JP2009129848A - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
JP2009129848A
JP2009129848A JP2007306390A JP2007306390A JP2009129848A JP 2009129848 A JP2009129848 A JP 2009129848A JP 2007306390 A JP2007306390 A JP 2007306390A JP 2007306390 A JP2007306390 A JP 2007306390A JP 2009129848 A JP2009129848 A JP 2009129848A
Authority
JP
Japan
Prior art keywords
fuel cell
refrigerant
temperature
cell system
refrigerant pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007306390A
Other languages
English (en)
Inventor
Masahiro Okuyoshi
雅宏 奥吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007306390A priority Critical patent/JP2009129848A/ja
Publication of JP2009129848A publication Critical patent/JP2009129848A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

【課題】燃料電池システムにおいて、効果的に排気排水弁の昇温を行う。
【解決手段】燃料電池11と、反応後の燃料ガスの一部と水分とを大気に排出する排気排水弁30と、燃料電池11に冷却媒体を循環させる主冷媒流路100と、冷却媒体を加圧する電動式の冷媒ポンプ46と、冷媒ポンプ46のモータ47に駆動電力を供給する高電圧系統と、主冷媒流路100から分岐して排気排水弁30に冷却媒体を循環させる副冷媒流路200と、高電圧系統と電動冷媒ポンプ46との始動を行う制御部61と、を備え、制御部61は、高電圧系統の始動直後に電動冷媒ポンプ46の始動を行う電動冷媒ポンプ始動手段を有する。
【選択図】図1

Description

本発明は、燃料電池システムの構造に関する。
燃料電池では、例えば、燃料には水素、酸化剤としては酸素を含む空気が用いられ、電気化学反応によって発電がされると共に酸化剤極側に水が生成される。反応生成物の水は酸化剤としての空気と共に燃料電池の外部に排出されるが、生成された水の一部は、電解質膜を湿度雰囲気に保つため、加湿器によって燃料電池入口に再循環するシステムが多く用いられている。また、燃料極では、流路を流れている水素の一部が反応して消費されるので、水素ポンプによって水素を循環させる循環系統となっており、発電反応で消費された分の水素が外部の水素ガスタンクから水素の循環系統に供給されるようになっている。
このような燃料電池システムでは、空気中に含まれる電気化学反応に使用されない窒素が空気極の空気流路に滞留すると共に、拡散層及び電解質膜を通して水素極にクロスリークしてくる。また、発電のための電気化学反応によって空気極に生成される水分の一部が、拡散層及び電解質膜を通して水素極にクロスリークしてくる。このように、運転中の燃料電池の水素極には空気極から窒素及び水分がクロスリークしてくる状態となっている。
水素系統は上記のように循環系統となっていることから、運転中に水素系統に入り込んだ窒素や水分は次第に水素循環系統内に蓄積され、水素以外の不純物濃度が増加してくる。このように水素系統中の不純物が多くなってくると水素濃度が低下し、発電量が低下してしまう。そこで、水素系統には反応後の水素ガスや水分を系統外に排出する排気排水弁が設けられている場合が多い。また、反応後の水素ガス中に含まれる水分を効果的に排出するために、排気排水弁の手前に気液分離器を設け、気液分離器の液溜めに滞留させた水分を反応後の水素ガスとともに系統外に排出するように構成されている場合がある(例えば、特許文献1参照)。
一方、燃料電池は、低温環境下において停止した場合でも凍結しないようにケースに格納されている場合が多い。しかし、ケースの中に気液分離器や排気排水弁を配置するとケースが大型となり、燃料電池の車両への搭載性が低下してしまう。そこで、気液分離器や排気排水弁はケースの外部に設けられる場合が多く、低温環境下において燃料電池が停止状態となると排気排水弁に残留した水分が凍結して排気排水弁の開閉動作ができなくなったり、燃料電池の起動の際に、排気排水弁の上流側にある気液分離器に滞留した水分が停止状態では凍結していない低温状態の排気排水弁に流入して排気排水弁が凍結したりする場合がある。排気排水弁が凍結して開閉動作ができなくなると、燃料電池の起動の際に燃料極の水素濃度を上昇させることができなくなり、燃料電池の発電電力を維持することができなくなったり、起動時間が長くなったりするという問題があった。
