JP2009162053A - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
JP2009162053A
JP2009162053A JP2007295867A JP2007295867A JP2009162053A JP 2009162053 A JP2009162053 A JP 2009162053A JP 2007295867 A JP2007295867 A JP 2007295867A JP 2007295867 A JP2007295867 A JP 2007295867A JP 2009162053 A JP2009162053 A JP 2009162053A
Authority
JP
Japan
Prior art keywords
fuel
reforming
fuel injection
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007295867A
Other languages
English (en)
Inventor
Hideo Yahagi
秀夫 矢作
Isamu Nakada
勇 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007295867A priority Critical patent/JP2009162053A/ja
Priority to PCT/JP2008/069908 priority patent/WO2009063760A1/ja
Publication of JP2009162053A publication Critical patent/JP2009162053A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/36Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with means for adding fluids other than exhaust gas to the recirculation passage; with reformers

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

【課題】本発明は、内燃機関の制御装置に関し、燃料改質触媒の劣化を確実に抑制することを目的とする。
【解決手段】EGR通路32,36と、EGRガス中に改質用燃料を噴射する改質用燃料噴射装置34と、燃料改質触媒26とを備える。燃料改質触媒26は、排気通路28を通る排気ガスの熱を受熱してEGRガスと改質用燃料とを改質反応させることにより、EGRガスおよび改質用燃料を、可燃ガスを含む改質ガスに転換する。ECU50は、運転条件急変状態であると判定した場合には、改質用燃料噴射装置34からの燃料噴射量を減量または禁止する。これにより、燃料改質触媒26への燃料付着や酸素の流入を抑制し、燃料改質触媒26での燃料の酸化反応(燃焼)を回避する。
【選択図】図1

