JP2009150869A - イムノクロマトグラフ方法 - Google Patents

イムノクロマトグラフ方法 Download PDF

Info

Publication number
JP2009150869A
JP2009150869A JP2008250000A JP2008250000A JP2009150869A JP 2009150869 A JP2009150869 A JP 2009150869A JP 2008250000 A JP2008250000 A JP 2008250000A JP 2008250000 A JP2008250000 A JP 2008250000A JP 2009150869 A JP2009150869 A JP 2009150869A
Authority
JP
Japan
Prior art keywords
silver
amplification
substance
antibody
test substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008250000A
Other languages
English (en)
Other versions
JP5275737B2 (ja
Inventor
Hiroyuki Chiku
浩之 知久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2008250000A priority Critical patent/JP5275737B2/ja
Priority to EP08020718A priority patent/EP2065706B1/en
Priority to US12/325,057 priority patent/US7998753B2/en
Publication of JP2009150869A publication Critical patent/JP2009150869A/ja
Priority to US13/177,971 priority patent/US8877515B2/en
Application granted granted Critical
Publication of JP5275737B2 publication Critical patent/JP5275737B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)

Abstract

【課題】増幅時間を短縮し、増幅後のムラを低減したイムノクロマトグラフ方法を提供すること。
【解決手段】被験物質と、該被験物質に対する第一の結合物質で修飾した標識化物質とを、これらを混合させた状態で多孔性担体上において展開し、該被験物質に対する第二の結合物質、または被験物質に対する第一の結合物質への結合性がある物質、を有する多孔性担体上の反応部位において該被験物質と該標識化物質を捕捉して該被験物質を検出することを含むイムノクロマトグラフ方法において、銀を含む化合物及び銀イオンのための還元剤を含む増幅液を用いて増感することによって被験物質の検出を行うことを含み、被験物質の展開方向と増幅液の展開方向とを異なる方向にして展開を行うことを特徴とするイムノクロマトグラフ方法。
【選択図】なし