このため、気液分離器にセンサを設けてその温度を検出して気液分離器の凍結を判断し、凍結していると判断された場合には、燃料電池を始動運転モードによって運転し、燃料電池に暖機用のガスを供給したり、燃料電池の暖機用ヒータ等を始動させたりして燃料電池の暖機を行って気液分離器の解凍を行い、気液分離器が凍結していないと判断された場合には、燃料電池を通常の運転モードによって起動する方法が提案されている(たとえば、特許文献2参照)。
また、燃料電池の起動の際に燃料電池の供給する空気圧縮機によって空気を断熱圧縮して温度を上昇させ、その温度の上昇した空気を排気排水弁に吹き付けて排気排水弁を解凍する方法が提案されている(例えば、特許文献3参照)。
特開2007−157600号公報 特開2006−147414号公報 特開2002−313389号公報
しかし、特許文献2に記載された従来技術は、燃料電池を暖機することによって排気排水弁を解凍するものであり、直接排気排水弁の加温、解凍を行うものではないので、排気排水弁の解凍に時間がかかり燃料電池の起動が遅れてしまうという問題がある。また、特許文献3に記載された従来技術は、排気排水弁の加温を行う空気は、低温環境下の低温の外気を圧縮によって加温したものであり、温度が低くなるほど加温用空気の温度が低下してしまうので、外気温度が低くなるほど排気排水弁の加温、解凍に時間がかかり、燃料電池の起動時間が長くなってしまうという問題があった。また、特許文献3に記載された従来技術は、暖機ボックスに格納した排気排水弁に加温した空気を吹き付けるように構成しているので、暖機ボックスの分、燃料電池システムが大型化してしまい、車両などへの搭載性が低下してしまうという問題があった。
また、特許文献3に記載された従来技術では、燃料電池に空気を供給する空気圧縮機によって加圧、加温された空気を排気排水弁の加温に用いるので、燃料電池システムを起動させ、システムチェックをした後でないと排気排水弁に加温用空気の送気を始めることができない。このため、排気排水弁の加温、解凍に時間がかかり、燃料電池の始動に時間がかかってしまうという問題があった。
本発明は、効果的に排気排水弁の昇温を行うことを目的とする。
本発明の燃料電池システムは、燃料ガスと酸化剤ガスとの電気化学反応により発電する燃料電池と、燃料電池から排出される反応後の燃料ガスの一部と反応後の燃料ガスに含まれる水分とを大気に排出する排気排水弁と、燃料電池に冷却媒体を循環させる主冷媒流路と、主冷媒流路に設けられ、冷却媒体を加圧する電動冷媒ポンプと、電動冷媒ポンプに駆動電力を供給する高電圧系統と、主冷媒流路から分岐して排気排水弁と冷却媒体との間で熱交換するように排気排水弁の周囲に冷却媒体を流す副冷媒流路と、高電圧系統と電動冷媒ポンプとの始動を行う制御部と、を備える燃料電池システムであって、制御部は、高電圧系統の始動直後に電動冷媒ポンプの始動を行う電動冷媒ポンプ始動手段を有すること、を特徴とする。
本発明の燃料電池システムにおいて、燃料電池と排気排水弁との間に設けられ、反応後の燃料ガスに含まれる水分を分離する気液分離器と、気液分離器の液溜めに滞留する滞留水の温度を検出する温度検出手段と、を備え、電動冷媒ポンプ始動手段は、温度検出手段によって検出した滞留水の温度が所定の温度よりも低い場合には、高電圧系統の始動直後に電動冷媒ポンプの始動を行うこと、としても好適である。
本発明の燃料電池システムにおいて、燃料電池の発電電力を検出する発電電力検出手段を備え、制御部は、発電電力検出手段によって検出した燃料電池の発電電力が所定の電力値よりも小さい場合には電動冷媒ポンプの回転数を所定回転数以下に制限する電動冷媒ポンプ回転数制限手段を有すること、としても好適である。
本発明の燃料電池システムにおいて、副冷媒流路に設けられる第1の冷媒温度センサと、第1の冷媒温度センサよりも下流側の副冷媒流路に設けられる第2の冷媒温度センサとを備え、制御部は、第1及び第2の冷媒温度センサによって検出される温度に基づいて電動冷媒ポンプの回転数を調整する電動冷媒ポンプ回転数調整手段を有すること、としても好適である。また、電動冷媒ポンプ回転数調整手段は、第1と第2の冷媒温度センサによって検出される温度の検出ずれ時間に基づいて電動冷媒ポンプの回転数を調整すること、としても好適である。
本発明は、効果的に排気排水弁の昇温を行うことができるという効果を奏する。
以下、本発明の好適な実施形態について、図面を参照しながら説明する。図1に示すように、本実施形態の燃料電池システム10は酸化剤ガスとして酸素を含む空気を用い、燃料ガスとして水素を用いている。酸化剤ガスである空気は大気から吸気流量計や空気フィルタを介して空気吸込み管14からモータ16によって駆動される空気圧縮機15に吸い込まれ、空気圧縮機15によって加圧された吐出空気は空気供給管17から燃料電池11に供給される。燃料電池11の酸化剤極である空気極12から燃料電池11内に入った空気は、水素系統から供給された水素との発電反応によって酸素が減少する。そして反応の結果の生成水が水蒸気あるいは水滴として空気中に増えてくる。反応後の水分量が増加した空気は燃料電池11の空気排出管18に排出され、大気放出口19から大気に放出される。
