JP2009188243A - 強誘電体メモリ装置及びその製造方法 - Google Patents

強誘電体メモリ装置及びその製造方法 Download PDF

Info

Publication number
JP2009188243A
JP2009188243A JP2008027647A JP2008027647A JP2009188243A JP 2009188243 A JP2009188243 A JP 2009188243A JP 2008027647 A JP2008027647 A JP 2008027647A JP 2008027647 A JP2008027647 A JP 2008027647A JP 2009188243 A JP2009188243 A JP 2009188243A
Authority
JP
Japan
Prior art keywords
film
hydrogen
ferroelectric
electrode
memory device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008027647A
Other languages
English (en)
Inventor
Shinichi Fukada
晋一 深田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2008027647A priority Critical patent/JP2009188243A/ja
Publication of JP2009188243A publication Critical patent/JP2009188243A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Memories (AREA)

Abstract

【課題】コンタクトホールへのプラグ導電部の埋設時などに、水素バリア膜と上部電極との界面を通って水素が侵入し、強誘電体膜が特性劣化してしまうのを防止した、強誘電体メモリ装置とその製造方法を提供する。
【解決手段】基板21上方に設けられた第1電極32、強誘電体膜33、第2電極34を有する強誘電体キャパシタ3と、強誘電体キャパシタ3の第2電極34の上面を覆って形成された水素トラップ膜4と、水素トラップ膜4及び強誘電体キャパシタの側面とを覆って設けられた絶縁性水素バリア膜5と、絶縁性水素バリア膜5を覆って設けられた層間絶縁膜6と、層間絶縁膜6と絶縁性水素バリア膜5と水素トラップ膜4とを貫通して第2電極34に通じるコンタクトホール70と、コンタクトホール70内に設けられたプラグ導電部7と、を含む強誘電体メモリ装置1。
【選択図】図1

