JP2009167069A - 溶融ガラス滴の微小化部材、ガラスゴブの製造方法、及び、ガラス成形体の製造方法 - Google Patents

溶融ガラス滴の微小化部材、ガラスゴブの製造方法、及び、ガラス成形体の製造方法 Download PDF

Info

Publication number
JP2009167069A
JP2009167069A JP2008009935A JP2008009935A JP2009167069A JP 2009167069 A JP2009167069 A JP 2009167069A JP 2008009935 A JP2008009935 A JP 2008009935A JP 2008009935 A JP2008009935 A JP 2008009935A JP 2009167069 A JP2009167069 A JP 2009167069A
Authority
JP
Japan
Prior art keywords
molten glass
glass
droplet
hole
glass droplet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008009935A
Other languages
English (en)
Other versions
JP5018503B2 (ja
Inventor
Nobuyuki Ikenaga
修志 池永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Opto Inc
Original Assignee
Konica Minolta Opto Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto Inc filed Critical Konica Minolta Opto Inc
Priority to JP2008009935A priority Critical patent/JP5018503B2/ja
Publication of JP2009167069A publication Critical patent/JP2009167069A/ja
Application granted granted Critical
Publication of JP5018503B2 publication Critical patent/JP5018503B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B40/00Preventing adhesion between glass and glass or between glass and the means used to shape it, hold it or support it
    • C03B40/04Preventing adhesion between glass and glass or between glass and the means used to shape it, hold it or support it using gas

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

【課題】溶融ガラスの微小滴を下型に供給する際の位置ばらつきを極小化して、製造するガラスゴブやガラス成形体の品質を安定させることができる溶融ガラス滴の微小化部材を供給する。更に、かかる溶融ガラス滴の微小化部材を用いたガラスゴブの製造方法及びガラス成形体の製造方法を提供する。
【解決手段】貫通孔を有し、該貫通孔の内周面に溶融ガラス滴を衝突させて、該溶融ガラス滴の一部を該貫通孔を通過させて分離することにより溶融ガラスの微小滴を得るための溶融ガラス滴の微小化部材において、溶融ガラス滴と衝突する衝突面は、溶融ガラス滴の入口側に向かって径が広がるテーパー面であり、テーパーの開き角が15°〜28°の範囲である。
【選択図】図1