燃料ガスである水素ガスは水素ガスタンク21に貯留されている。水素は水素ガスタンク21から水素供給管23によって燃料電池11の燃料極である水素極13に供給される。燃料電池11に供給された水素の一部は空気極12に供給された酸化剤である空気中の酸素と反応して消費されるが、消費されなかった水素は空気極からクロスリークして来た窒素や水分と共に水素極13の水素排出管24から排出された後、気液分離器27に流入する。気液分離器27は水素排出管24よりも流路断面積が大きく、流入した水分は重力によって下方に分離され、気液分離器27の重力方向下側に設けられた液溜め28に滞留し、水素、窒素等の気体成分は、気液分離器27の上部から水素循環ポンプ26に吸い込まれるよう構成されている。気液分離器27から水素循環ポンプ26に吸い込まれた気体は水素再循環管25を通って水素供給管23に再循環される。発電によって消費された水素分は水素ガスタンク21から水素供給管23に補充される。補充される水素ガスの量は水素供給弁22によって調節される。長時間運転していると空気極12からクロスリークしてくる窒素や水分などの不純物が水素系統内や気液分離器27の液溜め28に溜まってくる。そこで、このような水分や窒素がある程度溜まってくると、水素排出管24に接続された水素系大気放出管31の排気排水弁30を開として気液分離器27の液溜め28に溜まった水と共に所定量の反応後の水素ガスを水素系大気放出管31から外気に放出する。この場合は、高濃度の水素ガスを直接大気に放出することがないように、混合器33によって排気空気と混合してから大気に放出するようになっている。気液分離器27の液溜め28には滞留水の温度を測定する滞留水温度センサ36が設けられている。
燃料電池11は、内部で水素と空気中の酸素とが反応すると反応熱が発生し、その温度が上昇する。燃料電池11は通常70−80℃の温度範囲での運転が発電効率の良くなる温度であることから、燃料電池11に冷却媒体を通してその温度をコントロールするよう構成されている。冷却媒体は水に添加成分を入れて凍結しないようにしたロングライフクーラント等が用いられる。ラジェータ41によって低温の外気と熱交換して温度の低下した冷却媒体は、冷媒ポンプ46によって加圧されて冷媒供給管43から燃料電池11に供給される。燃料電池11に供給された冷却媒体は燃料電池11内部に設けられた冷媒流路を流れて燃料電池11の熱を吸収し、温度が上昇して冷媒戻り管45に流出する。温度の上昇した冷却媒体は冷媒戻り管45から三方弁49を通ってラジェータ41に戻り、再びラジェータ41によって冷却されて燃料電池11に供給される。また、ラジェータ41にはバイパス管44が平行して設けられており、燃料電池11から流出した冷却媒体の温度によって、ラジェータ41によって冷却媒体を冷却せずに燃料電池11に循環させたり、冷却媒体の一部をラジェータ41に通して冷却したりして燃料電池11に供給される冷却媒体温度を調整することができるよう構成されている。上記の燃料電池11の冷却流路と、冷媒供給管43と、冷媒戻り管45と、ラジェータ41又はバイパス管44と、は冷却媒体を燃料電池11に循環させる主冷媒流路100を構成する。
冷媒ポンプ46はモータ47によって駆動される電動ポンプであり、モータ47は例えば二次電池などの高電圧電源55に接続され、高電圧電源55から駆動電力が供給されるよう構成されている。冷媒ポンプ46にはその回転数を検出する回転数センサ48が取付けられている。
冷媒ポンプ46と燃料電池11との間の冷媒供給管43には、主冷媒流路100である冷媒供給管43から分岐して排気排水弁30の周囲に設けられた冷媒ジャケット53に接続され、冷媒ジャケット53に冷却媒体を供給する副冷媒供給管51と、冷媒供給管43の副冷媒供給管51の分岐点よりも燃料電池11の側にある合流点と冷媒ジャケット53とを接続し、冷媒ジャケット53から冷却媒体を冷媒供給管43に戻す副冷媒戻り管52とが設けられている。副冷媒供給管51と冷媒ジャケット53と副冷媒戻り管52とは副冷媒流路200を構成する。副冷媒供給管51には冷媒ジャケット53に供給される冷却媒体の温度を検出する第1冷媒温度センサ34が設けられ、副冷媒戻り管52には冷媒ジャケット53から流出する冷却媒体の温度を検出する第2冷媒温度センサ35が設けられている。冷媒ジャケット53は排気排水弁30の周囲に設けられ、冷却媒体が流れる冷媒流路であって、内部を流れる冷却媒体と排気排水弁30とが熱交換することができるよう構成されている。また、冷媒ジャケット53は排気排水弁30と熱交換ができるものであれば、例えば、排気排水弁30の周囲に配置した細い配管であってもよい。