Description

本発明は、強誘電体メモリ装置及びその製造方法に関する。
強誘電体メモリ装置(FeRAM)は、低電圧および高速動作が可能な不揮発性メモリであり、メモリセルを1トランジスタ/1キャパシタ(1T/1C)で構成することができる。したがって、DRAMなみの集積化が可能であり、大容量不揮発性メモリとして期待されている。
このような強誘電体メモリ装置における強誘電体キャパシタでは、その強誘電体膜が、チタン酸ジルコン酸鉛(Pb(Zi,Ti)O;PZT)やタンタル酸ビスマスストロンチウム(SrBiTa;SBT)等の強電体材料によって形成されている。しかし、このような材料からなる強誘電体膜は、強誘電体メモリ装置の製造過程で発生する水素によって還元され、その強誘電体特性が容易に劣化してしまう。そこで、従来では水素による特性劣化防止のため、強誘電体キャパシタの外周にアルミニウム酸化物等の絶縁性の水素バリア膜を設けている(例えば、特許文献1参照)。
特開2007−242929号公報
ところが、このように水素バリア膜を形成しても、特に強誘電体キャパシタにおける上部電極に対して電圧印加・電荷取出しのためにコンタクトホールを形成する必要上、強誘電体キャパシタ全体を水素バリア膜で完全に覆うことはできず、したがってある程度の水素ダメージが避けられないのが現状である。すなわち、前記のコンタクトホールを形成した後、通常はここにタングステン(W)からなるプラグ導電部を埋設するが、このタングステンの成膜時に、その雰囲気中に水素が存在してしまうからである。
この雰囲気中の水素については、コンタクトホールを通って上部電極上に至り、さらに上部電極中を拡散する水素に対しては、上部電極として水素バリア機能を有する材料を用いることで、これが強誘電体膜に到達するのを防止することができる。しかし、低抵抗かつ水素バリア機能を有する材料は今のところ提供されていない。したがって、水素バリア機能を有する材料のみで上部電極を形成するのは、電極としての機能を考えた場合に現実的ではない。よって、特にコンタクトホールに埋設されたプラグ導電部とのコンタクト抵抗を低減化するため、上部電極の最上面には、実質的に水素バリア機能がない、低抵抗の導電材料を用いるのが一般的である。
ところが、このような構造では、特に水素バリア膜となるアルミニウム酸化物等の酸化膜と、上部電極の最上層に用いられる低抵抗の導電材料、例えば高融点金属との間は密着性が低いことなどから、水素バリア膜と上部電極との界面が水素の侵入経路になってしまい、この界面を通って水素が強誘電体膜に容易に到達してしまう。しかしながら、このような界面を拡散経路とする水素の侵入に対し、有効な防止策がとられていないのが現状である。
本発明は前記課題を解決するためになされたもので、特にコンタクトホールへのプラグ導電部の埋設時などに、水素バリア膜と上部電極との界面を通って水素が侵入し、強誘電体膜を還元させることでその強誘電体特性を劣化させてしまうことを防止した、強誘電体メモリ装置とその製造方法を提供することにある。
本発明の強誘電体メモリ装置は、基板上方に設けられた第1電極と該第1電極上に設けられた強誘電体膜と該強誘電体膜上に設けられた第2電極とを有する強誘電体キャパシタと、
前記強誘電体キャパシタの前記第2電極の上面を覆って形成された水素トラップ膜と、
前記水素トラップ膜の上面及び側面と前記強誘電体キャパシタの側面とを覆って設けられた絶縁性水素バリア膜と、
前記絶縁性水素バリア膜を覆って設けられた層間絶縁膜と、
前記層間絶縁膜と前記絶縁性水素バリア膜と前記水素トラップ膜とを貫通して前記第2電極に通じるコンタクトホールと、
前記コンタクトホール内に設けられたプラグ導電部と、を含むことを特徴としている。
この強誘電体メモリ装置によれば、強誘電体キャパシタの第2電極の上面を覆って水素トラップ膜が設けられ、該水素トラップ膜の上面を覆って絶縁性水素バリア膜が設けられているので、例えばコンタクトホールへのプラグ導電部の埋設時などに、従来のように雰囲気中の水素がコンタクトホール内に侵入し、第2電極と絶縁性水素バリア膜との界面を拡散しようとしても、これら第2電極と絶縁性水素バリア膜との間の水素トラップ膜に容易にトラップされてしまう。したがって、絶縁性水素バリア膜と第2電極との間を通って水素が侵入し、強誘電体膜に到達してしまうことが防止され、強誘電体膜が水素によって還元されることによる強誘電体特性の劣化が防止される。
また、前記強誘電体メモリ装置においては、前記絶縁性水素バリア膜がアルミニウム酸化物からなっているのが好ましい。
このようにすれば、アルミニウム酸化物はカバレッジ性が良いため、水素トラップ膜の上面及び側面と強誘電体キャパシタの側面とを良好に覆うことができる。
また、前記強誘電体メモリ装置においては、前記水素トラップ膜が、イリジウム酸化物、チタン酸化物から選択された少なくとも一種からなるのが好ましい。
このようにすれば、特に絶縁性水素バリア膜がアルミニウム酸化物からなっている場合に、この絶縁性水素バリア膜との間の密着性が高いことから、絶縁性水素バリア膜と上部電極との間を通って水素が侵入するのをより確実に防止することができる。また、第2電極に通じるコンタクトホールを形成する際、絶縁性水素バリア膜をオーバーエッチングすることで容易に水素トラップ膜もエッチングすることできる。
また、前記強誘電体メモリ装置においては、水素トラップ膜の厚さが、2nm以上20nm以下であるのが好ましい。
20nm以下の薄さにすることにより、絶縁性水素バリア膜をオーバーエッチングすることによって水素トラップ膜を容易にエッチングすることできる。また、2nm以上にすることで良好な膜質が得られ、水素トラップ膜としての機能が十分に発揮される。
また、前記強誘電体メモリ装置においては、前記第2電極に、少なくとも導電性金属酸化物膜が含まれているのが好ましい。
導電性金属酸化物膜は水素トラップ性を有するので、上部電極中を拡散しようとする水素に対して、この導電性金属酸化物膜がその水素トラップ性を発揮することにより、水素が強誘電体膜に到達するのが防止される。
また、前記強誘電体メモリ装置においては、第2電極は、少なくともその最表層が金属膜であるのが好ましい。
このようにすれば、この第2電極に接続するプラグ導電部とのコンタクト抵抗が低減化する。また、絶縁性水素バリア膜と水素トラップ膜とを貫通させて第2電極に通じるコンタクトホールを形成する際、特に水素トラップ膜を金属酸化物で形成した場合に、該水素トラップ膜と前記金属膜との間でエッチング比を大きくするのが容易になり、したがって、前記金属膜を絶縁性水素バリア膜および水素トラップ膜に対するエッチングのストッパ層として機能させることができる。