Description

本発明は、溶融ガラス滴を衝突させて溶融ガラスの微小滴を得るための溶融ガラス滴の微小化部材、それを用いたガラスゴブの製造方法及びガラス成形体の製造方法に関する。
近年、デジタルカメラ用レンズ、DVD等の光ピックアップレンズ、携帯電話用カメラレンズ、光通信用のカップリングレンズ等として、ガラス製の光学素子が広範にわたって利用されている。このようなガラス製の光学素子として、ガラス素材を成形金型で加圧成形して製造したガラス成形体を用いることが多くなってきた。
このようなガラス成形体の製造方法の1つとして、予め所定質量及び形状を有するガラスプリフォームを作製し、該ガラスプリフォームを成形金型とともにガラスが変形可能な温度まで加熱して加圧成形する方法(以下、「リヒートプレス法」ともいう)が知られている。
このようなリヒートプレス法に用いるガラスプリフォームは、従来、研削・研磨等の機械加工によって製造されることが多かったが、機械加工によるガラスプリフォームの作製には多大な労力と時間を要するという問題があった。そのため、溶融ガラス滴を下型に滴下し、滴下した溶融ガラス滴を冷却固化して作製したガラスゴブをガラスプリフォーム(ゴブプリフォーム)として用いる方法が提案されている(例えば、特許文献1参照)。
また、ガラス成形体の別の製造方法として、所定温度に加熱した下型に溶融ガラス滴を滴下し、滴下した溶融ガラス滴を、下型及び下型に対向する上型により加圧成形してガラス成形体を得る方法(以下、「液滴成形法」ともいう)が提案されている(例えば、特許文献2参照)。この方法は、予めガラスプリフォームを作製しておく必要が無く、また、成形金型等の加熱と冷却を繰り返すこと無く溶融ガラス滴から直接ガラス成形体を製造することができるので、1回の成形に要する時間を非常に短くできることから注目されている。
一方、近年における各種光学装置等の小型化に伴い、小型のガラスゴブやガラス成形体の需要が高まっている。そのような小型のガラスゴブやガラス成形体の製造に必要となる溶融ガラスの微小滴の製造方法として、貫通孔を設けた部材(以下、溶融ガラスの微小化部材ともいう)に溶融ガラス滴を衝突させ、溶融ガラス滴の一部を貫通孔を通過させて分離する方法が提案されている(例えば、特許文献3参照)。
特開昭61−146721号公報 特開平1−308840号公報 特開2002−154834号公報
特許文献3に記載の方法により溶融ガラスの微小滴を作製する場合、滴下ノズルから滴下してくる溶融ガラス滴の位置がばらつくことにより、下型に滴下される溶融ガラスの微小滴の質量や位置がばらつくという問題があった。製造するガラスゴブやガラス成形体の品質を安定させるためには、このような微小滴の質量ばらつきや位置ばらつきを抑えることが重要になる。
特許文献3には、溶融ガラス滴を衝突させる面にテーパーを設け、テーパーの開き角を30°〜120°とすることで、下方に落下するガラス微小滴の質量ばらつき、位置ばらつきを減少させることができることが記載されている。
しかしながら、上記方法によっても、製造するガラスゴブやガラス成形体の形状やサイズによっては、依然として品質ばらつきが大きく、安定した品質を確保することができないという問題があった。
本発明者らがこの原因を詳細に検討した結果、このような品質ばらつきは、溶融ガラスの微小滴を下型に滴下(供給)する際の位置ばらつきの影響が大きいことが分かった。中でも、溶融ガラスの微小滴を加圧成形してガラス成形体を製造する場合には、微小滴の質量ばらつきよりも、位置ばらつきの影響が特に顕著であり、厚み精度や面形状精度等の品質に及ぼす影響が非常に大きい。
本発明は上記のような技術的課題に鑑みてなされたものであり、本発明の目的は、溶融ガラスの微小滴を下型に供給する際の位置ばらつきを極小化して、製造するガラスゴブやガラス成形体の品質を安定させることができる溶融ガラス滴の微小化部材を供給すること、並びに、かかる溶融ガラス滴の微小化部材を用いたガラスゴブの製造方法及びガラス成形体の製造方法を提供することである。
上記の課題を解決するために、本発明は以下の特徴を有するものである。
1. 貫通孔を有し、該貫通孔の内周面に溶融ガラス滴を衝突させて、該溶融ガラス滴の一部を該貫通孔を通過させて分離することにより溶融ガラスの微小滴を得るための溶融ガラス滴の微小化部材において、前記溶融ガラス滴と衝突する衝突面は、溶融ガラス滴の入口側に向かって径が広がるテーパー面であり、テーパーの開き角が15°〜28°の範囲であることを特徴とする溶融ガラス滴の微小化部材。
2. 滴下ノズルから滴下した溶融ガラス滴を、貫通孔を有する溶融ガラス滴の微小化部材に衝突させ、該溶融ガラス滴の一部を該貫通孔を通過させて分離し、溶融ガラスの微小滴として下型に供給するガラスゴブの製造方法において、前記溶融ガラス滴の微小化部材は、前記1に記載の溶融ガラス滴の微小化部材であることを特徴とするガラスゴブの製造方法。