燃料電池11は保温性のあるケース57の中に収納されているが、気液分離器27、排気排水弁30はケースの外に配置されている。また、燃料電池11の空気極12と水素極13には、外部の負荷と接続される電気出力ケーブル58,59が接続されている。そして電気出力ケーブル59には燃料電池11からの出力電流を検出する電流センサ71が設けられ、電気出力ケーブル58,59の間には燃料電池11の出力電圧を検出する電圧センサ72が設けられている。電流センサ71と電圧センサ72とは、燃料電池11の発電電力を検出する発電電力検出手段を構成する。
燃料電池システム10は内部にCPUを備えるコンピュータである制御部61を備えている。高電圧電源55、モータ47、三方弁49、回転数センサ48、滞留水温度センサ36、第1冷媒温度センサ34、第2冷媒温度センサ35、電流センサ71、電圧センサ72はそれぞれ制御部61に接続され、制御部61に信号を入力したり、制御部61からの指令によって動作したりするよう構成されている。
また、燃料電池システム10には、燃料電池システム10の起動、停止を行うスイッチ56が設けられている。このスイッチ56は例えば、燃料電池システム10を搭載している車両のイグニッションキー等であってもよい。スイッチ56は、少なくとも、OFFと第1位置と第2位置との3つのポジションを持っているもので、OFFポジションは燃料電池システム10全体を停止状態とする位置で、第1位置は燃料電池システム10の低電圧系統を通電状態とする位置であり、第2位置は燃料電池システム10の高電圧系統を通電状態として燃料電池システム10が運転できる状態とする位置である。低電圧系統は、制御部61或いは補機類を駆動する例えば12V以下の電圧系統であり、高電圧系統は燃料電池システム10の主要機器、例えば、空気圧縮機用のモータ16、冷媒ポンプ用のモータ47などを駆動する例えば200Vの電圧系統である。スイッチ56は制御部61に接続され、制御部61はそのポジション信号によって燃料電池システム10の各電圧系統のオン、オフを行うよう構成されている。また、スイッチ56は、OFF、第1位置、第2位置と切り替わるロータリー式のスイッチでOFFから直接第2位置には切り替わらないようなスイッチである。
上記のように構成された燃料電池システム10の動作について説明する。運転者などによってスイッチ56がOFF位置から第1位置に切り替えられると、燃料電池システム10がスタートする。スイッチ56が第1位置となると低電圧系統がオンとなり、制御部61或いは各センサやコントローラなどが通電状態となり、各部のセンサの信号が制御部61に入力され、制御部61はその信号の処理をすることができる状態となっている。
図2のステップS101に示すように、制御部61は、滞留水温度センサ36から気液分離器27の液溜め28に滞留している滞留水の温度信号を取得する。そして、図2のステップS102に示すように、制御部61は、取得した滞留水の温度と所定の温度、例えば、5℃とを比較する。そして滞留水の温度が例えば5℃よりも低い場合には気液分離器27の液溜め28の滞留水は過冷却状態にあり、排気排水弁30に流入した際に排気排水弁30を凍結させる可能性があるものと判断する。
運転者等によってスイッチ56の位置が第2位置に切り替えられると、その信号が制御部61に入力される。制御部61は、高電圧系統のリレー等を起動して、高電圧系統に接続されている各機器に高電圧電源55からの電力を供給できるような状態とする。そして、図2のステップS103に示すように、制御部61は全てのリレー等を起動したら高電圧系統が起動して、高電圧電源55から電力供給ができる状態となっていると判断する。全てのリレー等が起動していない場合には、リレー等が起動して高電圧系統が起動するまで待機する。そして、高電圧系統が起動したと判断すると、制御部61は図2のステップS104に示すように、冷媒ポンプ46を起動する。具体的には、制御部61は、冷媒ポンプ46を駆動するモータ47に対して起動指令を出力してモータ47を起動する。
図2のステップS105に示すように、冷媒ポンプ46のモータ47を起動したら、制御部61は、電流センサ71と電圧センサ72からの信号を取得して燃料電池11からの発電電力を算出する。そして、図2のステップS106に示すように、燃料電池11からの発電電力と所定の電力値とを比較して、燃料電池11の発電状態を判断する。
冷媒ポンプ46のモータ47を起動した段階では、制御部61は燃料電池11の空気系統、燃料系統のシステムチェックを終了していないので、まだ発電の開始指令を出力していない。このため空気圧縮機15も起動していないので、冷媒ポンプ46を高い回転数で運転すると運転者等はその振動、騒音に不快感を持ってしまう。そこで、制御部61は、燃料電池11が発電開始前の場合には冷媒ポンプ46の回転数を制限する。具体的には、発電開始前は、燃料電池11からの出力電流はゼロあり、電流センサ71が検出する電流もゼロとなるので、燃料電池11からの発電電力はゼロであり、所定の電力値よりも小さくなるので、制御部61は、図2のステップS107に示すように、冷媒ポンプ46の回転数を例えば、1600rpm以下の回転数に制限する。冷媒ポンプ46の回転数は冷媒ポンプにより発生する振動、騒音によって運転者等が不快と感じない程度の回転数であれば1600rpmよりも大きくしてもよい。また、冷媒ポンプ46をこの制限された回転数よりも遅い回転数で運転することとしてもよい。