Description

本発明は、内燃機関の制御装置に関する。
従来より、燃料改質を利用して排気熱を回収することにより燃費性能の向上を図る内燃機関システムが知られている。このようなシステム(以下「熱回収型改質システム」と称する)では、EGR通路の途中に燃料改質触媒を設け、EGRガスとともに燃料を燃料改質触媒に供給する。燃料改質触媒は、排気ガスの熱を利用して、燃料とEGRガスとを改質反応させることにより、水素、一酸化炭素等の可燃ガスを含む改質ガスを生成させる。上記の改質反応は排気ガスの熱を吸熱する反応である。このため、生成された可燃ガスの熱量は、改質前の燃料の熱量よりも大きい。よって、内燃機関の熱効率を向上することができる。
特開2006−105011号公報には、上述したような熱回収型改質システムが開示されている。同公報のシステムにおいて、筒内に流入させるべき可燃ガス量は、内燃機関の運転状態に基づいて決定される。よって、過渡運転時には、要求可燃ガス量が増大する場合がある。可燃ガス量を増大させるには、改質用燃料の噴射量を増加させるとともに、EGR弁開度を増大させる必要がある。しかしながら、添加された改質用燃料が改質反応を経て可燃ガスに転換されるまでには、遅れがある。同公報では、上記の遅れを見込んで、改質用燃料の噴射量を増加させた後、EGR弁開度を遅れて増大させるようにしている。
特開2006−105011号公報 特許第2936970号公報 特開2006−291775号公報 特開2006−299831号公報
前述したように、上記公報に記載されている熱回収型改質システムでは、過渡運転状態においても、燃料改質を伴う改質運転を実行するようにしている。しかしながら、以下に述べるように、運転条件の変化が急激である場合に改質運転を実行すると、次のような問題が生ずるおそれがある。
燃料改質触媒で改質反応処理可能な燃料量の上限は、EGR流量や燃料改質触媒の温度などによって変化する。このため、運転条件の急変により排気圧力や排気ガス温度が急激に変動する状態では、EGR流量や燃料改質触媒の温度も急激に変動するので、改質反応処理可能な燃料量も急激に変動する。このため、燃料改質触媒に供給される燃料量が過不足になり易い。そして、燃料改質触媒に供給される燃料量が過多となった場合には、燃料改質触媒に燃料が付着して残存してしまう。この付着燃料が後に酸素と反応して燃焼すると、燃料改質触媒が異常な高温となり、触媒性能の劣化や触媒担体の熱破壊などを生じるおそれがある。
また、噴射された改質用燃料が改質反応を経て可燃ガスに転換し、EGR通路を経て筒内へ流入するまでには、時間遅れがある。このため、運転条件の急変に伴って要求可燃ガス量が急変すると、筒内に実際に流入する可燃ガス量が要求可燃ガス量の変動に追従しきれなくなる。このため、空燃比の制御誤差が大きくなり易い。更に、運転条件が急変すると、燃料改質触媒に供給される燃料量の過不足によって改質ガス中の可燃ガス濃度が変動し易いとともに、排気圧力や排気ガス温度が変動するために、EGR弁開度が同じであっても吸気通路に流入する改質ガス流量が変化する。よって、筒内に流入する可燃ガス量の制御が極めて困難となる。この理由からも、空燃比の制御誤差が大きくなり易い。このようなことから、運転条件が急変するときに改質運転を実行すると、適正な空燃比が実現できず、ドライバビリティやエミッションが悪化し易い。そして、空燃比がリーン側にずれた場合、あるいは燃料カットが実行された場合には、酸素を含むガスがEGRガスとして燃料改質触媒に流入する。その結果、前述したように、燃料改質触媒の付着燃料と酸素が燃焼反応して、燃料改質触媒が異常な高温となり、燃料改質触媒がダメージを受けるおそれがある。
本発明は、上記の点に鑑みてなされたもので、燃料改質触媒の劣化を確実に抑制することのできる内燃機関の制御装置を提供することを目的とする。
第1の発明は、上記の目的を達成するため、内燃機関の制御装置であって、
内燃機関の排気通路から取り出したEGRガスを吸気通路に還流させるEGR通路と、
前記EGRガス中に改質用燃料を噴射する改質用燃料噴射手段と、
前記EGR通路の途中であって前記改質用燃料噴射手段の下流側に配置され、前記EGRガスと前記改質用燃料とを改質反応させることにより、前記EGRガスおよび前記改質用燃料を、可燃ガスを含む改質ガスに転換する燃料改質触媒と、
前記改質反応に要する熱を前記燃料改質触媒に供給する熱供給手段と、
前記内燃機関の運転条件を表す所定の運転条件パラメータの変化速度を取得する運転条件パラメータ変化速度取得手段と、
前記運転条件パラメータの変化速度が所定の閾値より大きい場合に運転条件急変状態と判定する急変判定手段と、
運転条件急変状態であると判定された場合に、運転条件急変状態でないと判定された場合に比して、前記改質用燃料噴射手段の燃料噴射量を減量する改質用燃料噴射制限手段と、
を備えることを特徴とする。
また、第2の発明は、第1の発明において、
前記改質用燃料噴射制限手段は、運転条件急変状態であると判定された場合に、前記改質用燃料噴射手段による燃料噴射を禁止することを特徴とする。
また、第3の発明は、第1または第2の発明において、
前記閾値は、前記燃料改質触媒において燃料の酸化反応が生ずることを抑制可能な値として設定されていることを特徴とする。
また、第4の発明は、第1乃至第3の発明の何れかにおいて、
前記内燃機関の筒内または吸気ポート内に燃料を噴射する主燃料噴射手段と、
所定条件の成立時に前記主燃料噴射手段からの燃料噴射を停止する燃料カットを実行する燃料カット手段と、
前記改質用燃料噴射手段により燃料を供給しつつ前記改質ガスを前記吸気通路に還流させる改質運転と、前記改質用燃料噴射手段から燃料を噴射しない非改質運転とを切り換える運転切換手段と、
前記改質運転の実行時に、前記燃料カットを禁止する燃料カット禁止手段と、
を備えることを特徴とする。
また、第5の発明は、第1乃至第4の発明の何れかにおいて、
EGR率を調整するEGR率調整手段と、
前記改質用燃料噴射制限手段により前記改質用燃料噴射手段の燃料噴射が制限された場合に、EGR率を低下させるEGR制限手段と、