3. 滴下ノズルから滴下した溶融ガラス滴を、貫通孔を有する溶融ガラス滴の微小化部材に衝突させ、該溶融ガラス滴の一部を該貫通孔を通過させて分離し、溶融ガラスの微小滴として下型に供給して該下型と上型とで加圧成形するガラス成形体の製造方法において、前記溶融ガラス滴の微小化部材は、前記1に記載の溶融ガラス滴の微小化部材であることを特徴とするガラス成形体の製造方法。
本発明の溶融ガラス滴の微小化部材は、溶融ガラス滴と衝突する衝突面が、溶融ガラス滴の入口側に向かって径が広がるテーパー面であり、テーパーの開き角が15°〜28°の範囲である。そのため、滴下ノズルからの溶融ガラス滴が衝突面に衝突する際、溶融ガラス滴の位置を貫通孔の中心に向かって矯正しようとする力が強く働く。従って、溶融ガラスの微小滴を下型に供給する際の位置ばらつきを極小化することができ、製造するガラスゴブやガラス成形体の品質を安定させることができる。
以下、本発明の実施の形態について図1〜図6を参照しつつ詳細に説明する。
(溶融ガラス滴の微小化部材)
先ず、本発明の溶融ガラス滴の微小化部材(以下、単に微小化部材ともいう)について図1を参照しながら説明する。図1は、本発明の溶融ガラス滴の微小化部材の1例を示す模式図である。図1(a)は溶融ガラス滴が微小化部材に衝突する際の状態を、図1(b)は微小滴が分離された後の状態を、それぞれ示している。
図1に示す微小化部材10は、衝突面12と同径部13とを含む貫通孔11を有している。溶融ガラス滴31と衝突する衝突面12は、貫通孔11の内周面の一部であり、溶融ガラス滴31の入口側に向かって径が広がるテーパー面となっている。この衝突面12に溶融ガラス滴31が衝突すると、その衝撃によって溶融ガラス滴31の一部が貫通孔11を通過し、表面張力に打ち勝って分離することにより溶融ガラスの微小滴32が得られる。このとき、微小滴32が分離された後の余剰ガラス33は、貫通孔11の内部で冷却され固化する。
微小滴32の質量ばらつきは、衝突面12のテーパーの開き角θが30°〜60°程度の範囲の場合に最も小さくなる。しかし、品質を安定させる上で最も重要な位置ばらつきは、かかる条件では十分な精度を得ることができない。本発明者は、鋭意検討の結果、衝突面12のテーパーの開き角θを、15°〜28°の範囲とすることで、溶融ガラスの微小滴32を下型に供給する際の位置ばらつきを極小化できることを突き止めた。これは、衝突面12のテーパーの開き角θをかかる範囲とすることで、溶融ガラス滴31が衝突面12に衝突する際、溶融ガラス滴31の位置を貫通孔11の中心に向かって矯正しようとする力が強く働くためではないかと考えられる。
衝突面12のテーパーの開き角θが28°よりも大きくなると、溶融ガラス滴31の位置を貫通孔11の中心に向かって矯正しようとする力が不十分となり、位置ばらつきが大きくなる。逆に、衝突面12のテーパーの開き角θが15°未満の場合にも、位置ばらつきは大きくなる。この理由は必ずしも明らかではないが、以下のように考えられる。衝突面12のテーパーの開き角θが15°よりも小さくなると、溶融ガラス滴31が衝突面12と1カ所で衝突して衝撃力が与えられるのではなく、溶融ガラスと貫通孔11の内周面とが長い距離にわたってこすれ合いながら摩擦力で受け止められるような状態となる。そのため、貫通孔11の内周面の表面状態や温度の影響を大きく受けることとなり、位置ばらつきが悪化する。従って、衝突面12のテーパーの開き角θは、15°〜28°の範囲とする必要があり、20°〜26°の範囲とすることが更に好ましい。
衝突面12とは、貫通孔11の内周面のうち、溶融ガラス滴31と最初に衝突する部分の意味であり、それ以外の部分の形状や開き角に特に制限はない。例えば、溶融ガラス滴31と衝突しない、入口側の端面付近の形状に制限はない。また、衝突の後に溶融ガラスが流れ込むことによって溶融ガラスと接触する部分(例えば、図1(b)の貫通孔11の出口側にある同径部13など)の形状、開き角にも制限はない。
衝突面12は、溶融ガラス滴31と最初に衝突する部分であるから、衝突する溶融ガラス滴31の大きさによって位置が変化する。溶融ガラス滴31が比較的小さい場合は、貫通孔11の奥の部分と衝突し、溶融ガラス滴31が比較的大きい場合は、貫通孔11の浅い部分(入口側に近い部分)と衝突する。何れの場合においても、溶融ガラス滴31と衝突する部分の開き角を上記範囲とすることにより、微小滴32の位置ばらつきを極小化するという効果が得られる。
得られる微小滴32の大きさは、溶融ガラスの種類、粘度、表面張力及び比重、貫通孔11を通過する際の溶融ガラスの温度、衝突の際の溶融ガラス滴31の速度、貫通孔11の最小径(同径部13の径)、同径部13の長さ、衝突面12のテーパーの開き角θ、貫通孔11の内周面の平滑度、微小化部材10の熱容量や材質等の関数である。これらの条件を適宜選択することによって必要とする微小滴32の大きさを調整することが可能である。例えば、貫通孔11の最小径(同径部13の径)を大きくすると、得られる微小滴32は大きくなり、貫通孔11の最小径を小さくすると、得られる微小滴32は小さくなる。したがって、貫通孔11の最小径を適宜選択することにより、微小滴32の大きさを調整することができる。