上記のように、制御部61の指令によって冷媒ポンプ46が始動し、所定の回転数に達すると、冷媒ポンプ46は冷却媒体を加圧して主冷媒流路100、及び副冷媒流路200に冷却媒体を循環させる。冷媒ポンプ46によって加圧された冷却媒体は、冷媒供給管43から副冷媒供給管51を通って排気排水弁30の周囲の冷媒ジャケット53の中を通り、副冷媒戻り管52を通って冷媒供給管43に戻る。そして、冷媒供給管43を流れてきた冷却媒体と合流して冷媒供給管43から燃料電池11内部の冷媒流路に流れていく。
燃料電池11は保温性のあるケース57の中に格納されているので、燃料電池11内部に滞留している冷却媒体は燃料電池11の停止後も温度が高い状態に保たれている。このため、燃料電池11の冷媒流路に冷却媒体を流入させると、流入した冷却媒体は燃料電池11の冷媒流路の中に滞留している温度の高い冷却媒体を押し出す。温度の高い冷却媒体は、燃料電池11の冷媒流路から冷媒戻り管45に流出する。燃料電池11の起動状態では燃料電池11自体の温度は運転状態よりも低い温度となっているので、三方弁49はバイパス管44側に開いており、冷媒戻り管45に流出した温度の高い冷却媒体は、ラジェータ41を通らずにバイバス管44を通って冷媒ポンプ46に戻ってくる。このため、燃料電池11の冷媒流路に滞留していた温度の高い冷却媒体はラジェータ41で冷却されること無く冷媒ポンプ46に吸い込まれて加圧され、再び冷媒供給管43に流出していく。そして、燃料電池11の冷媒流路に滞留していた温度の高い冷却媒体は冷媒供給管43から副冷媒供給管51を通って排気排水弁30の周囲の冷媒ジャケット53に流入して排気排水弁30と熱交換して排気排水弁30を昇温させる。冷媒ジャケット53を通った冷却媒体は、副冷媒戻り管52から冷媒供給管43に戻り、燃料電池11の中を循環する。
このように、冷媒ポンプ46によって冷却媒体を主冷媒流路100と副冷媒流路200とに循環させることによって、副冷媒流路200に設けられている排気排水弁30の冷媒ジャケット53に温度の高い冷媒を流して排気排水弁30の昇温を行うことができる。
排気排水弁30の昇温を行いながら、制御部61は燃料電池システム10の発電系統のシステムチェックを行ない、システムチェックが終了すると、制御部61は空気圧縮機15を起動して空気極12を加圧すると共に、水素供給弁22を開として水素極13を加圧し、発電を開始する。発電が開始されると、冷媒ポンプ46よりも振動、騒音の大きな空気圧縮機15などの他の主要機器が起動されるので、運転者等にとって冷媒ポンプ46自体の振動、騒音は気にならなくなる。そこで、制御部61は、図2のステップS106に示すように、電流センサ71と電圧センサ72から取得した信号によって計算した燃料電池11の発電電力が所定の値よりも大きくなった場合には、図2のステップS108に示すように冷媒ポンプ46の回転数の制限をすることなく、排気排水弁30をより昇温させる昇温回転数まで冷媒ポンプ46の回転数を上昇させて、排気排水弁30をより効率的に昇温させる。
制御部61は、所定の時間だけ冷媒ポンプ46を昇温運転したら、冷媒ポンプ46による排気排水弁30の昇温動作を停止する。或いは排気排水弁30に温度センサを取付けておき、この温度センサが所定の温度以上となった場合に排気排水弁30の昇温動作を停止することとしても良い。
以上述べた、本実施形態は、燃料電池システム10のスイッチ56が第2位置に切り替えられて、高電圧系統が始動した直後で、空気圧縮機15などが起動する前であっても、冷媒ポンプ46を起動し、燃料電池11の内部に滞留している温度の高い冷却媒体を排気排水弁30の周囲に流して排気排水弁30と熱交換させることによって排気排水弁30を昇温することができるので、燃料電池システム10の始動初期の段階から排気排水弁30の昇温を効果的に行うことができるという効果を奏する。また、燃料電池11の発電が開始されるまでは、冷媒ポンプ46の回転数を制限し、燃料電池11の発電が開始されてから冷媒ポンプ46の回転数を上昇させることとしているので、運転者等が、冷媒ポンプ46の振動、騒音に対する不快感を抑制しつつ効果的に冷媒ポンプ46を起動して排気排水弁30の昇温を行なうことができるという効果を奏する。また、燃料電池11のケース57の外に排気排水弁30を配置している場合であっても効果的に排気排水弁30の昇温ができることから、燃料電池システム10が大型化することなく、車両への搭載性を確保しつつ効果的に排気排水弁30の昇温を行うことができるという効果を奏する。