を備えることを特徴とする。
また、第6の発明は、第1乃至第5の発明の何れかにおいて、
前記熱供給手段は、前記内燃機関の排気ガスの熱を前記燃料改質触媒に伝熱させる熱交換器で構成されていることを特徴とする。
第1の発明によれば、運転条件急変状態であると判定された場合には、改質用燃料の噴射量を減量することができる。改質用燃料を噴射してから、その燃料が燃料改質触媒に到達して改質反応し、その反応により生成された改質ガスが筒内へ流入するまでには、時間遅れがある。このため、運転条件急変状態では、燃料改質量や筒内への改質ガス流入量などが要求値の変動に十分に追従できなくなる。また、運転条件急変状態では、EGR通路のガス流量や燃料改質触媒の温度が急激に変動するため、改質反応を正常に継続することが難しくなる。このため、燃料改質触媒に燃料が付着残留したり、燃料改質触媒に酸素が流入したりし易い。その付着燃料が酸化(燃焼)反応すると、燃料改質触媒が異常な高温となり、燃料改質触媒が劣化するおそれがある。第1の発明によれば、運転条件急変状態において改質用燃料噴射量を減量することにより、燃料改質触媒への燃料付着や酸素の流入を抑制し、燃料改質触媒での燃料の酸化反応が生ずることを確実に回避することができる。このため、燃料改質触媒の劣化を確実に防止することができる。
第2の発明によれば、運転条件急変状態であると判定された場合に、改質用燃料噴射を禁止することができる。このため、燃料改質触媒への燃料付着や酸素の流入をより確実に抑制することができ、燃料改質触媒の劣化をより確実に防止することができる。
第3の発明によれば、運転条件急変状態であると判定する閾値を、燃料改質触媒において燃料の酸化反応が生ずることを抑制可能な値として設定することにより、燃料改質触媒の劣化をより確実に防止することができる。
第4の発明によれば、改質運転の実行時に、燃料カットを禁止することができる。このため、改質運転中に燃料改質触媒に酸素が流入することをより確実に抑制することができるので、燃料改質触媒において燃料の酸化反応が生ずることをより確実に回避することができる。また、改質運転時に燃料改質触媒に空気が流通することを防止することができるので、燃料改質触媒の温度低下を確実に抑制することができる。このため、燃料改質触媒の温度を維持することができ、改質反応を良好に継続させることができる。
第5の発明によれば、運転条件急変状態と判定されて改質用燃料噴射が制限された場合に、EGR率を低下させることができる。これにより、内燃機関の燃焼状態や空燃比を安定化させ、排気ガスの状態を良好とすることができるので、燃料改質触媒に流入するEGRガス中に未燃燃料や酸素が残存することを確実に抑制することができる。その結果、燃料改質触媒への未燃燃料や酸素の流入をより確実に抑制することができる。よって、燃料改質触媒において燃料の酸化反応が生ずることをより確実に抑制することができる。
第6の発明によれば、内燃機関の排気ガスの熱を燃料改質触媒に伝熱させ、燃料改質反応に吸熱させることができる。このため、内燃機関の廃熱を回収することができ、熱効率を十分に向上することができる。
実施の形態1.
図1は、実施の形態1のシステム構成を説明するための全体構成図を示している。本実施形態のシステムは、多気筒型(図示の構成では4気筒)の内燃機関10を備えている。本システムで使用される燃料は、特に限定されず、通常のガソリン等の炭化水素燃料のほか、アルコール(エタノール等)を含むバイオ燃料などを用いることもできる。
内燃機関10の吸気通路12は、吸気マニホールド14を介して各気筒の吸気ポートに接続されている。吸気通路12の途中には、吸入空気量を調整する電動式のスロットル弁16が設置されている。各気筒の吸気ポートには、燃料を噴射するための電磁弁等からなる主燃料噴射装置18がそれぞれ設けられている。なお、主燃料噴射装置18は、吸気ポート内でなく、筒内に燃料を直接に噴射するように設けられていてもよい。
内燃機関10の排気通路20は、排気マニホールド22を介して各気筒の排気ポートに接続されている。排気通路20の途中には、燃料改質器24が設けられている。そして、燃料改質器24の内部には、燃料改質触媒26を構成する空間が形成されている。この燃料改質触媒26内には、後述する改質反応を触媒する作用を有する金属(例えばRh、Pt、Co、Ni等)が担体に担持されて設置されている。
また、燃料改質器24の内部には、並行する複数の通路からなる排気通路28が設けられている。この排気通路28と、燃料改質触媒26とは、隔壁で隔てられ、遮断されている。排気通路28の入口は、排気通路20に接続され、出口は排気通路30に接続されている。このような構成により、燃料改質触媒26は、排気通路28を通る排気ガスの熱を受熱することができる。この熱を反応熱とすることにより、燃料改質触媒26は、後述する改質反応を生じさせることができる。すなわち、燃料改質器24は、排気通路28を通る排気ガスの熱を燃料改質触媒26に伝熱させる熱交換器としての機能を有している。
燃料改質器24の上流側の排気通路20からは、EGR通路32が分岐している。このEGR通路32によれば、排気通路20を通る排気ガスの一部をEGRガスとして取り出すことができる。EGR通路32は、燃料改質触媒26に接続されている。EGR通路32の途中には、改質反応に供するための燃料(以下、改質用燃料とも言う)をEGRガス中に噴射する改質用燃料噴射装置34が設けられている。改質用燃料噴射装置34から噴射された燃料は、EGRガスと共に燃料改質触媒26に流入し、燃料改質触媒26の作用によって改質反応を起こす。
燃料改質触媒26には、EGR通路36の一端が更に接続されている。このEGR通路36の他端は、吸気通路12に接続されている。このEGR通路36を通して、後述する改質ガス、あるいは単なるEGRガスを、吸気通路12内に還流させ、吸入空気と混合させることができる。EGR通路36の途中には、EGR通路36を通るガスを冷却するEGRクーラ38と、EGR通路36を開閉可能な電磁弁等で構成されるEGR弁40とが設けられている。
