が不良と判断した場所の状態を確認する。不良と判断された場所が複数ある場合には、不良と判断された場所を順次確認する。確認が終了した後、ステップS9において、基板チャック機構を解除して、基板2を載置面17から除去する。以上の工程により塗布状態を検査する製造工程を終了する。
上述したように、本実施形態によれば、以下の効果を有する。
(1)本実施形態によれば、基板2のカラー素子領域3にカラーインク5による突状体が形成され、この突状体に対して照明装置28が基板2と平行な方向に対して斜めの方向から光を照射する。そして、撮像装置24が基板2と略垂直な方向からカラーインク5を撮像する。カラーインク5の周囲が斜面になっており、撮像された画像において、暗部と明部の構成からカラーインク5の輪郭形状が所定の形状となっているか否かを識別部が検査することができる。このとき、カラーインク5に対して斜めからの光を照射して突状体の輪郭形状を識別することから、簡便な構成でカラーインク5の輪郭形状を識別することができる。
(1)本実施形態によれば、基板2のカラー素子領域3にカラーインク5による突状体が形成され、この突状体に対して照明装置28が基板2と平行な方向に対して斜めの方向から光を照射する。そして、撮像装置24が基板2と略垂直な方向からカラーインク5を撮像する。カラーインク5の周囲が斜面になっており、撮像された画像において、暗部と明部の構成からカラーインク5の輪郭形状が所定の形状となっているか否かを識別部が検査することができる。このとき、カラーインク5に対して斜めからの光を照射して突状体の輪郭形状を識別することから、簡便な構成でカラーインク5の輪郭形状を識別することができる。
(2)本実施形態によれば、基板2と平行な方向に対して鋭角となる方向から照明装置28はカラーインク5に光を照射する。つまり、照明装置28はカラーインク5の側面に照射光58を照射し、カラーインク5の側面にて反射する反射光59の一部が撮像装置24を照射する。そして、撮像装置24が撮像する画像には、カラーインク5の側面が明るく撮像される。そして、撮像される画像において、カラーインク5の側面はカラーインク5の輪郭の一部を形成することから、識別演算部53がカラーインク5の輪郭形状を識別し易くすることができる。
(3)本実施形態によれば、複数のカラーインク5に略平行な照射光58が照射されるので、略同じ形状のカラーインク5は略同じ形状の画像として撮像される。また、形状が異なるカラーインク5は、異なる形状の画像として撮像される。その結果、複数のカラーインク5の輪郭形状を識別し易くすることができる。
(4)本実施形態によれば、複数のカラーインク5に照射光58が照射され、複数のカラーインク5が同時に撮像される。そして、1度の撮像により、複数のカラーインク5の輪郭形状を識別できる画像を撮像装置24は撮像することができる。従って、1回の撮像において1個のカラーインク5を撮像装置24が撮像する場合に比べて、少ない回数で撮像する予定のカラーインク5を撮像装置24は撮像することができる。その結果、撮像装置24は生産性良くカラーインク5を撮像することができる。
(5)本実施形態によれば、操作者がカラーインク5の形状を詳細に確認したいとき、検査装置8が確認したいカラーインク5を拡大して撮像し、操作者は撮像した拡大画像を用いてカラーインク5の形状を確認することができる。従って、操作者はカラーインク5の形状を簡便に詳しく確認することができる。
(6)本実施形態によれば、ステージ制御演算部51がXステージ15及びYステージ12を駆動して基板2を移動させた後、撮像装置24がカラーインク5の画像を順次撮像する。そして、撮像された画像を用いて不良検出演算部54が不良である場所を検出し、その不良の場所をメモリ33に記憶する。そして、操作者が不良と判定した場所のカラーインク5を観察するとき、撮像装置24の視野に不良の場所が入るように、不良の場所の検査位置データ46を用いて、基板2が載置されたXステージ15及びYステージ12をステージ制御演算部51が移動させる。従って、観測者は不良の場所を探す必要がなく、容易に不良の場所のカラーインク5を観測することができる。
(7)本実施形態によれば、カラーインク5が固化されてカラーフィルタ1の色素子となる。そして、このカラーインク5は簡便な構成で検査される為、この検査装置8を用いることにより、簡便な装置で品質の良いカラーフィルタ1を製造するための検査をすることができる。
(第2の実施形態)
次に、検査装置の一実施形態について図9及び図10を用いて説明する。図9は、検査装置の構成を示す概略斜視図である。この実施形態が第1の実施形態と異なるところは、照明装置28が基板2を照射する角度を変更可能にした点にある。尚、第1の実施形態と同じ点については説明を省略する。
次に、検査装置の一実施形態について図9及び図10を用いて説明する。図9は、検査装置の構成を示す概略斜視図である。この実施形態が第1の実施形態と異なるところは、照明装置28が基板2を照射する角度を変更可能にした点にある。尚、第1の実施形態と同じ点については説明を省略する。
すなわち、本実施形態では、図9に示すように、検査装置68は基台9を備えている。そして、基台9の上面9aにおいて、Y方向の側には、照明用Z固定テーブル69が立設され、照明用Z固定テーブル69のY方向と逆方向の面にはZ方向に延在する一対の案内レール70が、照明用Z固定テーブル69のZ方向全幅にわたり凸設されている。その案内レール70のY方向の逆方向には、一対の案内レール70に対応する図示しない直動機構を備えたL字状の照射方向変更部としての照明用Zステージ71が取付けられている。その照明用Zステージ71の直動機構は、例えば、本実施形態では、Yステージ12が備える直動機構と同様の機構となっている。そして、その直動機構が備える駆動軸には、照射方向変更部としての照明用Z軸モータ72が連結されている。所定のステップ数に相対する駆動信号を照明用Z軸モータ72に入力すると、照明用Z軸モータ72が正転又は逆転して、照明用Zステージ71が同ステップ数に相当する分だけ、Z方向に移動するようになっている。
照明用Zステージ71のY方向と逆方向には、矩形の連結部71aが突出して形成されている。連結部71aのY方向と逆方向には略コの字状の照明支持部73が配置されている。そして、照明支持部73の中央にはY方向に突出する矩形の連結部73aが形成されている。照明用Zステージ71の連結部71aのZ方向には照射方向変更部としての方位変更モータ74が配置され、照明用Zステージ71の連結部71aのZ方向と逆方向には、照明支持部73の連結部73aが配置されている。そして、方位変更モータ74の本体は照明用Zステージ71に固定され、方位変更モータ74の回転軸は連結部73aと固定されている。所定のステップ数に相対する駆動信号を方位変更モータ74に入力すると、方位変更モータ74が正転又は逆転して、照明支持部73が同ステップ数に相当する分だけ、Z方向を中心にして回転するようになっている。
照明支持部73はコの字形に形成され、照明支持部73の両端で挟むように照明装置28が配置されている。そして、照明支持部73のX方向と逆方向の1端には俯角変更モータ75が配置され、俯角変更モータ75の本体は照明支持部73に固定されている。そして、俯角変更モータ75の回転軸は照明装置28の側面28bに固定されている。所定のステップ数に相対する駆動信号を俯角変更モータ75に入力すると、俯角変更モータ75が正転又は逆転して、照明装置28が同ステップ数に相当する分だけ、X方向を中心にして回転するようになっている。
従って、照明装置28が照射する光の進行方向と、基板2の上面2aと水平な方向とが成す角度は変更可能になっている。この角度の最適条件は、バンク4の形状によって変わる可能性があるので、パターンの異なるバンク4にカラーインク5を塗布するとき、突状に塗布されたカラーインク5の斜面を照射する光が撮像装置24によって撮像され易い角度に照明装置28の角度を調整する必要がある。従って、実際の加工対象物を用いた予備調整を実施して、最適な照射角度を調整することが望ましい。基台9のX方向には、制御装置76が配置され、この制御装置76が検査装置68を制御する。
図10は、検査装置の電気制御ブロック図である。図10において、検査装置68は制御装置76を備えている。そして、照明用Zステージ駆動装置77、照明用Zステージ位置検出装置78、照射方向変更部としての方位モータ駆動装置79、照射方向変更部としての俯角モータ駆動装置80は、入出力インターフェース38及びデータバス39を介してCPU32に接続されている。
照明用Zステージ駆動装置77は、照明用Z軸モータ72を駆動して、照明用Zステージ71の移動を制御する装置であり、照明用Zステージ位置検出装置78は、照明用Zステージ71のZ方向の位置を検出する装置である。照明用Zステージ位置検出装置78が、照明用Zステージ71のZ方向の位置を検出した後、照明用Zステージ駆動装置77が照明用Zステージ71を駆動することにより、照明用Zステージ71を所望の位置に移動して停止することが可能になっている。そして、照明用Zステージ71は照明支持部73を介して照明装置28に配置されているので、照明装置28と基板2との距離が所望の距離になる場所に照明装置28を移動して停止することが可能になっている。
方位モータ駆動装置79は、方位変更モータ74を駆動して、照明支持部73の角度を制御する装置である。照明支持部73には照明装置28が配置されているので、方位モータ駆動装置79が方位変更モータ74を駆動することにより、基板2と平行な平面上の所望の角度から光を照射することが可能になっている。