本発明の強誘電体メモリ装置の製造方法は、基板上方に、第1電極層と強誘電体層と第2電極層と水素トラップ層とを積層する工程と、
前記第1電極層と前記強誘電体層と前記第2電極層と前記水素トラップ層とをパターニングして、第1電極と強誘電体膜と第2電極とを含む強誘電体キャパシタと、該強誘電体キャパシタの前記第2電極の上面を覆う水素トラップ膜とを形成する工程と、
前記水素トラップ膜の上面及び側面と前記強誘電体キャパシタの側面とを覆って水素バリア膜を形成する工程と、
前記水素バリア膜を覆って層間絶縁膜を形成する工程と、
前記層間絶縁膜と前記水素バリア膜と前記水素トラップ膜とをエッチングして、前記第2電極に通じるコンタクトホールを形成する工程と、
前記コンタクトホール内に、プラグ導電部を形成する工程と、を含むことを特徴としている。
この強誘電体メモリ装置の製造方法によれば、強誘電体キャパシタの第2電極の上面を覆って水素トラップ膜を形成し、該水素トラップ膜の上面を覆って絶縁性水素バリア膜を形成するので、例えばコンタクトホールへのプラグ導電部の埋設時などに、従来のように雰囲気中の水素がコンタクトホール内に侵入し、第2電極と絶縁性水素バリア膜との界面を拡散しようとしても、この水素を第2電極と絶縁性水素バリア膜との間の水素トラップ膜で容易にトラップすることができる。したがって、絶縁性水素バリア膜と第2電極との間を通って水素が侵入し、強誘電体膜に到達してしまうことを防止することができ、これにより、強誘電体膜が水素によって還元されることによる強誘電体特性の劣化を防止することができる。
また、前記強誘電体メモリ装置の製造方法においては、前記絶縁性水素バリア膜を、アルミニウム酸化物で形成するのが好ましい。
このようにすれば、アルミニウム酸化物はカバレッジ性が良いため、水素トラップ膜の上面及び側面と強誘電体キャパシタの側面とを良好に覆うことができる。
また、前記強誘電体メモリ装置の製造方法においては、前記水素トラップ膜を、イリジウム酸化物、チタン酸化物から選択された少なくとも一種から形成するのが好ましい。
このようにすれば、特に絶縁性水素バリア膜がアルミニウム酸化物からなっている場合に、この絶縁性水素バリア膜との間の密着性が高いことから、絶縁性水素バリア膜と上部電極との間を通って水素が侵入するのをより確実に防止することができる。また、第2電極に通じるコンタクトホールを形成する際、絶縁性水素バリア膜をオーバーエッチングすることで容易に水素トラップ膜もエッチングすることできる。
また、前記強誘電体メモリ装置の製造方法においては、前記水素トラップ膜の厚さを、2nm以上20nm以下にするのが好ましい。
20nm以下の薄さにすることにより、絶縁性水素バリア膜をオーバーエッチングすることによって水素トラップ膜を容易にエッチングすることできる。また、2nm以上にすることで良好な膜質が得られ、水素トラップ膜としての機能が十分に発揮される。
また、前記強誘電体メモリ装置の製造方法においては、前記第2電極が、少なくとも導電性金属酸化物膜を含んでいるのが好ましい。
導電性金属酸化物膜は水素トラップ性を有するので、上部電極中を拡散しようとする水素に対して、この導電性金属酸化物膜がその水素トラップ性を発揮することにより、水素が強誘電体膜に到達するのを防止することができる。
また、前記強誘電体メモリ装置の製造方法においては、前記第2電極は、少なくともその最表層が金属膜であるのが好ましい。
このようにすれば、この第2電極に接続するプラグ導電部とのコンタクト抵抗が低減化する。また、絶縁性水素バリア膜と水素トラップ膜とを貫通させて第2電極に通じるコンタクトホールを形成する際、特に水素トラップ膜を金属酸化物で形成した場合に、該水素トラップ膜と前記金属膜との間でエッチング比を大きくするのが容易になり、したがって、前記金属膜を絶縁性水素バリア膜および水素トラップ膜に対するエッチングのストッパ層として機能させることができる。
以下、本発明を詳しく説明する。
図1は、本発明の強誘電体メモリ装置の一実施形態の、概略構成を示す要部側断面図であり、図1中符号1はスタック型の強誘電体メモリ装置である。この強誘電体メモリ装置1は、基体2上に設けられた強誘電体キャパシタ3と、強誘電体キャパシタ3の上面を覆って設けられた水素トラップ膜4と、水素トラップ膜4の上面及び側面と強誘電体キャパシタ3の側面とを覆って設けられた絶縁性水素バリア膜(以下、水素バリア膜と記す)5と、水素バリア膜5及び基体2を覆って設けられた層間絶縁膜6と、を備えて構成されている。また、本実施形態では、層間絶縁膜6上にアルミニウムからなる配線(ビット線)81及び配線(グランド線)82が設けられている。
前記基体2は、本実施形態ではシリコン基板(基板)21上に設けられたトランジスタ(駆動素子)22と、トランジスタ22を覆って設けられたSiOからなる第1下地絶縁膜23と、第1下地絶縁膜23を覆って設けられたSiNからなる第2下地絶縁膜24と、を備えて構成されている。シリコン基板21の表層には素子分離領域25が設けられており、素子分離領域25の間が1つのメモリセルと対応している。
前記トランジスタ22は、シリコン基板21上に設けられたゲート絶縁膜221と、ゲート絶縁膜221上に設けられたゲート電極222と、シリコン基板21表層におけるゲート電極222の両側に設けられたソース領域223及びドレイン領域224と、ゲート電極222の側面に設けられたサイドウォール225と、から構成されている。本実施形態では、ソース領域223上にこれと導通するタングステン(W)からなる第1プラグ26が設けられており、ドレイン領域224上にこれと導通するタングステンからなる第2プラグ27が設けられている。第1プラグ26は、層間絶縁膜6に設けられたタングステンからなる第3プラグ65と電気的に接続されており、第3プラグ65は配線81と電気的に接続されている。すなわち、トランジスタ22のソース領域223は、第1プラグ26及び第3プラグ65を介して、配線81と電気的に接続されている。