排気通路20を流れる排気ガスのうち、EGR通路32に流入しなかった残りの排気ガスは、排気通路28,30を順次通過して、大気中に放出される。燃料改質器24の下流側の排気通路30の途中には、有害成分を浄化する三元触媒等を担持した排気浄化触媒42や、図示しないマフラーが配置されている。また、排気通路28にも有害成分を浄化する触媒が担持されていてもよい。排気通路28に排気浄化触媒を担持させることにより、浄化反応の反応熱を排気通路28で発生させることができるので、燃料改質触媒26の受熱量(熱回収量)を更に増大させることができ、改質効率を向上することができる。
内燃機関10が使用する燃料は、燃料タンク44に貯留されている。燃料タンク44には、タンク内の燃料を加圧した状態で外部に送出するための燃料ポンプ(図示せず)が付設されている。この燃料ポンプの吐出側には、ポンプから吐出された燃料を主燃料噴射装置18及び改質用燃料噴射装置34にそれぞれ供給する燃料配管46が接続されている。
更に、本実施形態のシステムは、ECU(Electronic Control Unit)50を備えている。ECU50は、ROM、RAM等の記憶回路を備えたマイクロコンピュータによって構成されている。ECU50の入力側には、触媒温度センサ54、排気ガスセンサ56等を含むセンサ系統が接続されている。
触媒温度センサ54は、燃料改質触媒26に設けられており、燃料改質触媒26の温度を検出する。排気ガスセンサ56は、排気通路20に設けられており、排気ガス中の酸素濃度に応じた検出信号を出力するものである。
また、センサ系統には、例えば機関回転数を検出する回転センサ、吸入空気量を検出するエアフローメータ、冷却水温度を検出する水温センサ、アクセル開度を検出するアクセル開度センサ、スロットル弁16の開度を検出するスロットル開度センサ等のように、内燃機関10の運転制御に用いられる一般的なセンサが含まれている。
一方、ECU50の出力側には、前述したスロットル弁16、主燃料噴射装置18、改質用燃料噴射装置34、EGR弁40、燃料ポンプ等を含む各種のアクチュエータが接続されている。そして、ECU50は、内燃機関10の運転状態をセンサ系統によって検出しつつ、各アクチュエータを駆動することによって運転制御を行う。
この運転制御では、吸入空気量等に応じて燃料の噴射量を算出し、当該噴射量分の燃料を主燃料噴射装置18から噴射させる。また、排気ガスセンサ56の検出信号を用いて空燃比フィードバック制御を行うことにより、排気浄化触媒42に流入する排気ガスの空燃比が目標空燃比となるように、主燃料噴射装置18の燃料噴射量を制御する。
(改質運転)
上述したような内燃機関10は、排気ガス(EGRガス)と改質用燃料との改質反応によって生成された改質ガスを吸気通路12内に還流させる改質運転を実行可能になっている。改質運転時には、EGR通路32内を流れるEGRガスに対して改質用燃料噴射装置34から改質用燃料を噴射することにより、改質用燃料を燃料改質触媒26に供給する。このとき、ECU50は、例えば内燃機関10の運転状態、EGR流量、燃料改質触媒26の温度等に応じて、改質用燃料の適切な噴射量(供給量)を決定する。
燃料改質触媒26内では、触媒作用を有する前述したような種類の金属の作用により、改質用燃料と、EGRガス中の成分とが改質反応(水蒸気改質反応)を起こす。燃料改質触媒26で生ずる主な改質反応の化学反応式は、改質用燃料が例えばガソリンである場合には下記式(1)で、改質用燃料が例えばエタノールである場合には下記式(2)で、それぞれ表すことができる。
1.56(7.6CO2+6.8H2O+40.8N2)+3C7.6H13.6+Q1
→31H2+34.7CO+63.6N2 ・・・(1)
C2H5OH+0.4CO2+0.6H2O+2.3N2+Q2→3.6H2+2.4CO+2.3N2 ・・・(2)
上記のような改質反応によれば、改質用燃料を、水素(H)、一酸化炭素(CO)等の可燃ガスに転換させることができる。
上記(1)式中の熱量Q1、及び(2)式中の熱量Q2は、改質反応によって吸収される反応熱である。即ち、これらの改質反応は吸熱反応であるから、上記(1),(2)式中の右辺の可燃ガスの有する熱量は、当該各式の左辺に記載された反応前の物質が有する熱量よりも大きくなる。
このため、燃料改質器24によれば、燃料改質触媒26が排気通路28から受熱した熱を、上記改質反応に吸収させることができる。つまり、本実施の形態のシステムでは、排気ガスの熱を回収、利用して、改質用燃料を、より熱量の大きい物質(H、CO等)に転換することができる。
上記の改質反応により生成した可燃ガスを含む改質ガスは、EGR通路36を通って吸気通路12内に流入し、吸入空気と混合された上で、内燃機関10の気筒内に流入する。そして、改質ガス中の可燃ガス(H、CO等)は、主燃料噴射装置18から噴射された燃料と共に気筒内で燃焼する。ECU50には、改質運転時に内燃機関10の気筒内に流入させるべき要求可燃ガス量を運転条件等に基づいて決定するためのマップが記憶されている。ECU50は、気筒内に流入する可燃ガス量がその要求可燃ガス量となるように、改質ガス流量をEGR弁40によって制御するとともに、空燃比を目標空燃比とする上で必要な総燃料量から、流入した可燃ガス量を差し引いた残りの分の燃料を、主燃料噴射手段18から噴射させる。
改質ガスは、前述したように、燃料改質器24によって排気ガスの熱を回収した分だけ、元の燃料よりも熱量が増えている。よって、改質運転時には、改質ガスを吸気系に還流させて燃料の一部として内燃機関10で燃焼させることにより、システム全体としての熱効率が向上するので、内燃機関10の燃費性能を改善することができる。