滴下ノズル35から滴下する溶融ガラス滴31の位置が多少ずれても、溶融ガラス滴31が確実に貫通孔11の衝突面12に衝突するように、貫通孔11の入口部分の径を十分大きくしておくことが好ましい。また、貫通孔11の、孔に垂直な断面形状は必ずしも円形である必要はないが、位置ばらつきを更に低減させるためには、断面が円形であることが好ましい。同径部13は必ずしも必須ではないが、位置ばらつきを更に低減させるという観点から、同径部13を設けることが好ましい。同径部13の長さは、0.5mm〜20mmが好ましく、2mm〜10mmが更に好ましい。
微小化部材10の材質としては、各種の金属やセラミック等を使用することができるが、耐熱性が高く、酸化等によって貫通孔11周辺が劣化しにくいものが好ましい。また、溶融ガラス滴31との衝突などによって微小化部材10の温度が変化すると、貫通孔11の径が変化し、それによって微小滴32の質量が変化してしまう。そのため、微小化部材10の材質は、線膨張係数が小さいことが好ましい。中でも、フェライト系ステンレス、タングステン合金など、熱膨張係数が13×10-6/℃以下の材料を用いることが特に好ましい。
(ガラスゴブの製造方法)
次に、本発明のガラスゴブの製造方法について、図2及び図3を参照しながら説明する。図2は、本発明のガラスゴブの製造方法の1例を示すフローチャートである。図3は本実施形態の工程を説明するための模式図であり、図3(a)は滴下ノズル35から溶融ガラス滴31を滴下した状態を、図3(b)は微小化部材10によって微小滴32を分離した状態を、それぞれ示している。
図3(a)、(b)に示すように、微小化部材10を、溶融ガラス滴31を滴下するための滴下ノズル35の下方に配置し、さらにその下方に、微小化部材10によって分離された微小滴32を受けるための下型21を配置しておく。滴下ノズル35は、溶融ガラス36を貯留する溶融槽37の下部に接続されている。
下型21は、図示しない加熱手段によって所定温度に加熱できるように構成されている。加熱手段は、公知の加熱手段を適宜選択して用いることができる。例えば、下型21の内部に埋め込んで使用するカートリッジヒーターや、下型21の外側に接触させて使用するシート状のヒーター、赤外線加熱装置、高周波誘導加熱装置等を用いることができる。
下型21の材料は、成形金型の材料として公知の材料の中から、条件に応じて適宜選択して用いることができる。好ましく用いることができる材料として、例えば、各種耐熱合金(ステンレス等)、炭化タングステンを主成分とする超硬材料、各種セラミックス(炭化珪素、窒化珪素、窒化アルミニウム等)、カーボンを含んだ複合材料等が挙げられる。
また、下型21の更なる耐久性向上やガラスとの融着防止などのため、表面に被覆層を設けておくことも好ましい。被覆層の材料にも特に制限はなく、例えば、種々の金属(クロム、アルミニウム、チタン等)、窒化物(窒化クロム、窒化アルミニウム、窒化チタン、窒化硼素等)、酸化物(酸化クロム、酸化アルミニウム、酸化チタン等)等を用いることができる。被覆層の成膜方法にも制限はなく、公知の成膜方法の中から適宜選択して用いればよい。例えば、真空蒸着、スパッタ、CVD等が挙げられる。
以下、図2に示したフローチャートに従って、各工程を順に説明する。
先ず、下型21を所定温度に加熱する(工程S11)。下型21の温度が低すぎると、ガラスゴブの下面(下型21との接触面)に大きなしわが発生したり、急速に冷却されることによってワレやクラックが発生する場合がある。逆に、必要以上に温度を高くしすぎると、ガラスと下型21との間に融着が発生したり、下型21の寿命が短くなるおそれがある。実際には、ガラスの種類や、形状、大きさ、下型21の材質、大きさ等種々の条件によって適正な温度が異なるため、実験的に適正な温度を求めておくことが好ましい。通常は、ガラスのガラス転移温度をTgとしたとき、Tg−100℃からTg+100℃程度の温度に設定することが好ましい。
次に、滴下ノズル35から溶融ガラス滴31を滴下する(工程S12)。溶融ガラス滴31の滴下は、以下のように行う。溶融槽37は図示しないヒーターによって加熱され、内部に溶融ガラス36が貯留されている。その状態で、滴下ノズル35を所定温度に加熱すると、溶融ガラス36が自重によって滴下ノズル35の内部に設けられた流路を通過し、表面張力によって先端部に溜まる。一定質量の溶融ガラスが溜まると、滴下ノズル35の先端部から自然に分離し、一定質量の溶融ガラス滴31が下方に滴下する。
滴下する溶融ガラス滴31の質量は、滴下ノズル35の先端部の外径によって調整可能であり、ガラスの種類等によるが、0.1gから2g程度の溶融ガラス滴31を滴下することができる。また、滴下ノズル35の内径、長さ、加熱温度などによって溶融ガラス滴31の滴下間隔を調整することができる。従って、これらの条件を適切に設定することで、所望の質量の溶融ガラス滴31を所望の間隔で滴下させることが可能である。