前記強誘電体キャパシタ3は、第2プラグ27上に設けられ、すなわち、前記シリコン基板21の上方に設けられたもので、下部電極(第1電極)32と、強誘電体膜33と、上部電極(第2電極)34と、を備えて構成されたものである。また、本実施形態では、第2プラグ27と強誘電体キャパシタ3との間に、バリア層31が設けられている。このバリア層31は、第2プラグ27に導通する導電性のもので、酸素バリア性を有する材料からなり、例えばTiAlN、TiAl、TiSiN、TiN、TaN、TaSiNなどによって形成されたものである。なお、本実施形態ではTiAlNによって形成されている。
下部電極32は、例えばIr(イリジウム)、Pt(白金)、Ru(ルテニウム)、Rh(ロジウム)、Pd(パラジウム)、Os(オスミウム)のうちから少なくとも1種、またはこれらの合金あるいはこれらの酸化物からなっている。なお、この下部電極32としては、前記したIrやPtなどの単層膜であっても、積層した多層膜であってもよく、多層膜としては、Ir膜(又はPt膜)、IrOx(イリジウム酸化物)膜、Ir膜(又はPt膜)を前記バリア層31側からこの順に積層してなるものが好適とされる。したがって、本実施形態では、この多層膜(積層膜)が下部電極32として採用されている。また、この下部電極32は、バリア層31及び第2プラグ27を介してドレイン領域224に電気的に接続されている。
強誘電体膜33は、下部電極32上に設けられており、強誘電体材料からなるものである。代表的な強誘電体材料としては、ABOの一般式で示されるペロブスカイト型の結晶構造を有する材料、具体的にはPZT(Pb(Zr、Ti)O)やPLZT((Pb、La)(Zr、Ti)O)、これらにニオブ(Nb)等の金属が加えられたもの等が挙げられる。本実施形態では、強誘電体材料としてPZTが用いられている。
上部電極34は、前記した下部電極32と同様の材料によって形成されたもので、本実施形態では、Ir膜(又はPt膜)、IrOx(イリジウム酸化物)膜、Ir膜(又はPt膜)が前記強誘電体膜33側からこの順に積層されたものとなっている。すなわち、この上部電極34は、図2に示すように強誘電体膜33側から順に、Ir膜又はPt膜からなる低抵抗金属膜34a、IrOx膜からなる金属酸化物膜(導電性金属酸化物膜)34b、Ir膜又はPt膜からなる低抵抗金属膜34cが積層された、多層膜によって形成されている。そして、その最表層となる低抵抗金属膜34cに、後述する第4プラグ(プラグ導電部)7が電気的に接続されている。なお、この多層膜からなる上部電極34は、その厚さが20nm〜100nm程度、本実施形態では50nm程度になっている。
このような上部電極34や前記の下部電極32は、異なる材料の膜が複数積層された多層膜となっているので、電極としての機能以外にも、種々の機能を発揮するようになっている。具体的には、強誘電体膜33と上部電極34との間、または強誘電体膜33と下部電極32との間の密着性を高める機能や、酸素バリア膜や水素バリア膜としての機能、強誘電体膜33の結晶配向性を高める機能等を発揮するようになっている。
特に、上部電極34における前記金属酸化物膜34b、すなわちIrOx膜は、水素トラップ性を有するので、上部電極34中を拡散しようとする水素に対して、この金属酸化物膜34bがその水素トラップ性を発揮することにより、水素が強誘電体膜33に到達するのを防止することができる。
また、最表層を低抵抗金属膜34cとしたので、この低抵抗金属膜34cに接続する第4プラグ(プラグ導電部)7とのコンタクト抵抗が低減化する。
前記水素トラップ膜4は、金属酸化物などの水素トラップ性を有する材料からなるもので、イリジウム酸化物(IrOx)、チタン酸化物(TiOx)、ジルコニウム酸化物(ZrOx)等から選択された少なくとも一種からなっている。特に、イリジウム酸化物(IrOx)及びチタン酸化物(TiOx)は水素トラップ性に優れているため、好適とされる。この水素トラップ膜4は、その厚さが2nm以上20nm以下に形成されているのが好ましい。20nm以下の薄さにすることにより、後述するようにコンタクトホールを形成する際、前記水素バリア膜5をオーバーエッチングすることで、この水素トラップ膜4を容易にエッチングすることできるようになる。また、2nm以上にすることで、良好な膜質が得られ、水素トラップ膜4としての機能が十分に発揮されるようになる。
前記水素バリア膜5は、水素バリア性を有する絶縁材料からなっており、本実施形態では、厚さ20nm〜50nm程度のAlOx(アルミニウム酸化物)からなっている。強誘電体キャパシタ3の強誘電体膜33は、前述したように酸化物からなっているので、水素ガス等の還元ガスに曝されると還元され劣化してしまう。そこで、強誘電体キャパシタ3及び前記水素トラップ膜4を水素バリア膜5で覆うことにより、水素等による強誘電体キャパシタ3の劣化を防止するようにしている。なお、アルミニウム酸化物はカバレッジ性が良いため、後述するように水素トラップ膜4と強誘電体キャパシタ3の側面とを良好に覆うことができる。
また、強誘電体キャパシタ3上には、図1に示すように層間絶縁膜6、水素バリア膜5、及び水素トラップ膜4を貫通して強誘電体キャパシタ3の上部電極34に通じるコンタクトホール70が形成されている。このコンタクトホール70には、その内壁面を覆ってTiやTiNからなる密着層(図示せず)が必要に応じて設けられ、さらにその内部に、タングステンからなる第4プラグ(プラグ導電部)7が埋設されている。第4プラグ7は、上部電極34の低抵抗金属膜34cに導通しており、また前記配線82と電気的に接続されている。これにより、強誘電体キャパシタ3の上部電極34は、配線82と電気的に接続されている。
以上の構成により、前記トランジスタ22のゲート電極222に電圧が印加されると、ソース領域223とドレイン領域224との間に電界が印加されてチャネルがオンとなり、ここに電流が流れるようになる。チャネルがオンになると、ソース領域223と電気的に接続された前記配線81からの電気信号がドレイン領域224に伝達され、さらにドレイン電極224と電気的に接続された前記強誘電体キャパシタ3の下部電極32に伝達される。そして、強誘電体キャパシタ3の上部電極34と下部電極32との間に電圧が印加され、強誘電体膜33に電荷(データ)が蓄積される。このように、強誘電体キャパシタ3への電気信号をトランジスタ(駆動素子)22でスイッチング(駆動)することにより、強誘電体メモリ装置1は、データ(電荷)を読出しあるいは書込みすることができるようになっている。
次に、本発明の強誘電体メモリ装置の製造方法の一実施形態を、前記強誘電体メモリ装置1の製造方法に基づいて説明する。