俯角モータ駆動装置80は、俯角変更モータ75を駆動して、照明装置28の角度を制御する装置である。俯角モータ駆動装置80が俯角変更モータ75を駆動することにより、基板2に対して、所望の角度から照射光58を照射することが可能になっている。そして、照明用Zステージ駆動装置77が照明装置28の高さを制御して、俯角モータ駆動装置80が照射光58の角度を制御する。これにより、照明装置28は基板2の所望の場所に所望の角度で照射光58を照射することが可能になっている。
CPU32には、機能実現部として照射方向変更部としての照明角度制御演算部81を備えている。照明角度制御演算部81は基板2に形成されたバンク4のパターン及びカラーインク5の形状に合わせて、カラーインク5の輪郭形状が撮像し易い照射光58の角度を設定する。そして、その照射光58の角度になるように照明用Zステージ駆動装置77、方位モータ駆動装置79、俯角モータ駆動装置80に指示を出す。そして、カラーインク5の輪郭形状が撮像し易い方向から照明装置28は照射光58を照射する。
尚、バンク4の各パターン及びカラーインク5の形状において、輪郭形状が撮像し易い照射光58の角度は、予め、予備実験により照射条件を設定しておく必要がある。そして、操作者は、その照射条件をメモリ33に照射条件データ82として格納する。照明角度制御演算部81はこの照射条件データ82を用いて照射光58の角度を設定する指示を出力する。
上述したように、本実施形態によれば、以下の効果を有する。
(1)本実施形態によれば、照明装置28が照射光58を照射する方向を照明角度制御演算部81が変更している。カラーインク5のインク斜面5gの形状が変わるとき、反射光59の進行方向が変わる。この検査装置68では、カラーインク5の形状を識別演算部53が認識し易い画像にするために、カラーインク5に対して照射光58を照射する方向を照明角度制御演算部81が変更することができる。従って、識別演算部53がカラーインク5の輪郭形状を識別し易くすることができる。
(1)本実施形態によれば、照明装置28が照射光58を照射する方向を照明角度制御演算部81が変更している。カラーインク5のインク斜面5gの形状が変わるとき、反射光59の進行方向が変わる。この検査装置68では、カラーインク5の形状を識別演算部53が認識し易い画像にするために、カラーインク5に対して照射光58を照射する方向を照明角度制御演算部81が変更することができる。従って、識別演算部53がカラーインク5の輪郭形状を識別し易くすることができる。
(2)本実施形態によれば、基板2と平行な方向において、照明装置28が照射光58を照射する方向を照明角度制御演算部81が変更している。カラーインク5が回転体形状でないとき、カラーインク5の斜面が多い方向と少ない方向とがある。そして、斜面が多い方に照射光58を照射する方が、斜面が少ない方に照射光58を照射する方に比べて、カラーインク5の形状を識別演算部53が認識し易い画像を撮像装置24が撮像可能となる。そして、カラーインク5の形状を識別演算部53が認識し易い画像を撮像装置24が撮像するために、カラーインク5に対して照明装置28が照射光58を照射する方向を照明角度制御演算部81が変更することができる。従って、識別演算部53がカラーインク5の輪郭形状を識別し易くすることができる。
(3)本実施形態によれば、基板2と垂直な面上の方向において照明装置28が照射光58を照射する方向を照明角度制御演算部81が変更している。カラーインク5の斜面に対して、照明装置28が照射する方向を変えて、照射光58を照射するとき、撮像装置24に反射光59が多く進行する方向と少なく進行する方向とがある。そして、カラーインク5の斜面から撮像装置24に反射光59が多く進行する方が、斜面から撮像装置24に反射光59が少なく進行する場合に比べて、カラーインク5の形状を識別演算部53が認識し易い画像を撮像装置24が撮像可能となる。そして、カラーインク5の形状が認識し易い画像を撮像装置24が撮像するために、カラーインク5に対して照射する方向を照明角度制御演算部81が変更することができる。従って、識別演算部53がカラーインク5の輪郭形状を識別し易くすることができる。
(第3の実施形態)
次に、検査装置の一実施形態について図11及び図12を用いて説明する。図11は、検査装置の構成を示す概略斜視図である。この実施形態が第1の実施形態と異なるところは、撮像装置24が基板2を撮像する角度を変更可能にした点にある。尚、第1の実施形態と同じ点については説明を省略する。
次に、検査装置の一実施形態について図11及び図12を用いて説明する。図11は、検査装置の構成を示す概略斜視図である。この実施形態が第1の実施形態と異なるところは、撮像装置24が基板2を撮像する角度を変更可能にした点にある。尚、第1の実施形態と同じ点については説明を省略する。
すなわち、本実施形態では、図11に示すように、検査装置85はZステージ21を備え、Zステージ21のY方向には支持部86が配置されている。支持部86のY方向にはコの字状に1対の支持板86a,86bが配置され、支持板86a,86bが撮像装置24を挟むように配置されている。支持板86aのX方向の逆側にはカメラ角度モータ87が配置され、カメラ角度モータ87の回転軸は撮像装置24に固定されている。撮像装置24のX方向の面には軸が突設され、この軸を受ける軸受けが支持板86bに配置されている。そして、撮像装置24がカメラ角度モータ87の回転軸を中心に回転可能に配置されている。所定のステップ数に相当する駆動信号をカメラ角度モータ87に入力すると、カメラ角度モータ87が正転又は逆転して、撮像装置24が同ステップ数に相当する分だけ、回転するようになっている。そして、この支持部86及びカメラ角度モータ87等により撮像方向変更部が構成されている。
図12は、検査装置の電気制御ブロック図である。図12において、検査装置85は制御装置88を備えている。そして、撮像方向変更部としてのカメラ角度モータ駆動装置89は、入出力インターフェース38及びデータバス39を介してCPU32に接続されている。カメラ角度モータ駆動装置89はカメラ角度モータ87を駆動する装置であり、撮像方向変更部としての撮像制御演算部52が出力する指示によりカメラ角度モータ駆動装置89はカメラ角度モータ87を回転又は停止する。そして、基板2に垂直な方向に対して撮像装置24が撮像する方向を変更可能になっているので、撮像装置24はYZ平面内の所望の方向から基板2を撮像することが可能になっている。
上述したように、本実施形態によれば、以下の効果を有する。
(1)本実施形態によれば、撮像装置24がカラーインク5を撮像する撮像方向を撮像制御演算部52が変更している。カラーインク5の斜面の形状が変わるとき、反射光59の進行方向が変わる。この検査装置85では、カラーインク5の形状を識別演算部53が認識し易い画像にするために、カラーインク5に対して撮像する撮像方向を撮像制御演算部52が変更することができる。従って、カラーインク5の輪郭形状を識別し易くすることができる。
(1)本実施形態によれば、撮像装置24がカラーインク5を撮像する撮像方向を撮像制御演算部52が変更している。カラーインク5の斜面の形状が変わるとき、反射光59の進行方向が変わる。この検査装置85では、カラーインク5の形状を識別演算部53が認識し易い画像にするために、カラーインク5に対して撮像する撮像方向を撮像制御演算部52が変更することができる。従って、カラーインク5の輪郭形状を識別し易くすることができる。
(第4の実施形態)
次に、検査装置の一実施形態について図13を用いて説明する。図13は、検査装置の構成を示す模式平面図である。この実施形態が第1の実施形態と異なるところは、基板2に平行な面上の4方向から照射光58を照射する点にある。尚、第1の実施形態と同じ点については説明を省略する。
次に、検査装置の一実施形態について図13を用いて説明する。図13は、検査装置の構成を示す模式平面図である。この実施形態が第1の実施形態と異なるところは、基板2に平行な面上の4方向から照射光58を照射する点にある。尚、第1の実施形態と同じ点については説明を省略する。
すなわち、本実施形態では、図13に示すように、検査装置92は基台9を備え、基台9上にはY固定テーブル10、Yステージ12、Xステージ15等のステージが配置されている。そして、Xステージ15の載置面17にはカラーインク5が塗布された基板2が載置されている。Y固定テーブル10のY方向には支持台27に支持された照明装置28が配置され、Y固定テーブル10のY方向の逆側には支持台93に支持された照明装置94が配置されている。さらに、Y固定テーブル10のX方向には支持台95に支持された照明装置96が配置され、Xステージ15のX方向の逆側には支持台97に支持された照明装置98が配置されている。これらの照明装置28,94,96,98等により照明部が構成されている。
この支持台93,95,97は支持台27と同様な支持台であり、照明装置94,96,98は照明装置28と同様な照明装置となっている。従って、基板2には4方向から平行光の照射光58が照射可能になっている。そして、Y方向の逆方向に配置されているZステージ21には支持部99がY方向に張出して配置され、支持部99のY方向には撮像装置24が配置されている。そして、撮像装置24は基板2と対向する場所に位置するので、4方向から照射される基板2を基板2と垂直な方向から撮像可能になっている。