滴下ノズル35から滴下する溶融ガラス滴31の質量は、所望の微小滴32よりも大きく、微小化部材10の衝突面12に衝突して微小滴32を分離できる大きさであればよい。通常、微小滴32の質量に対する溶融ガラス滴31の質量の比が小さすぎると、得られる微小滴32の質量ばらつきが大きくなる傾向があるため、滴下ノズル35から滴下する溶融ガラス滴31の質量は、微小滴32の質量の2倍以上とすることが好ましい。
使用できるガラスの種類に特に制限はなく、公知のガラスを用途に応じて選択して用いることができる。例えば、ホウケイ酸塩ガラス、ケイ酸塩ガラス、リン酸ガラス、ランタン系ガラス等の光学ガラスが挙げられる。
次に、微小化部材10によって微小滴32を分離し、下型21に供給する(工程S13)。微小化部材10の衝突面12に溶融ガラス滴31が衝突すると、その衝撃によって溶融ガラス滴31の一部が貫通孔11を通過し、微小滴32となって分離する。上述のように、衝突面12のテーパーの開き角θを、15°〜28°の範囲とすることによって、微小滴32が下型21に供給される際の位置ばらつきを極小化することができる。
微小化部材10に衝突する際の溶融ガラス滴31の温度は、衝撃によって微小滴32を分離できる程度に粘度が低くなる温度であれば、特に限定されない。貫通孔11の径が同じであれば、ガラス温度を上げると粘度が下がるため、得られる微小滴32の質量は大きくなる。反対にガラス温度を下げると粘度が上がるため、得られる微小滴32の質量は小さくなる。また、一般に、ガラス温度が低すぎると、衝突によって微小滴32を分離することが困難になる場合がある。逆に、ガラス温度が高すぎると、滴下の過程で泡や脈理が発生しガラス内部品質に問題が出てくる場合がある。そのため、これらの問題を考慮した上で、適切な温度条件を設定することが好ましい。
また、衝突の際の衝撃力は、滴下ノズル35の先端と微小化部材10との距離によっても変化する。距離が長い場合には得られる微小滴32の質量は大きくなり、距離が短い場合には得られる微小滴32の質量は小さくなる。上述の温度条件等に合わせて距離を適切に選択することで、所望の質量の微小滴32を得ることができる。滴下ノズル35の先端と微小化部材10との距離は、一般には100〜3000mm、好ましくは200〜2000mmである。
次に、下型21の上で微小滴32を冷却・固化する(工程S14)。滴下(供給)した微小滴32は、下型21の上で所定時間放置される間に、下型21との接触面からの放熱等によって冷却され、固化する。
次に、固化したガラスゴブを回収し(工程S15)、微小化部材10に残された余剰ガラス33を廃棄して(工程S16)、ガラスゴブの製造が完成する。余剰ガラス33の廃棄は、例えば、エアーで吹き飛ばす、微小化部材10を上下反転して落下させる、吸着して回収する、挟み取る等の方法の中から適宜選択して行えばよい。
その後、更に引き続いてガラスゴブの製造を行う場合は、工程S12〜工程S16を繰り返せばよい。
なお、本実施形態の製造方法により製造されたガラスゴブは、リヒートプレス法による各種精密光学素子の製造に用いるガラスプリフォーム(ゴブプリフォーム)などとして使用することができる。
(ガラス成形体の製造方法)
本発明のガラス成形体の製造方法について図4〜図6を参照しながら説明する。図4は、本発明のガラス成形体の製造方法の1例を示すフローチャートである。また、図5、図6は本実施形態の工程を説明するための模式図であり、図5は微小化部材10によって微小滴32を分離している状態(工程S24)を、図6は下型21と上型22とで微小滴32を加圧成形している状態(工程S26)を、それぞれ示している。
図5、図6において、22は、下型21と共に微小滴32を加圧成形するための上型である。上型22は、下型21と同様に、図示しない加熱手段によって所定温度に加熱できるように構成されている。下型21と上型22とをそれぞれ独立して温度制御することができる構成であることが好ましい。また、上型22の材料は、下型21の場合と同様の材料の中から適宜選択することができる。下型21と上型22の材料は同じであってもよいし、異なっていてもよい。
また、下型21は、図示しない駆動手段により、微小化部材10の下方で微小滴32を受けるための位置(滴下位置P1)と、上型22と対向して加圧成形を行うための位置(加圧位置P2)との間で移動可能に構成されている。また上型22は、図示しない駆動手段により、下型21との間で微小滴32を加圧する方向(図の上下方向)に移動可能に構成されている。
以下、図4に示したフローチャートに従って、各工程を順に説明する。なお、上述のガラスゴブの製造方法の場合と同様の工程については、詳しい説明を省略する。
先ず、下型21及び上型22を所定温度に加熱する(工程S21)。所定温度とは、上述のガラスゴブの製造方法における工程S11の場合と同様であり、加圧成形によってガラス成形体に良好な転写面を形成できる温度を適宜選択すればよい。下型21と上型22の加熱温度は同じであってもよいし、異なっていてもよい。
