JP2009115492A - 化学センサ素子、センシング装置およびセンシング方法 - Google Patents

化学センサ素子、センシング装置およびセンシング方法 Download PDF

Info

Publication number
JP2009115492A
JP2009115492A JP2007286102A JP2007286102A JP2009115492A JP 2009115492 A JP2009115492 A JP 2009115492A JP 2007286102 A JP2007286102 A JP 2007286102A JP 2007286102 A JP2007286102 A JP 2007286102A JP 2009115492 A JP2009115492 A JP 2009115492A
Authority
JP
Japan
Prior art keywords
sensor element
chemical sensor
metal
resonator
metal microstructure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007286102A
Other languages
English (en)
Other versions
JP5288772B2 (ja
Inventor
Tomohiro Yamada
朋宏 山田
Yoichiro Iida
洋一郎 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2007286102A priority Critical patent/JP5288772B2/ja
Priority to PCT/JP2008/070144 priority patent/WO2009057804A1/en
Priority to US12/738,228 priority patent/US8877519B2/en
Publication of JP2009115492A publication Critical patent/JP2009115492A/ja
Application granted granted Critical
Publication of JP5288772B2 publication Critical patent/JP5288772B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • G01N21/553Attenuated total reflection and using surface plasmons
    • G01N21/554Attenuated total reflection and using surface plasmons detecting the surface plasmon resonance of nanostructured metals, e.g. localised surface plasmon resonance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S436/00Chemistry: analytical and immunological testing
    • Y10S436/805Optical property

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

【課題】共鳴スペクトルの線幅を細くし、かつ、共鳴スペクトルのシフト量を増大させることにより、高感度な測定が可能な化学センサ素子を提供する。
【解決手段】化学センサ素子は、金属微細構造体101が二次元的かつ周期的に配置された第1の反射体が誘電体層102を介して第2の反射体103と対向して配置された共振器を有する。上記第1の反射体全体を、金属微細構造体101と同じ厚さを有する金属薄膜で置換した場合の上記共振器の共鳴波長は、金属微細構造体101に誘起され得る表面プラズモン共鳴波長と異なる。金属微細構造体101に励起される表面プラズモン共鳴のモードは、上記第1の反射体全体を上記金属薄膜で置換した場合の上記共振器のモードと結合されている。
【選択図】図1A