また、改質ガスを吸気系に還流させることは、EGR(Exhaust Gas Recirculation)の一種でもある。よって、改質運転によれば、EGRの一般的な効果、すなわちポンプ損失低減による燃費改善効果や燃焼温度低下によるNOx生成量低減効果などを得ることもできる。このことに関連して、改質運転には更に次のような利点がある。通常のEGR運転の場合には、EGR率を高くしていくと、燃焼が不安定になるので、EGR率には限界がある。これに対し、改質運転の場合には、高い燃焼性を有する(燃焼速度の速い)水素ガス(H)が改質ガスに含まれているので、EGR率を高くしても燃焼が不安定になりにくく、EGR率の限界を高くすることができる。よって、改質運転時には、大量EGRが可能となるので、ポンプ損失低減による燃費改善効果や燃焼温度低下によるNOx生成量低減効果などをより大きく発揮させることができる。
(非改質運転)
本実施形態の内燃機関10は、上述したような燃料改質を利用せず、主燃料噴射装置18から噴射する燃料のみを燃焼させて運転することも可能となっている。このような運転を以下「非改質運転」と称する。非改質運転には、EGR通路32,36を介してEGRガスを吸気通路12に還流させる通常のEGRを伴うEGR運転と、EGR弁40を閉じることによりEGR通路32,36にEGRガスを流さないようにする非EGR運転とが含まれる。
改質運転には上述したような特長があるため、非改質運転を行う場合と比べ、内燃機関10の燃費(熱効率)を大幅に改善することができる。このため、燃費性能を改善する観点からは、なるべく広範囲な状況下で改質運転を行うことが望まれる。
しかしながら、本発明者らの知見によれば、以下に説明するように、内燃機関10の運転条件(回転数や負荷等)の変化が急速な場合に改質運転を実行すると、燃料改質触媒26の劣化が進行し易いという問題がある。
燃料改質触媒26で改質反応処理が可能な限界の燃料量は、EGR流量や燃料改質触媒26の温度などによって変動する。運転条件の急変に伴って排気圧力や排気ガス温度などが急激に変動すると、EGR流量や燃料改質触媒26の温度が急激に変動するので、改質反応処理可能な燃料量も急激に変動する。このため、改質用燃料噴射装置34の噴射量がその変化に追従できず、燃料改質触媒26に供給される燃料量が過不足になり易い。そして、改質用燃料が過多となった場合には、燃料改質触媒26に燃料が付着して残存してしまう。この付着燃料が、後に、燃料カットの実行等によって燃料改質触媒26に流入した酸素と反応して燃焼すると、燃料改質触媒26が異常な高温となり、触媒性能の低下や触媒担体の熱破壊など(以下、「燃料改質触媒26の劣化」と称する)を生じ易い。また、改質反応を正常に行うことができなくなり、改質量(可燃ガス生成量)が変化してしまうこともある。
更に、次のような問題もある。噴射された改質用燃料が改質反応を経て可燃ガスに転換し、更にEGR通路36および吸気通路12を経て筒内へ流入するまでには、時間遅れがある。このため、運転条件の急変に伴って要求可燃ガス量が急変すると、筒内に実際に流入する可燃ガス量が要求可燃ガス量の変動に追従しきれなくなる。その結果、実空燃比の目標空燃比からの制御ずれが大きくなり易い。更に、運転条件急変時には、上述したように、燃料改質触媒26に供給される燃料量の過不足によって改質ガス中の可燃ガス濃度が変動し易いとともに、排気圧力や排気ガス温度が変動するために、EGR弁40の開度が同じであっても、吸気通路12に流入する改質ガス流量が変化する。よって、筒内に流入する可燃ガス量を精度良く制御することが極めて困難となる。このようなことから、運転条件急変時に改質運転を実行すると、空燃比の制御ずれが大きくなり易い。その結果、内燃機関10の失火が置き易くなる。失火が生ずると、未燃燃料や酸素が排気通路20およびEGR通路32を介して燃料改質触媒26に流入する。そうすると、前記と同様に、燃料改質触媒26で燃料と酸素が燃焼反応して、燃料改質触媒26が異常な高温となり、燃料改質触媒26が劣化し易くなる。
以上述べたように、運転条件急変時に改質運転を実行すると、燃料改質触媒26での燃料の酸化反応を招き易いため、燃料改質触媒26が異常な高温となり、燃料改質触媒26が劣化し易くなる。そこで、本実施形態では、運転条件急変時には、改質用燃料の噴射を禁止し、改質運転を実行しないこととした。
更に、本実施形態では、燃料改質触媒26における燃料の酸化反応が生ずることをより確実に防止するべく、改質運転時には内燃機関10の燃料カットを禁止することとした。内燃機関10の減速時には、通常、燃料消費量を節約するため、主燃料噴射装置18からの燃料噴射を停止する燃料カットが実行される。燃料カットが実行されると、空気が排気通路20に流通する。よって、改質運転中に内燃機関10が減速状態となって燃料カットが実行された場合には、EGR通路32を介して燃料改質触媒26にも空気が流入する。このため、燃料改質触媒26に付着燃料が残留していた場合には、その付着燃料が流入した空気中の酸素と酸化反応するおそれがある。そこで、本実施形態では、このような事態を確実に回避するため、改質運転時には内燃機関10の燃料カットを禁止することとした。
[実施の形態1における具体的処理]
図2および図3は、上記の機能を実現するために本実施形態においてECU50が実行するルーチンのフローチャートである。図2に示すルーチンによれば、まず、内燃機関10の運転条件が急変している状態(以下「運転条件急変状態」と称する)であるか否かが判別される(ステップ100)。具体的には、例えばアクセル開度変化速度、要求トルク変化速度、機関回転数変化速度、吸入空気量変化速度、スロットル開度変化速度のうちの少なくとも一つが各センサ信号に基づいて算出され、その変化速度が所定の閾値を超えている場合には、運転条件急変状態であると判定される。なお、上記閾値は、運転条件の変化速度がこの閾値以下であれば、前述したような燃料の酸化反応が燃料改質触媒26において生ずることを確実に抑制することができるような値として、予め設定されている。
上記ステップ100において、上記運転条件パラメータの変化速度が閾値以下である場合、つまり運転条件急変状態ではないと判定された場合には、改質運転を実行しても燃料改質触媒26の劣化を招くことはないと判断できる。よって、この場合には、改質用燃料の噴射を禁止する必要はないので、本ルーチンの処理がそのまま終了される。