次に、下型21を滴下位置P1に移動した後(工程S22)、滴下ノズル35から溶融ガラス滴31を滴下し(工程S23)、微小化部材10によって微小滴32を分離し、下型21に供給する(工程S24)。工程S23及び工程S24の詳細については、上述のガラスゴブの製造方法の場合の工程S12及び工程S13と同様である。
次に、下型21を加圧位置P2に移動し(工程S25)、上型22を下方に移動して、下型21と上型22とで微小滴32を加圧成形する(工程S26)。
下型21に滴下(供給)された微小滴32は、加圧成形の間に下型21や上型22との接触面からの放熱によって冷却し、固化する。加圧を解除してもガラス成形体34に形成された転写面の形状が崩れない温度にまで冷却された後、加圧を解除する。ガラスの種類や、ガラス成形体の大きさや形状、必要な精度等によるが、通常はガラスのTg近傍の温度まで冷却されていればよい。
加圧成形の際に負荷する荷重は、常に一定であってもよいし、時間的に変化させてもよい。負荷する荷重の大きさは、製造するガラス成形体34のサイズ等に応じて適宜設定すればよい。また、上型22を上下移動させる駆動手段に特に制限はなく、エアシリンダ、油圧シリンダ、サーボモータを用いた電動シリンダ等の公知の駆動手段を適宜選択して用いることができる。
次に、上型22を退避させてガラス成形体34を回収し(工程S27)、微小化部材10に残された余剰ガラス33を廃棄して(工程S28)、ガラス成形体の製造が完成する。その後、引き続いてガラス成形体の製造を行う場合は、下型21を再び滴下位置P1に移動し(工程S22)、工程S23〜工程S28を繰り返せばよい。
なお、本発明のガラス成形体の製造方法は、ここで説明した以外の別の工程を含んでいてもよい。例えば、ガラス成形体を回収する前にガラス成形体の形状を検査する工程や、ガラス成形体を回収した後に下型21や上型22をクリーニングする工程等を設けてもよい。
本発明の製造方法により製造されたガラス成形体は、デジタルカメラ等の撮像レンズ、DVD等の光ピックアップレンズ、光通信用のカップリングレンズ等の各種光学素子として用いることができる。また、リヒートプレス法により光学素子を製造するためのプリフォームとして用いることもできる。
(実施例1〜3)
図1に示した溶融ガラス滴の微小化部材10を用い、図4に示したフローチャートに従ってガラス成形体34を製造した。
製造するガラス成形体34は、外径がφ4mm、中心の厚みが1.8mmのメニスカス球面レンズとした。ガラス材料はTgが530℃のリン酸系ガラスを用い、外径がφ6mmの白金製の滴下ノズル35から溶融ガラス滴31を滴下した。滴下ノズル35から滴下する溶融ガラス滴31の質量は、250mgであった。
微小化部材10は、衝突面12のテーパーの開き角θが15°(実施例1)、25°(実施例2)、28°(実施例3)の3種類を用いた。貫通孔11の最小径(同径部13の径)は、いずれもφ2mm、同径部13の長さは5mmとした。また、衝突面12の長さは、入口部分の径がφ20mmとなるように、それぞれ調整した。
下型21及び上型22の材料には、いずれも炭化タングステンを主成分とする超硬材料を用いた。加熱温度は、上型22が490℃、下型21が570℃とした。また、加圧成形の際の荷重は800N、加圧時間は12秒とした。
このような条件で、微小滴32が下型21に供給される際の位置ばらつき(標準偏差)を測定しながら、それぞれ100個ずつのガラス成形体34を製造した。位置ばらつきは、2組のレーザーセンサー(株式会社キーエンス製:LV−H300)を、重力に垂直な平面上に直交配置して測定した滴下位置を基に計算した。また、製造されたガラス成形体34の中心部の厚みを測定し、厚みばらつき(標準偏差)を求めた。結果を表1に示す。
Figure 2009167069
(比較例1、2)
微小化部材10の衝突面12のテーパーの開き角θを13°(比較例1)、30°(比較例2)とした以外は、実施例1〜3と同様の条件で、それぞれ100個のガラス成形体を作製し、同様の評価を行った。結果を表1に併せて示す。
表1に示したとおり、衝突面12のテーパーの開き角θが15°〜28°の範囲である実施例1〜3の場合、比較例1、2と比較して、微小滴の位置ばらつきが顕著に改善されることが確認された。更に、その結果として、得られたガラス成形体の厚みばらつきが大きく低減されることが確認された。
本発明の溶融ガラス滴の微小化部材の1例を示す模式図である。 本発明のガラスゴブの製造方法の1例を示すフローチャートである。 図2の工程を説明するための模式図である。 本発明のガラス成形体の製造方法の1例を示すフローチャートである。 図4の工程(工程S24)を説明するための模式図である。 図4の工程(工程S26)を説明するための模式図である。
符号の説明
10 微小化部材
11 貫通孔
12 衝突面
13 同径部
21 下型
22 上型
31 溶融ガラス滴
32 微小滴
33 余剰ガラス
34 ガラス成形体
35 滴下ノズル
36 溶融ガラス
37 溶融槽
P1 滴下位置
P2 加圧位置
θ テーパーの開き角