Description

本発明は、化学センサに関し、特に、センサ素子表面で抗原抗体反応を生じさせ、センサ素子表面で誘電率が変化することを素子の光学スペクトルの変化から検知するセンサに関する。また、本発明は、そのようなセンサを用いたセンシング装置およびセンシング方法に関する。
微小な導電性構造体には、局在表面プラズモン共鳴(Localized Surface Plasmon Resonance:LSPR)が誘起されることが知られている。このLSPRは、導電性構造体周囲の屈折率、誘電率によりその共鳴条件が決まる。従って、導電性構造体周囲の誘電率変化を共鳴条件の変化として検出できる。共鳴条件の変化は、導電性構造体に光を照射、透過させ、その光学スペクトルの変化を測定することで検出できる。
LSPRは、導電性構造体周囲の屈折率、誘電率変化に敏感である。したがって、LSPRは、高感度な屈折率センサに適用することが出来る。
また、以下に示すように、この誘電率変化が生体反応によるものである場合には、この現象をバイオセンサなどに応用することで、高感度なセンシングが可能となる。このため、LSPRは、医療分野や食品、環境等の分野への幅広い応用が期待されている。
例えば、導電性構造体周囲で抗原抗体反応を起こさせれば、この反応を検知できる。非特許文献1には、導電性構造体として平滑な基板上に形成された微小なAg薄膜微粒子構造を用いた例が示されている。この例によれば、Ag薄膜微粒子構造の周囲に抗体が付着している状態と、この抗体にさらに抗原が結合している状態の間での光学スペクトルの変化から、抗原濃度を測定する方法が開示されている。
上記の他にも、酵素と基質の複合体やDNAのハイブリダイゼーションによる相補的な塩基対形成なども、同様に検知できる。
一方、特許文献1には、測定光の入射側から、第1の光反射体と、透光体と、第2の光反射体とを順次配置したセンサが記載されている。このセンサによれば、第1の光反射体を透過して透光体に入射した光が、第1の光反射体と第2の光反射体との間で反射を繰り返すため、多重反射が繰り返し起こり、多重干渉を起すことができる。そして、試料の付着前後で、この多重干渉による吸収ピークのスペクトルが変化するため、試料の分析が可能であるとされている。また、多重干渉による吸収ピークのスペクトル以外にも、局在表面プラズモン共鳴による吸収ピークが発現しており、試料の付着前後に生じる吸収ピークのスペクトル変化により、試料の分析が可能であるとされている。なお、この特許文献1には、第1の光反射体として、微細孔が開いている構造や金属微粒子が配置されている構造が記載されている。
特開2007−24870号公報 Richard P. Van Duyneら(NANO LETTERS 2004年 Vol.4, No.6 1029−1034)
しかしながら、上記の先行技術では、いずれも測定感度がさほど高くないため、低濃度の標的物質をより高感度に検出することは困難であった。
また、高感度に標的物質を検出するためには、標的物質付着による共鳴スペクトルの波長シフトを大きくし、かつ、共鳴スペクトルの幅を狭くすることが要求される。例えば、反応前後でスペクトルの差分をとり、この差分値によって標的物質付着を検知する際に、細い共鳴幅のスペクトルが大きく波長シフトすると、付着反応前後でスペクトルの差分値を大きくでき、高感度検出を実現できる。この点に関し、特許文献1では、金属ホールアレイ構造や金属微粒子配列構造を共振器の反射体として用いている構造を提案している。しかし、この提案された構造では、高感度センシングに必要な共鳴スペクトルの線幅の狭帯化や、共鳴スペクトルのシフト量増大といった、いずれの効果も発現していない。
本発明は、上記の問題を解決し、共振器構造を有する化学センサ素子において、共鳴スペクトルの線幅を細くし、かつ、共鳴スペクトルのシフト量を増大させることにより、高感度な測定が可能な構成を提供することを目的とする。
上記目的を達成するため、本発明の化学センサ素子は、金属微細構造体が二次元的かつ周期的に配置された第1の反射体が誘電体層を介して第2の反射体と対向して配置された共振器を有する化学センサ素子であって、前記第1の反射体全体を、前記金属微細構造体と同じ厚さを有する金属薄膜で置換した場合の前記共振器の共鳴波長が、前記金属微細構造体に誘起され得る表面プラズモン共鳴波長と異なり、かつ、前記金属微細構造体に励起される表面プラズモン共鳴のモードが、前記第1の反射体全体を前記金属薄膜で置換した場合の前記共振器のモードと結合されている、ことを特徴とする。
本発明によれば、反応前後でスペクトルのシフト量が大きいという特徴を有する、表面プラズモン共鳴のモードと、線幅の狭いスペクトルを得ることができる共振器のモードとをカップリングさせる。これにより、両モードの特性を有したスペクトルを得ることができるので、線幅の狭いスペクトルを得ることができる。したがって、共鳴スペクトルの線幅を細くし、かつ、共鳴スペクトルのシフト量を増大させることにより、先行技術として挙げた構成よりも高感度に測定することのできる共振器構造を有した化学センサ素子を提供することができる。
次に、本発明の実施形態について図面を参照して説明する。
本発明に係るセンサ素子では、素子表面に標的物質が付着する前後での、素子の光学スペクトルの変化によって標的物質の濃度を検知する。したがって、高感度センシングのためには、素子表面に標的物質が付着する前後での素子の光学スペクトル変化を感度良く検出することが重要である。そのため、高感度センシングに必要な光学スペクトルの特性としては、スペクトルピークが細く、かつ、スペクトルピークの波長が標的物質の付着により大きくシフトすることが必要となる。
図1Aは、本発明の一実施形態であるセンサ素子の共振器構造を示す断面図である。図1Aを参照すると、反射体103の上に形成された誘電体層102の上に、金属微細構造体101が二次元的かつ周期的に配置されている。
入射光110が金属微細構造体101に入射すると、金属微細構造体101において、局在プラズモン共鳴(LSPR)が誘起され、その結果、金属微細構造体101の反射率が増大する。この金属微細構造体101は、反射率に波長依存性を有する反射ミラー(第1の反射体)として機能する。反射光120は、入射光110が金属微細構造体101にて反射された光である。
ここで、LSPRとは、金属微細構造体(金属微粒子)に誘起される自由電子の集団振動モードのことである。LSPRの共鳴波長は、金属自身の誘電率と、金属が接している誘電体の誘電率とによって決まる。金属微粒子表面の境界条件より、LSPRは、光の波長よりも小さい金属微粒子に誘起される。この共鳴条件は、金属が接している誘電体の誘電率に鋭敏に影響されるため、金属微粒子構造体の表面に標的物質が付着することで、共鳴波長が変化する。
また、一部の光は金属微細構造体101を透過し、金属微細構造体101(第1の反射体)と誘電体層102と反射体103(第2の反射体)で構成される共振器内に取り込まれ、符号130で示すように共振する。すなわち、本実施形態の化学センサ素子は、ファブリペロー型共振器の片側のミラーがLSPRを誘起しうる金属微細構造体で構成されているものと見なすことができる。
LSPRは、反応前後に関してスペクトルのシフト量が大きい。一方、ファブリペロー共振器のモードは、線幅の狭いスペクトルを得ることができる。そこで、本実施形態の化学センサ素子は、LSPRとファブリペロー共振器のモードとをカップリングさせることにより、両方の特性を有したスペクトルを得ることを特徴としている。
なお、前述の特許文献1に記載されている共振器構造では、共振器構造が有するモードの共鳴波長と、金属微粒子が有するLSPRの共鳴波長に関して、一切考慮されていないため、それらの2つのモードはカップリングしていない。
以下、金属微細構造体のLSPRと、金属微細構造体が反射体として機能することにより構成されるファブリペロー共振器モードとのカップリングについて説明する。ここで、ファブリペロー共振器モードとは、金属微細構造体よりなる第1の反射体全体が金属微細構造体と同じ厚さの金属薄膜で置き換えられた構成の共振器の共鳴モードを指す。但し、本発明では、実際には金属微細構造体自身が、LSPRと素子全体を共振器として考えたときの共鳴モードの両方を励振し、それらの2つのモードをカップリングさせているため、以下の説明は、概略的なものである。
金属微細構造体のLSPRとファブリペロー共振器のモードがカップリングしていない場合は、両モードは独立して存在する。この場合は、図1Bに示すような透過スペクトルとなる。図1Bにおいて、縦軸は透過率、横軸は波長である。この透過スペクトルでは、金属微細構造体のLSPRのスペクトル150と、共振器のモードのスペクトル151とは別々に存在している。
一方、両モードがカップリングしている場合には、図1Cに示すような透過スペクトルとなる。図1Bにおいて、縦軸は透過率、横軸は波長である。この透過スペクトルでは、1つのカップリングモードのスペクトル160が発現している。
次に、金属微細構造体のLSPRのスペクトルと、共振器のモードをカップリングさせるための設計指針について説明する。
LSPRのモードは、金属微細構造体内部での自由電子の集団運動であるため、共鳴時は、金属微細構造体表面に、振動する表面電荷が発生する。その結果、金属微細構造体表面での電界振幅はゼロに成らない。つまり、定在波の腹にならない。一方、ファブリペロー共振器のモードに対しては、金属微細構造体は、反射体としてファブリペロー共振器の端面を構成するミラーの部分であり、共振器内に形成される定在波の節になる。これらを考慮すると、ファブリペロー共振器モードの節の位置に金属微細構造体を配置した場合、金属微細構造体のLSPRは励振が困難になってしまう。このため、金属微細構造体は、その配置位置が共振器モードの節の位置と厳密に同一しないように、節の位置からわずかにずらした位置に配置することがより好ましい。
一方で、節の位置からのずれが大きすぎる場合は、LSPRを励振することは出来ても、ファブリペロー共振器のモードをその波長で励振することが困難になり、好適ではない。
本実施形態のセンサ素子では、金属微細構造体100をそれと同じ膜厚の金属薄膜で置換した場合のファブリペロー共振器モードの共鳴波長λ1が、金属微細構造体101の共鳴波長λ0と厳密に同一ではなく、共鳴波長λ0に近い値となるように構成する。具体的には、金属微細構造体101をそれと同じ膜厚の金属薄膜で置換した場合のファブリペロー共振器内で共鳴する光の波長λ1が、金属微細構造体101が有するプラズモン共鳴のスペクトルの線幅の波長範囲内に存在することが好ましい。