上述したように、本実施形態によれば、以下の効果を有する。
(1)本実施形態によれば、照明装置28,94,96,98により、4方向から基板2上に形成されたカラーインク5に照射光58が照射され、カラーインク5における反射光59が撮像装置24に撮像される。従って、照明装置28が1方向からカラーインク5に照射光58を照射するときに比べて、画像の明部が多く撮像される。この明部はカラーインク5の形状に応じて撮像されるので、カラーインク5の特徴を含む明部を多く含む画像を撮像装置24が撮像することができる。従って、識別演算部53がカラーインク5の輪郭形状を識別し易くすることができる。
(1)本実施形態によれば、照明装置28,94,96,98により、4方向から基板2上に形成されたカラーインク5に照射光58が照射され、カラーインク5における反射光59が撮像装置24に撮像される。従って、照明装置28が1方向からカラーインク5に照射光58を照射するときに比べて、画像の明部が多く撮像される。この明部はカラーインク5の形状に応じて撮像されるので、カラーインク5の特徴を含む明部を多く含む画像を撮像装置24が撮像することができる。従って、識別演算部53がカラーインク5の輪郭形状を識別し易くすることができる。
(第5の実施形態)
次に、検査装置の一実施形態について図14〜図16を用いて説明する。図14は、検査装置の構成を示す模式側面図である。この実施形態が第1の実施形態と異なるところは、カラーインクが混じるときの色の変化を観測して検査する点にある。尚、第1の実施形態と同じ点については説明を省略する。
次に、検査装置の一実施形態について図14〜図16を用いて説明する。図14は、検査装置の構成を示す模式側面図である。この実施形態が第1の実施形態と異なるところは、カラーインクが混じるときの色の変化を観測して検査する点にある。尚、第1の実施形態と同じ点については説明を省略する。
すなわち、本実施形態では、図14に示すように、検査装置102は基台9を備え、基台9上にはY固定テーブル10、Yステージ12、Xステージ15等のステージが配置されている。そして、Xステージ15上には中空の載置台103が配置され、載置台103の内部には白色光を発光する冷陰極管104と冷陰極管104が発光する光105をZ方向に反射する反射ミラー106が配置されている。反射ミラー106は凹面鏡になっており、冷陰極管104が発光する光105はZ方向に進行するようになっている。
冷陰極管104のZ方向には拡散板107及びガラス板108が配置され、ガラス板108の上にはカラーインク5が塗布された基板2が載置されている。冷陰極管104が発光する光105及び反射ミラー106に反射した光105は拡散板107により拡散され、ガラス板108を通過して基板2を照射する。そして、基板2を照射する光は基板2に塗布されたカラーインク5を通過し、波長が限定されて着色した光105となる。そして、基板2を通過した光105は撮像レンズ26を通過して撮像装置24に撮像される。撮像装置24が撮像する画像は図1に示すようにカラー素子領域3にカラーインク5が塗布された画像となっている。
検査装置102は制御装置109を備え、制御装置109はメインコンピュータ110、画像処理装置111、倍率切換装置25、照明駆動装置112、ステージ駆動装置113、入力装置43、表示装置44等を備えている。画像処理装置111、倍率切換装置25、照明駆動装置112、ステージ駆動装置113、入力装置43、表示装置44はインターフェースを通してメインコンピュータ110と接続され、メインコンピュータ110に入出力する装置となっている。画像処理装置111は撮像装置24が撮像する画像信号を処理して、画像を構成する色を分析する装置である。照明駆動装置112は冷陰極管104の点灯及び消灯の制御と輝度の制御を行う装置である。ステージ駆動装置113はY軸モータ13及びX軸モータ16を駆動してYステージ12及びXステージ15の位置を制御する装置である。メインコンピュータ110はステージ駆動装置113の移動と停止の指示を出した後、撮像装置24が撮像することにより、基板2の所望の場所における画像を撮像することが可能になっている。
他に、撮像装置24が鮮明な画像を撮像するための図示しないオートフォーカス装置や、基板2に斜めから照射光58を照射する照明装置28が配置されている。メインコンピュータ110は不良検出演算部54を備え、不良検出演算部54が画像処理装置111に撮像の指示や、撮像した画像を解析する指示を出す。そして、画像処理装置111の出力信号を基に不良検出演算部54が不良を検出する。
次に、上述した検査装置102を使って、カラーインク5の塗布状態を検査する検査方法について図15〜図16にて説明する。図15は、塗布状態を検査する製造工程を示すフローチャートである。図16は、検査装置を使った塗布状態の検査方法を説明する図である。
図15において、ステップS1〜ステップS3は第1の実施形態と同じ工程である。検査装置の載置面に基板を配置し、検査する場所を撮像レンズと対向する場所に移動する。そして、基板の検査する場所を撮像する工程である。ステップS3の次にステップS11に移行する。ステップS11は、RGB画像取込工程に相当する工程であり、撮像装置が出力する赤青緑の各色の映像信号を画像処理装置が取り込む工程である。次にステップS12に移行する。ステップS12は、光度演算工程に相当し、カラー画像の映像信号から赤緑青色の各色の光度を演算する工程である。次にステップS13に移行する。ステップS13は、波長演算工程に相当し、カラーの画像信号から画像の各場所における波長を解析する工程である。次にステップS14に移行する。ステップS14は、波長分布演算工程に相当し、光の波長に対する画像の光度の分布を演算する工程である。次にステップS15に移行する。ステップS15は、不良検出工程に相当し、正常の分布とは異なる分布を検出する工程である。ステップS15の次にステップS6〜ステップS9に移行する。ステップS6〜ステップS9は第1の実施形態と同じ工程であり説明を省略する。以上の工程により、塗布状態を検査する製造工程を終了する。
次に、図16を用いて、図15に示したステップと対応させて、製造方法を詳細に説明する。尚、ステップS1〜ステップS3、ステップS6〜ステップS9は第1の実施形態と略同じ工程であり、説明を省略する。図16(a)はステップS11及びステップS12に対応する図であり、撮像装置が出力する映像信号のタイムチャートの例を示している。図16において、横軸は時間114の経過を示している。縦軸は電圧115を示し、上が下より高い電圧となっている。そして、赤映像信号116、青映像信号117、緑映像信号118は赤青緑色の各色の映像信号を示している。撮像装置24はマトリクス状に配置された撮像素子を備え、各撮像素子は照射される光度に比例した電圧115を出力する。その撮像素子には赤青緑の3色のカラーフィルタが配置されており、赤映像信号116は赤色フィルタを通った光の撮像素子の出力信号である。そして、青映像信号117、緑映像信号118はそれぞれ青色フィルタ、緑色フィルタを通った光の撮像素子の出力信号である。
そして、時間114軸において区間119aでは撮像装置24が図1に示す赤色素子領域3aを撮像し、区間119bでは撮像装置24が青色素子領域3bを撮像するときの例を示している。同じく、区間119cでは撮像装置24が緑色素子領域3cを撮像するときの例を示している。区間119aでは撮像装置24が赤色カラーインク5aを撮像するので、赤映像信号116の電圧が高く出力され、青映像信号117及び緑映像信号118の電圧が低く出力される。区間119bでは撮像装置24が青色カラーインク5bを撮像するので、青映像信号117の電圧が高く出力され、赤映像信号116及び緑映像信号118の電圧が低く出力される。同様に、区間119cでは撮像装置24が緑色カラーインク5cを撮像するので、緑映像信号118の電圧が高く出力され、赤映像信号116及び青映像信号117の電圧が低く出力される。
ステップS11では撮像装置24が出力する赤映像信号116、青映像信号117、緑映像信号118を画像処理装置111が取り込む。そして、ステップS12では、時間114軸上の各区間における赤映像信号116、青映像信号117、緑映像信号118の電圧115から赤青緑色の各色における光度を演算する。このとき、電圧と光度との対応表を予め作成しておき、この対応表にもとづいて光度を算出する。ステップS13において、赤青緑の各色における光度の割合より波長を演算する。各色の光度の割合と波長との関係については、撮像装置24の特性により異なるので、予め予備実験により各色の光度の割合と波長との対応表を作成しておく必要がある。
図16(b)はステップS13に対応する図であり、複数のカラー素子領域3を1回で撮像した画像における、波長に対する光度の分布を示している。図16(b)において横軸は波長120を示し、右側が左側より長くなっている。そして、縦軸は光度121を示し、上側が下側より強くなっている。カラーフィルタ1には赤青緑色のカラーインク5が塗布されているので、主に赤色カラーインク5aによる赤色波長分布122a、青色カラーインク5bによる青色波長分布122b、緑色カラーインク5cによる緑色波長分布122cの分布が形成される。そして、この3つの波長分布はカラーインク5が正常に塗布されるときの分布である。これ以外に、例えば、赤色カラーインク5aと緑色カラーインク5cが混じった場合には、赤緑色波長分布122dが配置される。これら赤色波長分布122a、青色波長分布122b、緑色波長分布122c等の分布を波長分布122とする。