また、本発明の実施形態において、副冷媒流路200を流れる冷却媒体の流量は少ない流量であること及び、副冷媒流路200の流量は冷媒供給管43の副冷媒供給管51の分岐点と冷媒供給管43と副冷媒戻り管52の合流点の間の圧力損失と、副冷媒流路200の圧力損失との比率によって決まってくることから、流量計測のための装置を副冷媒流路200に配置することによって副冷媒流路200の圧力損失が増加すると更に副冷媒流路200の流量が低下してしまう。このため、副冷媒供給管51に設けた第1冷媒温度センサ34と副冷媒戻り管52に設けた第2冷媒温度センサ35によって流量を計算し、副冷媒流路200の流量が所定の流量となるように冷媒ポンプ46の回転数を制御している。
先に述べたように、冷媒ポンプ46が駆動すると、冷却媒体は冷媒供給管43から副冷媒供給管51に流れ、排気排水弁30に設けられた冷媒ジャケット53を通り、副冷媒戻り管52から冷媒供給管43に戻ってくる。そして、冷媒ジャケット53の冷却媒体の温度は次第に燃料電池11の内部に滞留していた温度の高い冷却媒体となってくるので、第1冷媒温度センサ34、第2冷媒温度センサ35の検出する各冷媒温度は、それぞれ図3の曲線a、及び曲線bのようになる。すなわち、第1冷媒温度センサ34、第2冷媒温度センサ35の検出する各温度は、時間と共に上昇し、しかもその温度は冷却媒体が第1冷媒温度センサ34の位置から第2冷媒温度センサ35まで流れて移動する時間だけずれたものとなっている。このため、図3に示すように所定の温度、例えば、第1冷媒温度センサ34が所定の温度T’に達してから、第2冷媒温度センサ35が所定の温度T’に達するまでの時間Δtは、副冷媒流路200を流れる冷却媒体の流速に比例する。制御部61はΔtに流路断面積によって決まる所定の係数を掛けることによって、副冷媒流路200に流れている冷却媒体の流量を取得し、その計測流量が所定の流量となるように冷媒ポンプ46の回転数を調整する。
このように、制御部61は、第1、第2冷媒温度センサ34,35によって取得した温度に基づいて副冷媒流路200に所定の流量の冷却媒体が流れるように冷媒ポンプ46の回転数を調整することができるという効果を奏する。また、第1、第2冷媒温度センサ34,35の出力によって、副冷媒流路200に流れている冷客媒体の流量を測定することができることから、副冷媒流路200の圧力損失を抑制しつつ小流量の測定をすることができるという効果を奏する。
本実施形態では、第1、第2冷媒温度センサ34,35はそれぞれ副冷媒供給管51、副冷媒戻り管52に取付けられていることとして説明したが、第1、第2冷媒温度センサは、副冷媒流路を流れる冷却媒体の移動による冷却媒体の温度の時間ずれの測定をすることができるよう、副冷媒流路200の流れ方向に沿って上流側と下流側に取付けられていれば、第1、第2冷媒温度センサ34,35を副冷媒供給管51の上流側と下流側とに取付けても良いし、副冷媒戻り管52の上流側と下流側とに取付けるようにしてもよい。
本発明の実施形態における燃料電池システムの系統構成を示す図である。 本発明の実施形態における燃料電池システムの起動の際の動作を示すフローチャートである。 本発明の実施形態における燃料電池システムの副冷媒流路の温度変化を示す図である。
符号の説明
10 燃料電池システム、11 燃料電池、12 空気極、13 水素極、14 空気吸込み管、15 空気圧縮機、16,47 モータ、17 空気供給管、18 空気排出管、19 大気放出口、21 水素ガスタンク、22 水素供給弁、23 水素供給管、24 水素排出管、26 水素循環ポンプ、27 気液分離器、28 液溜め、30 排気排水弁、31 水素系大気放出管、33 混合器、34 第1冷媒温度センサ、35 第2冷媒温度センサ、36 滞留水温度センサ、41 ラジェータ、43 冷媒供給管、44 バイパス管、45 冷媒戻り管、46 冷媒ポンプ、47 モータ、48 回転数センサ、49 三方弁、51 副冷媒供給管、52 副冷媒戻り管、53 冷媒ジャケット、55 高電圧電源、56 スイッチ、57 ケース、58,59 電気出力ケーブル、61 制御部、71 電流センサ、72 電圧センサ、100 主冷媒流路、200 副冷媒流路、a,b 曲線、T’ 温度、Δt 時間。

Claims (5)

  1. 燃料ガスと酸化剤ガスとの電気化学反応により発電する燃料電池と、
    燃料電池から排出される反応後の燃料ガスの一部と反応後の燃料ガスに含まれる水分とを大気に排出する排気排水弁と、
    燃料電池に冷却媒体を循環させる主冷媒流路と、
    主冷媒流路に設けられ、冷却媒体を加圧する電動冷媒ポンプと、
    電動冷媒ポンプに駆動電力を供給する高電圧系統と、
    主冷媒流路から分岐して排気排水弁と冷却媒体との間で熱交換するように排気排水弁の周囲に冷却媒体を流す副冷媒流路と、
    高電圧系統と電動冷媒ポンプとの始動を行う制御部と、
    を備える燃料電池システムであって、
    制御部は、
    高電圧系統の始動直後に電動冷媒ポンプの始動を行う電動冷媒ポンプ始動手段を有すること、
    を特徴とする燃料電池システム。
  2. 請求項1に記載の燃料電池システムであって、