図2に、金属微細構造体によるプラズモン共鳴の典型的なスペクトルを示す。縦軸は透過率、横軸は波長である。図2において、プラズモン共鳴の典型的なスペクトルは、符号301および符号302により示される。例えば、符号301により示されるスペクトルの線幅の波長範囲は、共鳴波長1070nmを中心として900nm(−15.9%)から1300nm(21.5%)の範囲である。金属微粒子形状やその配列によって異なるが、プラズモン共鳴の線幅は、共鳴波長を中心として±25%以下であることが一般的である。したがって、本発明に係る化学センサにおいても、ファブリペロー共振器内で共鳴する光の波長λ1は、金属微細構造体のプラズモン共鳴波長λ0を中心として±25%の波長範囲以内で一致していることが好ましい。
以下、共鳴波長λ1などのパラメータと共振器長の関係をどのように設定するかについて説明する。
本実施形態のセンサ素子の共振器を構成する金属微細構造体を、それと同じ膜厚の金属薄膜で置き換えたファブリペロー共振器の共鳴波長λ1は、以下の式を満たす。
Figure 2009115492
ここで、Lは誘電体層102の厚さ、nは誘電体層102の屈折率、mは自然数、λ1は共振器内で共鳴する光の波長である。また、φ1は前記誘電体層内の光が金属微細構造体101と同じ膜厚の金属薄膜で反射されるときに生じる位相変化量、φ2は前記誘電体層内の光が反射体で反射されるときに生じる位相変化量である。なお、有限の損失を有する媒体での垂直入射光の反射における位相変化は、以下の式で表すことができる。
Figure 2009115492
ここで、φは有限の損失を有する媒体での垂直入射光の反射における位相変化量であり、n1は入射側の媒質の屈折率、n2は有限の損失を有する媒体の屈折率、k2は有限の損失を有する媒体の消衰係数である。
上記式1において、第一項は、誘電体層102の厚みLが共振器内に存在する光の半波長の整数倍になる条件を示している。また、第二項は、金属薄膜で共振器内の光が反射されるときの位相変化を示している。さらに、第三項は、反射体で共振器内の光が反射されるときの位相変化を示している。
ファブリペロー共振器の実効的な共振器長は、単に誘電体層102の厚さLにその屈折率を乗じた値(=nL)ではなく、金属薄膜での反射・透過の際の位相変化量や反射体103での位相変化量を光学距離に換算した光路長も含む値である。したがって、本実施形態のセンサ素子の共振器構造の実効的な共振器長も、単なるnL値ではなく、対向配置される金属微細構造体101や反射体103における、反射、透過時の位相遅れ等を含んだ実効的な光学距離を意味する。これらの光路長は、金属微細構造体101や反射体103における反射時の位相変化量を光学距離に換算した値と、誘電体層102の厚さLにその屈折率を乗じた光学距離を加えた量に等しい。この反射による位相変化量の値を導出するには、例えば反射率スペクトルの測定結果等から各媒質の光学定数をあらかじめ求めておけばよい。
以上のように、上記式1に基づいて、誘電体層102の厚みLを調整することにより、共振器モードのスペクトルを所望の波長で発現させることができる。換言すると、誘電体層102の厚みLの調整により、金属微細構造体101のLSPRと共振器モードとをカップリングさせることができる。これにより、スペクトルピークを細くし、試料付着前後におけるスペクトルピークのシフト量を増大させることができ、より高感度のセンシングが可能となる。
一方、金属微細構造体についても、透過、反射の際の位相差を決定することができれば、最適な構造を設計できる。しかし、一般に、金属微細構造体の透過・反射の際の位相変化量の算出は困難であり、また、金属微細構造体の波長分散特性も考慮する必要がある。さらに、金属微細構造体は、共振器構造に組み込まれることにより、共振器モードと結合してその共鳴波長が変化し、その変化の仕方は、共振器と金属微細楮体の結合の強さに依存する。このような点からも、上述の様に、金属微細構造体が有するプラズモン共鳴波長λ0と、金属微細構造体と同じ膜厚の金属薄膜で構成された共振器構造の共鳴波長λ1との関係から、センサ素子の設計を行うことが、簡便かつ好適である。
また、上述のように、共振器のモードを、金属微細構造体101のLSPRのモードだけでなく、金属微細構造体101が有する他の光学モードとカップリングさせることも好ましい。例えば、共振器のモードを、ウッズのアノマリーなど回折光が素子表面に平行に伝播していくモード等と組み合わせて、共鳴スペクトル線幅の更なる狭帯化を図ることもできる。このウッズのアノマリーを利用した構成については、後述の実施例で詳細に説明する。
なお、基本的に、上述のように設計した本実施形態のセンサ素子の共鳴波長は、金属微細構造体の共鳴波長もしくは共振器モードの共鳴波長の間に発現する事が多い。ただし、組み合わせるモードが、共振器モードと金属微細構造体の共鳴モードの他に、例えばウッズのアノマリーなどのモードを含む場合には、センサ素子の共鳴波長は、それらモードの共鳴波長の最短波長を持つものと最長波長を持つものの間に発現する。
次に、本発明に係る化学センサ素子の具体的な構成を説明する。
図3は、本発明の一実施形態である化学センサ素子の具体的な構成を示す図であって、(a)は断面図、(b)は平面図である。図3(a)に示す断面は、図3(b)におけるA−A'での断面である。
反射板202が基板201上に形成されており、さらにその上層に、誘電体層203が設けられている。誘電体層203は、石英層であって、その屈折率は1.46である。誘電体層203の表面に、複数の金属微細構造体204が形成されている。
金属微細構造体204は、直方体の形状であって、縦および横の辺の長さがともに270nmとされ、厚さが40nmとされている。金属微細構造体204は、正方格子状に周期配列されており、その配列の周期(ピッチ)は540nmである。なお、金属微細構造体204の形状は、直方体に限るものではなく、円柱やその他角柱でも構わない。
また、金属微細構造体204の材料としては、通常、Auを用いるが、これに限定されるものではない。金属微細構造体204の材料は、局在プラズモン共鳴を誘起しうる材料の中から適宜選択することができる。金属微細構造体204の材料としては、特に、損失の少ない金属が好適であり、例えばAg、Pt、Cu、Al及びこれらの合金または混合物などが特に好適である。
また、本実施形態では、正方格子状の周期配列を用いているが、三角格子状等の周期配列を用いてもよい。三角格子状の周期配列を用いた場合には、入射角の依存性が低減される。なお、金属微細構造体204の表面は、抗体205で修飾されている。
反射板202には、金属ミラーや、高屈折率層と低屈折率層を交互に積層した誘電体多層膜ミラーなどを用いることができる。反射板202に金属ミラーを用いた場合は、高反射率な波長帯域を広く取ることが可能である。一方、誘電体多層膜ミラーは低損失の反射体であるので、反射板202に誘電体多層膜ミラーを用いた場合は、高反射率の反射体を実現することができる。
金属微細構造体204が、例えば石英基板上に形成され、且つ、反射板202が無い場合は、図2に示す反射スペクトル301を得る。但し、金属微細構造体204の周囲は水である。
反射率スペクトル301は、金属微細構造体204に局在プラズモン共鳴(LSPR)が誘起されることによる反射率の増大を示している。このように、金属微細構造体204は、反射率に波長依存性を有する反射ミラーとして機能する。
上記のように、LSPRは、金属微粒子に誘起される自由電子の集団振動モードである。LSPRの共鳴波長は、金属自身の誘電率と、金属が接している誘電体の誘電率とによって決まる。この共鳴条件は、金属が接している誘電体の誘電率に鋭敏に影響される。このため、例えば、標的物質が金属微粒子構造体204の表面に付着することで、LSPRの共鳴波長が変化する。その結果、反射率スペクトルは、反射率スペクトル301から図2に示す反射率スペクトル302に変化する。このことは、ある波長に注目すると、その波長での反射率が、標的物質の付着前後で変化することに対応している。反射率スペクトル302と反射率スペクトル301の差分が、図2に示す差分スペクトル303である。
したがって、本実施形態のセンサ素子においては、ファブリペロー型共振器の片側のミラーを構成する金属微細構造体204の表面に標的物質が付着すると、金属微細構造体204のLSPRによる反射スペクトルが変化する。その結果、センサ素子の共振器モードの条件が変化し、反射スペクトルのピーク位置が変化する。このような変化を利用して化学物質のセンシングを行う。
図2において、本実施形態のセンサ素子の、標的物質付着前の反射率が反射率スペクトル305として示され、付着後の反射率が反射率スペクトル306として示されている。また、反射率スペクトル306から反射率スペクトル305を減算して算出した、標的物質付着前後での光学スペクトルの変化が差分スペクトル307として示されている。
図2から分かるように、金属微細構造体204だけの構造における、標的物質付着前後で取得した差分スペクトル303によれば、差分値の最大値は約0.02程度となっている。これに対し、金属微細構造体204が共振器構造の一方の端面を構成する本実施形態のセンサ素子構造によれば、差分スペクトル307の最大値は約0.2とされる。このように、標的物質付着前後での光学スペクトルの変化量として、約10倍のセンシング感度の向上を達成できていることが、数値計算より明らかとされている。
上述のように、本実施形態のセンサ素子においては、共振器のモードとLSPRの二つのモードが主に存在し、これらが互いに結合することにより、LSPRの特性と共振器の特性を併せ持った光学スペクトルが発現する。
以下に、本発明の第1の実施例であるセンサ素子について説明する。
まず、本実施例のセンサ素子の製造方法について説明する。図4の(a)から(d)に、本実施例のセンサ素子の一連の製造工程を示す。
石英基板401を用意する。石英基板401の厚さは525μmでる。ただし、石英基板401の厚さは525μmに限定されるものではなく、適宜に変更することができる。
図4(a)に示すように、蒸着装置を用いて、石英基板401の表面に、金属層402として膜厚が約100nmのAu薄膜を成膜する。ただし、金属層402の材料はAuに限るものではなく、本実施例のセンサ素子を用いた測定波長域において反射率が高い金属であればよい。具体的には、金属層402の材料として、金、銀、銅、白金、アルミニウム等が好適である。また、成膜方法は蒸着に限らず、スパッタ装置等を用いても良い。
次に、金属層402の上に、共振器層403として、膜厚が約380nmの二酸化珪素よりなる膜を成膜する。ただし、共振器層403は、二酸化珪素に限るものではなく、本実施例のセンサ素子を用いた測定波長域において透過率が高い物質が好適である。また、成膜方法もスパッタに限るものではなく、CVDやSOG等を用いて共振器層403を形成してもよい。
次に、共振器層403上に、EBレジスト層404を成膜する。そして、図4(b)に示すように、EBレジスト層404に、電子線描画装置を用いて一辺の長さが270nmの正方形パターンを描画する。パターンを描画した後、EBレジスト層404を現像する。現像後、EBレジスト層404が形成されている面上に、厚さ40nm程度の金属薄膜405を蒸着にて成膜する。最後に、素子基板をEBレジスト溶剤に浸漬し、リフトオフプロセスにより、図4(c)に示すセンサ素子406を作製する。