赤色波長分布122aが占める波長120の区間を赤色区間123aとする。そして、青色波長分布122b、緑色波長分布122cが占める波長120の区間をそれぞれ青色区間123b、緑色区間123cとする。そして、ステップS14では、波長分布122の中で、赤色区間123a、青色区間123b、緑色区間123cの分布を除く演算を行う。図16(c)はステップS14及びステップS15に対応する図であり、縦軸と横軸は図16(b)と同じである。図16(c)に示すように、ステップS14の演算の結果、波長分布122は赤緑色波長分布122dだけとなる。他にも青色カラーインク5bと緑色カラーインク5cとが混色する場合や、赤色カラーインク5aと青色カラーインク5bとが混色する場合にも波長分布122が得られる。一方、異なる色のカラーインク5が混色しないとき、波長分布122が得られない。ステップS15では、波長分布122が得られないときを正常とし、波長分布122が得られるとき不良と判断する。
そして、波長分布122が得られるとき、画像処理装置111は撮像した画像から波長分布122が生じた場所を検索する。例えば、赤緑色波長分布122dがあるとき、赤の光度と緑の光度とが強い場所を検索して、撮像した画像上の場所を特定し、特定した場所を不良場所とし、ステップS6に移行する。
上述したように、本実施形態によれば、以下の効果を有する。
(1)本実施形態によれば、冷陰極管104が発光する光105が複数のカラー素子領域3を照射して、撮像装置24が複数のカラーインク5を撮像する。そして、不良検出演算部54及び画像処理装置111はカラー画像内に配置される複数のカラーインク5の波長120に対する波長分布122を演算し、波長分布122と良否判定するための波長範囲とを比較して、不良のカラーインク5を検出している。従って、1度の撮像で複数のカラーインク5の中に予め設定された色以外色を有する不良のカラーインク5があるとき、この不良のカラーインク5を検出することができる。従って、生産性良くカラーインク5の色を検査することができる。
(1)本実施形態によれば、冷陰極管104が発光する光105が複数のカラー素子領域3を照射して、撮像装置24が複数のカラーインク5を撮像する。そして、不良検出演算部54及び画像処理装置111はカラー画像内に配置される複数のカラーインク5の波長120に対する波長分布122を演算し、波長分布122と良否判定するための波長範囲とを比較して、不良のカラーインク5を検出している。従って、1度の撮像で複数のカラーインク5の中に予め設定された色以外色を有する不良のカラーインク5があるとき、この不良のカラーインク5を検出することができる。従って、生産性良くカラーインク5の色を検査することができる。
(第6の実施形態)
次に、検査装置を搭載した液滴吐出装置の一実施形態について図17〜図20を用いて説明する。図17は、液滴吐出装置の構成を示す概略斜視図である。この実施形態が第1の実施形態と異なるところは、検査装置が液滴吐出装置に組み込まれている点にある。尚、第1の実施形態と同じ点については説明を省略する。
次に、検査装置を搭載した液滴吐出装置の一実施形態について図17〜図20を用いて説明する。図17は、液滴吐出装置の構成を示す概略斜視図である。この実施形態が第1の実施形態と異なるところは、検査装置が液滴吐出装置に組み込まれている点にある。尚、第1の実施形態と同じ点については説明を省略する。
(液滴吐出装置)
液滴吐出装置に関しては様々な種類の装置があるが、インクジェット法を用いた装置が好ましい。インクジェット法は微小液滴の吐出が可能であるため、微細加工に適している。すなわち、本実施形態では、図17に示すように、液滴吐出装置126は、直方体形状に形成された基台127を備えている。この基台127の長手方向をY方向とし、同Y方向と直交する方向をX方向とする。
液滴吐出装置に関しては様々な種類の装置があるが、インクジェット法を用いた装置が好ましい。インクジェット法は微小液滴の吐出が可能であるため、微細加工に適している。すなわち、本実施形態では、図17に示すように、液滴吐出装置126は、直方体形状に形成された基台127を備えている。この基台127の長手方向をY方向とし、同Y方向と直交する方向をX方向とする。
基台127の上面127aには、Y方向に延びる一対の案内レール128a,128bが同Y方向全幅にわたり凸設されている。その基台127の上側には、一対の案内レール128a,128bに対応する図示しない直動機構を備えたステージ129が取付けられている。そのステージ129の直動機構は、例えば、案内レール128a,128bに沿ってY方向に延びるリニアモータを備えた直動機構である。そして、この直動機構に所定のステップ数に相対する駆動信号がリニアモータに入力されると、リニアモータが前進又は後退して、ステージ129が同ステップ数に相当する分だけ、Y軸方向に沿って所定の速度で往動又は復動する。この動作によりステージ129がY方向に走査するようになっている。
そのステージ129の上面には、載置面130が形成され、その載置面130には、図示しない吸引式の基板チャック機構が設けられている。そして、載置面130に基板2を載置すると、基板チャック機構によって、その基板2が載置面130の所定の位置に位置決め固定されるようになっている。そして、この基板2は第1の実施形態と同様にバンク4が格子状に形成されている。
基台127のX方向両側には、一対の支持台131a,131bが立設され、その一対の支持台131a,131bには、X方向に延びる案内部材132が架設されている。案内部材132の上側には、吐出する機能液を供給可能に収容する収容タンク133が配設されている。
一方、その案内部材132の下側には、X方向に延びる案内レール134がX方向全幅にわたり凸設されている。そして、案内レール134に沿って略直方体形状に形成されたテーブルとしてのキャリッジ135が配置されている。キャリッジ135はステージ129の直動機構と同様な機構を備え、X方向に走査可能となっている。そして、キャリッジ135の下面には、液滴吐出ヘッド136が凸設されている。ステージ129が基板2をY方向に走査して、キャリッジ135が液滴吐出ヘッド136をX方向に走査する。そして、液滴吐出ヘッド136は基板2上の所望の場所に液状体を吐出して塗布することが可能になっている。
案内部材132のY方向と逆方向には、案内部材132と平行にカメラ支持部材137が配置され、カメラ支持部材137には撮像装置24が等間隔に6台配置されている。撮像装置24は第1の実施形態と略同じ光学系を備え、基板2を撮像可能になっている。そして、撮像するときの倍率を切り換えることと、焦点合わせを自動的に行えるようになっている。
ステージ129が走査するY方向において、液滴吐出ヘッド136と撮像装置24とが近い場所に配置されている。そして、液滴吐出ヘッド136から吐出した液滴が着弾する場所を撮像装置24が撮像するとき、ステージ129を短い距離移動して撮像することが可能になっている。
基台127に対して、X方向と逆方向の側面であってキャリッジ135の移動範囲と対向する場所には、保守装置138が配置され、保守装置138には液滴吐出ヘッド136をクリーニングする機構が配置されている。
一対の支持台131a,131bに対してY方向と逆方向であって、基台127のX方向両側には照明支持台139a,139bが立設され、その一対の照明支持台139a,139bには、X方向に延びる照明装置28が架設されている。この照明装置28は第1の実施形態と同様に平行光を基板2に照射し、基板2と垂直な面上で基板2に対して斜めに照射することが可能になっている。
図18(a)は、キャリッジを示す模式平面図である。図18(a)に示すように、1つのキャリッジ135には、3個の液滴吐出ヘッド136が略Y方向において等間隔に配列して配置されている。3個の液滴吐出ヘッド136は赤色、青色、緑色の機能液が供給されている。そして、この各色の機能液としてのカラーインク5を吐出する液滴吐出ヘッド136はそれぞれX方向に千鳥状に配列して配置されている。
そして、液滴吐出ヘッド136の表面にはノズルプレート140が配置され、ノズルプレート140にはノズル141が複数形成されている。ノズル141の数は、吐出するパターンと基板2の大きさに合わせて設定すればよく、本実施形態においては、例えば、1個のノズルプレート140にはノズル141の配列が1列形成され、各列には15個のノズル141が配置されている。
図18(b)は、液滴吐出ヘッドの構造を説明するための要部模式断面図である。図18(b)に示すように、液滴吐出ヘッド136は、ノズルプレート140を備え、ノズルプレート140には、ノズル141が形成されている。ノズルプレート140の上側であって、ノズル141と対向する位置には、ノズル141と連通する圧力室としてのキャビティ142が形成されている。そして、液滴吐出ヘッド136のキャビティ142には、図示しない供給装置に貯留されている液状体としてのカラーインク5が図示しない流路を介して供給される。