Description

本発明は、標識抗体を用いたイムノクロマトグラフ方法に関する。
尿、血液等の生体試料中に存在する被験物質の存在を定性的にあるいは定量的に測定する方法として、免疫学的測定方法が汎用されている。その中でもイムノクロマトグラフィー法は、操作が簡便であり短時間で測定可能であることから、一般的によく利用されている。
イムノクロマトグラフィー法で用いられている免疫反応としては、競合型反応、サンドイッチ型反応が広く使われている。その中でも、イムノクロマトグラフィー法ではサンドイッチ型反応が主流であり、その典型例においては、試料中の抗原よりなる被験出物質を検出するために、以下のような操作が行われる。(1)被験出物質である抗原に対する抗体により感作させた微粒子を固相微粒子としてクロマトグラフ媒体に固定化することにより、あるいはこの抗体そのものをクロマトグラフ媒体に直接固定化することにより、反応部位を有するクロマトグラフ媒体を調整する。(2)一方、標識微粒子に被験出物質と特異的に結合可能な抗体を感作させて感作標的微粒子を調整する。(3)この感作標識微粒子を、試料と共に、クロマトグラフ媒体上でクロマトグラフ的に移動させる。
以上の操作により、クロマトグラフ媒体に形成された反応部位において、固定化された抗体が固定化試薬となり、これに被験出物質である抗原を介して感作標識微粒子特異的に結合し、その結果、感作標識微粒子が反応部位に捕捉されることにより生ずるシグナルの有無または程度を目視で判定することにより、試料中の被験出物質の存在の有無または量を測定する。
このようなイムノクロマトグラフィー法において、標識微粒子を調製するための微粒子としては、コロイド状金属粒子またはコロイド状金属酸化物粒子、コロイド状非金属粒子および染料粒子が用いられている。また、標識として、アルカリフォスファターゼ、ペルオキシダーゼなどの酵素を用いられている場合もある。
イムノクロマトグラフィー法の中には、感度が低いために抗原が検出されない(偽陰性)問題を回避するために、検出シグナルを増幅させる方法が行われる場合がある。シグナル増幅の方法として、標識としてアルカリフォスファターゼ、ペルオキシダーゼなどの酵素を用いる場合があるが、金属コロイド標識及び金属硫化物標識からなる群から選んだ標識に銀を含む化合物及び銀イオンのための還元剤を用いて増感することによって検出を行う場合もある。
特開2002−202307号公報 特表平10−513263号公報
イムノクロマトグラフ方法でシグナルを増幅する時、増幅する時の時間がかかり、かつ増幅後ムラが発生する問題がある。本発明は、増幅時間を短縮し、増幅後のムラを低減したイムノクロマトグラフ方法を提供することを解決すべき課題とした。
本発明者らは、上記課題を解決するために鋭意研究した結果、金属コロイド標識物質及び金属硫化物標識物質を使用したイムノクロマトストリップに検体を滴下し展開させた後、検体の展開方向と銀増幅液の展開方向を異なる方向にして増幅させることで、検出ラインに直接、もしくは検出ラインごく近傍に増幅液を接触させることができ、その結果、シグナルの増幅時間の短縮と増幅後のムラの減少を達成できることを見出した。本発明は、上記知見に基づいて完成したものである。
即ち、本発明によれば、被験物質と、該被験物質に対する第一の結合物質で修飾した標識化物質とを、これらを混合させた状態で多孔性担体上において展開し、該被験物質に対する第二の結合物質、または被験物質に対する第一の結合物質への結合性がある物質、を有する多孔性担体上の反応部位において該被験物質と該標識化物質を捕捉して該被験物質を検出することを含むイムノクロマトグラフ方法において、銀を含む化合物及び銀イオンのための還元剤を含む増幅液を用いて増感することによって被験物質の検出を行うことを含み、被験物質の展開方向と増幅液の展開方向とを異なる方向にして展開を行うことを特徴とするイムノクロマトグラフ方法が提供される。
好ましくは、被験物質の展開方向と増幅液の展開方向とが45度から170度である。
好ましくは、被験物質の展開方向と増幅液の展開方向とが60度から150度である。
好ましくは、被験物質の展開方向と増幅液の展開方向とが垂直である。
好ましくは、第一の結合物質及び/又は第二の結合物質が抗体である。
好ましくは、多孔質担体がニトロセルロースである。
好ましくは、標識物質が金属粒子である。
好ましくは、標識物質が、金、銀、白金、又はそれらの化合物である。
好ましくは、平均粒子サイズが1μm以上20μm以下のサイズを有する標識物質を検出する。
好ましくは、銀を含む化合物及び銀イオンのための還元剤を用いて増感するための反応時間が7分以内である。
好ましくは、検出部位の標識物質の数が1×106/mm3以下である。
本発明では、増幅液との接触面と検出ラインまでの距離を短くすることで、増幅時間の短縮することができ、かつ、増幅時のムラを減少させることができるので、短時間で明瞭な測定結果を得ることができる。
金属コロイド標識物質及び金属硫化物標識物質を使用したイムノクロマトストリップに検体を滴下し展開させた後、前記の銀を含む増幅液を用いて増感する場合、前記標識物質と前記増幅液を接触させる必要がある。この方法として、(1)前記標識物質の存在部位に前記増幅液を滴下する、(2)イムノクロマトストリップ全体を前記増幅液に浸す、(3)イムノクロマトストリップの一部を前記増幅液に接触させ、毛細管現象を利用して吸上げる、などがある。しかしながら、前記工程(1)、(2)の場合、イムノクロマトストリップが水分を含んでいる状態では増幅液に接触させても平衡に達するまで時間がかかってしまい、増感するのに時間がかかってしまう。そのため、時間を短縮するためには、一度イムノクロマトストリップを乾燥させる必要がある。これに対し、前記工程(3)の場合、毛細管現象によりイムノクロマトストリップ中に存在する液体が次々に吸水パッドに吸収されていくので、液体の交換も迅速に行われる。この結果、前記工程(1)、(2)と比べ、標識の増感にかかる時間が短縮される。
また、前記工程(3)の場合に関しても、増幅液とイムノクロマトストリップとの接触面から検出ラインまでの距離が離れていると、増幅液が検出ラインまで達するのに時間がかかってしまう。増幅液とイムノクロマトストリップとの接触面から検出ラインまでの距離を短くする方法としては、検体の展開方向と増幅液の展開方向を異なる方向にする方法がある。これにより、検出ラインの一部を直接、もしくは検出ラインのごく近傍を増幅液に接触させることが可能になり、増幅液との接触面と検出ラインまでの距離が短縮でき、増幅時間の短縮に成功した。
本発明は、被験物質の展開方向と増幅液の展開方向とが45度から170度の間なら、何度でも可能である。
また、標識物質のシグナルを増幅させる場合、イムノクロマトストリップの検出ライン以外に存在する前記標識物質のシグナルも増幅させてしまい、ムラが生じる場合がある。この問題は、上記のように検出ラインに直接、もしくは検出ラインごく近傍に増幅液を接触させることで、解決することができる。
本発明による増幅操作は、被験物質を展開させた後に行う。その際、イムノクロマトストリップに付属していたパッド類をはずしても良いし、はずさなくても良く、さらに、増幅液の展開方向の下流に新たにパッド類を取り付けても良いし、取り付けなくても良い。また、増幅操作の際、ストリップ上流を増幅液に接触させるために、一部切断しても良いし、切断しなくても良く、その際、ストリップ上流に新たにパッド類を取り付けても良いし、取り付けなくても良い。
本発明のイムノクロマトグラフ方法においては好ましくは、検出時に平均粒子サイズが1μm以上20μm以下のサイズを有する標識物質を検出することができる。検出時の標識の平均粒子サイズは、3μm以上20μm以下がさらに好ましい。
検出時の標識の平均粒子サイズを本発明の範囲にする方法については、以下の手段があり、その手段を単独で使用してもかまわないし、組み合わせて使用してもかまわない。手段1としては、増幅時間があげられる。増幅時間は長い方が粒子サイズを大きくする事が出来る。また、手段2としては、還元剤の還元力の強さが上げられる。還元剤の還元力の強さが強いほど、粒子サイズを大きくする事が出来る。一方、還元剤の強さが強すぎると、検出前の標識以外の部分で新たな粒子が発生してしまう為、詳細なコントロールが必要である。例えば、Fe2+とFe3+の比率で還元剤の強さをコントロールする等の工夫が必要である。手段3としては、例えば銀イオンの様に、標識に付着してサイズを大きくする物質の濃度が上げられる。物質の濃度が濃いほど、粒子サイズを大きくする事が出来る。また、手段4としては、増幅温度があげられる、増幅温度は還元物質の種類、量、サイズを大きくする物質の濃度等により、最適温度が存在する。これらの組み合わせで、検出時の平均粒子サイズを1μm以上20μm以下にすることが重要である。なお、検出時の粒子サイズを本発明の1μm以上の大きさにすることは、特に7分以下の短時間では、非常に困難であるが、上記の条件を鋭意検討し、増幅をコントロールする事で、安定的に大きくする手段を見出すに至り、本発明の微量物資を検出するイムノクロマトキットの発明に至った。
好ましくは、銀を含む化合物及び銀イオンのための還元剤を用いて増感するための反応時間は7分以内である。さらに好ましくは5分以内である。特に好ましくは90秒以下である。
好ましくは、検出部位の標識物質の数は1×106/mm3以下、さらに好ましくは1×105/mm3以下、特に好ましくは1×104/mm3以下である。
また、本発明で用いるイムノクロマトキット、及びイムノクロマト方法に関する説明は、以下の通りである。
1.イムノクロマト
一般に、イムノクロマトグラフ方法とは以下のような手法で被分析物を簡便・迅速・特異的に判定・測定する手法である。すなわち、被分析物と結合可能な固定化試薬(抗体、抗原等)を含む少なくとも1つの反応部位を有するクロマトグラフ担体を固定相として用いる。このクロマトグラフ担体上で、分析対象物結合可能な試薬によって修飾された検出用標識物が分散されてなる分散液を移動層として前記クロマトグラフ担体中をクロマトグラフ的に移動させると共に、前記分析対象物と検出用標識物とが特異的に結合しながら、前記反応部位まで到達する。前記反応部位において、前記分析対象物と検出用標識物の複合体が前記固定化試薬に特異的結合することにより、被分析液中に分析対象物が存在する場合にのみ、前記固定化試薬部に検出用標識物が濃縮されることを利用し、それらを目視または適当な機器を用いて被分析液中に被験出物が存在することを定性および定量的に分析する手法である。
本発明におけるイムノクロマトグラフ方法を行う装置は、銀を含む化合物及び銀イオンのための還元剤を内蔵していてもよく、前記固定化試薬に結合した前記分析対象物と検出用標識物の複合体を核として増幅反応によって、シグナルを増幅し、結果として高感度化を達成することができる。本発明によれば、迅速な高感度イムノクロマトグラフを行うことができる。
2.被験試料
本発明のイムノクロマトグラフ方法で分析することのできる被験試料としては、分析対象物を含む可能性のある試料である限り、特に限定されるものではなく、例えば、生物学的試料、特には動物(特にヒト)の体液(例えば、血液、血清、血漿、髄液、涙液、汗、尿、膿、鼻水、又は喀痰)若しくは排泄物(例えば、糞便)、臓器、組織、粘膜や皮膚、それらを含むと考えられる搾過検体(スワブ)、うがい液、又は動植物それ自体若しくはそれらの乾燥体を挙げることができる。
3.被験試料の前処理
本発明のイムノクロマトグラフ方法では、前記被験試料をそのままで、あるいは、前記被験試料を適当な抽出用溶媒を用いて抽出して得られる抽出液の形で、更には、前記抽出液を適当な希釈剤で希釈して得られる希釈液の形、若しくは前記抽出液を適当な方法で濃縮した形で、用いることができる。前記抽出用溶媒としては、通常の免疫学的分析法で用いられる溶媒(例えば、水、生理食塩液、又は緩衝液等)、あるいは、前記溶媒で希釈することにより直接抗原抗体反応を実施することができる水混和性有機溶媒を用いることもできる。
4.構成