    燃料電池と排気排水弁との間に設けられ、反応後の燃料ガスに含まれる水分を分離する気液分離器と、
    気液分離器の液溜めに滞留する滞留水の温度を検出する温度検出手段と、を備え、
    電動冷媒ポンプ始動手段は、
    温度検出手段によって検出した滞留水の温度が所定の温度よりも低い場合には、高電圧系統の始動直後に電動冷媒ポンプの始動を行うこと、
    を特徴とする燃料電池システム。
  3. 請求項1又は2に記載の燃料電池システムであって、
    燃料電池の発電電力を検出する発電電力検出手段を備え、
    制御部は、
    発電電力検出手段によって検出した燃料電池の発電電力が所定の電力値よりも小さい場合には電動冷媒ポンプの回転数を所定回転数以下に制限する電動冷媒ポンプ回転数制限手段を有すること、
    を特徴とする燃料電池システム。
  4. 請求項1から3のいずれか1項に記載の燃料電池システムであって、
    副冷媒流路に設けられる第1の冷媒温度センサと、第1の冷媒温度センサよりも下流側の副冷媒流路に設けられる第2の冷媒温度センサとを備え、
    制御部は、
    第1及び第2の冷媒温度センサによって検出される温度に基づいて電動冷媒ポンプの回転数を調整する電動冷媒ポンプ回転数調整手段を有すること、
    を特徴とする燃料電池システム。
  5. 請求項4に記載の燃料電池システムであって、
    電動冷媒ポンプ回転数調整手段は、
    第1と第2の冷媒温度センサによって検出される温度の検出ずれ時間に基づいて電動冷媒ポンプの回転数を調整すること、
    を特徴とする燃料電池システム。
JP2007306390A 2007-11-27 2007-11-27 燃料電池システム Pending JP2009129848A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007306390A JP2009129848A (ja) 2007-11-27 2007-11-27 燃料電池システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007306390A JP2009129848A (ja) 2007-11-27 2007-11-27 燃料電池システム

Publications (1)

Publication Number Publication Date
JP2009129848A true JP2009129848A (ja) 2009-06-11

Family

ID=40820551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007306390A Pending JP2009129848A (ja) 2007-11-27 2007-11-27 燃料電池システム

Country Status (1)

Country Link
JP (1) JP2009129848A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009140696A (ja) * 2007-12-05 2009-06-25 Toyota Motor Corp 燃料電池システム
JP2013191377A (ja) * 2012-03-13 2013-09-26 Nissan Motor Co Ltd 燃料電池システム
JP2014232636A (ja) * 2013-05-29 2014-12-11 日産自動車株式会社 燃料電池システム
US10522853B2 (en) 2014-11-14 2019-12-31 Toyota Jidosha Kabushiki Kaisha Fuel cell system, fuel cell vehicle and control method of fuel cell system
CN113745590A (zh) * 2020-05-27 2021-12-03 丰田自动车株式会社 燃料电池系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10340734A (ja) * 1997-06-06 1998-12-22 Toyota Motor Corp 燃料電池装置および燃料電池装置の温度調整方法
JP2003168464A (ja) * 2001-11-30 2003-06-13 Nissan Motor Co Ltd 燃料電池システムの制御装置
JP2003304606A (ja) * 2002-04-08 2003-10-24 Nissan Motor Co Ltd 燃料電池搭載車両の制御装置
JP2006147440A (ja) * 2004-11-24 2006-06-08 Honda Motor Co Ltd 燃料電池システム
JP2006168507A (ja) * 2004-12-15 2006-06-29 Nissan Motor Co Ltd 燃料電池自動車