キャビティ142の上側には、上下方向(Z方向)に振動して、キャビティ142内の容積を拡大縮小する振動板143と、上下方向に伸縮して振動板143を振動させる駆動部としての圧電素子144が配設されている。そして、液滴吐出ヘッド136が圧電素子144を制御駆動するためのノズル駆動信号を受けると、圧電素子144が伸張して、振動板143がキャビティ142内の容積を拡大縮小してキャビティ142を加圧する。その結果、液滴吐出ヘッド136のノズル141からは、縮小した容積分のカラーインク5が液滴145として吐出される。この液滴吐出ヘッド136において、ノズル141、キャビティ142、振動板143、圧電素子144等により液滴吐出素子146が構成され、1つの液滴吐出ヘッド136には複数の液滴吐出素子146が配列して形成されている。
図19は、液滴吐出装置の電気制御ブロック図である。図19において、液滴吐出装置126の制御装置149はプロセッサとして各種の演算処理を行うCPU(演算処理装置)150と各種情報を記憶する記憶部としてのメモリ151とを有する。
主走査駆動装置152、副走査駆動装置153、液滴吐出ヘッド136を駆動するヘッド駆動回路154は、入出力インターフェース155及びデータバス156を介してCPU150に接続されている。さらに、撮像装置24、倍率切換装置25、オートフォーカス装置166、照明装置28も入出力インターフェース155及びデータバス156を介してCPU150に接続されている。さらに、入力装置157、表示装置158、保守装置138も入出力インターフェース155及びデータバス156を介してCPU150に接続されている。
主走査駆動装置152はステージ129の移動を制御する装置であり、副走査駆動装置153はキャリッジ135の移動を制御する装置である。主走査駆動装置152がステージ129の移動を制御し、副走査駆動装置153がキャリッジ135の移動を制御することにより、液滴吐出ヘッド136を基板2に対して所望の位置に移動及び停止することが可能となっている。
ヘッド駆動回路154は液滴吐出ヘッド136を駆動する回路である。そして、CPU150が指示する駆動電圧、吐出数、吐出間隔等の吐出条件に従って、ヘッド駆動回路154は液滴吐出ヘッド136を駆動する。撮像装置24、倍率切換装置25、照明装置28は第1の実施形態の場合と略同じ機能を備えた装置であり、説明を省略する。オートフォーカス装置166は第1の実施形態の場合と略同じ機能を備えている。つまり、撮像装置24は対物レンズを備え、オートフォーカス装置166は対物レンズを移動する機構を備えている。そして、撮像装置24がカラーインク5を撮像するとき、撮像装置24の焦点をカラーインク5に合わせて、鮮明な画像を撮像することが可能となっている。
入力装置157は液滴145を吐出する各種加工条件を入力する装置であり、例えば、基板2に液滴145を吐出する座標を図示しない外部装置から受信し、入力する装置である。表示装置158は加工条件や作業状況を表示する装置であり、表示装置158に表示される情報を基に、操作者は入力装置157を用いて操作を行う。保守装置138は液滴吐出ヘッド136を保守する装置であり、キャビティ142内のカラーインク5を吸引したり、ノズルプレート140の拭取を行う装置である。
メモリ151は、RAM、ROM等といった半導体メモリや、ハードディスク、CD−ROMといった外部記憶装置を含む概念である。機能的には、液滴吐出装置126における動作の制御手順が記述されたプログラムソフト159を記憶する記憶領域が設定される。さらに、基板2内における吐出位置の座標データである吐出位置データ160を記憶するための記憶領域も設定される。さらに、吐出するカラーインク5の量に対応する駆動信号データ161を記憶するための記憶領域も設定される。
さらに、第1の実施形態と同様に検査位置データ46、撮像データ47、撮像比較データ48、特徴量データ49、良否判定値データ50の記憶領域や、CPU150のためのワークエリアやテンポラリファイル等として機能する記憶領域やその他各種の記憶領域が設定される。
CPU150はメモリ151内に記憶されたプログラムソフト159に従って、基板2における表面の所定位置にカラーインク5を液滴145にして吐出するための制御や液滴吐出ヘッド136を保守するための制御を行うものである。具体的な機能実現部として、液滴吐出ヘッド136において液滴145を吐出するための演算を行う吐出演算部162等を有する。吐出演算部162を詳しく分割すれば、吐出演算部162は基板2を主走査方向(Y方向)へ所定の速度で走査移動させるための制御を演算する主走査制御演算部163を有する。加えて、吐出演算部162は液滴吐出ヘッド136を副走査方向(X方向)へ所定の副走査移動量で移動させるための制御を演算する副走査制御演算部164を有する。さらに、吐出演算部162は液滴吐出ヘッド136内に複数あるノズルの内、どのノズルを作動させてカラーインク5を吐出するかを制御するための演算を行う吐出制御演算部165等といった各種の機能演算部を有する。吐出演算部162の他にも、第1の実施形態と同様に撮像制御演算部52、識別演算部53、不良検出演算部54、倍率制御演算部55の演算部を備えている。
(液滴吐出ヘッドの清掃及び吐出方法)
次に、上述した液滴吐出装置126を用いて、液滴吐出ヘッド136から基板2にカラーインク5を塗布し、塗布状況を検査する製造方法について図20にて説明する。図20は、基板にカラーインクを塗布し、塗布状況を検査する製造工程を示すフローチャートである。
次に、上述した液滴吐出装置126を用いて、液滴吐出ヘッド136から基板2にカラーインク5を塗布し、塗布状況を検査する製造方法について図20にて説明する。図20は、基板にカラーインクを塗布し、塗布状況を検査する製造工程を示すフローチャートである。
ステップS21は基板配置工程に相当する。この工程は、載置面130に基板2を載置した後、吸引チャックを用いて基板2を載置面130に固定する工程である。次にステップS22に移行する。ステップS22は、移動工程に相当し、ステージ129及びキャリッジ135を駆動して、基板2のカラーインク5を塗布する予定の場所を液滴吐出ヘッド136と対向する場所に移動する工程である。尚、撮像のみ行う場合には、撮像する予定の場所を撮像装置24と対向する場所に移動する工程である。次にステップS23及びステップS24に移行する。ステップS23は、撮像工程に相当し、撮像装置24が基板2を撮像する工程である。次にステップS25に移行する。ステップS24は、吐出工程に相当し、基板2に液滴145を吐出して塗布する工程である。次にステップS25に移行する。
このステップS23とステップS24とは並行して行われる。つまり、ステップS22において、ステージ129がY方向に往復移動する。そして、カラーインク5を塗布する予定の場所が液滴吐出ヘッド136と対向する場所にくるとき、液滴吐出ヘッド136から基板2に液滴145を吐出する。同様に、撮像装置24は撮像する予定の場所が撮像装置24と対向する場所にくるとき、撮像装置24は基板2を撮像する。従って、液滴吐出ヘッド136が液滴145を吐出する工程と撮像装置24が撮像する工程とは各々並行して行われる。
ステップS25は、吐出終了判断工程に相当する。カラーインク5を塗布する予定の場所総てに塗布したかの判断と、塗布した後の画像を総て撮像したかの判断とを行う工程である。予定した総ての領域に塗布して、その後、撮像したとき、ステップS26に移行する。予定した総ての領域の中に塗布していない場所があるとき、又は、塗布した後の画像を撮像していない場所があるとき、ステップS22に移行する。
ステップS26は、特徴量抽出工程に相当し、撮像した画像から特徴となる部分を演算し、特徴量を抽出する工程である。この工程では、ステップS23において撮像した総ての画像に対して特徴量を抽出する。次にステップS27に移行する。ステップS27は、不良検出工程に相当し、算出した特徴量と良否判定値データとを比較して、正常か不良かを判断する工程である。この工程では、ステップS26で算出した総ての特徴量に対して判断を行う。次にステップS28に移行する。ステップS28は、不良記憶工程に相当し、不良と判断されたカラー素子領域の場所を記憶する工程である。次にステップS29に移行する。
ステップS29は、不良確認工程に相当し、不良と判断された場所を撮像レンズと対向する場所に移動し、倍率の高い画像を撮像し、不良場所を確認する工程である。次にステップS30に移行する。ステップS30は、基板除去工程に相当し、載置面から基板を除去する工程である。以上の工程により基板にカラーインクを塗布し、塗布状態を検査する製造工程を終了する。
以上の工程において、ステップS23は第1の実施形態におけるステップS3と略同じステップであり、ステップS26はステップS4と略同じステップである。同様に、ステップS27はステップS5と略同じステップであり、ステップS28はステップS6と略同じステップである。さらに、ステップS29はステップS8と略同じステップである。
上述したように、本実施形態によれば、以下の効果を有する。
(1)本実施形態によれば、液滴吐出装置126は基板2にカラーインク5を吐出する機能と、吐出したカラーインク5の輪郭形状を識別して検査する機能とを有している。従って、カラーインク5が吐出された基板2を、同じ液滴吐出装置126において検査することができる為、カラーインク5を吐出してから吐出されたカラーインク5の輪郭形状を検査するまでの時間を短くすることができる。そして、操作者が検査結果を用いて、吐出条件を反映することにより、この液滴吐出装置126は基板2に塗布されるカラーインク5における不良の発生を低減することができる。その結果、品質よくカラーインク5を吐出することができる。