上記の製造工程では、電子線描画装置を用いて金属微細構造体405を作製しているが、これに限るものではない。例えば、フォトリソグラフィーやFIB(集束イオンビーム)加工装置を用いて、金属微細構造体405を作製しても良い。
図4の(a)から(c)の工程を経ることで、厚さが40nmで、一辺の長さが270nmの正方形の金属微細構造体405が形成される。この金属微細構造体405は、正方格子状に周期配列されており、その配列の周期(ピッチ)は540nmである。
以上のようにして作製したセンサ素子において、金属微細構造体405の表面を抗体で修飾する。抗体としては、例えば抗AFP(α―fetoprotein)抗体を用いる。この抗AFP抗体を金属微細構造体405の表面に固定化し、チオール基を有する11−Mercaptoundecanoic acidのエタノール溶液をスポッタ等で滴下する。これにより、金属微細構造体405表面にカルボキシル基が露出される。
続いて、N−Hydroxysulfosuccinimide水溶液及び1−Ethyl−3−[3−dimethylamino]propyl carbodiimide hydrochloride水溶液を同様にスポッタ等で反応領域に滴下する。これにより、金属微細構造体405表面にスクシンイミド基が露出される。
さらに続いて、ストレプトアビジンを反応させ金属微細構造体405表面をストレプトアビジンで修飾する。そして、この金属微細構造体405にビオチン化した抗AFP抗体を固定させる。その結果、図4(d)に示すように、金属微細構造体405は抗体407で修飾された状態になる。
次に、上述のようにして作製されたセンサ素子406の抗原抗体反応及び光学スペクトル測定に関して説明する。
抗原抗体反応及び光学スペクトル測定は、図5Aに示すような測定基板507を用いたシステムで行なう。測定基板507は、センサ素子505が収容される反応ウェル503と、反応ウェル503に連通した、注入口502および排出口504を有する。反応ウェル503の上方には、光源501が配置されている。光源501からの光がセンサ素子505により反射される。その反射光は、ミラーを介して分光計測器506に供給される。
まず、AFPを含んだ検体を注入口502より注入し、反応ウェル503にてAFPをセンサ素子505上に捕捉させる。その後、検体を排出口504より排出する。次いで、リン酸緩衝液を注入口502より注入し、反応ウェル503の内部を洗浄する。最後に、リン酸緩衝液を充填する。
次に、センサ素子505の光学スペクトルを測定するために、光源501からの光をセンサ素子505に導入し、センサ素子505からの反射光を分光計測器506にて分光測定する。
図5Bに、上記システムで測定した光学スペクトルを示す。縦軸は透過率、横軸は波長を示す。図5Bにおいて、光学スペクトル508は、抗原抗体の反応前の光学スペクトルであり、光学スペクトル509は、抗原抗体の反応後の光学スペクトルである。これら光学スペクトル508、509を比較して、スペクトルの変化量を求める。そして、この変化量から標的物質の濃度を検知する。このとき、予め濃度が既知のAFP溶液を用いてスペクトル変化量と濃度との関係を求めておくことで、被測定検体の濃度を求めることが出来る。
図6に、金属微細構造体405が単純な石英基板上に形成されている場合の反射スペクトルを示す。縦軸は反射率、横軸は波長である。図6において、反射率スペクトル601は、標的物質付着前の反射率スペクトルであり、反射率スペクトル602は、標的物質付着後の反射率スペクトルである。標的物質付着前後での反射率スペクトルを減算して求めた反射率スペクトルの変化量が差分スペクトル603である。
金属微細構造体405の外側が水であるとして計算した場合に、金属微細構造体405の共鳴波長は、図6に示す反射スペクトルから約1050nmであることがわかる。本実施例では、金属微細構造体405の共鳴波長に対して、センサ素子の共鳴波長を約10%長波長側にずらした1150nm付近に発現させる。
共振器端面での反射時の位相変化等を考慮すると、共振器層403の厚みを約380nmとした場合、共振器の実効的な共振器は630nmになる。この場合、共振器層403で発現する共鳴波長は、1260nm付近になる(反射率スペクトル604)。このように構成にすることで、共振器の共鳴モード(共鳴波長1260nm)と金属微細構造体405のLSPR共鳴(共鳴波長1050nm)が結合し、結果的に、センサ素子の共鳴波長は、その間の1150nm付近になる。
上述した作製行程において、厚さが380nmの共振器層403を成膜しておくのは、このためである。この様にして作製された本実施例のセンサ素子においては、標的物質付着前の状態で、反射率スペクトル605を示し、標的物質付着後の状態で反射率スペクトル606を示す。標的物質付着前後での反射率スペクトルの変化が、差分スペクトル607である。
これらの結果から、本実施例のセンサ素子では、差分最大値が0.2となるので、金属微粒子単体の性能(差分最大値約0.02)と比較して、センシング感度が向上していることが分かる。
本実施例では、センサ素子の共鳴波長を1150nmとしたが、これに限るものではない。例えば、センサ素子の共鳴波長は、金属微細構造体405単体での共鳴波長1050nmよりも短波長側に設定しても良い。
また、金属微細構造体405の構成も、図示したものに限定されない。
さらに、金属微細構造体405のLSPR共鳴波長付近での反射率は、本発明のセンサ素子が共振器構造を構成する際にピークが深く鋭くなるように設定することが好ましい。
また、金属微細構造体405を構成する各金属微粒子は、直方体に限定されるものではなく、その他、多角形柱や円柱であっても良い。各微粒子の形状が、対称性が高くなるにつれて素子の偏光依存性を低減できる。また、各金属微粒子の配列も、正方格子に限るものではなく、三角格子や六方格子にして偏光依存性を軽減させてもよい。
本発明のセンサ素子は、金属微細構造体とこれに結合する共振器の両者のモードを結合させ、簡便な素子構成で作製が容易で且つ、高感度センシングも可能となる。
以下に、本発明の第2の実施例であるセンサ素子について説明する。
まず、本実施例のセンサ素子の製造方法について説明する。図7の(a)から(d)に、本実施例のセンサ素子の一連の製造工程を示す。
石英基板701を用意する。石英基板701の厚さは525μmであるとする。ただし、石英基板401の厚さは525μmに限定されるものではなく、適宜に変更することができる。
図7(a)に示すように、蒸着装置を用いて、石英基板701の表面に金属層702として膜厚が約100nmのAu薄膜を成膜する。金属層702の材料はAuに限るものではなく、センサ素子を用いる測定波長域において、反射率が高い金属であればよい。金属層702の材料としては、金、銀、銅、白金、アルミニウム等が好適である。また、金属層702の成膜方法も、蒸着に限るものではなく、スパッタ装置等を用いても良い。
次に、金属層702の上に共振器層703として、厚さが約300nmの二酸化珪素よりなる膜を成膜する。共振器層703は、二酸化珪素に限るものではない。共振器層703の材料は、測定波長域において透過率が高い物質が好適である。また、共振器層703の成膜方法も、スパッタに限るものではない。共振器層703を、CVDやSOG等を用いて形成してもよい。
次に、共振器層703の上に、EBレジスト層704を成膜する。そして、電子線描画装置を用いて、EBレジスト層704に一辺の長さが50nmの正方形パターンを描画する。パターンを描画した後、現像する。さらに、その上に、蒸着にて、厚さ50nmの金属薄膜705を成膜する(図7(b)参照)。
最後に、素子基板をEBレジスト溶剤に浸漬し、リフトオフプロセスによりセンサ素子706を作製する(図7(c)参照)。
ここで、金属微細構造体705の作製を、電子線描画装置を用いて行っているが、これに限るものではない。FIB(集束イオンビーム)加工装置等を用いて金属微細構造体705を作製しても良い。
以上のようにして作製したセンサ素子において、金属微細構造体705の表面を抗体で修飾する。例えば、抗体として抗AFP(α―fetoprotein)抗体を金属微細構造体705の表面に固定化する。この場合、チオール基を有する11−Mercaptoundecanoic acidのエタノール溶液をスポッタ等で滴下することにより金属微細構造体705表面にカルボキシル基が露出される。続いて、N−Hydroxysulfosuccinimide水溶液及び1−Ethyl−3−[3−dimethylamino]propyl carbodiimide hydrochloride水溶液を同様にスポッタ等で反応領域に滴下する。これにより、金属微細構造体705表面にスクシンイミド基が露出される。さらに続いて、ストレプトアビジンを反応させ金属微細構造体705表面をストレプトアビジンで修飾する。そして、この金属微細構造体705にビオチン化した抗AFP抗体を固定させる。その結果、金属微細構造体705は図7(d)に示すような抗体707で修飾された状態になる。
上述のようにして作製されたセンサ素子706の抗原抗体反応及び光学スペクトル測定に関しては、第1の実施例の場合と略同様である。ただし、光源からの光を、金属微細構造体705が密に配列している方向と略平行な方向に偏光させ、その偏光させた光でセンサ素子706を照射して、光学スペクトル測定を行う。具体的には、センサ素子706の入射面側に、入射した光を直線偏光に変換する光学素子を配置する。光学素子からの直線偏光の電界ベクトルの向きが、金属微細構造体705が密に配列している方向と略一致する。このような照明系を用いて、光学スペクトル測定を行う。
図8は、本実施例のセンサ素子の素子構造を示す図であって、(a)は断面図、(b)は平面図である。図8(a)に示す断面は、図8(b)におけるA−A'での断面である。図8に示すセンサ素子は、図7の(a)から(d)の手順で作製したセンサ素子である。図8中、図7に示した構成と同じ部分には同じ符号を付している。
図8の(a)および(b)に示すように、本実施例のセンサ素子においては、金属微細構造体705は、一辺の長さが50nmの立方体の構造である。金属微細構造体705は、第1の方向におけるピッチを90nm、第1の方向と直交する第2の方向におけるピッチを600nmとする配列周期で、直交格子状に形成されている。光源からの光を、金属微細構造体705が密に配列している方向と略平行な方向Eに偏光させる。
図9に、金属微細構造体705が単純な石英基板上に形成されている場合の反射スペクトルを示す。縦軸は反射率、横軸は波長である。図9において、反射率スペクトル901は、標的物質付着前の反射率スペクトルであり、反射率スペクトル902は、標的物質付着後の反射率スペクトルである。標的物質付着前後での反射率スペクトルを減算して求めた反射率スペクトルの変化量が差分スペクトル603である。