図3(a)〜(d)、図4(a)〜(c)は、本実施形態の強誘電体メモリ装置の製造方法を示す断面工程図である。なお、これらの図のうちの一部では、トランジスタ22等の下部構造を省略し、要部のみを示している。
まず、図3(a)に示すように、公知の方法等を用いて基体2を形成する。具体的には、例えばシリコン基板(基板)21にLOCOS法やSTI法等で素子分離領域25を形成し、続いて素子分離領域25間のシリコン基板21上に熱酸化法等でゲート絶縁膜221を形成する。次に、ゲート電極222上に多結晶シリコン等からなるゲート電極222を形成する。次いで、素子分離領域25とゲート電極222との間におけるシリコン基板21の表層に不純物を注入し、ドープ領域223、224を形成する。そして、エッチバック法によってサイドウォール225を形成する。本実施形態では、ドープ領域223をソース領域として機能させ、ドープ領域224をドレイン領域として機能させる。
次いで、トランジスタ22が形成されたシリコン基板21上に、例えばCVD法でSiOを成膜して第1下地絶縁膜23を形成し、この上に例えばCVD法でSiNを成膜して第2下地絶縁膜24を形成する。そして、ソース領域223上とドレイン領域224上とにおける第1下地絶縁膜23及び第2下地絶縁膜24をエッチングして、ソース領域223を露出させる貫通孔とドレイン領域224を露出させる貫通孔とを形成する。そして、これら貫通孔内のそれぞれに、例えばTiとTiNをスパッタリング法で順次成膜して、密着層(図示せず)を形成する。
次いで、前記貫通孔内を含む第2下地絶縁膜24上の全面に、例えばCVD法でタングステンを成膜して前記貫通孔内にタングステンを埋め込む。続いて、第2下地絶縁膜24上をCMP法等で研磨することにより、第2下地絶縁膜24上のタングステン及び前記Ti、TiNを除去する。このようにして、前記貫通孔内にそれぞれ第1プラグ26、第2プラグ27を埋設する。なお、SiNからなる第2下地絶縁膜24は、SiOからなる第1下地絶縁膜23よりCMP法における研磨速度が低いので、第1下地絶縁膜23上がCMP法で過剰に研磨されることが防止されている。
次に、図3(b)に示すように、前記基体2の第2下地絶縁膜24上に、強誘電体キャパシタ3の材料層を形成する。本実施形態では、まず強誘電体キャパシタ3の下地となるバリア層31の材料層31aとして、TiAlN(チタンアルミナイトライド)をスパッタリング法で形成する。次いで、この上に下部電極32の材料層(第1電極層)32aとして、例えばIr(イリジウム)、IrOx(イリジウム酸化物)、Pt(プラチナ)をスパッタリング法で順次成膜する。次いで、この上に強誘電体膜33の材料層(強誘電体層)33aとして、(Pb(Zi,Ti)O(PZT)をゾルゲル法(CSD法)やスパッタリング法、MOCVD法等で成膜する。次いで、この上に上部電極34の材料層(第2電極層)34aとして、例えばPt、IrOx、Irをスパッタリング法で順次成膜する。さらに、本実施形態では、上部電極34の材料膜34aの上に、水素トラップ膜4の材料層(水素トラップ層)4aとして、イリジウム酸化物(IrOx)あるいはチタン酸化物(TiOx)をスパッタリング法等で成膜する。
次に、図3(c)に示すように、前記材料層31a、32a、33a、34a、4a、を一括してパターニングし、バリア層31、下部電極32と強誘電体膜33と上部電極34とからなる強誘電体キャパシタ3、及び水素トラップ膜4を形成する。具体的には、まず、前記水素トラップ膜4の材料層4a上に、公知のレジスト技術及びフォトリソグラフィー法等を用いてレジストパターン(図示せず)やハードマスクを形成する。そして、これらレジストパターンやハードマスクをマスクにして前記材料層4a、34a、33a、32a、31aを順次エッチングし、水素トラップ膜4、強誘電体キャパシタ3及びバリア層31を形成する。
次に、これら水素トラップ膜4、強誘電体キャパシタ3、バリア層31を含む第2下地絶縁膜24上の全面に、水素バリア膜5の材料層としてAlOx膜(図示せず)をスパッタリング法、CVD法又はALCVD(Atomic Layer CVD、原子層堆積)法で形成する。次いで、公知のレジスト技術及びエッチング技術等を用いて、図3(d)に示すように前記AlOx膜をパターニングし、前記水素トラップ膜4の上面及び側面と、強誘電体キャパシタ3の側面、さらにバリア層31の側面及び強誘電体キャパシタ3周辺の第2下地絶縁膜24を覆って、水素バリア膜5を形成する。
水素バリア膜5を形成する際にALCVD法を用いた場合は、カバレッジ性が良くなるため、水素バリア膜5は水素トラップ膜4の上面及び側面、さらには強誘電体キャパシタ3の側面などを良好に覆うようになる。また、従来のように金属膜上に直接設けられる場合に比べ、イリジウム酸化物(IrOx)あるいはチタン酸化物(TiOx)からなる水素トラップ膜4の上に設けられているので、このような金属酸化物に対して良好に密着し、これを覆うようになる。
次に、図4(a)に示すように、水素バリア膜5を含む前記第2下地絶縁膜24上を覆って、例えばTEOS等を原料ガスに用いたCVD法によってSiOを堆積させ、これをCMP法やエッチバック法等で平坦化して層間絶縁膜6を形成する。一般に、層間絶縁膜6の原料ガス(TEOS)が化学反応する際には、水素ガスや水蒸気等の還元ガスが発生する。前記強誘電体キャパシタ3の強誘電体膜33は、酸化物(本実施形態ではPZT)からなっており、したがって還元ガスに還元されると酸素欠損が引き起こされ、強誘電体膜33は強誘電体特性が損なわれて劣化してしまう。しかしながら、強誘電体キャパシタ3を覆って水素バリア膜5を形成しているので、強誘電体キャパシタ3が還元ガスに曝されることが防止され、強誘電体膜33が劣化することなく層間絶縁膜6を形成することができる。
次に、図4(b)に示すように、前記強誘電体キャパシタ3上の層間絶縁膜6、水素バリア膜5、及び水素トラップ膜4をエッチングして、強誘電体キャパシタ3の上部電極34を露出させるコンタクトホール70を形成する。本実施形態では、まず、層間絶縁膜6上に公知のレジスト技術及びフォトリソグラフィー法等を用いてレジストパターン(図示せず)を形成する。そして、これをマスクとしてドライエッチング法等により、層間絶縁膜6をエッチングし、さらに水素バリア膜5をエッチングする。