(1)本実施形態によれば、液滴吐出装置126は基板2にカラーインク5を吐出する機能と、吐出したカラーインク5の輪郭形状を識別して検査する機能とを有している。従って、カラーインク5が吐出された基板2を、同じ液滴吐出装置126において検査することができる為、カラーインク5を吐出してから吐出されたカラーインク5の輪郭形状を検査するまでの時間を短くすることができる。そして、操作者が検査結果を用いて、吐出条件を反映することにより、この液滴吐出装置126は基板2に塗布されるカラーインク5における不良の発生を低減することができる。その結果、品質よくカラーインク5を吐出することができる。
(2)本実施形態によれば、カラーインク5の吐出を行うステップS24と、カラーインク5が塗布された基板2を撮像するステップS23とが並行して行われる。従って、基板2上に塗布する予定の総ての場所にカラーインク5を吐出した後、カラーインク5の撮像を行う場合に比べて、短い時間でカラーインク5の吐出と、カラーインク5が塗布された基板2の撮像とを行うことができる。その結果、生産性良く、カラーインク5の吐出と、カラーインク5が塗布された基板2の撮像とを行うことができる。
(3)本実施形態によれば、ステージ129が移動するY方向において、液滴吐出ヘッド136と撮像装置24とが近い場所に配置されている。従って、液滴吐出ヘッド136が吐出したカラーインク5を、撮像装置24が撮像する場所に移動するのに短時間で移動することができる。そして、カラーインク5を塗布するためにステージ129を走査する時間に、撮像のためにステージ129を移動する時間が追加される。この撮像のために追加されるステージ129の移動時間を短くすることができる。その結果、生産性良く、カラーインク5の吐出と、カラーインク5が塗布された基板2の撮像とを行うことができる。
尚、本実施形態は上述した実施形態に限定されるものではなく、種々の変更や改良を加えることも可能である。変形例を以下に述べる。
(変形例1)
前記第1の実施形態では、図7に示すように、撮像した画像から正常な塗布状態の画像を引き算して、差分画像を算出した後、明部の塊の面積61が判定値64より広い場所を不良とした。これによらず、他の特徴量を採用しても良い。図21は特徴量の1例を説明する図である。例えば、図21(a)は、図7(a)に示す画像と同じ画像を示している。このとき、隣り合うインク斜面5gの距離である明部間距離168を演算して特徴量とする。図21(b)は、図7(b)に示す画像と同じ画像を示している。そして、インク連結部5hが形成されているので、インク斜面5gに加えて連結部インク斜面5iが形成されている。このとき、連結部インク斜面5iが形成されていないときに比べて、明部間距離168は短く算出される。
(変形例1)
前記第1の実施形態では、図7に示すように、撮像した画像から正常な塗布状態の画像を引き算して、差分画像を算出した後、明部の塊の面積61が判定値64より広い場所を不良とした。これによらず、他の特徴量を採用しても良い。図21は特徴量の1例を説明する図である。例えば、図21(a)は、図7(a)に示す画像と同じ画像を示している。このとき、隣り合うインク斜面5gの距離である明部間距離168を演算して特徴量とする。図21(b)は、図7(b)に示す画像と同じ画像を示している。そして、インク連結部5hが形成されているので、インク斜面5gに加えて連結部インク斜面5iが形成されている。このとき、連結部インク斜面5iが形成されていないときに比べて、明部間距離168は短く算出される。
図21(c)は撮像した画像における明部間距離168の分布を示している。図21(c)において、横軸は明部間距離168を示し、右側が左側より明部間距離168が長くなっている。縦軸は明部間距離168におけるインク斜面5g及び連結部インク斜面5iで明部間距離168を測定した場所の個数62を示し、上側が下側より個数が多くなっている。そして、1つの画像内で各明部間距離168に対して各明部間距離168を測定した場所の数の1例を距離分布曲線169が示している。そして、距離分布曲線169は明部間距離168が長い分布である長距離分布169aと明部間距離168が短い分布である短距離分布169bとが形成される。
長距離分布169aはインク斜面5g間の明部間距離168の分布であり、短距離分布169bはインク斜面5gと連結部インク斜面5iとの明部間距離168の分布である。そして、長距離分布169aは正常にカラーインク5が塗布されている状態における分布であり、短距離分布169bは異常と判断する分布である。予め予備実験により短距離分布169bの分布を調査して不良判定範囲170及び不良判定値171を設定しておく。そして、不良検出工程では、不良判定値171と明部間距離168とを比較することにより、正常か不良かを判断する。明部間距離168を特徴量として用いる方法では、画像と画像とを引いて差分画像を演算しないので、演算に用いるメモリが少ない場合にもCPU32は演算することができる。
(変形例2)
前記第1の実施形態において、カラーフィルタ1は同じ色のカラー素子領域3が直線状に配列するストライプ状のフィルタであるが、カラー素子領域3の配列はデルタ配置、モザイク配置等の配列にも採用することができる。
前記第1の実施形態において、カラーフィルタ1は同じ色のカラー素子領域3が直線状に配列するストライプ状のフィルタであるが、カラー素子領域3の配列はデルタ配置、モザイク配置等の配列にも採用することができる。
(変形例3)
前記第1の実施形態において、カラーフィルタ1は3色のカラー素子領域3が配置されているが、3色に限らず、2色もしくは4色以上の色の場合にも適用することができる。
前記第1の実施形態において、カラーフィルタ1は3色のカラー素子領域3が配置されているが、3色に限らず、2色もしくは4色以上の色の場合にも適用することができる。
(変形例4)
前記第1の実施形態では、CPU32のメモリ33内に動作手順に沿ったプログラムソフト45を記憶し、プログラムにより検査装置8の制御を行ったが、これに限らず、電気回路にて構成される制御装置にて制御しても良い。周辺機器が手順通りに制御されれば良い。この内容は前記第2の実施形態〜前記第6の実施形態においても同様に適応することができる。
前記第1の実施形態では、CPU32のメモリ33内に動作手順に沿ったプログラムソフト45を記憶し、プログラムにより検査装置8の制御を行ったが、これに限らず、電気回路にて構成される制御装置にて制御しても良い。周辺機器が手順通りに制御されれば良い。この内容は前記第2の実施形態〜前記第6の実施形態においても同様に適応することができる。
(変形例5)
前記第1の実施形態において、検査装置8は塗布されたカラーインク5の形状を検査したが、これによらず、各種の機能液の検査を行うことができる。例えば、有機EL(エレクトロルミネッセンス)装置の発光材料を含んだ溶液、配線を形成するために導通材料を含んだ溶液、凸レンズを形成するためにレンズ材料を含んだ溶液等の溶液を塗布した後、塗布状態を検査するときに検査装置8を用いることができる。この内容は前記第2の実施形態〜前記第6の実施形態においても同様に適応することができる。
前記第1の実施形態において、検査装置8は塗布されたカラーインク5の形状を検査したが、これによらず、各種の機能液の検査を行うことができる。例えば、有機EL(エレクトロルミネッセンス)装置の発光材料を含んだ溶液、配線を形成するために導通材料を含んだ溶液、凸レンズを形成するためにレンズ材料を含んだ溶液等の溶液を塗布した後、塗布状態を検査するときに検査装置8を用いることができる。この内容は前記第2の実施形態〜前記第6の実施形態においても同様に適応することができる。
(変形例6)
前記第3の実施形態において、撮像装置24はカメラ角度モータ87の回転軸を中心にてYZ平面の角度を変更したが、ZX平面の角度を変更可能にしても良い。つまり、回転軸がY方向となるモータを支持部86に配置して、撮像装置24がモータの回転軸と連動してZX平面の角度を変更できるようにしても良い。カラーインク5の形状に合わせて撮像し易い角度に調整し易くすることができる。
前記第3の実施形態において、撮像装置24はカメラ角度モータ87の回転軸を中心にてYZ平面の角度を変更したが、ZX平面の角度を変更可能にしても良い。つまり、回転軸がY方向となるモータを支持部86に配置して、撮像装置24がモータの回転軸と連動してZX平面の角度を変更できるようにしても良い。カラーインク5の形状に合わせて撮像し易い角度に調整し易くすることができる。
(変形例7)
前記第4の実施形態において、照明装置28,94,96,98により基板2は4方向から照射されたが、4方向に限らず、2〜3方向、5方向以上でも良い。さらに、曲った発光管を用いて多方向から照射しても良く、リング状の発光管を用いて総ての方向から照射しても良い。カラーインク5の形状に合わせて撮像し易い方向から照射することができる。
前記第4の実施形態において、照明装置28,94,96,98により基板2は4方向から照射されたが、4方向に限らず、2〜3方向、5方向以上でも良い。さらに、曲った発光管を用いて多方向から照射しても良く、リング状の発光管を用いて総ての方向から照射しても良い。カラーインク5の形状に合わせて撮像し易い方向から照射することができる。
(変形例8)
前記第5の実施形態では、1回で撮像した画像毎に図16(b)に示す波長分布122を演算したが、カラーインク5を撮像するときの明部毎に波長を演算しても良い。異なる色のカラーインク5が混じった場所があるとき、画像から明部の位置情報が演算し易いので、色が混じった場所のデータを容易に算出することができる。