一方、上記ステップ100において、上記運転条件パラメータの変化速度が閾値を超えている場合、つまり運転条件急変状態であると判定された場合には、改質用燃料噴射装置34からの燃料噴射が禁止される(ステップ102)。これにより、改質運転中であった場合には、改質用燃料噴射装置34からの燃料噴射が停止される。
上記ステップ102の処理に続いて、改質運転中であるか否かが判別される(ステップ104)。このステップ104において、改質運転中でない(非改質運転中である)と判別された場合には、本ルーチンの処理がそのまま終了される。一方、改質運転中であると判別された場合には、改質運転を停止して非改質運転に切り換えるための処理が実行される(ステップ106)。
上記ステップ106においては、例えば、次のような処理が実行される。
・改質ガス(可燃ガス)が気筒内に供給されなくなる分を補うために、主燃料噴射装置18からの燃料噴射量を増量する処理が実施される。
・改質ガス中の水素ガスが気筒内に供給されなくなることに伴い、EGR限界が低下する。このことに対応するため、EGR弁40の開度を小さくすることにより、EGR率を低下させる処理が実施される。なお、この処理では、EGR弁40を閉じてEGRを停止するようにしてもよい。
・燃焼速度の速い水素ガス等が気筒に供給される改質運転時と、液体燃料のみが燃焼する非改質運転時とでは、最適点火時期が大きく異なる。このことに対応するため、点火時期を非改質運転時用に変更する処理が実施される。
図3は、改質運転時に燃料カットを禁止するためのルーチンである。このルーチンによれば、まず、改質運転中であるか否かが判別される(ステップ108)。このステップ108において、改質運転中であると判別された場合には、次に、燃料カットを禁止する処理が実行される(ステップ110)。このステップ110の処理が実行された場合には、内燃機関10が減速状態になったとしても、燃料カットを実行せず、主燃料噴射装置18からの燃料噴射が継続される。一方、上記ステップ108において、改質運転中でない(非改質運転中である)と判別された場合には、燃料カットの禁止を解除する処理が実行される(ステップ112)。
以上説明したように、本実施形態によれば、内燃機関10の運転条件の急変により、改質用燃料の噴射量や筒内への可燃ガス流入量が要求値の変動に十分に追従できなくなるような場合には、改質用燃料噴射装置34からの燃料噴射を禁止することにより、改質運転を停止することができる。これにより、燃料改質触媒26に付着燃料が残留したり、燃料改質触媒26に酸素が流入したりすることを確実に防止することができる。このため、燃料改質触媒26において燃料の酸化反応が生ずることを確実に抑制することができ、燃料改質触媒26の異常昇温やこれに起因する燃料改質触媒26の劣化を確実に防止することができる。
更に、本実施形態では、改質運転時に燃料カットを禁止することにより、燃料改質触媒26への酸素の流入をより確実に防止することができる。また、改質運転時に燃料改質触媒26に空気が流通することを防止することができるので、燃料改質触媒26の温度低下を確実に抑制することができる。このため、燃料改質触媒26を活性温度に維持することができ、改質反応を良好に継続させることができる。
なお、本実施形態では、運転条件急変状態と判定された場合に、改質用燃料噴射を禁止するようにしているが、本発明では、運転条件急変状態のときに改質用燃料噴射量を必ずしもゼロにしなくてもよく、燃料改質触媒26に付着燃料が残留したり、燃料改質触媒26に酸素が流入したりすることを防止することができる範囲内であれば、改質用燃料噴射を継続してもよい。すなわち、本発明では、運転条件急変状態と判定された場合に、少なくとも、燃料改質触媒26に付着燃料が残留したり、燃料改質触媒26に酸素が流入したりすることが抑制でき、燃料改質触媒26における燃料の酸化反応が生ずることを抑制することができる程度にまで、改質用燃料噴射量を減量するようにすればよい。
また、本実施形態では、燃料改質器24において、内燃機関10の排気ガスの熱を燃料改質触媒26に伝熱させ、改質反応に吸熱させるようにしているが、本発明は、燃料改質触媒26に加える熱を排気ガスの熱で賄う構成に限定されるものではない。すなわち、本発明では、燃料改質触媒26をヒータや燃焼器などで加熱する構成としてもよい。
また、上述した実施の形態1においては、改質用燃料噴射装置34が前記第1の発明における「改質用燃料噴射手段」に、燃料改質器24が前記第1の発明における「熱供給手段」に、主燃料噴射装置18が前記第4の発明における「主燃料噴射手段」に、EGR弁40が前記第5の発明における「EGR率調整手段」に、それぞれ相当している。また、ECU50が、上記ステップ100の処理を実行することにより前記第1の発明における「運転条件パラメータ変化速度取得手段」および「急変判定手段」が、上記ステップ102の処理を実行することにより前記第1および第2の発明における「改質用燃料噴射制限手段」が、内燃機関10の減速時に主燃料噴射装置18からの燃料噴射を停止させることにより前記第4の発明における「燃料カット手段」が、上記ステップ106の処理を実行することにより前記第4の発明における「運転切換手段」および前記第5の発明における「EGR制限手段」が、上記ステップ110の処理を実行することにより前記第4の発明における「燃料カット禁止手段」が、それぞれ実現されている。
本発明の実施の形態1のシステム構成を説明するための図である。 本発明の実施の形態1において実行されるルーチンのフローチャートである。 本発明の実施の形態1において実行されるルーチンのフローチャートである。
符号の説明
10 内燃機関
12 吸気通路
14 吸気マニホールド
16 スロットル弁
18 主燃料噴射装置
20,28,30 排気通路
24 燃料改質器
26 燃料改質触媒
32,36 EGR通路
34 改質用燃料噴射装置
38 EGRクーラ
40 EGR弁
42 排気浄化触媒
44 燃料タンク
46 燃料配管
50 ECU
54 触媒温度センサ
56 排気ガスセンサ