Claims (3)

  1. 貫通孔を有し、該貫通孔の内周面に溶融ガラス滴を衝突させて、該溶融ガラス滴の一部を該貫通孔を通過させて分離することにより溶融ガラスの微小滴を得るための溶融ガラス滴の微小化部材において、
    前記溶融ガラス滴と衝突する衝突面は、溶融ガラス滴の入口側に向かって径が広がるテーパー面であり、テーパーの開き角が15°〜28°の範囲であることを特徴とする溶融ガラス滴の微小化部材。
  2. 滴下ノズルから滴下した溶融ガラス滴を、貫通孔を有する溶融ガラス滴の微小化部材に衝突させ、該溶融ガラス滴の一部を該貫通孔を通過させて分離し、溶融ガラスの微小滴として下型に供給するガラスゴブの製造方法において、
    前記溶融ガラス滴の微小化部材は、請求項1に記載の溶融ガラス滴の微小化部材であることを特徴とするガラスゴブの製造方法。
  3. 滴下ノズルから滴下した溶融ガラス滴を、貫通孔を有する溶融ガラス滴の微小化部材に衝突させ、該溶融ガラス滴の一部を該貫通孔を通過させて分離し、溶融ガラスの微小滴として下型に供給して該下型と上型とで加圧成形するガラス成形体の製造方法において、
    前記溶融ガラス滴の微小化部材は、請求項1に記載の溶融ガラス滴の微小化部材であることを特徴とするガラス成形体の製造方法。
JP2008009935A 2008-01-19 2008-01-19 溶融ガラス滴の微小化部材、ガラスゴブの製造方法、及び、ガラス成形体の製造方法 Expired - Fee Related JP5018503B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008009935A JP5018503B2 (ja) 2008-01-19 2008-01-19 溶融ガラス滴の微小化部材、ガラスゴブの製造方法、及び、ガラス成形体の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008009935A JP5018503B2 (ja) 2008-01-19 2008-01-19 溶融ガラス滴の微小化部材、ガラスゴブの製造方法、及び、ガラス成形体の製造方法