図9に示した結果から、金属微細構造体705の外側が水であるとして計算した場合、金属微細構造体705の共鳴波長は、約870nm付近であることがわかる。但し、本実施例のセンサ素子においては、偏光と直交方向の金属微細構造体705の周期(ピッチ)は600nmである。このため、垂直入射光が90度に回折するモードの波長は、金属微細構造体の外側(水側)で約798nm、基板側では876nmである。
また、反射率スペクトルに見える金属微細構造体705の共鳴波長は、金属微細構造体が有する局在プラズモン共鳴のモードと、素子表面に垂直入射した光が90度回折して素子表面と略平行に伝播するモードとがカップリングしている状態であることが分かる。
金属微細構造体705の配列周期に誘電体層の屈折率または金属微細構造体705の周囲の媒質の屈折率を乗じた値と、金属微細構造体705に誘起され得るプラズモン共鳴波長とが等しい。ここで、「等しい」とは、それら値の完全な一致だけでなく、略一致とういう意味を含む。「略」とは、局在プラズモン共鳴のモードと共振器モードとが結合されたセンサ素子の共鳴波長が、金属微細構造705単体が有する共鳴波長範囲内において発現するような条件を満たす範囲における、それら値の差分を許容することを意味する。
具体的には、金属微細構造体705に誘起されるLSPRの共鳴波長(約870nm)は、上述の基板側で入射光が90度に回折される条件の波長876nmに略等しい。金属微細構造体705の配列周期600nmに誘電体層の屈折率1.46を乗じた値である876nmと、標的物質付着前の状態で金属微細構造体に誘起されるプラズモン共鳴波長870nmとは略等しい。
本実施例では、金属微細構造体705の、上述のような共鳴波長に対して、センサ素子の共鳴波長を金属微細構造705単体が有する共鳴波長800nmから900nmの近傍に発現させる。
共振器層703の厚みを約300nmにする場合、共振器端面での反射時の位相変化等を考慮すると、共振器の実効的な共振器長は510nmになる。この場合、共振器層703で発現する共鳴波長は1020nm付近になる(反射率スペクトル904)。このように構成することで、共振器の共鳴モード(共鳴波長1020nm)と金属微細構造体705のLSPR共鳴(共鳴波長約870nm)、90度回折のモードが互いに結合することになる。その結果、本実施例のセンサ素子の共鳴波長は830nm付近になる。
本実施例のセンサ素子においては、標的物質付着前の状態で反射率スペクトル905を示し、標的物質付着後の状態で反射率スペクトル906を示す。標的物質付着前後での反射率スペクトルの変化は、差分スペクトル907である。これらの結果から、本実施例のセンサ素子では、差分最大値が0.8となるので、金属微粒子単体の性能(差分最大値約0.4)と比較して、センシング感度が向上していることが分かる。
本実施例では、センサ素子の共鳴波長を830nmとしたが、これに限るものではない。また、金属微細構造体705の構成も、図示した構成に限るものではない。さらに、金属微細構造体705のLSPR共鳴波長付近での反射率は、センサ素子が共振器構造を構成する際にピークがさらに深く鋭くなるように設定することも好ましい。
また、金属微細構造体705を構成する各金属微粒子の形状は、立方体に限るものではなく、その他の多角形柱や円柱の形状であっても良い。各微粒子の形状は、対称性が高くなるにつれて素子の偏光依存性を低減できる。また、金属微細構造体705の配列も、直交格子に限るものではない。金属微細構造体705の配列を三角格子や六方格子の配列にして偏光依存性を軽減させてもよい。
本実施例のセンサ素子によれば、金属微細構造体とこれに結合する共振器の両者のモードを結合させ、更に90度近い回折角の回折光を結合させる。これにより、反応前後での光学スペクトルのシフト量を維持したまま、発現する光学スペクトルのピーク幅を細くすることができ、その結果、高感度センシングが可能となる。さらに、簡便な素子構成であるので、センサ素子の作製が容易でもある。
次に、本発明のセンサ素子を用いたセンシング装置について説明する。
図10は、本発明のセンサ素子を用いたセンシング装置の一例を示す。図10を参照すると、センシング装置1012は、流路1007、光源1008および分光計測器1009からなる光学系と、中央演算装置1010および表示ユニット1011からなる計測処理系とを有する。
流路1007は、送液ポンプ1001、注入口1002、反応ウェル1004、排出口1005及び廃液リザーバ1006を有する。
レファレンス液及び検体液は、送液ポンプ1001から注入口1002へと供給される。レファレンス液及び検体液は、センサ素子1003が配置されている反応ウェル1004内に流入する。レファレンス液及び検体液は、反応ウェル1004内のセンサ素子1003に接触しながら流れ、反応ウェル1004を通過後、排出口1005から廃液リザーバ1006へと排出される。
光源1008からの光は、反応ウェル1004内のセンサ素子1003に照射される。光源1008はタングステンランプが適用可能であるが、これに限定されるものではない。照明光学系に偏光子等を挿入して、照射光に偏光特性を持たせることも好ましい。光源1008は、測定波長域に発光波長がある光源であれば良い。
光源1008からの光は、センサ素子1003にて反射され、その反射光はミラーを介して分光計測器1009に入射する。光検知素子である分光計測器1009は、センサ素子1003で反射した光を分光測定する。
分光計測器1009で得られたデータは、中央演算装置1010に供給される。中央演算装置1010は、分光計測器1009から供給されるデータを処理し、その処理結果を計測結果として表示ユニット1011にて表示される。中央演算装置1010は、データ処理を行う他、光源1008や送液ポンプ1001への制御信号を発生する。
センサ素子1003は、上述した本発明のセンサ素子である。センシング装置1012では、このセンサ素子1003を用いることにより、高感度なセンシング(例えば、屈折率センシングやバイオセンシング)を行なうことができる。
すなわち、以下の工程を含んだセンシングを行なうことができる。
(1)被検物質が化学センサ素子に付着していない状態で、化学センサ素子に対して光を照射して、化学センサ素子からの反射光を検知する第1の工程
(2)被検物質が前記化学センサ素子に付着した状態で、化学センサ素子に対して光を照射して、化学センサ素子からの反射光を検知する第2の工程
(3)第1の工程で検知した反射光の光学スペクトルと第2の工程で検知した反射光の光学スペクトルとの差分を演算する第3の工程
なお、第2の実施例で説明したセンサ素子を用いる場合は、光源1008からの光を、金属微細構造体が密に配列している方向と略平行な方向に偏光させ、その偏光させた光でセンサ素子を照射して、光学スペクトル測定を行う。
以上説明した本発明の化学センサ素子によれば、反応前後でスペクトルのシフト量が大きいという特徴を有する、表面プラズモン共鳴のモードと、線幅の狭いスペクトルを得ることができる共振器のモードとをカップリングさせる。これにより、両モードの特性を有したスペクトルを得ることができるので、線幅の狭いスペクトルを得ることができる。したがって、共鳴スペクトルの線幅を細くし、かつ、共鳴スペクトルのシフト量を増大させることにより、先行技術として挙げた構成よりも高感度に測定することのできる共振器構造を有した化学センサ素子を提供することができる。
なお、共振器の共鳴波長λ1が、金属微細構造体に誘起され得る表面プラズモン共鳴波長λ0と等しい系においては、共振器モードにおいて本来定在波の“節”になるべき部分に、プラズモン共鳴を起こす粒子を配置することになる。しかし、共鳴状態の粒子は、それ自体が波源であり、プラズモン共鳴のモードでは“腹”となるため、共振器モードとの両立はできない。したがって、共鳴波長λ1が表面プラズモン共鳴波長λ0と等しい系では、プラズモン共鳴が励起できない結果、反射スペクトル上から共鳴ピークが略消失し、センシングができなくなる。本発明の化学センサ素子においては、共振器の共鳴波長λ1が表面プラズモン共鳴波長λ0と異なるため、両モードの両立が可能となっている。
また、プラズモン共鳴の線幅は、一般に、共鳴波長を中心として±25%以下の波長範囲とされることから、プラズモン共鳴を励起するために、プラズモン共鳴の線幅の波長範囲内の波長の光で照明することが望ましい。したがって、プラズモン共鳴の線幅の波長範囲内の波長の光で照明する系において、共振器モードとプラズモン共鳴のモードとを同時に励起するためには、共振器の共鳴波長は、プラズモン共鳴の線幅の波長範囲内とすることが望ましい。本発明では、共振器の共鳴波長を表面プラズモン共鳴波長のλ0の±25%以内の波長範囲に設定されているので、共振器モードとプラズモン共鳴のモードとを同時に確実に励起することができる。なお、プラズモン共鳴の線幅は、共鳴の中心波長からプラスおよびマイナス方向に、共鳴スペクトルの半値半分の波長域をさす。
以上説明した化学センサ素子およびそれを用いたセンシング装置は、本発明の一実施形態であり、その構成は発明の趣旨を逸脱しない範囲で適宜に変更することができる。
本発明の一実施形態であるセンサ素子の共振器構造を示す断面図である。 プラズモン共鳴のモードとファブリペロー共振器のモードがカップリングしていない場合の透過スペクトルを示す特性図である。 プラズモン共鳴のモードとファブリペロー共振器のモードがカップリングしている場合の透過スペクトルを示す特性図である。 金属微細構造体によるプラズモン共鳴の典型的なスペクトルを示す特性図である。 本発明の一実施形態である化学センサ素子の具体的な構成を示す図であって、(a)は断面図、(b)は平面図である。図3(a)に示す断面は、図3(b)におけるA−A'での断面である。 本発明の第1の実施例であるセンサ素子の一連の製造手順を示す工程図である。 抗原抗体反応及び光学スペクトル測定を行うシステムの一例を示すブロック図である。 図5Aに示すシステムで測定された光学スペクトルを示す特性図である。 本発明の第1の実施例であるセンサ素子の金属微細構造体が単純な石英基板上に形成された場合の反射スペクトルを示す特性図である。 本発明の第2の実施例であるセンサ素子の一連の製造手順を示す工程図である。 本発明の第2の実施例であるセンサ素子の素子構造を示す図であって、(a)は断面図、(b)は平面図である。 本発明の第2の実施例であるセンサ素子の金属微細構造体が単純な石英基板上に形成された場合の反射スペクトルを示す特性図である。 本発明のセンサ素子を用いたセンシング装置の一例を示すブロック図である。
符号の説明
101 金属微細構造体
102 誘電体層
103 反射体
120 入射光
120 反射光

Claims (11)

  1. 金属微細構造体が二次元的かつ周期的に配置された第1の反射体が誘電体層を介して第2の反射体と対向して配置された共振器を有する化学センサ素子であって、
    前記第1の反射体全体を、前記金属微細構造体と同じ厚さを有する金属薄膜で置換した場合の前記共振器の共鳴波長が、前記金属微細構造体に誘起され得る表面プラズモン共鳴波長と異なり、かつ、前記金属微細構造体に励起される表面プラズモン共鳴のモードが、前記第1の反射体全体を前記金属薄膜で置換した場合の前記共振器のモードと結合されている、ことを特徴とする化学センサ素子。
  2. 前記第1の反射体全体を前記金属薄膜で置換した場合の前記共振器の共鳴波長は、前記プラズモン共鳴波長の±25%以内の値である、請求項1に記載の化学センサ素子。
  3. 前記誘電体層の屈折率をn、厚さをL、前記第1の反射体全体を前記金属薄膜で置換した場合の前記共振器の共鳴波長をλ1、前記誘電体層内を伝播する光が前記金属薄膜で反射されるときに生じる位相変化量をφ1、前記誘電体層内を伝播する光が前記第2の反射体で反射されるときに生じる位相変化量をφ2とするとき、前記共振器の共鳴波長λ1が、
    Figure 2009115492
    で与えられる値である、請求項2に記載の化学センサ素子。
  4. 前記第2の反射体は金属よりなる、請求項1乃至3のいずれか一つに記載の化学センサ素子。
  5. 前記金属微細構造体または前記第2の反射体が金、銀、銅、白金、アルミニウムのいずれかにより構成される、請求項1乃至4のいずれか一つに記載の化学センサ素子。
  6. 前記金属微細構造体の形状が直方体、多角形柱および円柱のいずれかの形状である、請求項1乃至5のいずれか一つに記載の化学センサ素子。
  7. 前記金属微細構造体が三角格子状に配列されている、請求項1乃至6のいずれか一つに記載の化学センサ素子。
  8. 前記金属微細構造体の配列周期に前記誘電体層の屈折率または前記金属微細構造体の周囲の媒質の屈折率を乗じた値と、前記金属微細構造体に誘起され得るプラズモン共鳴波長とが等しい、請求項1乃至7のいずれか一つに記載の化学センサ素子。
  9. 請求項1乃至8のいずれか一つに記載の化学センサ素子と、
    前記化学センサ素子を構成する共振器の、金属微細構造体が形成された面に対し、光を垂直に照射する光源と、
    前記化学センサ素子からの反射光を検知する光検知素子と、を有する、センシング装置。
  10. 前記化学センサ素子に照射される光を直線偏光に変換する光学素子をさらに有し、前記光学素子からの直線偏光の電界ベクトルの向きが、前記金属微細構造体が密に配列している方向と一致する、請求項9に記載のセンシング装置。
  11. 請求項1乃至8のいずれか一つに記載の化学センサ素子を用いて被検物質を検出するセンシング方法であって、
    前記被検物質が前記化学センサ素子に付着していない状態で、前記化学センサ素子に対して光を照射して、前記化学センサ素子からの反射光を検知する第1の工程と、
    前記被検物質が前記化学センサ素子に付着した状態で、前記化学センサ素子に対して光を照射して、前記化学センサ素子からの反射光を検知する第2の工程と、
    前記第1の工程で検知した反射光の光学スペクトルと前記第2の工程で検知した反射光の光学スペクトルとの差分を演算する第3の工程と、を含む、センシング方法。
JP2007286102A 2007-11-02 2007-11-02 化学センサ素子、センシング装置およびセンシング方法 Expired - Fee Related JP5288772B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007286102A JP5288772B2 (ja) 2007-11-02 2007-11-02 化学センサ素子、センシング装置およびセンシング方法
PCT/JP2008/070144 WO2009057804A1 (en) 2007-11-02 2008-10-29 Chemical sensor element, sensing apparatus, and sensing method
US12/738,228 US8877519B2 (en) 2007-11-02 2008-10-29 Chemical sensor element, sensing apparatus, and sensing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007286102A JP5288772B2 (ja) 2007-11-02 2007-11-02 化学センサ素子、センシング装置およびセンシング方法

Publications (2)

Publication Number Publication Date
JP2009115492A true JP2009115492A (ja) 2009-05-28
JP5288772B2 JP5288772B2 (ja) 2013-09-11

Family

ID=40491034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007286102A Expired - Fee Related JP5288772B2 (ja) 2007-11-02 2007-11-02 化学センサ素子、センシング装置およびセンシング方法

Country Status (3)

Country Link
US (1) US8877519B2 (ja)
JP (1) JP5288772B2 (ja)
WO (1) WO2009057804A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012108322A1 (ja) * 2011-02-09 2012-08-16 新日鐵化学株式会社 金属微粒子分散複合体及びその製造方法、並びに局在型表面プラズモン共鳴発生基板
JP2012242387A (ja) * 2011-05-13 2012-12-10 Imec 一体型sers測定のための導波路一体型プラズモン共鳴装置
JP2013152213A (ja) * 2011-12-09 2013-08-08 Commissariat A L'energie Atomique & Aux Energies Alternatives テラヘルツ領域の電磁放射線のボロメータ検出器および同検出器を含む検出器アレイデバイス
JP2013160578A (ja) * 2012-02-03 2013-08-19 Ushio Inc 光増強素子およびその作製方法
WO2013157233A1 (ja) * 2012-04-18 2013-10-24 セイコーエプソン株式会社 試料分析素子および検出装置
WO2013161210A1 (ja) * 2012-04-26 2013-10-31 セイコーエプソン株式会社 試料分析素子および検出装置
WO2013164910A1 (ja) * 2012-05-01 2013-11-07 セイコーエプソン株式会社 光学デバイス及び検出装置
WO2013168404A1 (ja) * 2012-05-11 2013-11-14 セイコーエプソン株式会社 試料分析素子並びに検査装置およびセンサーカートリッジ
JP2014521094A (ja) * 2011-07-15 2014-08-25 セントレ ナショナル デ ラ ルシェルシェ サイエンティフィック−シーエヌアールエス 性能が向上したマイクロボロメータアレイ
EP2908118A1 (en) 2014-02-17 2015-08-19 Seiko Epson Corporation Analysis apparatus and electronic device
WO2015159945A1 (ja) * 2014-04-17 2015-10-22 国立大学法人豊橋技術科学大学 物理・化学センサおよび物理・化学現象センシングデバイスならびにこれらの製造方法
US9389178B2 (en) 2013-03-05 2016-07-12 Seiko Epson Corporation Analysis device, analysis method, optical element and electronic apparatus for analysis device and analysis method, and method of designing optical element
US9658165B2 (en) 2014-05-08 2017-05-23 Seiko Epson Corporation Electronic field enhancement element, analysis device, and electronic apparatus
JP2017173336A (ja) * 2017-05-22 2017-09-28 セイコーエプソン株式会社 センサー基板、検出装置及び電子機器

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014163869A (ja) * 2013-02-27 2014-09-08 Seiko Epson Corp 光学素子、分析装置、分析方法、および電子機器
JP2014163868A (ja) * 2013-02-27 2014-09-08 Seiko Epson Corp 光学素子、分析装置、分析方法、および電子機器
JP2014173920A (ja) * 2013-03-07 2014-09-22 Seiko Epson Corp 分析装置、分析方法、これらに用いる光学素子および電子機器、並びに光学素子の設計方法
TWI498541B (zh) * 2013-05-30 2015-09-01 Univ Nat Cheng Kung 具不對稱週期粒子排列之定域化表面電漿共振檢測系統
CN103499534B (zh) * 2013-07-25 2015-09-09 中国科学院苏州纳米技术与纳米仿生研究所 高灵敏太赫兹微流通道传感器及其制备方法
JP2015152492A (ja) * 2014-02-17 2015-08-24 セイコーエプソン株式会社 分析装置、及び電子機器
EP3121587A1 (en) * 2014-03-21 2017-01-25 Universidad De Cantabria Device and method for detecting biomarkers
WO2018039141A1 (en) * 2016-08-23 2018-03-01 Optokey, Inc. Surface enhanced raman spectroscopy (sers) structure for double resonance output
GB201708407D0 (en) * 2017-05-25 2017-07-12 Cambridge Entpr Ltd Optical Devices
JP6994274B2 (ja) * 2018-05-25 2022-02-04 国立研究開発法人物質・材料研究機構 積層型ふく射光源
FR3104718B1 (fr) 2019-12-13 2022-12-23 Commissariat Energie Atomique Dispositif et méthode de détection de particules et procédé de fabrication
CN111123418B (zh) * 2020-01-19 2021-11-26 中国人民解放军国防科技大学 一种石墨烯等离激元腔-完美吸收器耦合纳米谐振器件

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02226776A (ja) * 1989-02-28 1990-09-10 Canon Inc 波長選択光検出器
JPH04168330A (ja) * 1990-10-31 1992-06-16 Olympus Optical Co Ltd 光波長計
WO2005114298A2 (en) * 2004-05-19 2005-12-01 Vp Holding, Llc Optical sensor with layered plasmon structure for enhanced detection of chemical groups by sers
WO2006135097A1 (en) * 2005-06-14 2006-12-21 Fujifilm Corporation Sensor, multichannel sensor, sensing apparatus, and sensing method
JP2007024869A (ja) * 2005-06-14 2007-02-01 Fujifilm Holdings Corp マルチチャンネルセンサ、センシング装置、及びセンシング方法
JP2007024870A (ja) * 2005-06-14 2007-02-01 Fujifilm Holdings Corp センサ、センシング装置、及びセンシング方法
US20070196043A1 (en) * 2004-05-11 2007-08-23 Tel Aviv University Future Technology Development Ltd. Planar-Resonator Based Optical Chemo- And Biosensor

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6252892B1 (en) * 1998-09-08 2001-06-26 Imra America, Inc. Resonant fabry-perot semiconductor saturable absorbers and two photon absorption power limiters
US7399445B2 (en) 2002-01-11 2008-07-15 Canon Kabushiki Kaisha Chemical sensor
US7027676B2 (en) * 2004-03-08 2006-04-11 Agilent Technologies, Inc. Optical phase measurement of target
WO2007015556A1 (en) 2005-08-01 2007-02-08 Canon Kabushiki Kaisha Target substance detecting device, target substance detecting method using the same, and detecting apparatus and kit therefor
JP4481967B2 (ja) 2005-09-05 2010-06-16 キヤノン株式会社 センサ装置
WO2007072986A1 (en) 2005-12-22 2007-06-28 Canon Kabushiki Kaisha Substrate for target substance detecting device, target substance detecting device, target substance detecting apparatus and method using the same, and kit therefor
US8154722B2 (en) 2006-03-03 2012-04-10 Canon Kabushiki Kaisha Sensor element structure, sensor element array, and manufacturing method of sensor element array
US8045141B2 (en) 2006-05-12 2011-10-25 Canon Kabushiki Kaisha Detecting element, detecting device and detecting method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02226776A (ja) * 1989-02-28 1990-09-10 Canon Inc 波長選択光検出器
JPH04168330A (ja) * 1990-10-31 1992-06-16 Olympus Optical Co Ltd 光波長計
US20070196043A1 (en) * 2004-05-11 2007-08-23 Tel Aviv University Future Technology Development Ltd. Planar-Resonator Based Optical Chemo- And Biosensor
JP2007537439A (ja) * 2004-05-11 2007-12-20 テル アビブ ユニバーシティー フューチャー テクノロジー ディベロップメント エルティーディー. 平面状の微小共振器に基づく光学的化学バイオセンサ
WO2005114298A2 (en) * 2004-05-19 2005-12-01 Vp Holding, Llc Optical sensor with layered plasmon structure for enhanced detection of chemical groups by sers
JP2007538264A (ja) * 2004-05-19 2007-12-27 ブィピー ホールディング、エルエルシー Sersによる化学基の増強検出のための層状プラズモン構造をもつ光センサ
WO2006135097A1 (en) * 2005-06-14 2006-12-21 Fujifilm Corporation Sensor, multichannel sensor, sensing apparatus, and sensing method
JP2007024869A (ja) * 2005-06-14 2007-02-01 Fujifilm Holdings Corp マルチチャンネルセンサ、センシング装置、及びセンシング方法
JP2007024870A (ja) * 2005-06-14 2007-02-01 Fujifilm Holdings Corp センサ、センシング装置、及びセンシング方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6012023851; HIBBINS A. P., MURRAY W. A., TYLER J., WEDGE S., BARNES W. L., SAMBLES J. R. (Univ. Exeter, Exeter,: 'Resonant absorption of electromagnetic fields by surface plasmons buried in a multilayered plasmonic' Phys Rev B Condens Matter Mater Phys Vol.74, No.7, 200608, P&#xFF *