Claims (6)

  1. 内燃機関の排気通路から取り出したEGRガスを吸気通路に還流させるEGR通路と、
    前記EGRガス中に改質用燃料を噴射する改質用燃料噴射手段と、
    前記EGR通路の途中であって前記改質用燃料噴射手段の下流側に配置され、前記EGRガスと前記改質用燃料とを改質反応させることにより、前記EGRガスおよび前記改質用燃料を、可燃ガスを含む改質ガスに転換する燃料改質触媒と、
    前記改質反応に要する熱を前記燃料改質触媒に供給する熱供給手段と、
    前記内燃機関の運転条件を表す所定の運転条件パラメータの変化速度を取得する運転条件パラメータ変化速度取得手段と、
    前記運転条件パラメータの変化速度が所定の閾値より大きい場合に運転条件急変状態と判定する急変判定手段と、
    運転条件急変状態であると判定された場合に、運転条件急変状態でないと判定された場合に比して、前記改質用燃料噴射手段の燃料噴射量を減量する改質用燃料噴射制限手段と、
    を備えることを特徴とする内燃機関の制御装置。
  2. 前記改質用燃料噴射制限手段は、運転条件急変状態であると判定された場合に、前記改質用燃料噴射手段による燃料噴射を禁止することを特徴とする請求項1記載の内燃機関の制御装置。
  3. 前記閾値は、前記燃料改質触媒において燃料の酸化反応が生ずることを抑制可能な値として設定されていることを特徴とする請求項1または2記載の内燃機関の制御装置。
  4. 前記内燃機関の筒内または吸気ポート内に燃料を噴射する主燃料噴射手段と、
    所定条件の成立時に前記主燃料噴射手段からの燃料噴射を停止する燃料カットを実行する燃料カット手段と、
    前記改質用燃料噴射手段により燃料を供給しつつ前記改質ガスを前記吸気通路に還流させる改質運転と、前記改質用燃料噴射手段から燃料を噴射しない非改質運転とを切り換える運転切換手段と、
    前記改質運転の実行時に、前記燃料カットを禁止する燃料カット禁止手段と、
    を備えることを特徴とする請求項1乃至3の何れか1項記載の内燃機関の制御装置。
  5. EGR率を調整するEGR率調整手段と、
    前記改質用燃料噴射制限手段により前記改質用燃料噴射手段の燃料噴射が制限された場合に、EGR率を低下させるEGR制限手段と、
    を備えることを特徴とする請求項1乃至4の何れか1項記載の内燃機関の制御装置。
  6. 前記熱供給手段は、前記内燃機関の排気ガスの熱を前記燃料改質触媒に伝熱させる熱交換器で構成されていることを特徴とする請求項1乃至5の何れか1項記載の内燃機関の制御装置。
JP2007295867A 2007-11-14 2007-11-14 内燃機関の制御装置 Pending JP2009162053A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007295867A JP2009162053A (ja) 2007-11-14 2007-11-14 内燃機関の制御装置
PCT/JP2008/069908 WO2009063760A1 (ja) 2007-11-14 2008-10-31 内燃機関の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007295867A JP2009162053A (ja) 2007-11-14 2007-11-14 内燃機関の制御装置