Publications (2)

Publication Number Publication Date
JP2009167069A true JP2009167069A (ja) 2009-07-30
JP5018503B2 JP5018503B2 (ja) 2012-09-05

Family

ID=40968710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008009935A Expired - Fee Related JP5018503B2 (ja) 2008-01-19 2008-01-19 溶融ガラス滴の微小化部材、ガラスゴブの製造方法、及び、ガラス成形体の製造方法

Country Status (1)

Country Link
JP (1) JP5018503B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011018940A1 (ja) * 2009-08-12 2011-02-17 コニカミノルタオプト株式会社 ガラスゴブの製造方法及びガラス成形体の製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002154834A (ja) * 2000-09-06 2002-05-28 Minolta Co Ltd ガラス微小滴の製造方法およびガラス微小光学素子の製造方法およびそれらの製造装置
JP2005001921A (ja) * 2003-06-11 2005-01-06 Minolta Co Ltd 光学素子の製造方法及び製造装置
WO2009110315A1 (ja) * 2008-03-04 2009-09-11 コニカミノルタオプト株式会社 溶融ガラス滴の微小化部材、ガラスゴブの製造方法、ガラス成形体の製造方法、及びガラス微小滴の製造方法
JP2009249198A (ja) * 2008-04-02 2009-10-29 Konica Minolta Opto Inc 溶融ガラス滴の微小化方法、ガラスゴブの製造方法、及びガラス成形体の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002154834A (ja) * 2000-09-06 2002-05-28 Minolta Co Ltd ガラス微小滴の製造方法およびガラス微小光学素子の製造方法およびそれらの製造装置
JP2005001921A (ja) * 2003-06-11 2005-01-06 Minolta Co Ltd 光学素子の製造方法及び製造装置
WO2009110315A1 (ja) * 2008-03-04 2009-09-11 コニカミノルタオプト株式会社 溶融ガラス滴の微小化部材、ガラスゴブの製造方法、ガラス成形体の製造方法、及びガラス微小滴の製造方法
JP2009249198A (ja) * 2008-04-02 2009-10-29 Konica Minolta Opto Inc 溶融ガラス滴の微小化方法、ガラスゴブの製造方法、及びガラス成形体の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011018940A1 (ja) * 2009-08-12 2011-02-17 コニカミノルタオプト株式会社 ガラスゴブの製造方法及びガラス成形体の製造方法

Also Published As

Publication number Publication date
JP5018503B2 (ja) 2012-09-05

Similar Documents

Publication Publication Date Title
JP3853622B2 (ja) ガラス成形体の製造方法、プレス成形品の製造方法、ガラス光学素子の製造方法及びガラス成形体の製造装置
JP5198036B2 (ja) 精密プレス成形用プリフォーム製造装置及び精密プレス成形用プリフォームの製造方法並びに光学素子の製造方法
JP4359169B2 (ja) プレス成形用プリフォームの製造方法、製造装置および光学素子の製造方法
JP4684014B2 (ja) 精密プレス成形用プリフォームの製造方法および光学素子の製造方法
JP2002154834A5 (ja)
JP4368368B2 (ja) ガラス塊の製造方法、その製造装置および光学素子の製造方法
JP5263163B2 (ja) ガラス成形体の製造方法
JP5018503B2 (ja) 溶融ガラス滴の微小化部材、ガラスゴブの製造方法、及び、ガラス成形体の製造方法
JP5423667B2 (ja) 溶融ガラス滴の微小化部材、ガラスゴブの製造方法、ガラス成形体の製造方法、及びガラス微小滴の製造方法
JP4957623B2 (ja) 溶融ガラス滴の微小化方法、ガラスゴブの製造方法、及びガラス成形体の製造方法
JP5652398B2 (ja) ガラスゴブの製造方法及びガラス成形体の製造方法
JP2008297159A (ja) 溶融ガラス滴下ノズル、ガラス成形体の製造方法及びガラス成形体の製造装置
JP5200809B2 (ja) 溶融ガラス滴の製造方法、ガラスゴブの製造方法及びガラス成形体の製造方法
JP2010120816A (ja) 溶融ガラス滴の製造方法及び製造装置、ガラスゴブの製造方法及び製造装置、並びに、ガラス成形体の製造方法及び製造装置
JP3965627B2 (ja) ガラス成形体の製造方法および光学素子の製造方法
JP5263164B2 (ja) ガラス成形体の製造方法
JP5197696B2 (ja) 精密プレス成形用プリフォームの製造方法および光学素子の製造方法
JP5263165B2 (ja) ガラス成形体の製造方法
JP4666679B2 (ja) モールドプレス成形装置、及び成形体の製造方法
JP2008297158A (ja) 溶融ガラス滴下ノズル、ガラス成形体の製造方法及びガラス成形体の製造装置
JP2011057515A (ja) ガラスゴブ及びガラス成形体の製造方法
WO2010050298A1 (ja) ガラス成形体の製造装置、ガラス成形体の製造方法
JPWO2008149671A1 (ja) 光学素子の製造方法及び光学素子
JP5003603B2 (ja) ガラスゴブの製造方法及びガラス成形体の製造方法
JP2009298674A (ja) 溶融ガラス微小滴の製造装置及び製造方法、ガラスゴブの製造装置及び製造方法、並びにガラス成形体の製造装置及び製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100324

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120528

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees