JP2009115131A - 動圧軸受及びラジアル動圧軸受を用いたスピンドル装置 - Google Patents

動圧軸受及びラジアル動圧軸受を用いたスピンドル装置 Download PDF

Info

Publication number
JP2009115131A
JP2009115131A JP2007286205A JP2007286205A JP2009115131A JP 2009115131 A JP2009115131 A JP 2009115131A JP 2007286205 A JP2007286205 A JP 2007286205A JP 2007286205 A JP2007286205 A JP 2007286205A JP 2009115131 A JP2009115131 A JP 2009115131A
Authority
JP
Japan
Prior art keywords
bearing
pad
spindle
dynamic pressure
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007286205A
Other languages
English (en)
Other versions
JP5121047B2 (ja
Inventor
Hiroshi Mizumoto
洋 水本
Yoichi Tazoe
洋一 田添
Shigeru Yokouchi
繁 横内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nachi Fujikoshi Corp
Tottori University NUC
Original Assignee
Nachi Fujikoshi Corp
Tottori University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nachi Fujikoshi Corp, Tottori University NUC filed Critical Nachi Fujikoshi Corp
Priority to JP2007286205A priority Critical patent/JP5121047B2/ja
Publication of JP2009115131A publication Critical patent/JP2009115131A/ja
Application granted granted Critical
Publication of JP5121047B2 publication Critical patent/JP5121047B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Machine Tool Sensing Apparatuses (AREA)
  • Turning (AREA)
  • Sliding-Contact Bearings (AREA)
  • Support Of The Bearing (AREA)

Abstract

【課題】高速回転時においても振動が少なく、回転精度の高い動圧軸受及びスピンドル装置を提供。
【解決手段】動圧軸受1を形成する軸受パッド3のパッド面5aを相手側面20aに対して進退可能な可撓性パッドとし、可撓性パッド面を含む軸受パッドと、軸受パッド間に設けられた固定部4とを連続面で接続する。可撓性パッドは厚肉部5の両端を長さが異なる第一及び第二の薄肉部7b,8b及び固定部と連続面で接続し、厚肉部の背面5bに圧電素子9等を設け厚肉への押圧力を変化させ進退可能にする。固定部に相手側面との変位を測定する変位センサ12を設ける。静圧軸受21a等と併用し、動圧軸受部で、すきま31が減じる場合にはパッド面の弾性変形量33を増加させ、すきまが増える場合には減少させるように制御し、パッド面で発生する負荷容量を調節し、スピンドルの振動を能動的に抑制する。
【選択図】 図1

Description