本発明のイムノクロマトグラフ方法において使用することのできるイムノクロマトグラフ用ストリップとしては、通常のイムノクロマトグラフ法に用いることができるイムノクロマトグラフ用ストリップである限り、特に限定されるものではない。また、ストリップの幅、形状に関しても、特に限定されるものでもなく、操作しやすい幅であれば問題ない。例えば、図1に模式的に従来のイムノクロマトグラフ用ストリップの平面図を模式的に示す。図2に図1で示されたイムノクロマトグラフキットの縦断面を模式的に示す縦断面図である。
本発明のイムノクロマトグラフ用ストリップ10は、展開方向(図1において矢印Aで示す方向)の上流から下流に向かって、試料添加パッド5、標識化物質保持パッド(例えば金コロイド抗体保持パッド)2、クロマトグラフ担体(例えば抗体固定化メンブレン)3、及び吸収パッド4がこの順に、粘着シート5上に配置されている。
前記クロマトグラフ担体3は、補足部位3aを有し、分析対象物と特異的に結合する抗体又は抗原を固定化した領域である検出ゾーン(検出部と記載することもある)31を有し、所望により、コントロール用抗体又は抗原を固定化した領域であるコントロールゾーン(コントロール部と記載することもある)32を更に有する。さらに、検出ゾーン31およびコントロールゾーン32は、増幅のための有機銀塩と銀イオンのための還元剤を含有する。
前記標識化物質保持パッド2は、標識化物質を含む懸濁液を調製し、その懸濁液を適当な吸収パッド(例えば、グラスファイバーパット)に塗布した後、それを乾燥することにより調製することができる。
前記試料添加パッド1としては、例えばグラスファイバーパットを用いることができる。
4−1.検出用標識物
検出用標識物は、免疫凝集反応に用いられている着色粒子を使用することができる。例えば、金属コロイドのような金属等を用いることができる。担体粒子(又はコロイド)の平均粒径は、0.001〜10μm(より好ましくは0.001〜1μm)の範囲が好ましい。色素を含有したリポゾ−ムやマイクロカプセル等も着色粒子として使用することができる。従来公知の着色金属コロイドはいずれも標識用着色粒子として使用することができる。例えば、金コロイド、銀コロイド、白金コロイド、鉄コロイド、水酸化アルミニウムコロイド、およびこれらの複合コロイドなどが挙げられ、好ましくは、金コロイド、銀コロイド、白金コロイド、およびこれらの複合コロイドである。特に、金コロイドと銀コロイドが適当な粒径において、金コロイドは赤色、銀コロイドは黄色を示す点で好ましい。金属コロイドの平均粒径としては、約1〜500nmが好ましく、特に強い色調が得られる5〜100nmがさらに好ましい。金属コロイドと特異結合物質との結合は、従来公知の方法(例えばThe Journal of Histochemistry and Cytochemistry,Vol.30,No.7,pp691−696,(1982))に従い、行うことができる。すなわち、金属コロイドと特異結合物質(例えば抗体)を適当な緩衝液中で室温下5分以上混合する。反応後、遠心分離により得た沈殿を、ポリエチレングリコ−ル等の分散剤を含む溶液中に分散させることにより、目的の金属コロイド標識特異結合物質を得ることができる。金属コロイドとして金コロイド粒子を用いる場合には、市販のものを用いてもよい。あるいは、常法、例えば塩化金酸をクエン酸ナトリウムで還元する方法(Nature Phys. Sci.,vol.241,20,(1973)等)により金コロイド粒子を調製することができる。
本発明によれば、検出用標識物として金属コロイド標識又は金属硫化物標識、その他金属合金標識(以下、金属系標識と称することがある)、また金属を含むポリマー粒子標識を用いるイムノクロマトグラフにおいて、前記金属系標識の信号を増幅させることができる。具体的には、前記分析対象物と検出用標識物の複合体の形成後に、有機銀塩などの銀を含む化合物から供給される銀イオンおよび銀イオンのために還元剤を接触させ、還元剤によって銀イオンを還元して銀粒子を生成させると、その銀粒子が前記金属系標識を核として前記金属系標識上に沈着するので、前記金属系標識が増幅され、分析対象物の分析を高感度に実施することができる。従って、本発明のイムノクロマトグラフ方法においては、還元剤による銀イオンの還元作用により生じた銀粒子を用いて、免疫複合体の標識に沈着させる反応を実施し、こうして増幅された信号を分析することを除けば、それ以外の点では従来公知のイムノクロマトグラフ法をそのまま適用することができる。また、本発明における増幅反応は非常に早いため、標識に用いた金属コロイドの大きさに関係なく、良好な性質を示す。
4−2.結合物質
本発明では、標識物質は、被験物質に対する第一の結合物質で修飾されている。第一の結合物質とは、例えば該被験物質(抗原)に対する抗体、該被験物質(抗体)に対する抗原、該被験物質(たんぱく質、低分子化合物等)に対するアプタマーなど、該被験物質に対して親和性を持つ化合物であればなんでもよい。
本発明では、多孔性担体は、(a)被験物質に対する第二の結合物質、又は(b)第一の結合物質への結合性を有する物質を有している。 該被験物質に対する第二の結合物質とは、例えば該被験物質(抗原)に対する抗体、該被験物質(抗体)に対する抗原、該被験物質(たんぱく質、低分子化合物等)に対するアプタマーなど、該被験物質に対して親和性を持つ化合物であればなんでもよい。また、第二の結合物質と第一の結合物質とは異なるものでも良いし、同一のものでもよい。
被験物質に対する第一の結合物質への結合性を有する物質とは、被験物質そのものでも良いし、第一の結合物質が認識する部位を持つ化合物でもよく、たとえば被験物質の誘導体とタンパク質(例えばBSAなど)とを結合させたような化合物などがそれにあたる。
好ましくは、第一の結合物質が抗体であり、及び/または第二の結合物質が抗体である。
本発明のイムノクロマトグラフ方法においては、分析対象物に対して特異性を有する抗体として、特に限定されるものではないが、例えば、その分析対象物によって免疫された動物の血清から調製する抗血清、抗血清から精製された免疫グロブリン画分、その分析対象物によって免疫された動物の脾臓細胞を用いる細胞融合によって得られるモノクローナル抗体、あるいは、それらの断片[例えば、F(ab’)2、Fab、Fab’、又はFv]を用いることができる。これらの抗体の調製は、常法により行なうことができる。
断片化抗体は、その動物種やサブクラス等によらず使用できる。例えば、本発明に用いることが可能な抗体は、マウスIgG、マウスIgM、ラットIgG、ラットIgM、ウサギIgG、ウサギIgM、ヤギIgG、ヤギIgM、ヒツジIgG、ヒツジIgM等であり、ポリクローナルもしくはモノクローナルの両方に適用可能である。断片化抗体は、少なくとも1つの抗原結合部位を持つ、完全型抗体から導かれた分子であり、具体的にはFab、F(ab')2等である。これらの断片化抗体は、酵素あるいは化学的処理によって、もしくは遺伝子工学的手法を用いて得られる分子である。
4−3.クロマトグラフ担体
クロマトグラフ担体としては、多孔性担体が好ましい。特に、ニトロセルロース膜、セルロース膜、アセチルセルロース膜、ポリスルホン膜、ポリエーテルスルホン膜、ナイロン膜、ガラス繊維、不織布、布、または糸等が好ましい。
通常クロマトグラフ担体の一部に検出用物質を固定化させて検出ゾーンを作製する。検出用物質は、検出用物質をクロマトグラフ担体の一部に物理的または化学的結合により直接固定化させてもいいし、検出用物質をラテックス粒子などの微粒子に物理的または化学的に結合させ、この微粒子をクロマトグラフ担体の一部にトラップさせて固定化させてもいい。また、この検出用物質は、1種類の担体に2種類以上固定化することも可能である。なお、クロマトグラフ担体は、検出用物質を固定化後、不活性蛋白による処理等により非特異的吸着防止処理をして用いるのが好ましい。
4−4.試料添加パッド
試料添加パッドの材質は、セルロース濾紙、ガラス繊維、ポリウレタン、ポリアセテート、酢酸セルロース、ナイロン、及び綿布等の均一な特性を有するものが挙げられるが、これらに限定されるものではない。試料添加部は、添加された分析対象物を含む試料を受入れるだけでなく、試料中の不溶物粒子等を濾過する機能をも兼ねる。また、分析の際、試料中の分析対象物が試料添加部の材質に非特異的に吸着し、分析の精度を低下させることを防止するため、試料添加部を構成する材質は、予め非特異的吸着防止処理して用いることもある。
4−5.標識化物質保持パッド
標識化物質保持パッドの素材としては、例えば、セルロース濾紙、グラスファイバー、及び不織布等が挙げられ、前述のように調製した検出用標識物を一定量含浸し、乾燥させて作製する。
4−6.吸収パッド
吸収パッドは、添加された試料がクロマト移動により物理的に吸収されると共に、クロマトグラフ担体の検出部に不溶化されない未反応標識物質等を吸収除去する部位であり、セルロ−ス濾紙、不織布、布、セルロースアセテート等吸水性材料が用いられる。添加された試料のクロマト先端部が吸収部に届いてからのクロマトの速度は、吸収材の材質、大きさなどにより異なるので、その選定により分析対象物の測定に合った速度を設定することができる。
5.免疫検査の方法
以下、本発明のクロマトグラフ方法について、その具体的な実施態様であるサンドイッチ法及び競合法について説明する。
(サンドイッチ法)
サンドイッチ法では、特に限定されるものではないが、例えば、以下の手順により被験物質の分析を実施することができる。まず、被験物質(抗原)に対して特異性を有する第1抗体及び第2抗体を、先に述べた方法により予め調製しておく。また、第1抗体を、予め標識化しておく。第2抗体を、適当な不溶性担体(例えば、ニトロセルロ−ス膜、ガラス繊維膜、ナイロン膜、又はセルロ−ス膜等)上に固定し、被験物質(抗原)を含む可能性のある被験試料(又はその抽出液)と接触させると、その被験試料中に被験物質が存在する場合には、抗原抗体反応が起きる。この抗原抗体反応は、通常の抗原抗体反応と同様に行なうことができる。前記抗原抗体反応と同時又は反応後に、過剰量の標識化第1抗体を更に接触させると、被験試料中に被験物質が存在する場合には、固定化第2抗体と被験物質(抗原)と標識化第1抗体とからなる免疫複合体が形成される。
サンドイッチ法では、固定化第2抗体と分析対象物(抗原)と第1抗体との反応が終了した後、前記免疫複合体を形成しなかった標識化第1抗体を除去し、続いて、例えば、不溶性薄膜状支持体における固定化第2抗体を固定した領域に、金属イオン及び還元剤を供給することにより、前記免疫複合体を形成した標識化第1抗体の標識からの信号を増幅する。あるいは、標識化第1抗体に金属イオン及び還元剤を添加し、同時に薄膜状支持体に添加することにより、前記免疫複合体を形成した標識化第1抗体の標識からの信号を増幅する。
(競合法)
競合法では、特に限定されるものではないが、例えば、以下の手順により被験物質の分析を実施することができる。競合法は、サンドイッチ法でアッセイすることができない低分子化合物の抗原を検出する手法として知られている。
まず、被験物質(抗原)に対して特異性を有する第1抗体を予め調製しておく。また、第1抗体を、予め金属コロイドなどで標識化しておく。第一抗体に対して結合性を有する、被験物質そのもの、または被験物質と類似な部位を持ち被験物質と同様の第一抗体に対するエピトープを持つ化合物を、適当な不溶性担体(例えば、ニトロセルロ−ス膜、ガラス繊維膜、ナイロン膜、又はセルロ−ス膜等)上に固定しておく。被験物質(抗原)を含む可能性のある被験試料(又はその抽出液)と接触させると、その被験試料中に被験物質が存在しない場合には、標識化された第一抗体と、第一抗体に対して結合性を有する、被験物質そのもの、または被験物質と同様の第一抗体に対するエピトープを持つ化合物とにより、不溶性担体上の抗原抗体反応が起きる。一方、被験物質が存在する場合には、標識された第1抗体に被験物質(抗原)が結合するため、その後の第一抗体に対して結合性を有する、被験物質そのもの、または被験物質と類似な部位を持ち被験物質と同様の第一抗体に対するエピトープを持つ化合物との、第一の不溶性担体上の抗原抗体反応が阻害され、抗原抗体反応による結合が起こらない。
第一抗体に対して結合性を有する固定化物と標識化された第1抗体との反応が終了した後、前記免疫複合体を形成しなかった標識化第1抗体を除去し、続いて、例えば、不溶性支持体における固定した領域に、金属イオン及び還元剤を供給することにより、前記免疫複合体を形成した標識化第1抗体の標識からの信号を増幅して検出することもできる。あるいは、標識化第1抗体に金属イオン及び還元剤を添加し、同時に薄膜状支持体に添加することにより、前記免疫複合体を形成した標識化第1抗体の標識からの信号を増幅し、検出・測定することもできる。
6.増幅液
本発明において、使用することのできる増幅液とは、写真化学の分野での一般書物(例えば、「改訂写真工学の基礎-銀塩写真編-」(日本写真学会編、コロナ社)、「写真の化学」(笹井明、写真工業出版社)、「最新処方ハンドブック」(菊池真一他、アミコ出版社))に記載されているような、いわゆる現像液のことである。
本発明では、液中に銀イオンを含み、液中の銀イオンが現像の核となるような金属コロイド等を中心に還元される、いわゆる物理現像液であれば、どんなものでも増幅液として用いることができる。また、使用する増幅液の粘度が変わると増幅に必要な時間は変わるが、標識の信号を検出できるようになる増幅時間を検討することで、解決できる。
7.銀を含む化合物
本発明で用いる銀含有化合物としては、有機銀塩、無機銀塩、もしくは銀錯体を用いることができる。
本発明に用いられる有機銀塩は、還元可能な銀イオンを含む有機化合物である。本発明で用いられる、還元可能な銀イオンを含む化合物としては、有機銀塩、無機銀塩、もしくは銀錯体など何でも良い。例えば、硝酸銀、酢酸銀、乳酸銀、酪酸銀などが知られている。
また還元剤の存在下で50℃以上まで加熱されると、光に比較的に安定な金属銀を形成する銀塩または配位化合物であってもよい。
本発明に用いられる有機銀塩は、アゾ−ル化合物の銀塩およびメルカプト化合物の銀塩より選ばれる化合物がであってもよい。好ましくは、アゾ−ル化合物としては含窒素ヘテロ環化合物であり、より好ましくはトリアゾ−ル化合物およびテトラゾ−ル化合物である。メルカプト化合物は、メルカプト基またはチオン基を分子内に少なくとも1つ有する化合物である。
本発明における窒素含有ヘテロ環化合物の銀塩は、好ましくはイミノ基を有する化合物の銀塩である。代表的な化合物としては次にあげるものであるが、これらの化合物に限定されることはない。1,2,4−トリアゾ−ルの銀塩、又はベンゾトリアゾ−ルおよびその誘導体の銀塩(例えば、メチルベンゾトリアゾ−ル銀塩又は5−クロロベンゾトリアゾ−ル銀塩)、米国特許第4,220,709に記載されているフェニルメルカプトテトラゾ−ルのような1H−テトラゾ−ル化合物、米国特許第4,260,677に記載のイミダゾ−ルおよびイミダゾ−ル誘導体。この種の銀塩のうち、特に好ましい化合物はベンゾトリアゾ−ル誘導体の銀塩、又はこれらの2つ以上の混合物である。
本発明に用いられる窒素含有ヘテロ環化合物の銀塩として最も好ましくは、ベンゾトリアゾ−ル誘導体の銀塩である。
本発明におけるメルカプト基またはチオン基を持つ化合物は、好ましくは5つまたは6つの原子を含むヘテロ環化合物である。この場合に環中の原子の少なくとも1つは窒素原子であり、その他の原子は炭素、酸素、硫黄原子である。このようなヘテロ環化合物としてはトリアゾ−ル類オキサゾ−ル類、チアゾ−ル類、チアゾリン類、イミダゾ−ル類、ジアゾ−ル類、ピリジン類、およびトリアジン類が挙げられるが、これらに限定されるわけではない。
メルカプト基またはチオン基を持つ化合物の銀塩のうち代表的な化合物を以下に挙げるが、これらに限定されるわけではない。
3−メルカプト−4−フェニル−1,2,4−トリアゾ−ルの銀塩、2−メルカプト−ベンズイミダゾ−ルの銀塩、2−メルカプト−5−アミノチアゾ−ルの銀塩、メルカプトトリアジンの銀塩、2−メルカプトベンゾオキサゾ−ルの銀塩、および米国特許第4,123,274記載の化合物の銀塩。
本発明におけるメルカプト基またはチオン基を持つ化合物としては、ヘテロ環を含まない化合物を用いることも出来る。ヘテロ環を含まないメルカプトまたはチオン誘導体としては、総炭素数が10以上の脂肪族または芳香族炭化水素化合物が好ましい。
ヘテロ環を含まないメルカプトまたはチオン誘導体のうち有用な化合物としては以下に挙げるものがあるが、これらに制限されるわけではない。
チオグリコ−ル酸銀塩(例えば炭素原子数12から22までのアルキル基を持つS−アルキルチオグリコ−ル酸の銀塩)、ジチオカルボン酸の銀塩(たとえばジチオ酢酸の銀塩又はチオアミドの銀塩)
カルボン酸の銀塩を持つ有機化合物もまた好ましく用いられる。例えば、直鎖のカルボン酸である。具体的には、C数6〜22のカルボン酸が好ましく用いられる。加えて芳香族カルボン酸の銀塩である。芳香族カルボン酸とその他のカルボン酸の例として、以下の化合物が挙げられるが、これらに限定されることはない。
置換または無置換の安息香酸銀(例えば3,5−ジヒドロキシ安息香酸銀、o−メチル安息香酸銀、m−メチル安息香酸銀、p−メチル安息香酸銀、2,4−ジクロロ安息香酸銀、アセタミド安息香酸銀、およびp−フェニル安息香酸銀)、タンニン酸銀、フタル酸銀、テレフタル酸銀、サリチル酸銀、フェニル酢酸銀、又はピロメリット酸銀。
本発明においては米国特許第3,330,663に記載されたようなチオエ−テル基を含む脂肪酸銀もまた好ましく用いられる。エ−テルまたはチオエ−テル結合を含む炭化水素鎖を有するか、α−位(炭化水素基の上)またはオルト位(芳香族基の上)に立体的に遮蔽された置換基を有する可溶性のカルボン酸銀も用いることができる。これらは、塗布溶媒中で溶解性が向上し、光散乱が少ない塗布物になる。
そのような銀のカルボン酸塩は、米国特許第5,491,059に記載されている。ここで記載されている銀塩の混合物はどれでも、本発明においては必要に応じて使うことができる。
米国特許第4,504,575に記載のスルホン酸塩の銀塩もまた、本発明の態様においては使用することが出来る。
さらに、本発明においては例えば米国特許第4,761,361と米国特許第4,775,613に記載のアセチレンの銀塩も使用することが出来る。米国特許第6,355,408に記載のコア−シェル型銀塩として提供されることもできる。これらの銀塩は、一つ以上の銀塩から成るコアと一つ以上の異なる銀塩からなるシェルで構成される。
本発明中において、非感光性銀源としてもう一つ有用なものは米国特許6472131に記載の2つの異なった銀塩から構成される銀の二量体合成物である。そのような非感光性の銀の二量体合成物は2つの異なる銀塩から成る。前記二種の銀塩が直鎖の飽和炭化水素基を銀の配位子として含む場合にはそれら配位子の炭素原子数の差が6以上である。
有機銀塩は、銀として一般に0.001モル/m2〜0.2モル/m2、好ましくは0.001モル/m2〜0.05モル/m2含有される。
本発明に用いられる無機銀塩、もしくは銀錯体は、還元可能な銀イオンを含む化合物である。好ましくは、還元剤の存在下で50℃以上まで加熱されると、光に比較的に安定な金属銀を形成する無機銀塩、もしくは銀錯体である。
本発明に用いられる無機銀塩は、例えば、ハロゲン化銀(塩化銀、臭化銀、塩臭化銀、ヨウ化銀、塩ヨウ化銀、塩ヨウ臭化銀、およびヨウ臭化銀等)、チオ硫酸塩(例えば、ナトリウム塩、カリウム塩、又はアンモニウム塩等)の銀塩、チオシアン酸塩(例えば、ナトリウム塩、カリウム塩、又はアンモニウム塩等)の銀塩、および亜硫酸塩(例えば、ナトリウム塩、カリウム塩、又はアンモニウム塩等)の銀塩等が挙げられる。
本発明に用いられる無機銀塩は、好ましくはハロゲン化銀である。
本発明に用いられるハロゲン化銀の粒子形成方法は、写真業界でよく知られており、例えば、リサーチディスクロージャー1978年6月の第17029号、及び米国特許第3,700,458号に記載されている方法を用いることができるが、具体的にはゼラチンあるいは他のポリマー溶液中に銀供給化合物(例えば、硝酸銀)及びハロゲン供給化合物を添加することにより調製される。
ハロゲン化銀の粒子サイズは、検査ノイズを小さくする上で微細であることが好ましく、具体的には0.20μm以下、より好ましくは0.10μm以下、更に好ましくはナノ粒子の範囲がよい。ここでいう粒子サイズとは、ハロゲン化銀粒子の投影面積(平板粒子の場合は主平面の投影面積)と同面積の円像に換算したときの直径をいう。
チオ硫酸銀、チオシアン酸銀、および亜硫酸銀等もハロゲン化銀と同様の粒子形成方法により銀供給化合物(例えば、硝酸銀)及びチオ硫酸塩(例えば、ナトリウム塩、カリウム塩、又はアンモニウム塩等)の銀塩、チオシアン酸塩(例えば、ナトリウム塩、カリウム塩、又はアンモニウム塩等)の銀塩、および亜硫酸塩(例えば、ナトリウム塩、カリウム塩、又はアンモニウム塩等)を混合することにより調製される。
また、一般に増幅液中の銀イオン濃度が高すぎると、増幅液中で銀イオンが還元されてしまうので、それを防ぐ為に錯化剤を用いて銀イオンが錯体を形成するようにしてもよい。このような錯化剤としては、グリシン、ヒスチジンのようなアミノ酸及び複素環式塩基や、イミダゾール、ベンズイミダゾール、ピラゾール、プリン、ピリジン、アミノピリジン、ニコチンアミド、キノリン、その他類似の芳香族複素環式系が知られており、例えばヨーロッパ特許第0293947号中に記載されている。また、錯塩形成剤としては、チオ硫酸塩やチオシアン酸塩なども用いることができる。本発明に用いられる銀錯体の具体例としては、例えば、チオ硫酸塩と銀イオンの錯体、チオシアン酸塩と銀イオンの錯体、またはこれらの複合銀錯体、および、シュガーチオン誘導体と銀イオンの錯体、環状イミド化合物(例えば、ウラシル、ウラゾール、5−メチルウラシル、バルビツール酸など)と銀イオンの錯体、1,1−ビススルホニルアルカン類と銀イオンの錯体である。本発明に用いられる好ましい銀錯体は、環状イミド化合物(例えば、ウラシル、ウラゾール、5−メチルウラシル、バルビツール酸など)と銀イオンの錯体である。
本発明に用いられる銀錯体は、通常知られている塩形成反応により調製することができる。例えば、水もしくは水混和性溶媒中で水溶性銀供給体(例えば、硝酸銀)と銀錯体に対応する配位子化合物とを混合することにより調製される。調製された銀錯体は、透析法もしくは限外濾過法などの公知の脱塩方法により副成する塩類を除去して用いることが出来る。
無機銀塩、もしくは銀錯体は、銀として一般に0.001モル/m2〜0.2モル/m2、好ましくは0.01モル/m2〜0.05モル/m2含有される。
また、無機銀塩または銀錯体を使用する場合は、無機銀塩もしくは銀錯体の溶剤を含有することが好ましい。本発明に用いられる溶剤としては、上記の銀錯体の項で説明した銀錯体を形成する配位子として用いられる化合物が好ましく用いられる。例えば、チオ硫酸塩、チオシアン酸塩、シュガーチオン誘導体、環状イミド化合物、および1,1−ビススルホニルアルカン類糖である。本発明に用いられる溶剤として、より好ましくは、ウラシル、ウラゾール、5−メチルウラシル、バルビツール酸などの環状イミド化合物である。本発明に用いられる溶剤は、銀イオンに対してモル比で0.1モル〜10モルの範囲で好ましく用いられる。
8.銀イオンのための還元剤
銀イオンのための還元剤は、銀(I)イオンを銀に還元することができる無機・有機のいかなる材料、またはその混合物でも用いることができる。
無機還元剤としては、Fe2+、V2+、Ti3+、などの金属イオンで原子価の変化し得る還元
性金属塩、還元性金属錯塩が知られており、本発明に用いることができる。無機還元剤を用いる際には、酸化されたイオンを錯形成するか還元して、除去するか無害化する必要がある。例えば、Fe+2を還元剤として用いる系では、クエン酸やEDTAを用いて酸化物であるFe3+の錯体を形成し、無害化することができる。
本系ではこのような無機還元剤を用いることが好ましく、より好ましくはFe2+の金属塩が好ましい。
また、湿式のハロゲン化銀写真感光材料に用いられる現像主薬(例えばメチル没食子酸塩、ヒドロキノン、置換ヒドロキノン、3−ピラゾリドン類、p−アミノフェノール類、p−フェニレンジアミン類、ヒンダードフェノール類、アミドキシム類、アジン類、カテコール類、ピロガロール類、アスコルビン酸(またはその誘導体)、およびロイコ色素類)、および本分野での技術に熟練しているものにとって明らかなその他の材料は、たとえば米国特許第6,020,117号(バウアーほか)で記述されるように、本発明において用いることができる。
「アスコルビン酸還元剤」はアスコルビン酸、その誘導体との複合体を意味する。アスコルビン酸還元剤は下記のように多くの文献において記載されており、例えば米国特許第5,236,816号(Purolほか)とその中で引用されている文献が挙げられる。
本発明における還元剤として、アスコルビン酸還元剤が好ましい。有用なアスコルビン酸還元剤は、アスコルビン酸と類似物、異性体とその誘導体を含む。そのような化合物は含む以下にあげるものであるが、これらに限定されるわけではない。
D−またはL−アスコルビン酸とその糖誘導体(例えばγ−ラクトアスコルビン酸、グルコアスコルビン酸、フコアスコルビン酸、グルコヘプトアスコルビン酸、マルトアスコルビン酸)、アスコルビン酸のナトリウム塩、アスコルビン酸のカリウム塩、イソアスコルビン酸(またはL−エリスロアスコルビン酸)、その塩(例えばアルカリ金属塩、アンモニウム塩または当技術分野において知られている塩)、エンジオールタイプのアスコルビン酸、エナミノールタイプのアスコルビン酸、チオエノ−ルタイプのアスコルビン酸)、たとえば米国特許第5,498,511、EP−A−0585,792、EP−A−0573700、EP−A−0588408、米国特許第5,089,819、米国特許第5,278,035、米国特許第5,384,232、米国特許第5,376,510、JP7−56286、米国特許第2,688,549、およびReseach Disclosure37152(1995年3月)に記載されているような化合物。
これらの化合物のうち、好ましくは、D、LまたはD,L−アスコルビン酸(そして、そのアルカリ金属塩)若しくはイソアスコルビン酸(またはそのアルカリ金属塩)であり、ナトリウム塩が好ましい塩である。必要に応じてこれらの還元剤の混合物を用いることができる。
ヒンダードフェノール類も単独で、または一つ以上の硬調化還元剤とコントラスト強化剤と組み合わせて好ましく用いられる。
ヒンダードフェノールは、ベンゼン環上に一つだけの水酸基を有し、少なくとも一つの置換基を水酸基に対してオルト位に有する化合物である。ヒンダードフェノール還元剤は複数の水酸基を別々のベンゼン環に持っていれば、複数の水酸基を有していて構わない。
ヒンダードフェノール還元剤は、たとえば、ビナフトール類(すなわちジヒドロキシビナフトール類)、ビフェノール類(すなわちジヒドロキシビフェノール類)、ビス(ヒドロキシナフチル)メタン類、ビス(ヒドロキシフェニル)メタン類(すなわちビスフェノール類)、ヒンダ−ドフェノール類、およびヒンダードナフトール類が挙げられ、これらは置換されていて構わない。
代表的なビナフトール類は以下に挙げられる化合物であるが、これらに制限されることはない。
1,1’−ビ−2−ナフトール、1,1’−ビ−4−メチル−2−ナフトール、および米国特許第3,094,417号と米国特許第5,262,295号に記載されている化合物。
代表的なビフェノール類は以下に挙げられる化合物であるが、これらに制限されることはない。
2−(2−ヒドロキシ−3−t−ブチル−5−メチルフェニル)−4−メチル−6−n−ヘキシルフェノール、4,4’−ジヒドロキシ−3,3’,5,5’−テトラ−t−ブチルビフェニル、4,4’−ジヒドロキシ−3,3’,5,5’−テトラメチルビフェニル、および米国特許第5,262,295号に記載の化合物。
代表的なビス(ヒドロキシナフチル)メタン類は以下に挙げられる化合物であるが、これらに制限されることはない。
4,4’−メチレンビス(2−メチル−1−ナフト−ル)、米国特許第5,262,295号に記載の化合物。
代表的なビス(ヒドロキシフェニル)メタン類は以下に挙げられる化合物であるが、これらに制限されることはない。
ビス(2−ヒドロキシ−3−t−ブチル−5−メチルフェニル)メタン(CAO−5)、1,1’−ビス(2−ヒドロキシ−3,5−ジメチルフェニル)−3,5,5−トリメチルヘキサン(NONOXまたはPERMANAX WSO)、1,1’−ビス(3,5−di−t−ブチル−4−ヒドロキシフェニル)メタン、2,2’−ビス(4−ヒドロキシ−3−メチルフェニル)プロパン、4,4’−エチリデン−ビス(2−t−ブチル−6−メチルフェノ−ル)、2,2’−イソブチリデン−ビス(4,6−ジメチルフェノ−ル)(LOWINOX 221B46)、2,2’−ビス(3,5−ジメチル−4−ヒドロキシフェニル)プロパン、および米国特許第5,262,295号に記載の化合物。
代表的なヒンダードフェノールは以下に挙げられる化合物であるが、これらに制限されることはない。
2,6−ジ−t−ブチルフェノール、2,6−ジ−t−ブチル−4−メチルフェノール、2,4−ジ−t−ブチルフェノール、2,6−ジクロロフェノール、2,6−ジメチルフェノール、および2−t−ブチル−6−メチルフェノール。
代表的なヒンダードナフトールは以下に挙げられる化合物であるが、これらに制限されることはない。
1−ナフトール、4−メチル−1−ナフトール、4−メトキシ−1−ナフトール、4−クロロ−1−ナフトール、2−メチル−1−ナフトール、および米国特許第5,262,295号に記載の化合物。
その他、下記の化合物の還元剤として開示されている。
アミドキシム類(例えばフェニルアミドキシム)、2−チエニルアミドキシム、p−フェノキシフェニルアミドキシム、脂肪族カルボン酸アリルヒドラジドとアスコルビン酸の組み合わせ(例えば2,2’−ビス(ヒドロキシメチル)−プロピオニル−β−フェニルヒドラジドとアスコルビン酸の組み合わせ)、ポリヒドロキシベンゼンとヒドロキシルアミン、レダクトンおよびヒドラジンの少なくとも一方の組み合わせ(たとえばヒドロキノンとビス(エトキシエチル)ヒドロキシルアミンの組み合わせ)、ピペリジ−4−メチルフェニルヒドラジン、ヒドロキサム酸(例えばフェニルヒドロキサム酸、p−ヒドロキシフェニルヒドロキサム酸、およびo−アラニンヒドロキサム酸)、アジンとスルホンアミドフェノール類の組合せ(たとえばフェノチアジンと2,6−ジクロロ−4−ベンゼンスルホンアミドフェノール)、α−シアノフェニル酢酸誘導体(例えばエチル−α−シアノ−2−メチルフェニル酢酸、エチル−α−シアノフェニル酢酸)、ビス−o−ナフトール(例えば2,2’−ジヒドロキシ−1−ビナフチル、6,6’−ジブロモ−2,2’−ジヒドロキシ−1,1’−ビナフチル、ビス(2−ヒドロキシ−1−ナフチル)メタン)、
ビス−ナフト−ルと1,3−ジヒドロキシベンゼン誘導体の組み合わせ(例えば2,4−ジヒドロキシベンゾフェノン、2,4−ジヒドロキシアセトフェノン)、5−ピラゾロン(例えば3−メチル−1−フェニル−5−ピラゾロン)、レダクトン類(例えばジメチルアミノヘキソ−スレダクトン、アンヒドロジヒドロ−アミノヘキソ−スレダクトン、またはアンヒドロジヒドロ−ピペリドン−ヘキソースレダクトン)、インダン−1,3−ジオン類(例えば2−フェニルインダン−1,3−ジオン)、クロマン類(例えば2,2−ジメチル−7−t−ブチル−6−ヒドロキシクロマン)、1,4−ジヒドロキシピリジン類(例えば2,6−ジメトキシ−3,5−ジカルベトキシ−1,4−ジヒドロピリジン)、アスコルビン酸誘導体(1−アスコルビン酸パルミテ−ト、アスコルビン酸ステアレ−ト)、不飽和アルデヒド(ケトン)、3−ピラゾリドン類。
本発明に用いることのできる還元剤として、米国特許第5,464,738に記載されるようなスルホニルヒドラジンを含む置換ヒドラジンがある。この他の有用な還元剤は、例えば、米国特許第3,074,809、米国特許第3,094,417、米国特許第3,080,254および米国特許第3,887,417に記載されている。米国特許第5,981,151に記載の補助還元剤もまた有用である。
還元剤として、ヒンダードフェノール還元剤とその他以下に挙げるような様々な補助還元剤から選ばれる化合物と組み合わせて用いられる場合もある。さらにコントラスト強化剤を加えた3成分の還元剤の混合物もまた有用である。補助還元剤としては米国特許第5,496,695に記載のトリチルヒドラジド、ホルミル−フェニルヒドラジドを用いることができる。
コントラスト強化剤を還元剤とともに用いることができる。コントラスト強化剤としては例えば、下記の化合物が有用であるが、これらに限定されるわけではない。
ヒドロキシルアミン(ヒドロキシルアミンとアルキルとアリ−ル置換誘導体を含む)、米国特許第5,545,505に記載のアルカノールアミンとフタル酸アンモニウム、米国特許第5,545,507に記載のヒドロキサム酸化合物、米国特許第5,558,983に記載のN−アシルヒドラジン化合物、米国特許第5,637,449に記載の水素原子ドナー化合物。
全ての還元剤と有機銀塩の組み合わせが等しく効果があるわけではない。好ましい組合せの一つは、有機銀塩としてベントリアゾ−ルの銀塩又はその置換化合物、又はその混合物と、還元剤としてアスコルビン酸型還元剤である。
本発明における還元剤は、有機銀中の銀に対して1質量%〜10質量%(乾燥質量)含まれる。多層構造において、還元剤が有機銀塩を含む層以外の層に加えられるならば、わずかに割合は高く、およそ2質量%〜15質量%がより望ましい。補助還元剤は、およそ0.001質量%〜1.5質量%(乾燥重)含まれる。
9.その他の助剤
増幅液のその他の助剤としては、緩衝剤、防腐剤、例えば酸化防止剤または有機安定剤、速度調節剤を含む場合がある。緩衝剤としては、例えば、酢酸、クエン酸、水酸化ナトリウムまたはこれらのどれかの塩、またはトリス(ヒドロキシメチル)アミノメタンを用いた緩衝剤、その他一般的化学実験に用いられる緩衝剤を用いることができる。これら緩衝剤を適宜用いて、その増幅液に最適なpHに調整することができる。
10.検出時の平均粒子サイズの算出方法
検出時(増幅後)、テストライン部を切り出し、試料裏面をカーボンペーストで試料台に取り付けた後、断面を切り、カーボン蒸着し、走査型電子顕微鏡にて、形状と大きさを観察する。例えば、日立ハイテクノロジーズ製FE-STEM S-5500で、加速電圧10KVで反射電子による試料表面の観察をSEMで行う事が出来る。その後、シグナル粒子を100粒子選び、粒子の投影面積の円相当直径を測定し、平均値を算出し、検出時の平均粒子サイズとする。
以下の実施例により本発明をさらに具体的に説明するが、本発明は実施例によって限定されるものではない。
比較例1:検体の展開方向と銀増幅液の展開方向を同一方向にして増幅した場合の増幅時間
hCG検出イムノクロマトキットの作成
(1−1)抗hCG抗体修飾金コロイドの作成
直径50 nm金コロイド溶液(EM.GC50、BBI社)9 mLに50 mM KH2PO4バッファー(pH 7.0 )1mLを加えることでpHを調整した金コロイド溶液に、50 μg / mLの抗hCGモノクローナル抗体(Anti-hCG 5008 SP-5、Medix Biochemica社)溶液1 mLを加え攪拌した。10分間静置した後、1 %ポリエチレングリコール(PEG Mw.20000、品番168-11285、和光純薬)水溶液を550 μL加え攪拌し、続いて10 %牛血清アルブミン(BSA FractionV、品番A-7906、SIGMA)水溶液を1.1 mL加え攪拌した。この溶液を8000×g、4 ℃、30分遠心(himacCF16RX、日立)した後、1 mL程度を残して上清を取り除き、超音波洗浄機により金コロイドを再分散した。この後、20 mLの金コロイド保存液(20 mM Tris-HClバッファー(pH 8.2),
0.05 % PEG(Mw.20000), 150 mM NaCl, 1 % BSA, 0.1 % NaN3)に分散し、再び8000×
g、4℃、30分間遠心した後、1 mL程度を残して上清を取り除き、超音波洗浄機により金コロイドを再分散し、抗体修飾金コロイド(50 nm)溶液を得た。
(1−2)金コロイド抗体保持パットの作成
(1−1)で作成した各抗体修飾金コロイドを、金コロイド塗布液(20 mM Tris-Hclバッファー(pH 8.2), 0.05 % PEG(Mw.20000), 5 % スクロース)及び水により希釈し、520 nmのODが1.5となるように希釈した。この溶液を、8 mm×150 mmに切ったグラスファイバーパッド(Glass Fiber Conjugate Pad、ミリポア社)1枚あたり0.8 mLずつ均一に塗布し、一晩減圧乾燥し、金コロイド抗体保持パッドを得た。
(1−3)抗体固定化メンブレン(クロマトグラフ担体)の作成
25 mm×200 mmに切断したニトロセルロースメンブレン(プラスチックの裏打ちあり、HiFlow Plus HF120、ミリポア社)に関し以下のような方法により抗体を固定し抗体固定化メンブレンを作成した。メンブレンの長辺を下にし、下から8 mmの位置に、0.5 mg / mLとなるように調製した固定化用抗hCGモノクローナル抗体(Anti-Alpha subunit 6601 SPR-5、Medix Biochemica社)溶液をインクジェット方式の塗布機(BioDot社)を用いて幅1 mm程度のライン状に塗布した。同様に、下から12 mmの位置に、0.5 mg / mLとなるように調製したコントロール用抗マウスIgG抗体(抗マウスIgG(H+L),ウサギF(ab')2, 品番566-70621、和光純薬)溶液をライン状に塗布した。塗布したメンブレンは、温風式乾燥機で50℃、30分間乾燥した。ブロッキング液(0.5 w%カゼイン(乳由来、品番030-01505、和光純薬)含有50 mMホウ酸バッファー(pH 8.5))500 mLをバットに入れ、そのまま30分間静置した。その後、同様のバットに入れた洗浄・安定化液(0.5 w%スクロースおよび0.05 w%コール酸ナトリウムを含む50 mM Tris-HCl(pH 7.5)バッファー)500 mLに移して浸し、そのまま30分間静置した。メンブレンを液から取り出し、室温で一晩乾燥し、抗体固定化メンブレンとした。
(1−4)イムノクロマトグラフキットの作製
バック粘着シート(ARcare9020、ニップンテクノクラスタ社)に、(1−3)で作成した抗体固定化メンブレンを貼り付けた。その際メンブレン長辺側のうち、抗hCG抗体ライン側を下側とする。抗体固定化メンブレンの下側に約2 mm重なるように2で作成した金コロイド抗体保持パッドを貼り付け、約4 mm重なるようにして金コロイド抗体保持パッド下側に試料添加パッド(18 mm×150 mmに切ったグラスファイバーパッド(Glass Fiber Conjugate Pad、ミリポア社))を重ねて貼り付けた。さらに、抗体固定化メンブレンの上側には約5 mm重なるように吸収パッド(5 mm×100 mmに切ったセルロース膜(Cellulose Fiber Sample Pad、ミリポア社))を重ねて貼り付けた。これら重ね張り合わせた部材を、部材の長辺側を5 mm幅になるように短辺に平行にギロチン式カッター(CM4000、ニップンテクノクラスタ社)切断していくことで、イムノクロマト用ストリップを作成した。これらをプラスチックケース(ニップンテクノクラスタ社)に入れ、試験用イムノクロマトキットとした。
(1−5)銀増幅液の作成
(i)増幅液A-1の作成
水325gに、硝酸鉄(III)九水和物(和光純薬、095-00995)を水に溶解して作成した1mol/Lの硝酸鉄水溶液40mL、クエン酸(和光純薬、038-06925)10.5g、ドデシルアミン(和光純薬、123-00246)0.1g、C9H19-C6H4-O-(CH2CH2O)50H 0.1gを溶解させる。全て溶解したら、スターラーで攪拌しながら硝酸(10重量%,)を40mL加える。この溶液80mLを測りとり、硫酸アンモニウム鉄(II)六水和物(和光純薬、091-00855)を11.76g加えこれを増幅液A-1とした。
(ii)増幅液A-2の作成
硝酸銀溶液10mL(10gの硝酸銀を含む)に水を加えて全体量が100gとなるようにし、増幅液A-2(10重量%硝酸銀水溶液)を作成した。
(iii)増幅液Aの作成
増幅液A-1 40mLを測りとり、増幅液A-2を4.25mL加え攪拌し、増幅液Aとした。
(2)増幅評価方法
1質量%BSAを含むPBSバッファーにhCG(リコンビナントhCG R−506、ロ−ト製薬(株)製)を溶解し、1.8×10-12M、及び1.8×10-13Mの試験用hCG溶液を作製した。
各試験用イムノクロマトグラフキットに、各試験用hCG溶液を100μL滴下し、10分静置した。10分後にプラスチックケースからストリップを取り出し、500μLの洗浄液(1 %BSAを含むPBSバッファー)が入ったマイクロチューブに入れた。このまま1時間放置することで、メンブレンの洗浄を行った。その後、予めストリップに固定されている吸水パッドをはずし、その部分に新たに吸水パッド(20 mm×5 mm)を3枚重ねて張り付けた。金コロイド抗体保持パッドから下側を切断し、その部分を下にして増幅液Aを200μL入れたマイクロチューブ(ビーエム機器株式会社、BM4020)に検体滴下部が液に漬かるように立てかけた。増幅液を吸い上げ始めた時点を0分とし、検出ラインが検出できる濃度になるまで増幅を行い、時間を測定した。増幅後直ちに5分間水洗を行った。結果は、表1のようになった。
(1−6)検出部位の標識物質数測定
1 %BSAを含むPBSバッファーを作製し、上記(1−1)から(1−4)の方法により作製したイムノクロマトキットに(1−5)で作製した1.8×10-12M、及び1.8×10-13Mの試験用hCG溶液をそれぞれ100 μL点着した。15分後にプラスチックケースからストリップを取り出した。幅2.0mmの「ライン部(検出部位)」を含む部位(ライン部は1mm幅で、その上流0.5mmとその下流0.5mmを含む)と幅2.0mmの「非ライン部」(「ライン部」とコントロール部位の中間部位)を切り出した。各部位の金量定量は、HR-ICP-MS(型番:Element XR、サーモフィッシャーサイエンティフィック社)で測定した。また、切り出した各部位の辺の長さをノギスを用いて測定し、「非ライン部」の標識物質密度から「ライン部(検出部位)」のみの標識物質数を計算した。
1.8×10-12M、及び1.8×10-13Mの試験用hCG溶液を点着した場合の検出部位の標識物質は、それぞれ1×105/mm3、1×104/mm3となった。
比較例2:増幅液を滴下して増幅した場合の増幅時間
比較例1の(1-1)から(1-5)まで同様の操作でイムノクロマトキットを作成した。増幅操作に関しては、増幅液50μLを検出ライン部分に滴下し、増幅液を滴下した時点を0分とし、検出ラインが検出できる濃度になるまで増幅を行い、時間を測定した。増幅後直ちに5分間水洗を行った。結果は、表1のようになった。
比較例3:増幅液に浸すことで増幅した場合の増幅時間
比較例1の(1-1)から(1-5)まで同様の操作でイムノクロマトキットを作成した。増幅操作に関しては、増幅液15mLをバランスディッシュ(44mm×44mm×15mm)に入れ、その中にイムノクロマトストリップを浸すことで増幅させた。増幅液中にストリップを入れた時点を0分とし、検出ラインが検出できる濃度になるまで増幅を行い、時間を測定した。増幅後直ちに5分間水洗を行った。結果は、表1のようになった。
比較例1、2、3より、増幅液を滴下する、あるいは、ストリップ全体を増幅液に浸すよりも、ストリップの一部を増幅液に接触させ、毛細管現象を利用して吸上げる方が、増幅時間が短縮されることが確認された。
実施例1:検体の展開方向と銀増幅液の展開方向を垂直方向にして増幅した場合の増幅時間
比較例1の(1-1)から(1-3)まで同様の操作でイムノクロマトキットを作成し、(1-4)に関してはストリップ幅が3cmになるように作製し、他の操作は同様に行った。増幅操作は、以下のように実施した。まず、展開後のイムノクロマトストリップから金コロイド抗体保持パッド、試料添加パッド、吸収パッドを取り外した。そして、図3のようにストリップを90°回転させ、その上端に新たに吸水パッド(20mm×55mm)をセロテープ(登録商標)で貼り付けた。増幅液10mLをバランスディッシュ(44mm×44mm×15mm)に入れ、吸水パッドと反対側のストリップが増幅液に浸るようにすることで増幅させた。増幅液中にストリップを入れた時点を0分とし、検出ラインが検出できる濃度になるまで増幅を行い、時間を測定した。増幅後直ちに吸水パッドをはずし、5分間水洗を行った。結果は、表1のようになった。
また、試料裏面をカーボンペーストで試料台に取り付けた後、カーボン蒸着し、日立ハイテクノロジーズ製FE-STEM S-5500で、加速電圧10KVで反射電子による試料表面の観察をSEMで行った。その後、シグナル粒子を100粒子選び、粒子の投影面積の円相当直径を測定し、平均値を算出した結果、平均粒子径は2.8μmであった。
実施例2:検体の展開方向と銀増幅液の展開方向がなす角を45°にして増幅した場合の増幅時間
実施例1と同様に、イムノクロマトキットを作成した。増幅操作は、以下のように実施した。まず、展開後のイムノクロマトストリップから金コロイド抗体保持パッド、試料添加パッド、吸収パッドを取り外した。そして、図4のようにストリップを45°回転させ、その上端に新たに吸水パッド(20mm×55mm)をセロテープ(登録商標)で貼り付けた。また、吸水パッドとは反対側のストリップは、増幅液に均一に浸るように図4のように切断した。増幅液10mLをバランスディッシュ(44mm×44mm×15mm)に入れ、吸水パッドと反対側のストリップが増幅液に浸るようにすることで増幅させた。増幅液中にストリップを入れた時点を0分とし、検出ラインが検出できる濃度になるまで増幅を行い、時間を測定した。増幅後直ちに吸水パッドをはずし、5分間水洗を行った。結果は、表1のようになった。
実施例3:検体の展開方向と銀増幅液の展開方向をなす角を170°にして増幅した場合の増幅時間
実施例2と同様にして、イムノクロマトキットを作成し、増幅操作はストリップを170°回転させ、後は全て実施例3と同様の操作で実験を行った。増幅液中にストリップを入れた時点を0分とし、検出ラインが検出できる濃度になるまで増幅を行い、時間を測定した。増幅後直ちに吸水パッドをはずし、5分間水洗を行った。結果は、表1のようになった。
実施例1、2、3は、比較例1と比べて増幅液との接触面と検出ラインまでの距離が短くなり、その結果、増幅時間も短縮された。
比較例4:検体の展開方向と銀増幅液の展開方向を同一方向にして増幅した場合の増幅ムラ
比較例1の(1-1)から(1-5)まで同様の操作でイムノクロマトキットを作成した。増
幅操作に関しては、増幅時間を2分に設定し、他の操作は同様にして行った。結果は、表
2のようになり、増幅ムラが確認された。比較例4の結果を図5に示す。
実施例4:検体の展開方向と銀増幅液の展開方向を垂直方向にして増幅した場合の増幅ムラ
実施例1と同様の操作でイムノクロマトキットを作成した。増幅操作に関しては、増幅時間を2分に設定し、他の操作は同様にして行った。結果は、表2のようになり、増幅ム
ラが確認されなかった。実施例4の結果を図5に示す。
本発明で用いることができるイムノクロマトグラフキットの一態様を模式的に示す平面図である。 図1で示されたイムノクロマトグラフキットの縦断面を模式的に示す縦断面図である。 実施例1で使用したイムノクロマトストリップと実験操作を示す。 実施例2で使用したイムノクロマトストリップと実験操作を示す。 比較例4及び実施例4における検出結果を示す。
符号の説明
1:バック粘着シート
2:金コロイド抗体保持パッド
3:抗体固定化メンブレン
3a: 捕捉部位
31:検出部
32:コントロール部
4:吸収パッド
5:試料添加パッド
6:増感シート
10:イムノクロマトグラフキット

Claims (11)

  1. 被験物質と、該被験物質に対する第一の結合物質で修飾した標識化物質とを、これらを混合させた状態で多孔性担体上において展開し、該被験物質に対する第二の結合物質、または被験物質に対する第一の結合物質への結合性がある物質、を有する多孔性担体上の反応部位において該被験物質と該標識化物質を捕捉して該被験物質を検出することを含むイムノクロマトグラフ方法において、銀を含む化合物及び銀イオンのための還元剤を含む増幅液を用いて増感することによって被験物質の検出を行うことを含み、被験物質の展開方向と増幅液の展開方向とを異なる方向にして展開を行うことを特徴とするイムノクロマトグラフ方法。
  2. 被験物質の展開方向と増幅液の展開方向とが45度から170度である、請求項1に記載のイムノクロマトグラフ方法。
  3. 被験物質の展開方向と増幅液の展開方向とが60度から150度である、請求項1に記載のイムノクロマトグラフ方法。
  4. 被験物質の展開方向と増幅液の展開方向とが垂直である、請求項1に記載のイムノクロマトグラフ方法。
  5. 第一の結合物質及び/又は第二の結合物質が抗体である、請求項1から4の何れかに記載のイムノクロマトグラフ方法。
  6. 多孔質担体がニトロセルロースである、請求項1から5の何れかに記載のイムノクロマトグラフ方法。
  7. 標識物質が金属粒子である、請求項1から6の何れかに記載のイムノクロマトグラフ方法。
  8. 標識物質が、金、銀、白金、又はそれらの化合物である、請求項1から7の何れかに記載のイムノクロマトグラフ方法。
  9. 平均粒子サイズが1μm以上20μm以下のサイズを有する標識物質を検出する、請求項1から8の何れかに記載のイムノクロマトグラフ方法。
  10. 銀を含む化合物及び銀イオンのための還元剤を用いて増感するための反応時間が7分以内である、請求項1から9の何れかに記載のイムノクロマトグラフ方法。
  11. 検出部位の標識物質の数が1×106/mm3以下である、請求項1から10の何れかに記載のイムノクロマトグラフ方法。
JP2008250000A 2007-11-29 2008-09-29 イムノクロマトグラフ方法 Active JP5275737B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008250000A JP5275737B2 (ja) 2007-11-29 2008-09-29 イムノクロマトグラフ方法
EP08020718A EP2065706B1 (en) 2007-11-29 2008-11-28 Immunochromatography method
US12/325,057 US7998753B2 (en) 2007-11-29 2008-11-28 Measurement kit and an immunochromatography method
US13/177,971 US8877515B2 (en) 2007-11-29 2011-07-07 Measurement kit and an immunochromatography method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007308214 2007-11-29
JP2007308214 2007-11-29
JP2008250000A JP5275737B2 (ja) 2007-11-29 2008-09-29 イムノクロマトグラフ方法

Publications (2)

Publication Number Publication Date
JP2009150869A true JP2009150869A (ja) 2009-07-09
JP5275737B2 JP5275737B2 (ja) 2013-08-28

Family

ID=40920130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008250000A Active JP5275737B2 (ja) 2007-11-29 2008-09-29 イムノクロマトグラフ方法

Country Status (1)

Country Link
JP (1) JP5275737B2 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011075366A (ja) * 2009-09-30 2011-04-14 Fujifilm Corp クロマトグラフ測定装置
WO2019058903A1 (ja) 2017-09-20 2019-03-28 帝人株式会社 クロマトグラフィー媒体用基材、クロマトグラフィー媒体及びイムノクロマトグラフ用ストリップ
WO2020203228A1 (ja) 2019-03-29 2020-10-08 富士フイルム株式会社 イムノクロマトグラフィー
WO2021065300A1 (ja) 2019-09-30 2021-04-08 富士フイルム株式会社 免疫検査方法及び濃縮用治具
WO2021065144A1 (ja) 2019-09-30 2021-04-08 富士フイルム株式会社 イムノクロマトグラフィー
WO2021065105A1 (ja) 2019-09-30 2021-04-08 富士フイルム株式会社 イムノクロマトグラフィー
WO2021153127A1 (ja) 2020-01-31 2021-08-05 富士フイルム株式会社 免疫検査方法
WO2021152965A1 (ja) 2020-01-31 2021-08-05 富士フイルム株式会社 イムノクロマトグラフィー
WO2021152966A1 (ja) 2020-01-31 2021-08-05 富士フイルム株式会社 イムノクロマトグラフィー
JP2021143909A (ja) * 2020-03-11 2021-09-24 Tdk株式会社 分析チップ
WO2022054524A1 (ja) 2020-09-11 2022-03-17 富士フイルム株式会社 濃縮デバイス、検体液の濃縮方法、検体液の検査方法、及び、検査キット
WO2022054516A1 (ja) 2020-09-11 2022-03-17 富士フイルム株式会社 濃縮デバイス、検体液の濃縮方法、検体液の検査方法、及び、検査キット
WO2022054510A1 (ja) 2020-09-11 2022-03-17 富士フイルム株式会社 検体液の濃縮方法、及び、検体液の検査方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001337091A (ja) * 2000-05-25 2001-12-07 Nichirei Corp 分析装置
JP3496154B2 (ja) * 1993-12-07 2004-02-09 ベックマン コールター インコーポレイテッド 試薬供給を調節する障壁を有する検定装置
WO2006099191A2 (en) * 2005-03-11 2006-09-21 Chembio Diagnostic Systems, Inc. Dual path immunoassay device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3496154B2 (ja) * 1993-12-07 2004-02-09 ベックマン コールター インコーポレイテッド 試薬供給を調節する障壁を有する検定装置
JP2001337091A (ja) * 2000-05-25 2001-12-07 Nichirei Corp 分析装置
WO2006099191A2 (en) * 2005-03-11 2006-09-21 Chembio Diagnostic Systems, Inc. Dual path immunoassay device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011075366A (ja) * 2009-09-30 2011-04-14 Fujifilm Corp クロマトグラフ測定装置
WO2019058903A1 (ja) 2017-09-20 2019-03-28 帝人株式会社 クロマトグラフィー媒体用基材、クロマトグラフィー媒体及びイムノクロマトグラフ用ストリップ
KR20200054963A (ko) 2017-09-20 2020-05-20 데이진 가부시키가이샤 크로마토그래피 매체용 기재, 크로마토그래피 매체 및 이뮤노크로마토그래프용 스트립
WO2020203228A1 (ja) 2019-03-29 2020-10-08 富士フイルム株式会社 イムノクロマトグラフィー
JPWO2020203228A1 (ja) * 2019-03-29 2020-10-08
WO2021065300A1 (ja) 2019-09-30 2021-04-08 富士フイルム株式会社 免疫検査方法及び濃縮用治具
WO2021065144A1 (ja) 2019-09-30 2021-04-08 富士フイルム株式会社 イムノクロマトグラフィー
WO2021065105A1 (ja) 2019-09-30 2021-04-08 富士フイルム株式会社 イムノクロマトグラフィー
WO2021153127A1 (ja) 2020-01-31 2021-08-05 富士フイルム株式会社 免疫検査方法
WO2021152965A1 (ja) 2020-01-31 2021-08-05 富士フイルム株式会社 イムノクロマトグラフィー
WO2021152966A1 (ja) 2020-01-31 2021-08-05 富士フイルム株式会社 イムノクロマトグラフィー
JP2021143909A (ja) * 2020-03-11 2021-09-24 Tdk株式会社 分析チップ
JP7207663B2 (ja) 2020-03-11 2023-01-18 Tdk株式会社 分析チップ
WO2022054524A1 (ja) 2020-09-11 2022-03-17 富士フイルム株式会社 濃縮デバイス、検体液の濃縮方法、検体液の検査方法、及び、検査キット
WO2022054516A1 (ja) 2020-09-11 2022-03-17 富士フイルム株式会社 濃縮デバイス、検体液の濃縮方法、検体液の検査方法、及び、検査キット
WO2022054510A1 (ja) 2020-09-11 2022-03-17 富士フイルム株式会社 検体液の濃縮方法、及び、検体液の検査方法

Also Published As

Publication number Publication date
JP5275737B2 (ja) 2013-08-28

Similar Documents

Publication Publication Date Title
JP5275737B2 (ja) イムノクロマトグラフ方法
JP5117928B2 (ja) イムノクロマトグラフデバイス
JP5091074B2 (ja) 断片化抗体を用いたイムノクロマトグラフ方法
JP5435878B2 (ja) 断片化抗体を標識物質に固定した標識粒子
US7998753B2 (en) Measurement kit and an immunochromatography method
JP4865664B2 (ja) 多孔性担体内で2以上の液を混合する方法
JP2009216696A (ja) 2つの展開液の展開方向を交差させ、かつ、異なる方向から展開させる測定キット、及びイムノクロマトグラフ方法
JP4980945B2 (ja) 金属粒子及びそれを用いた検査方法
JP5091075B2 (ja) イムノクロマトグラフ方法
JP5091009B2 (ja) イムノクロマトグラフ方法
JP4892500B2 (ja) 非特異吸着抑制剤を用いたイムノクロマトグラフ方法
JP2009216695A (ja) イムノクロマトグラフ方法
JP4977588B2 (ja) イムノクロマトグラフ方法
JP2008286590A (ja) イムノクロマトグラフ方法
EP2065706B1 (en) Immunochromatography method
JP2009085700A (ja) イムノクロマトグラフキット
JP4913025B2 (ja) イムノクロマトグラフ方法
JP4870695B2 (ja) メンブレン内の標識を洗浄、増幅、停止する方法
JP5128256B2 (ja) イムノクロマトグラフ方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130516

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5275737

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250