また、水素バリア膜5をエッチングする際、特にこの水素バリア膜5をオーバーエッチングすることにより、水素バリア膜5とともに水素トラップ4も一括してエッチングする。水素バリア膜5の厚さを20nm〜50nm程度としており、一方、水素トラップ膜4の厚さを20nm以下にしていることから、水素バリア膜5のエッチング条件で水素トラップ膜4を十分にエッチングすることができるからである。
また、このようにして水素トラップ膜4をエッチングした際、特に水素トラップ膜4を金属酸化物で形成し、上部電極34の最表層を金属膜(低抵抗金属膜34c)としているので、この金属膜を、水素バリア膜5および水素トラップ膜4に対するエッチングのストッパ層として機能させることができる。金属酸化物からなる水素トラップ膜4と金属膜(低抵抗金属膜34c)との間で、エッチング比が十分に大きくとれるからである。
次に、図4(c)に示すように、コンタクトホール70内に露出した上部電極34に導通するようにして、第4プラグ(プラグ導電部)7を埋設する。なお、必要に応じて、この第4プラグ(プラグ導電部)7の埋設に先立ち、上部電極34上及びコンタクトホール70の内壁面を覆って、Ti及びTiNを密着層として形成してもよい。
第4プラグ(プラグ導電部)7を埋設するには、まず、コンタクトホール70内を含む層間絶縁膜6の全面に、CVD法でタングステン(W)を成膜してコンタクトホール70内にタングステンを埋め込む。続いて、層間絶縁膜6上をCMP法で研磨しつつ平坦化することにより、層間絶縁膜6上のタングステンを除去して、第4プラグ7をコンタクトホール70内に埋設する。
このようにしてタングステンをCVD法で成膜すると、前述したようにこのタングステンの成膜時にはその雰囲気中に水素が存在するようになるため、従来ではこの水素によって強誘電体膜33が一部還元されて酸素欠損が引き起こされ、強誘電体特性が劣化していた。しかしながら、本発明では、上部電極34と水素バリア膜5との間に水素トラップ膜4を設けているので、雰囲気中の水素がコンタクトホール70内に侵入し、上部電極34と水素バリア膜5との界面を拡散しようとしても、この水素をこれら上部電極34と水素バリア膜5との間の水素トラップ膜4によって容易にトラップすることができる。
すなわち、従来ではコンタクトホール70から侵入した水素が、上部電極34の上面と水素バリア膜5との界面を通って上部電極34の側面側に回り込み、さらに上部電極34の側面と水素バリア膜5との界面を通って強誘電体膜33に到達し、この強誘電体膜33を一部還元していた。これに対して本発明では、上部電極34と水素バリア膜5との間に水素トラップ膜4を設け、これによって上部電極34の上面と水素バリア膜5との界面を通る水素をその経路中で確実にトラップし、上部電極34の側面側に回り込まないようにしている。つまり、コンタクトホール70から上部電極34の側面にまで至る経路の長さ(例えば400nm)は、上部電極34の厚さ(例えば50nm)に比べて十分に長いため、この経路中において水素は、水素トラップ膜4に確実にトラップされるようになっている。また、前記したように水素トラップ膜4と水素バリア膜5との間の密着性が高いことから、これらの間(界面)を通ろうとする水素の量が少なくなり、これによって水素トラップ膜4による水素のトラップ性が高まり、水素に起因する強誘電体膜33の劣化が防止されている。
また、層間絶縁膜6の前記第1プラグ26上に、これと導通する第3プラグ65を形成する。具体的には、第1プラグ26等と同様に、第1プラグ26を露出させる貫通孔を形成し、この貫通孔内に例えばTiとTiNを順次スパッタリング法で成膜して、密着層(図示せず)を形成する。そして、前記貫通孔内を含む層間絶縁膜6上の全面に、例えばCVD法でタングステンを成膜して前記貫通孔内にタングステンを埋め込み、層間絶縁膜6上をCMP法等で研磨することにより、層間絶縁膜6上のタングステンを除去する。このようにして前記貫通孔内に第3プラグ65を埋設する。
そして、第3プラグ65が形成された層間絶縁膜6上に、例えばアルミニウムをスパッタリング法等で成膜し、この膜を公知のレジスト技術及びエッチング技術等を用いてパターニングする。これにより、図1に示したように前記第3プラグ65と導通する配線(ビット線)81と、前記第4プラグ7と導通する配線(グランド線)82と、を形成する。このようにして、強誘電体メモリ装置1を製造することができる。
このようにして得られた強誘電体メモリ装置1にあっては、上部電極34と水素バリア膜5との間に水素トラップ膜4を設けているので、例えばコンタクトホール70への第4プラグ(プラグ導電部)7の埋設時などに、雰囲気中の水素がコンタクトホール70内に侵入しても、これを水素トラップ膜4で容易にトラップすることができる。したがって、水素バリア膜5と上部電極34との間を通って水素が侵入し、強誘電体膜33に到達してしまうことを防止することができ、これにより、強誘電体膜33が還元されてしまうことによってその強誘電体特性が劣化してしまうのを防止することができる。
また、この強誘電体メモリ装置1の製造方法にあっては、プロセス中に雰囲気中の水素によって強誘電体膜33の強誘電体特性が劣化してしまうのを防止することができ、したがって良好な強誘電体特性を有する強誘電体キャパシタ3を備えた強誘電体メモリ装置1を提供することができる。
なお、本発明は前記実施形態に限定されることなく、本発明の要旨を逸脱しない範囲で種々の変更が可能である。例えば、前記実施形態ではスタック型の強誘電体メモリ装置1を採用したが、プレーナ型等を採用してもよい。
また、バリア層31についても、TiAlNによる単層構造でなく、例えばTiNとTiAlNとをこの順に積層してなる構造としてもよく、さらには、このバリア層31を省略して直接下部電極32を形成するようにしてもよい。
本発明の強誘電体メモリ装置の一実施形態の概略構成を示す側断面図である。 強誘電体キャパシタを示す要部拡大図である。 (a)〜(d)は強誘電体メモリ装置の製造方法を示す工程説明図である。 (a)〜(c)は強誘電体メモリ装置の製造方法を示す工程説明図である。
符号の説明
1…強誘電体メモリ装置、2…基体、3…強誘電体キャパシタ、4…水素トラップ膜、5…水素バリア膜(絶縁性水素バリア膜)、6…層間絶縁膜、7…第4プラグ(プラグ導電部)、21…シリコン基板(基板)、22…トランジスタ(駆動素子)、32…下部電極(第1電極)、33…強誘電体膜、34…上部電極(第2電極)、34a…低抵抗金属膜34a、34b…金属酸化物膜(導電性金属酸化物膜)、34c…低抵抗金属膜、70…コンタクトホール

Claims (12)

  1. 基板上方に設けられた第1電極と該第1電極上に設けられた強誘電体膜と該強誘電体膜上に設けられた第2電極とを有する強誘電体キャパシタと、
    前記強誘電体キャパシタの前記第2電極の上面を覆って形成された水素トラップ膜と、
    前記水素トラップ膜の上面及び側面と前記強誘電体キャパシタの側面とを覆って設けられた絶縁性水素バリア膜と、
    前記絶縁性水素バリア膜を覆って設けられた層間絶縁膜と、
    前記層間絶縁膜と前記絶縁性水素バリア膜と前記水素トラップ膜とを貫通して前記第2電極に通じるコンタクトホールと、
    前記コンタクトホール内に設けられたプラグ導電部と、を含むことを特徴とする強誘電体メモリ装置。
  2. 前記絶縁性水素バリア膜がアルミニウム酸化物からなることを特徴とする請求項1記載の強誘電体メモリ装置。
  3. 前記水素トラップ膜が、イリジウム酸化物、チタン酸化物から選択された少なくとも一種からなることを特徴とする請求項1又は2に記載の強誘電体メモリ装置。
  4. 前記水素トラップ膜の厚さが、2nm以上20nm以下であることを特徴とする請求項1〜3のいずれか一項に記載の強誘電体メモリ装置。
  5. 前記第2電極には、少なくとも導電性金属酸化物膜が含まれていることを特徴とする請求項1〜4のいずれか一項に記載の強誘電体メモリ装置。
  6. 前記第2電極は、少なくともその最表層が金属膜であることを特徴とする請求項1〜5のいずれか一項に記載の強誘電体メモリ装置。
  7. 基板上方に、第1電極層と強誘電体層と第2電極層と水素トラップ層とを積層する工程と、
    前記第1電極層と前記強誘電体層と前記第2電極層と前記水素トラップ層とをパターニングして、第1電極と強誘電体膜と第2電極とを含む強誘電体キャパシタと、該強誘電体キャパシタの前記第2電極の上面を覆う水素トラップ膜とを形成する工程と、
    前記水素トラップ膜の上面及び側面と前記強誘電体キャパシタの側面とを覆って水素バリア膜を形成する工程と、
    前記水素バリア膜を覆って層間絶縁膜を形成する工程と、
    前記層間絶縁膜と前記水素バリア膜と前記水素トラップ膜とをエッチングして、前記第2電極に通じるコンタクトホールを形成する工程と、
    前記コンタクトホール内に、プラグ導電部を形成する工程と、を含むことを特徴とする強誘電体メモリ装置の製造方法。
  8. 前記絶縁性水素バリア膜を、アルミニウム酸化物で形成することを特徴とする請求項7記載の強誘電体メモリ装置の製造方法。
  9. 前記水素トラップ膜を、イリジウム酸化物、チタン酸化物から選択された少なくとも一種から形成することを特徴とする請求項7又は8に記載の強誘電体メモリ装置の製造方法。
  10. 前記水素トラップ膜の厚さを、2nm以上20nm以下にすることを特徴とする請求項7〜9のいずれか一項に記載の強誘電体メモリ装置の製造方法。
  11. 前記第2電極が、少なくとも導電性金属酸化物膜を含むことを特徴とする請求項7〜10のいずれか一項に記載の強誘電体メモリ装置の製造方法。
  12. 前記第2電極は、少なくともその最表層が金属膜であることを特徴とする請求項7〜11のいずれか一項に記載の強誘電体メモリ装置の製造方法。
JP2008027647A 2008-02-07 2008-02-07 強誘電体メモリ装置及びその製造方法 Withdrawn JP2009188243A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008027647A JP2009188243A (ja) 2008-02-07 2008-02-07 強誘電体メモリ装置及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008027647A JP2009188243A (ja) 2008-02-07 2008-02-07 強誘電体メモリ装置及びその製造方法

Publications (1)

Publication Number Publication Date
JP2009188243A true JP2009188243A (ja) 2009-08-20

Family

ID=41071187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008027647A Withdrawn JP2009188243A (ja) 2008-02-07 2008-02-07 強誘電体メモリ装置及びその製造方法

Country Status (1)

Country Link
JP (1) JP2009188243A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012173234A (ja) * 2011-02-24 2012-09-10 Seiko Epson Corp 焦電型検出器、焦電型検出装置及び電子機器
JP2012256702A (ja) * 2011-06-08 2012-12-27 Rohm Co Ltd 強誘電体キャパシタ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012173234A (ja) * 2011-02-24 2012-09-10 Seiko Epson Corp 焦電型検出器、焦電型検出装置及び電子機器
JP2012256702A (ja) * 2011-06-08 2012-12-27 Rohm Co Ltd 強誘電体キャパシタ

Similar Documents

Publication Publication Date Title
JP3331334B2 (ja) 半導体装置の製造方法
US7001821B2 (en) Method of forming and using a hardmask for forming ferroelectric capacitors in a semiconductor device
JP4453846B2 (ja) 強誘電体メモリ装置およびその製造方法
KR101109028B1 (ko) 반도체 장치 및 그 제조 방법
US20090072287A1 (en) Semiconductor device and its manufacturing method
US20090068763A1 (en) Method for manufacturing semiconductor device and its manufacturing method
JP5251129B2 (ja) 半導体装置及びその製造方法
US20080237866A1 (en) Semiconductor device with strengthened pads
JP2009071241A (ja) 半導体装置及びその製造方法
JP5293184B2 (ja) キャパシタを有する半導体装置及びその製造方法
KR100973703B1 (ko) 반도체 장치 및 그 제조 방법
JP2009071022A (ja) 半導体装置の製造方法、及び半導体装置
JP5168273B2 (ja) 半導体装置とその製造方法
JP2003086771A (ja) 容量素子、半導体記憶装置及びその製造方法
JP2010225928A (ja) 半導体記憶装置及びその製造方法
KR100668881B1 (ko) 커패시터 및 그 제조방법
JP2009188243A (ja) 強誘電体メモリ装置及びその製造方法
JP2004207681A (ja) 半導体装置及びその製造方法
JP4798979B2 (ja) 強誘電体メモリの製造方法
JP2002043540A (ja) 半導体装置
JP2010141143A (ja) 半導体装置及びその製造方法
JP2009071141A (ja) 強誘電体メモリ装置の製造方法及び強誘電体メモリ装置
JP2007035915A (ja) 半導体装置及びその製造方法
JP2006059968A (ja) 半導体装置及びその製造方法、強誘電体キャパシタ構造
JP2008294273A (ja) 半導体記憶装置及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110126

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20111222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111226