本発明は、ティルティングパッド軸受のような流体のくさび作用を利用した動圧軸受およびそれを用いたスピンドル装置に関する。より詳細には、工作機械等において、小径の研削砥石や切削工具を保持し高速・高精度で回転させるための高速スピンドルの支持軸受機構に関するものである。
小径の研削砥石や切削工具などを把持・駆動する高速スピンドルでは、最適な切削速度を維持するために工具径の減少とともにスピンドル回転数の増加を要求される。しかしながら、スピンドル回転数の増加に伴いスピンドルの振動振幅が増大し、結果として工具も振動するために加工精度の低下することが問題であった。
スピンドルの回転精度維持・向上のためにはスピンドル支持軸受の精度の改善や軸受剛性の増加などが有効である。たとえば、転がり軸受を使用する場合には軸受に組み込まれる転動体の形状精度を改善することでスピンドルの振動を減少させられる。しかしながら、精密・超精密加工において許容できるスピンドル振動振幅はサブミクロンオーダであり、転がり軸受を用いたスピンドルで良好な加工結果を得られる運転可能な回転速度は高々30,000min-1程度である。そこで、工具径が1mmを下回り、50,000min-1、さらには100,000min-1を超えるような高速回転を必要とする場合には回転精度が高く、摩擦損失の少ない空気を作動流体とするすべり軸受の採用が適切であり、種々の形式の動圧軸受、静圧軸受が提案されている。
まず空気動圧軸受としては、たとえばティルティンパッド軸受があるがこの軸受では、軸受面が一体ではなく複数の部品で構成されている。その結果、加工、組立が煩雑であり、軸受面の形状精度があまり高くできない。したがって、このような動圧軸受に支えられるスピンドルに高い回転精度は期待できなかった。軸受面が一体構造の動圧軸受(真円軸受、ヘリングボーン軸受など)も存在するが、軸受面形状が単純な真円軸受の場合、発生動圧が不十分である。そこで、負荷支持に必要な動圧を発生させるにはヘリングボーン軸受などにみられるように軸受面に複雑な形状を作り込む必要があり、加工・組立技術上の困難さが伴う。しかもこれら動圧軸受には、低速回転時に充分な負荷容量、剛性が得られず、スピンドルと軸受面とが接触するという致命的な短所がある。
一方、空気静圧軸受では低速回転時にも安定した充分な潤滑膜が存在し、スピンドルと軸受面とが接触することはない。しかしながら、軸受寸法の制限により軸受剛性が必ずしも充分ではなく、スピンドルの高速回転に伴う振動振幅の増加が問題となる。そこで、多孔質軸受や表面絞り軸受など、限られた軸受寸法で軸受面積を増加させる構造が提案されているが、製作が困難であったり、構造が複雑となるなどの問題点も生じる。しかもこれらの静圧軸受での負荷支持動作は受動的なものであり、振動抑制効果も限定的なものにならざるを得ない。
そこで、スピンドルの変位、振動を能動制御により減少させる軸受として、たとえば、特許文献1においては、静圧軸受内に圧電素子を用いた能動自成絞り組み込み、軸変位を能動的制御している。このものは、対向する二平面間の相手平面と微少隙間による絞りを形成し、流体圧を供給する開口部を先端に有する開口面を有し、開口面が固定側に対して一軸方向に伸縮可能にかつ取付平面より突出して固定された静圧素子が設けられ、前記微少隙間による絞りから供給される流体により対向する二平面間に静圧軸受が形成され、二平面間の距離を外部から設定する設定器と、二平面間の距離を測定する測定器とを設け、測定器の出力信号と設定器の設定信号とを比較し、設定信号より出力信号が大きいときは開口面が相手平面に近づき、設定信号より出力信号が小さいときは開口面が相手平面とは離れるように制御し、二平面間の距離を設定器で設定された距離になるよう制御した静圧軸受である。
また、動圧軸受の一種である、ティルティンパッド軸受においては、特許文献2に示すように軸受面の一部を可撓面とし、圧電素子により前記可撓面を変形させることで軸振動を減衰させようとしている。さらに特許文献3(段落[0021]、[0022])においては、回転軸の変位センサを設け、回転軸が例えば鉛直方向に振動すると、変位センサが回転軸との間の隙間が変化したことを検出し、その変位信号を受けた制御装置により、検出信号に基づき定められた高さの電圧を圧電素子へ供給しする。供給された圧電素子が伸び可撓性パッドの自由端の傾斜角を大きくして回転軸と可撓性パッドの間の隙間分布を変化させ、圧力分布を変化させ、隙間とばね定数、減衰係数を変化させ振動を押さえることにより、回転軸の変位を減衰させるようにしている。さらには、ダッシュポットを設け振動を抑制している。