前記第5の実施形態では、1回で撮像した画像毎に図16(b)に示す波長分布122を演算したが、カラーインク5を撮像するときの明部毎に波長を演算しても良い。異なる色のカラーインク5が混じった場所があるとき、画像から明部の位置情報が演算し易いので、色が混じった場所のデータを容易に算出することができる。
(変形例9)
前記第5の実施形態では、図16(b)に示すように、波長分布122を演算したが、色温度の分布を演算してもよい。色を識別し易く、演算し易い方法を選択しても良い。生産性良く識別演算を行うことができる。
前記第5の実施形態では、図16(b)に示すように、波長分布122を演算したが、色温度の分布を演算してもよい。色を識別し易く、演算し易い方法を選択しても良い。生産性良く識別演算を行うことができる。
(変形例10)
前記第6の実施形態では、図17に示すように、照射方向を固定しているが、第2の実施形態に示すような照射角度を変更する機構を備えても良い。カラーインク5の形状に合わせて撮像し易い方向から照射することができる。
前記第6の実施形態では、図17に示すように、照射方向を固定しているが、第2の実施形態に示すような照射角度を変更する機構を備えても良い。カラーインク5の形状に合わせて撮像し易い方向から照射することができる。
(変形例11)
前記第6の実施形態では、図17に示すように、撮像方向を固定しているが、第3の実施形態に示すような撮像方向を変更する機構を備えても良い。カラーインク5の形状に合わせて撮像し易い角度に調整し易くすることができる。
前記第6の実施形態では、図17に示すように、撮像方向を固定しているが、第3の実施形態に示すような撮像方向を変更する機構を備えても良い。カラーインク5の形状に合わせて撮像し易い角度に調整し易くすることができる。
(変形例12)
前記第6の実施形態では、図17に示すように、照射方向を固定しているが、第2の実施形態に示すような照射方向を変更する機構を備えても良い。カラーインク5の形状に合わせて照射する角度を調整して、インク斜面5g及び連結部インク斜面5iを撮像し易くすることができる。
前記第6の実施形態では、図17に示すように、照射方向を固定しているが、第2の実施形態に示すような照射方向を変更する機構を備えても良い。カラーインク5の形状に合わせて照射する角度を調整して、インク斜面5g及び連結部インク斜面5iを撮像し易くすることができる。
(変形例13)
前記第6の実施形態では、図17に示すように、1方向から照射しているが、第4の実施形態に示すように複数の方向から照射しても良い。カラーインク5の形状に合わせて撮像し易い方向から照射することができる。
前記第6の実施形態では、図17に示すように、1方向から照射しているが、第4の実施形態に示すように複数の方向から照射しても良い。カラーインク5の形状に合わせて撮像し易い方向から照射することができる。
(変形例14)
前記第6の実施形態では、ステップS23の撮像工程とステップS24の吐出工程とを並行して実施したが、さらにステップS26の特徴量抽出工程も並行して行っても良い。つまり、ステップS24を行っている間に、ステップS23とステップS26とを行っても良い。ステップS23及びステップS26の演算時間をステップS24にかかる時間に比べて短い時間に演算することが可能なときには、ステップS23とステップS26とを続けて行っても良い。さらに、CPU150が短い時間で演算が可能なときには、ステップS27、ステップS28も並行して行っても良い。さらに生産性良く検査を行うことができる。
前記第6の実施形態では、ステップS23の撮像工程とステップS24の吐出工程とを並行して実施したが、さらにステップS26の特徴量抽出工程も並行して行っても良い。つまり、ステップS24を行っている間に、ステップS23とステップS26とを行っても良い。ステップS23及びステップS26の演算時間をステップS24にかかる時間に比べて短い時間に演算することが可能なときには、ステップS23とステップS26とを続けて行っても良い。さらに、CPU150が短い時間で演算が可能なときには、ステップS27、ステップS28も並行して行っても良い。さらに生産性良く検査を行うことができる。
(変形例15)
前記第6の実施形態では、撮像装置24がX方向に配列して配置されたが、撮像装置24がX方向に移動可能に配置しても良い。すなわち、カメラ支持部材137上にX方向に移動するテーブルとテーブルを駆動する駆動装置を配置する。そして、そのテーブルに撮像装置24を配置することにより、撮像装置24がX方向に移動可能に配置する。このとき、基板2のX方向が長さが長くなる場合にも撮像装置24の台数が少なくても良い為、簡便な構成でX方向に長い基板2を検査することができる。
前記第6の実施形態では、撮像装置24がX方向に配列して配置されたが、撮像装置24がX方向に移動可能に配置しても良い。すなわち、カメラ支持部材137上にX方向に移動するテーブルとテーブルを駆動する駆動装置を配置する。そして、そのテーブルに撮像装置24を配置することにより、撮像装置24がX方向に移動可能に配置する。このとき、基板2のX方向が長さが長くなる場合にも撮像装置24の台数が少なくても良い為、簡便な構成でX方向に長い基板2を検査することができる。
(変形例16)
前記第6の実施形態において、キャビティ142を加圧する加圧手段に、圧電素子144を用いたが、他の方法でも良い。例えば、コイルと磁石とを用いて振動板143を変形させて、加圧しても良い。他に、キャビティ142内にヒータ配線を配置して、ヒータ配線を加熱することにより、カラーインク5を気化させたり、カラーインク5に含む気体を膨張させたりして加圧しても良い。他にも、静電気の引力及び斥力を用いて振動板143を変形させて、加圧しても良い。
前記第6の実施形態において、キャビティ142を加圧する加圧手段に、圧電素子144を用いたが、他の方法でも良い。例えば、コイルと磁石とを用いて振動板143を変形させて、加圧しても良い。他に、キャビティ142内にヒータ配線を配置して、ヒータ配線を加熱することにより、カラーインク5を気化させたり、カラーインク5に含む気体を膨張させたりして加圧しても良い。他にも、静電気の引力及び斥力を用いて振動板143を変形させて、加圧しても良い。
(変形例17)
前記第6の実施形態において、液滴吐出装置126は第1の実施形態に記載の検査方法と略同じ方法で塗布されたカラーインク5の塗布状態を検査しているが、第5の実施形態に記載の検査方法と略同じ方法で塗布されたカラーインク5の塗布状態を検査しても良い。この方法でも、同様に塗布状態を生産性良く検査することができる。
前記第6の実施形態において、液滴吐出装置126は第1の実施形態に記載の検査方法と略同じ方法で塗布されたカラーインク5の塗布状態を検査しているが、第5の実施形態に記載の検査方法と略同じ方法で塗布されたカラーインク5の塗布状態を検査しても良い。この方法でも、同様に塗布状態を生産性良く検査することができる。
1…カラーフィルタ、2…基板、2a…突状体形成面としての上面、5…突状体及び液状体としてのカラーインク、5h…異常体としてのインク連結部、8…検査装置、12…ステージとしてのYステージ、15…ステージとしてのXステージ、24…撮像部としての撮像装置、25…倍率変更部としての倍率切換装置、28,94,96,98…照射部としての照明装置、33,151…記憶部としてのメモリ、51…ステージ制御部としてのステージ制御演算部、52…撮像方向変更部としての撮像制御演算部、53…識別部としての識別演算部、54…不良検出部としての不良検出演算部、71…照射方向変更部としての照明用Zステージ、72…照射方向変更部としての照明用Z軸モータ、74…照射方向変更部としての方位変更モータ、79…照射方向変更部としての方位モータ駆動装置、80…照射方向変更部としての俯角モータ駆動装置、81…照射方向変更部としての照明角度制御演算部、86…撮像方向変更部としての支持部、87…撮像方向変更部としてのカメラ角度モータ、89…撮像方向変更部としてのカメラ角度モータ駆動装置、136…液滴吐出ヘッド、141…ノズル。
Claims (19)
- 基板の突状体形成面に形成された突状体の輪郭形状を検査する検査装置であって、
前記突状体形成面と垂直な方向に対して斜めの方向から前記基板に光を照射する照射部と、
前記突状体形成面と略垂直な方向から前記突状体を撮像する撮像部と、
前記撮像部により撮像された画像を用いて、前記画像の明部と暗部の形状から前記突状体の前記輪郭形状を識別する識別部と、を有することを特徴とする検査装置。 - 請求項1に記載の検査装置であって、
前記斜めの方向は前記突状体形成面と垂直な方向との成す角度が45度以上であることを特徴とする検査装置。 - 請求項2に記載の検査装置であって、
前記突状体は前記基板上に複数配置され、前記照射部は複数の前記突状体に略平行な光を照射することを特徴とする検査装置。 - 請求項3に記載の検査装置であって、
前記照射部は複数の前記突状体に対して同時に照射し、前記撮像部は複数の前記突状体を同時に撮像することを特徴とする検査装置。 - 請求項4に記載の検査装置であって、
前記照射部が光を照射する光の照射方向を変更させる照射方向変更部を備えることを特徴とする検査装置。 - 請求項4に記載の検査装置であって、
前記撮像部が撮像する撮像方向を変更させる撮像方向変更部を備えることを特徴とする検査装置。 - 請求項4に記載の検査装置であって、