Publications (1)

Publication Number Publication Date
JP2009162053A true JP2009162053A (ja) 2009-07-23

Family

ID=40638612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007295867A Pending JP2009162053A (ja) 2007-11-14 2007-11-14 内燃機関の制御装置

Country Status (2)

Country Link
JP (1) JP2009162053A (ja)
WO (1) WO2009063760A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011012554A (ja) * 2009-06-30 2011-01-20 Toyota Motor Corp 改質触媒システム
EP2685080A1 (en) * 2011-03-09 2014-01-15 Nissan Motor Co., Ltd Internal combustion engine system
JP2014101771A (ja) * 2012-11-19 2014-06-05 Nissan Motor Co Ltd 内燃機関の制御装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6639341B2 (ja) * 2016-07-14 2020-02-05 ヤンマー株式会社 内燃機関の制御装置および内燃機関の制御方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3685052B2 (ja) * 2000-11-30 2005-08-17 日産自動車株式会社 内燃機関の排気浄化装置
JP4487669B2 (ja) * 2004-07-21 2010-06-23 トヨタ自動車株式会社 内燃機関の制御装置および制御方法
JP2006291901A (ja) * 2005-04-13 2006-10-26 Toyota Motor Corp 内燃機関及び内燃機関の運転制御装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011012554A (ja) * 2009-06-30 2011-01-20 Toyota Motor Corp 改質触媒システム
EP2685080A1 (en) * 2011-03-09 2014-01-15 Nissan Motor Co., Ltd Internal combustion engine system
EP2685080A4 (en) * 2011-03-09 2015-11-04 Nissan Motor COMBUSTION ENGINE SYSTEM
JP2014101771A (ja) * 2012-11-19 2014-06-05 Nissan Motor Co Ltd 内燃機関の制御装置

Also Published As

Publication number Publication date
WO2009063760A1 (ja) 2009-05-22

Similar Documents

Publication Publication Date Title
EP2216537B1 (en) Internal combustion engine
US6997142B2 (en) Internal combustion engine and method of operating internal combustion engine
JP6508229B2 (ja) 内燃機関の排気浄化装置の異常診断装置
JP4449956B2 (ja) 内燃機関
US9356215B2 (en) Thermoelectric generator
KR101855788B1 (ko) 개질 시스템 및 압력센서를 이용한 개질기 고장 진단 방법
JP2008002351A (ja) 内燃機関の排気還流装置
US20090016401A1 (en) Combustion state determining apparatus and method for catalytic combustion unit
JP2009138527A (ja) 内燃機関の制御装置
JP2009144657A (ja) 内燃機関の制御装置
KR20180054269A (ko) 개질 시스템 및 온도센서를 이용한 개질기 작동 방법
JP2013231360A (ja) 内燃機関の燃料改質装置
JP2008138638A (ja) 内燃機関の排気還流装置
JP4736931B2 (ja) 内燃機関の排気還流装置
JP2009162053A (ja) 内燃機関の制御装置
JP2009138531A (ja) 内燃機関の制御装置
JP4506335B2 (ja) 内燃機関及び内燃機関の運転制御装置
JP2009121296A (ja) 内燃機関の制御装置
JP4888444B2 (ja) 内燃機関の制御装置
JP2009138567A (ja) 内燃機関の制御装置
JP2007291994A (ja) 内燃機関
JP5845906B2 (ja) 内燃機関の排気還流装置
JP2009144555A (ja) 内燃機関の制御装置
JP2006249981A (ja) 改質ガス利用内燃機関
JP2008202494A (ja) 内燃機関の排気リフォーマシステム