一方、複合軸受として、特許文献4においては、能動形磁気軸受スピンドルの保護ベアリングを静圧軸受とするとともに、能動形磁気軸受の隙間を静圧軸受の隙間に静圧軸受の定格許容変位を加えた値より大きくし、スピンドル運転中に能動形磁気軸受と静圧軸受とで主軸を同時に浮上支持するようにし、保護ベアリングとしての機能を満足するとともに、スピンドル運転中の軸隙間を小さくし、能動形磁気軸受の感度をあげてスピンドル主軸の精度、剛性を向上させている。
特許第3746199号公報 特許第2659829号公報 特開2000−205251号公報 特公平7−30789号公報
しかしながら特許文献1のような能動制御静圧軸受では、周波数特性が十分ではなく、回転速度の増加に伴い制御が追いつかず、高速回転時には充分な制御効果が得られていない。また、特許文献2,3のものにおいては、軸受面が分割されているなど、複数の部品で構成され、軸受の加工・組立精度の維持が困難で軸受面形状誤差が大きく高い回転精度は期待できない。しかも、軸受面すきまの高精度管理もできないため軸受隙間も大きく、また、可撓部分が制御中に回転しているスピンドルに接する虞もあり、大型、低速の軸受としてはよいが、小型、高速度、高精度のものには不向きである。また、振動減衰においても、特許文献3のように、ダッシュポッドのような周波数特性を劣化させる振動減衰制御しかできず高精度、高応答の制御はできない。さらに、特許文献4のような能動形磁気軸受との組み合わせにあっては、磁気軸受側の構造及び制御装置は大きく、また、複雑であり、コストも高く、高度な調整も必要であった。
このように従来のスピンドル技術では回転速度の増加に伴う振動増加を抑制する有効な技術が存在せず、小径工具による精密加工のための高速スピンドルを実現するための障害となっていた。
本発明の課題は、かかる従来の問題点に鑑みて、高速回転時においても振動が少なく、回転精度の高い動圧軸受を提供し、さらには、小径工具が必要とする高速回転時においてスピンドルの振動振幅をサブミクロンオーダーに抑制する制御手段も可能な動圧軸受及び動圧軸受を用いたスピンドル装置を提供することである。
本発明においては、相対移動する相手側面に対して傾斜面を形成して動圧を発生させる軸受パッドが複数配置された動圧軸受であって、前記軸受パッドはパッド面が前記相手側面に対して外部より制御可能なアクチュエータにより進退可能にされた可撓性パッドであり、前記軸受パッド間には固定部が設けられており、全ての前記パッド面を含む軸受パッドと前記固定部とが連続面で接続されている動圧軸受を提供することにより前述した課題を解決した。
即ち、従来のものは、大型で十分に大きな面積のパッド面を有しており、パッド面の始点、終点での流体分布の影響は考慮されていない。しかし、本発明者等は、小型、高速になると始点、終点でのパッド面で形成される動圧軸受として機能する流体分布がとぎれ、不安定な分布となり、パッド面の制御が困難となり、軸受性能が低下することを知得した。この知得により、本発明においては、ティルティングパッド方式のパッド面と固定部を連続した面で形成し、即ち一体となし、軸受パッドを可撓性パッドとしてパッド面を進退させて形成した傾斜面によりくさび状膜による動圧軸受を形成する。動圧軸受の軸受面を連続させることで形状精度を維持し、パッド面の前後の影響の少ない安定した流体分布を維持できるものとなった。
連続面とは不連続な段差等がなく、軸受パッドの動圧への影響を少なくするものである。より好ましくは、可撓性パッドが作動していない状態で、パッド面と固定部は一体の連続面とされ、即ち、ラジアル軸受にあっては同一円周面、スラスト軸受にあっては同一平面となるようにされる。また、可撓性パッドを含む軸受パッドは軸受面の一部(パッド面)をアクチュエータにより弾性変形させることで、強度、再現性を確保しながら動圧発生に必要なくさび膜を形成させる。