前記照射部は前記基板上の前記突状体形成面と平行な方向において前記突状体に複数の方向から光を照射することを特徴とする検査装置。 - 請求項5に記載の検査装置であって、
前記照射方向変更部は前記突状体形成面に平行な方向において、前記照射部が照射する方向を変更することを特徴とする検査装置。 - 請求項8に記載の検査装置であって、
前記照射方向変更部は前記突状体形成面と垂直な方向と前記照射部が照射する方向との成す角度を変更することを特徴とする検査装置。 - 請求項5に記載の検査装置であって、
前記撮像部は前記突状体を拡大又は縮小して撮像する倍率変更部を備えることを特徴とする検査装置。 - 請求項10に記載の検査装置であって、
前記基板と前記撮像部とを相対移動させるステージと、
前記ステージを制御するステージ制御部と、
前記突状体の前記画像から前記画像の特徴を示す特徴量を演算し、前記特徴量と良否判定するための判定値とを比較して、不良突状体を検出する不良検出部と、
前記不良突状体の場所を記憶する記憶部と、を有し、
前記記憶部が記憶する前記不良突状体の場所の情報を用いて、前記不良突状体が前記撮像部の視野に入るように前記ステージ制御部は前記ステージを移動させることを特徴とする検査装置。 - 請求項11に記載の検査装置であって、
前記突状体は着色された液状体であり、前記突状体が固化されて、カラーフィルタを構成する色素子になることを特徴とする検査装置。 - 基板に形成された複数の着色体の色を検査する検査装置であって、
複数の前記着色体に光を照射する照射部と、
複数の前記着色体のカラー画像を撮像する撮像部と、
前記カラー画像から不良着色体を検出する不良検出部と、を有し、
前記不良検出部は、前記カラー画像における波長分布を演算し、分布の存在する波長と良否判定するための波長範囲とを比較して、所定の色と異なる不良着色体を検出することを特徴とする検査装置。 - 液滴吐出ヘッドと基板とを相対的に走査し、前記液滴吐出ヘッドのノズルから液状体を前記基板上の突状体形成面に吐出して前記液状体からなる突状体を形成する液滴吐出装置であって、
前記突状体形成面と垂直な方向に対して斜めの方向から複数の前記突状体に光を照射する照射部と、
前記突状体形成面と略垂直な方向から複数の前記突状体を撮像する撮像部と、
前記撮像部が撮像する画像を用いて液状体の輪郭形状を識別する識別部とを有することを特徴とする液滴吐出装置。 - 請求項14に記載の液滴吐出装置であって、
前記液滴吐出ヘッドによる前記基板への前記液状体の吐出と、前記撮像部による前記液状体の撮像とが並行して行われることを特徴とする液滴吐出装置。 - 請求項15に記載の液滴吐出装置であって、
前記液滴吐出ヘッドと前記基板とが走査する方向において、前記液滴吐出ヘッドと前記撮像部とが近い場所に配置されることを特徴とする液滴吐出装置。 - 基板の突状体形成面に形成された複数の突状体の輪郭形状を検査する突状体の検査方法であって、
前記突状体形成面と垂直な方向に対して斜めの方向から複数の前記突状体に光を照射し、前記突状体形成面と略垂直な方向から複数の前記突状体を撮像部が撮像する撮像工程と、
前記撮像部が撮像する画像を用いて前記突状体の特徴量を演算し、前記特徴量と良否判定するための判定値とを比較して、不良突状体を検出する不良検出工程と、を有することを特徴とする突状体の検査方法。 - 請求項17に記載の突状体の検査方法であって、
前記不良検出工程にて検出した前記不良突状体の場所を記憶する記憶工程と、
前記不良突状体を前記撮像部の視野に移動させて、前記不良突状体を拡大して撮像し、前記不良突状体の輪郭形状を表示する不良確認工程と、を有することを特徴とする突状体の検査方法。 - 請求項17に記載の突状体の検査方法であって、
前記基板に液状体を吐出して前記突状体を形成する吐出工程を有し、
前記吐出工程と前記撮像工程とが並行して行われることを特徴とする突状体の検査方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008082852A JP2009236669A (ja) | 2008-03-27 | 2008-03-27 | 検査装置、突状体の検査方法及び液滴吐出装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008082852A JP2009236669A (ja) | 2008-03-27 | 2008-03-27 | 検査装置、突状体の検査方法及び液滴吐出装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009236669A true JP2009236669A (ja) | 2009-10-15 |
Family
ID=41250806
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008082852A Withdrawn JP2009236669A (ja) | 2008-03-27 | 2008-03-27 | 検査装置、突状体の検査方法及び液滴吐出装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009236669A (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021056039A (ja) * | 2019-09-27 | 2021-04-08 | パナソニックIpマネジメント株式会社 | インクジェット印刷装置、それを用いて製造されたデバイス、塗膜形成ムラ検出方法、及びデバイスの製造方法 |
-
2008
- 2008-03-27 JP JP2008082852A patent/JP2009236669A/ja not_active Withdrawn
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021056039A (ja) * | 2019-09-27 | 2021-04-08 | パナソニックIpマネジメント株式会社 | インクジェット印刷装置、それを用いて製造されたデバイス、塗膜形成ムラ検出方法、及びデバイスの製造方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4410042B2 (ja) | 微細パターン修正装置 | |
KR101567195B1 (ko) | 토출 검사 장치 및 기판 처리 장치 | |
JP2007102186A (ja) | 同時型インクジェット印刷及び欠陥検査のための方法及び装置 | |
JP4768014B2 (ja) | カラーフィルタ検査方法およびカラーフィルタ製造方法並びにカラーフィルタ検査装置 | |
JP2004253332A (ja) | 塗布用基板、インク塗布システム及びその塗布方法並びにそれを用いたデバイス製造装置 | |
JP2009527018A (ja) | 平板表示装置の検査システム及び検査方法 | |
JP2012166159A (ja) | 吐出装置および吐出する方法 | |
JP2010214318A (ja) | 液滴吐出ヘッドの検査方法、液滴吐出ヘッドの検査装置及び液滴吐出装置 | |
JP2008168207A (ja) | 吐出不良検出装置およびその方法 | |
JP4696862B2 (ja) | 画像処理装置、画像処理方法および描画装置 | |
TWI392595B (zh) | Pattern correction device | |
JP2009072691A (ja) | インク噴射状態検査装置、フラットパネルの製造装置およびフラットパネル | |
JP2009236669A (ja) | 検査装置、突状体の検査方法及び液滴吐出装置 | |
JP2006344705A (ja) | 基板のステージ装置、検査装置及び修正装置 | |
JP6105985B2 (ja) | 吐出検査装置および基板処理装置 | |
JP4974617B2 (ja) | 溶液塗布装置 | |
JP4541321B2 (ja) | 液滴塗布装置、液滴塗布方法、プログラム及びコンピュータ読み取り可能な記録媒体 | |
JP2006297175A (ja) | 液滴吐出装置、液滴吐出方法及び電気光学装置の製造方法 | |
JP5708264B2 (ja) | 孔形状検査方法および孔形状検査プログラム | |
JP2009247917A (ja) | 基板検査装置、基板検査方法、液滴吐出装置及び吐出方法 | |
JP2008003287A (ja) | パターン修正方法およびパターン修正装置 | |
JP2021151736A (ja) | ノズル観察装置、ノズル観察方法、ノズル検査装置およびノズル検査方法 | |
JP2004165035A (ja) | 有機elデバイス製造装置における液滴吐出ヘッドの吐出検査方法および吐出検査装置、並びに有機elデバイス製造装置、有機elデバイス、有機elデバイスの製造方法および電子機器 | |
US20240034056A1 (en) | Droplet analysis unit and substrate treatment apparatus including the same | |
JP2004321891A (ja) | 液滴吐出装置、並びに電気光学装置の製造方法、電気光学装置および電子機器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20110607 |