JP2006221856A (ja) * 2005-02-08 2006-08-24 Toyota Motor Corp 燃料電池
JP2007018780A (ja) * 2005-07-05 2007-01-25 Nissan Motor Co Ltd 燃料電池システム
JP2008251335A (ja) * 2007-03-30 2008-10-16 Honda Motor Co Ltd 燃料電池システムの暖機装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10340734A (ja) * 1997-06-06 1998-12-22 Toyota Motor Corp 燃料電池装置および燃料電池装置の温度調整方法
JP2003168464A (ja) * 2001-11-30 2003-06-13 Nissan Motor Co Ltd 燃料電池システムの制御装置
JP2003304606A (ja) * 2002-04-08 2003-10-24 Nissan Motor Co Ltd 燃料電池搭載車両の制御装置
JP2006147440A (ja) * 2004-11-24 2006-06-08 Honda Motor Co Ltd 燃料電池システム
JP2006168507A (ja) * 2004-12-15 2006-06-29 Nissan Motor Co Ltd 燃料電池自動車
JP2006221856A (ja) * 2005-02-08 2006-08-24 Toyota Motor Corp 燃料電池
JP2007018780A (ja) * 2005-07-05 2007-01-25 Nissan Motor Co Ltd 燃料電池システム
JP2008251335A (ja) * 2007-03-30 2008-10-16 Honda Motor Co Ltd 燃料電池システムの暖機装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009140696A (ja) * 2007-12-05 2009-06-25 Toyota Motor Corp 燃料電池システム
JP2013191377A (ja) * 2012-03-13 2013-09-26 Nissan Motor Co Ltd 燃料電池システム
JP2014232636A (ja) * 2013-05-29 2014-12-11 日産自動車株式会社 燃料電池システム
US10522853B2 (en) 2014-11-14 2019-12-31 Toyota Jidosha Kabushiki Kaisha Fuel cell system, fuel cell vehicle and control method of fuel cell system
CN113745590A (zh) * 2020-05-27 2021-12-03 丰田自动车株式会社 燃料电池系统
CN113745590B (zh) * 2020-05-27 2024-04-16 丰田自动车株式会社 燃料电池系统

Similar Documents

Publication Publication Date Title
JP4735642B2 (ja) 燃料電池システムおよび燃料電池システムの制御方法
JP5003089B2 (ja) 燃料電池システム
JP4328324B2 (ja) 燃料電池システム
KR101085505B1 (ko) 연료전지시스템
JP4506771B2 (ja) 燃料電池システム及び移動体
JP2009129848A (ja) 燃料電池システム
JP5310294B2 (ja) 燃料電池システム
JP5168814B2 (ja) 燃料電池システム、および燃料電池システムを搭載する車両
JP4178849B2 (ja) 燃料電池システム
JP2004296351A (ja) 燃料電池システム
JP5610029B2 (ja) 燃料電池システム
JP4984808B2 (ja) 空調制御システム
JP4950386B2 (ja) 燃料電池暖機装置
JP2009004243A (ja) 燃料電池システム
JP5212882B2 (ja) 燃料電池システム及び燃料電池の冷却方法
JP2008019727A (ja) 燃料循環ポンプ
JP5065655B2 (ja) 燃料電池システム
JP2010198786A (ja) 燃料電池システム
JP2006278209A (ja) 燃料電池システム
JP2008059974A (ja) 燃料電池システム
JP5060105B2 (ja) 燃料電池システム
JP2010140678A (ja) 燃料電池の冷却システム
JP2004146187A (ja) 燃料電池システム
JP2008059977A (ja) 燃料電池システム
JP2008097909A (ja) 燃料電池システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130226