さらに、請求項2に記載の発明においては、前記可撓性パッドは厚肉部と、前記厚肉部の相対移動方向の一端側に設けられた第一薄肉部と、前記厚肉部の相対移動方向の他端に設けられ前記第一の薄肉部より相対移動方向長さが長くされた第二の薄肉部と、を有し、それぞれが前記固定部に連続面で接続され、前記厚肉部の反相手側面に設けられたアクチュエータにより前記厚肉部への押圧力を変化させることにより前記パッド面を相手側面に対して進退可能にされている動圧軸受とすることにより、可撓性軸受パッドを提供する。
即ち、厚肉部でパッド面を形成し、厚肉部をアクチュエータで押圧すると、薄肉部が変形し厚肉部が相手側面に近づき隙間を減少させる。このとき、第一の薄肉部より第二の薄肉部の方が長いので、第一の薄肉部側を中心にして第二の薄肉部側がの方が変形が大きく厚肉部が斜面を形成し、動圧発生に必要なくさび状膜を形成させることができる。なお、薄肉部は弾性変形範囲におさめることが好ましいことは言うまでもない。
また、前記アクチュエータは高応答性、制御容易性、小型である等の面から圧電素子であることが好ましい(請求項3)。さらに、前記固定部には相手側面との変位を測定する変位センサを設けることにより、フィードバック制御が可能な能動形動圧軸受とすることができる(請求項4)。なお、固定部に変位センサを設けた場合に、固定部で連続面の一部に取付穴あるいは検出穴が必要であるが、穴の大きさや位置は軸受パッドの動圧への影響ができるだけ小さくなるようにされる。できれば、変位センサの先端を固定部の連続面に合わせた形状にすることが望ましい。
これにより、各センサの出力を観測し、スピンドルとの距離が減少する側のパッド面を圧電素子等のアクチュエータにより押し上げ弾性変形量を増加させて、パッド面の発生動圧を増加させてスピンドルを押し戻す。一方、スピンドルとの距離が増加する側のパッド面をアクチュエータの押し上げ位置を減少させることで弾性力により(弾性変形量を減少させて)パッド面を下げ、発生動圧を減少させてスピンドルを引き寄せるように制御することで、回転スピンドルの回転に伴い発生する振動振幅を抑制させることができる。
また、前記相手側面は回転軸の外周とすれば、ラジアル動圧軸受に適用できる(請求項5)。さらに、前記相手側面は回転円部の軸方向側面とすれば、スラスト動圧軸受に適用できる(請求項6)。
かかる動圧軸受を回転スピンドルに使用するにあたって、スピンドルが軽い場合には問題が少ないが、かかる動圧効果は低回転速度ではスピンドル荷重を支えるには不十分である。そこで、請求項7に記載の発明においては、前記相手側面は回転スピンドルの出力端側に設けられたの外周面の一部であって、前記回転スピンドルはさらに、2以上の静圧軸受又は転がり軸受で支持されているラジアル動圧軸受を用いたスピンドル装置として構成するものとした。
これにより、低速、中速度領域では上述のように静圧軸受等によりスピンドルを支持する。一方、本発明の目的とする高回転速度領域において動圧軸受は十分な動圧、負荷容量を発生でき、この発生動圧を活用してスピンドルの位置を制御して振動を抑制できる。また、特許文献4においては、スピンドルの両端を磁気及び静圧軸受の両方で支持している。これに対し、本発明においては、静圧軸受等は両端支持とし、常にスピンドルを保持し、その外側の一端を動圧軸受とし、工具先端の微少振れのみの制御を動圧軸受を用いて制御しているので構造及び制御も簡単である。
本発明においては、可撓性パッド面を進退させる動圧軸受の可撓性パッドを含む軸受パッドと固定部を連続した面で一体とし、軸受面を連続させることで形状精度を維持し、パッド面の前後の影響の少ない安定した流体分布を維持できるようにしたので、スピンドルの回転精度への軸受面形状の影響を極小化できる。さらに、軸受面を一体構造の単一部品とでき、しかも軸受面の形状を基本的には真円(ラジアル軸受)または真平面(スラスト軸受)などの単純な幾何形状とできることより、能動軸受機構の軸受面を高精度に加工することが可能となり、組立において軸受面の形状精度や他の軸受面との配置精度を高レベルに維持できる。その結果、軸受すきまをより小さく保つことが可能となり、高い回転精度が期待できるものとなった。