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016085224A (ja) * 2011-02-09 2016-05-19 新日鉄住金化学株式会社 金属微粒子分散複合体及び局在型表面プラズモン共鳴発生基板
JP5852022B2 (ja) * 2011-02-09 2016-02-03 新日鉄住金化学株式会社 金属微粒子分散複合体及びその製造方法、並びに局在型表面プラズモン共鳴発生基板
WO2012108322A1 (ja) * 2011-02-09 2012-08-16 新日鐵化学株式会社 金属微粒子分散複合体及びその製造方法、並びに局在型表面プラズモン共鳴発生基板
JP2012242387A (ja) * 2011-05-13 2012-12-10 Imec 一体型sers測定のための導波路一体型プラズモン共鳴装置
JP2014521094A (ja) * 2011-07-15 2014-08-25 セントレ ナショナル デ ラ ルシェルシェ サイエンティフィック−シーエヌアールエス 性能が向上したマイクロボロメータアレイ
JP2013152213A (ja) * 2011-12-09 2013-08-08 Commissariat A L'energie Atomique & Aux Energies Alternatives テラヘルツ領域の電磁放射線のボロメータ検出器および同検出器を含む検出器アレイデバイス
JP2013160578A (ja) * 2012-02-03 2013-08-19 Ushio Inc 光増強素子およびその作製方法
WO2013157233A1 (ja) * 2012-04-18 2013-10-24 セイコーエプソン株式会社 試料分析素子および検出装置
US9228944B2 (en) 2012-04-18 2016-01-05 Seiko Epson Corporation Sample analysis element and detection device
JP2013228303A (ja) * 2012-04-26 2013-11-07 Seiko Epson Corp 試料分析素子および検出装置
WO2013161210A1 (ja) * 2012-04-26 2013-10-31 セイコーエプソン株式会社 試料分析素子および検出装置
JP2013231682A (ja) * 2012-05-01 2013-11-14 Seiko Epson Corp 光学デバイス及び検出装置
WO2013164910A1 (ja) * 2012-05-01 2013-11-07 セイコーエプソン株式会社 光学デバイス及び検出装置
WO2013168404A1 (ja) * 2012-05-11 2013-11-14 セイコーエプソン株式会社 試料分析素子並びに検査装置およびセンサーカートリッジ
JP2013234977A (ja) * 2012-05-11 2013-11-21 Seiko Epson Corp 試料分析素子並びに検査装置およびセンサーカートリッジ
US9222889B2 (en) 2012-05-11 2015-12-29 Seiko Epson Corporation Sample analysis device, testing apparatus, and sensor cartridge
US9389178B2 (en) 2013-03-05 2016-07-12 Seiko Epson Corporation Analysis device, analysis method, optical element and electronic apparatus for analysis device and analysis method, and method of designing optical element
EP2908118A1 (en) 2014-02-17 2015-08-19 Seiko Epson Corporation Analysis apparatus and electronic device
US9389179B2 (en) 2014-02-17 2016-07-12 Seiko Epson Corporation Analysis apparatus and electronic device
WO2015159945A1 (ja) * 2014-04-17 2015-10-22 国立大学法人豊橋技術科学大学 物理・化学センサおよび物理・化学現象センシングデバイスならびにこれらの製造方法
JPWO2015159945A1 (ja) * 2014-04-17 2017-04-13 国立大学法人豊橋技術科学大学 物理・化学センサおよび物理・化学現象センシングデバイスならびにこれらの製造方法
US9658165B2 (en) 2014-05-08 2017-05-23 Seiko Epson Corporation Electronic field enhancement element, analysis device, and electronic apparatus
US9880100B2 (en) 2014-05-08 2018-01-30 Seiko Epson Corporation Electronic field enhancement element, analysis device, and electronic apparatus
JP2017173336A (ja) * 2017-05-22 2017-09-28 セイコーエプソン株式会社 センサー基板、検出装置及び電子機器

Also Published As

Publication number Publication date
JP5288772B2 (ja) 2013-09-11
WO2009057804A1 (en) 2009-05-07
US20100233825A1 (en) 2010-09-16
US8877519B2 (en) 2014-11-04

Similar Documents

Publication Publication Date Title
JP5288772B2 (ja) 化学センサ素子、センシング装置およびセンシング方法
US8687187B2 (en) Surface enhanced raman spectroscopy on optical resonator (e.g., photonic crystal) surfaces
JP4974870B2 (ja) 光学素子、センサ装置及びセンシング方法
US6421128B1 (en) Coupled plasmon-waveguide resonance spectroscopic device and method for measuring film properties in the ultraviolet and infrared special ranges
US9404861B2 (en) Nanostructure diffraction gratings for integrated spectroscopy and sensing
US7483130B2 (en) Metal nano-void photonic crystal for enhanced Raman spectroscopy
US7869032B2 (en) Biosensors with porous dielectric surface for fluorescence enhancement and methods of manufacture
US9223064B2 (en) Photonic crystal-metallic structures and applications
US9395363B2 (en) SPR sensor device with nanostructure
US6330387B1 (en) Coupled plasmon-waveguide resonance spectroscopic device and method for measuring film properties in the ultraviolet and infrared spectral ranges
US8023115B2 (en) Sensor, sensing system and sensing method
US20150131092A1 (en) Optical device and detection apparatus
US8154722B2 (en) Sensor element structure, sensor element array, and manufacturing method of sensor element array
WO2019039551A1 (ja) メタマテリアル構造体および屈折率センサ
Raghuwanshi et al. Highly dispersion tailored property of novel class of multimode surface plasmon resonance biosensor assisted by teflon and metamaterial layers
Sun et al. A quasi-3D Fano resonance cavity on optical fiber end-facet for high signal-to-noise ratio dip-and-read surface plasmon sensing
JP4173746B2 (ja) 測定装置
Abdulhalim II et al. Resonant and scatterometric grating-based nanophotonic structures for biosensing
Agrawal et al. Nanostructured plasmonic chips employing nanopillar and nanoring hole arrays for enhanced sensitivity of SPR-based biosensing
JP2007263955A (ja) センサ素子用構造体、センサ素子用アレイ、センサ素子用アレイの製造方法及びセンシング装置
JP5038030B2 (ja) センシング方法およびセンシング装置
Zhang Optical Quartz Crystal Microbalance (OQCM) For Dual-Mode Analysis
Laible et al. 3.1 Localized surface plasmon resonance shift sensing
JP2015212625A (ja) 分析方法
Lee et al. Comparisons of the surface plasmon sensitivities for nanohole and nanoslit arrays

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130604

LAPS Cancellation because of no payment of annual fees