さらに、請求項2に記載の発明においては、第一及び第二の薄肉部で支持した厚肉部でパッド面を形成し、パッド面を押し上げるようにして、パッド面の両側の第一の薄肉部側を中心にして厚肉部を斜面にしてくさび状膜を形成させ動圧軸受とできるので、構造も簡単であり、弾性変形領域内での設計や変形解析も容易であり、設計・製作も容易なものとなった。また、アクチュエータに圧電素子を用いているので、小型・製作が容易である(請求項3)。
また、固定部に変位センサを設けることにより、フィードバック制御が可能な能動形動圧軸受とすることができるので、回転スピンドルの回転に伴い発生する振動振幅を抑制させることができ、高精度の制御ができるものとなった(請求項4)。また、相手側面を回転軸の外周とすれば、ラジアル動圧軸受に適用でき(請求項5)、相手側面を軸方向側面とすれば、スラスト動圧軸受に適用できる(請求項6)等、種々の動圧軸受に応用できる。
さらに、請求項7に記載の発明においては、静圧軸受を両端支持とし、常にスピンドルを保持し、その外側の一端を動圧軸受とし、工具先端の微少振れのみの制御を動圧軸受を用いて制御しているので、動圧効果の少ない低回転速度時には静圧軸受が負荷を受け持つことより、”くさび膜”の角度をあまり大きくする必要がない。さらに、静圧軸受を能動制御する場合には回転速度の上昇とともに制御力の不足が問題となっていたが、本発明の場合には高回転速度であるほど発生動圧が増加し、大きな制御力が得られ、小径工具が必要とする高速回転時においてスピンドルの振動振幅をサブミクロンオーダーに抑制することも可能になった。
本発明の第一の実施の形態について図面を参照して説明する。図1は本発明の第一の実施の形態を示すラジアル型能動動圧軸受の断面図、図2は、本発明の可撓性軸受パッドの弾性変形の様子を示す図1の部分拡大図、図3は本発明のラジアル型能動動圧軸受を用いたスピンドル装置の主軸ヘッドの縦断面図である。図1、3に示すように、本発明のラジアル型能動動圧軸受(以下単に「動圧軸受」という)1は、図示しない工作台に固定されたスピンドル装置10の主軸ヘッド11に先端部にあけられた貫通穴11aに挿入されている。動圧軸受1の本体2の外周2aと内周2bとは同心にされている。内周面に沿って、4個の軸受パッド3が等分に配置され、軸受パッド間に固定部4が配置されている。
軸受パッド3のパッド面5aは内周面2bから距離をおいてスリット6により本体2とは径方向で分離され、厚肉部5を形成している。パッド面5aの周方向一端側の内周2b近傍に小径穴7が形成され第一の薄肉部7bが形成されている。また、パッド面の他端側の内周近傍に内周に沿って長穴8が形成され第二の薄肉部8bが形成されている。パッド面5aは、周方向両端を弾性変形量の異なる第一及び第二の薄肉部7b,8bに支持され、可撓性パッドである軸受パッド3を構成する。固定部4の内周2b、第一の薄肉部7b内周側面7a、パッド面5a、第二の薄肉部8b内周側面8a、隣接する固定部4の内周2bは、真円を形成しており、連続面で接続されている。パッド面5aは第一、第二の薄肉部7b,8bの厚みを調整することで弾性変形領域内で変形するように決められる。
パッド面5aの裏面(外周面)5bには、本体を径方向に貫通する貫通穴2c,11bが開けられ圧電素子9がパッド面の裏側5bを押圧できるように取り付けられる。圧電素子9は、主軸ヘッド11にあけられたねじ11cに螺合され、位置決めされる。この圧電素子9に外部から所定の電圧を供給することによりパッド面5aの背面5bを押圧し、薄肉部7b,8bの弾性変形量の差により、第一の薄肉部側を中心にしてパッド面5aが斜面を形成し、動圧発生に必要なくさび状膜を形成させることができる。これにより、回転スピンドル20を軸支する。
内周2b面とスピンドル20との間には一般的な静圧軸受と同程度の軸受すきま31が設けられており、このすきま変化、すなわち振動を観測するためのセンサ12が、固定部4のほぼ中央の径方向に明けられた貫通穴4bに取付られている。センサ12の先端12aは内周2bと同形状に形成され、圧電素子を印加しない状態では、軸受パッド3、固定部4の内周7a,5a,8a,2b,12aが真円形状となるようにされている。なお、かかる形状を加工するためには、本体外周2a及びスリット6、小径穴7、長穴8等を加工し、最後に内周2bを加工すればよい。このとき、圧電素子9の変わりに受けねじを設けて厚肉部5の背面5bを支持するようにすれば、加工逃げによる真円度不良を少なくできる。また、受けねじを軸方向に複数設けるようにすれば真円度精度を向上することができる。
かかる動圧軸受の作用について説明する。軸受面(内周面2b)は、圧電素子に電圧を印加していない状態では、連続した真円形である。図2に示すように、スピンドル20が予定の回転数に達すると各圧電素子9には外部に設置された適当な制御装置により初期電圧が加えられ、圧電素子が厚肉部背面5bを押し、軸受パッド3が点線3′から実線に示すようにたわみ、パッド面5aに”くさび状”に軸受すきまの狭まる状態が形成されて初期動圧が発生する。
スピンドル20の回転(図でみて矢印方向)に伴って振動が発生すると、この振動、つまり軸受すきま(スピンドル外周20aと固定部4とのすきま)31の変化は図1に示すようにセンサ12により検出され、センサアンプ13を介して、制御装置14に送られる。すると制御装置は適当な制御アルゴリズムにより圧電素子駆動アンプ15を経由して、軸受すきまの減少している領域の圧電素子への印加電圧を上昇させて弾性変形量を増やす。その結果、図2に見られるように”くさび領域”30の入り口すきま31に対して、出口すきま32が減少して”くさび角”が大きくなることで発生動圧が増加する。一方、軸受すきまの増加している領域では弾性変形量33を減らして動圧を減少させる。このようにすることでスピンドルを本来の位置に押し戻せるので、振動の発生を抑制することが可能となる。なお、制御方法、制御回路等については従来と同様であるので説明を省略する。
次に前述した、本発明の第一の実施の形態の動圧軸受と、スピンドルの支持には回転精度に優れ、高速運転時の摩擦損失の少ない空気静圧軸受および空気動圧軸受を併用した第二の実施の形態であるスピンドル装置について説明する。なお、前述したと同様な構成等については同符号を付し説明の一部を省略する。本スピンドル装置においては、まず通常型の静圧軸受によりスピンドルの自重を支持することとし、スピンドル停止時および低速回転時にスピンドルが軸受面と接触することを防止する。静圧軸受に支持されたスピンドルが小径工具による加工に適した回転速度、たとえば数万min-1まで加速されると、スピンドルは静圧軸受の負荷特性に応じて微小振動を生じ、この状態で加工を行うと加工精度の低下を招くことになる。
このような微小振動を生じたときに、スピンドルに組み込まれた動圧空気軸受を能動制御することで微小振動を抑制しようとするのが第二の実施の形態の基本的な考え方である。ただし、制御状態でのスピンドルの振動レベルはサブミクロンオーダであることより、ここで使用する動圧軸受の軸受面にも高い形状精度が求められる。
本発明の第二の実施の形態であるスピンドル装置10は、図3に示すように、主軸ヘッド11の中央部に通常型の静圧ラジアル軸受部21aを構成する静圧軸受部材21が貫通穴中央部11dに挿入固定されている。主軸ヘッド後端部(図で見て右側)11eに静圧スラスト軸受部22が配置され、先端部11a(図で見て左端)に、前述した動圧軸受1が配置されている。スピンドル20の後端側には、さらに(図で見て右端)中間部材23を介して組み込みモータ24が設けられ、スピンドル20に接続され、スピンドル20を
回転駆動するようにされている。
このスピンドル装置10では、スピンドル20の自重および加工負荷は基本的には静圧軸受部21aにより支持されていることを前提としている。つまり、停止状態から高速の運転状態に至るまでスピンドル20は静圧軸受21aによりある程度安定的に支持され、回転している。スピンドルが規定の回転数、たとえば、数万min-1に達したのちに先端に装備される小径工具により加工が開始されることになるが、このときに生じるラジアル方向の振動振幅の大きさが加工精度を左右する。そこで、左端の能動型ラジアル動圧軸受1を用いて、このラジアル方向振動振幅を抑制できるようにしたのである。なお、スピンドル径はφ25mm、スピンドル先端からモータ取付端までの長さは約200mm、動圧軸受幅は約25mm、静圧軸受幅は約100mmである。
次に前述したスピンドル装置10の性能について説明する。図4は本発明のスピンドル装置における軸受面のパッド面5aの弾性変形域内ので1箇所の弾性変形量(横軸)と発生動圧による軸受面の負荷容量(縦軸)との関係を計算した結果である。ただし、スピンドル回転数は100,000min-1としている。初期の軸受すきま31は15μmとしており、同軸に配置された空気静圧ラジアル軸受と同一の軸受すきまである。図4に示すように、弾性変形量が0μmの時は軸受すきまは入り口すきま31のままで変化しないので動圧は発生しない。圧電素子により軸受面を変形させて軸受面の出口すきま32小さくし、”くさび膜”の角度を強めるにつれて動圧が発生し、負荷容量が発生する。この例での静圧ラジアル軸受の剛性が1N/μm程度であるので、図4より能動動圧軸受のパッド面5aの弾性変形域内1カ所あたりおよそ1μmのラジアル変位をスピンドルに生じさせられることがわかる。
図5は、本発明のスピンドル装置の回転数変化(横軸)と発生負荷容量(縦軸)の関係の計算結果である。ただし、軸受面の”くさび膜”領域の入口での軸受すきま31は12μm、弾性変形量は2μm(出口でのすきま32は10μm)としている。図5より、回転数が増加するにつれて弾性変形部での発生動圧が上昇していることがわかり、本発明が高回転速度領域で有効に動作できることがわかる。
次に前述したスピンドル装置10の実測結果について説明する。図6は、本発明のスピンドル装置の回転数変化(横軸)とスピンドル変位(縦軸)の関係を実測した結果である。図6に示すように、各回転数ごとに軸受パッド3のパッド面5aの1カ所当たりの効果を示している。圧電素子への電圧印加を行わない(0V)ときのスピンドル位置を基準として、印加電圧を80Vとしたときのスピンドル変位を測定した結果で、圧電素子への電圧印加によりスピンドルが40乃至160nm(ナノメータ)パッド面から遠ざかることが確認された。さらに図6に示すように、同一の印加電圧であっても回転数が増加するにつれてパッド面での発生動圧が増加し、スピンドル変位は増加することもわかる。回転数は30,000min-1までしか実測されていないが、変位量は0.2μm程度であり、サブミクロン領域での振動抑制には有効である。このような動作は理論計算の結果と一致している。
図7は本発明スピンドル装置20の動圧軸受1によるスピンドル振動抑制効果の実験結果(スピンドル回転数は12,000min-1)である。図7に示すように、制御なしの左側は振幅約40nm、偏心約20nmであるのに対して、制御有りの右側は振幅約20nm、偏心ほぼ0nmであった。このように、制御を行う前に見られたスピンドルのドリフトは制御開始によるサーボロックにより消滅しており、スピンドル振動振幅は10nm程度の抑制されるなど、スピンドルの振動が能動的に制御できていることがわかる。このように、本発明においては、高速回転するスピンドルの振動をサブミクロンオーダーに抑制可能な能動型動圧軸受及びスピンドル装置を提供し、さらに、能動型動圧軸受の制御手段を提供するものとなった。
なお、本発明の実施の形態においては、スピンドル自重等はおもに静圧軸受で支持されるとして説明したが、他形式、たとえば転がり軸受で支持されたスピンドルの振動抑制にも適用できる。振動方向に関しては、ラジアル方向振動を抑制する能動動圧軸受を例として説明したが、同様の形態はスラスト方向振動を抑制するスラスト能動動圧軸受にも適用できる。ここでは作動流体として空気の例を示したが、潤滑油などの流体を作動流体としても実施できる。また、駆動素子には圧電素子を用いたが、リニアソレノイド等でもよい。また、変位センサーはレーザー、音響等の種々のセンサが利用できる等本実施の態様に制限されるものではない。
本発明の第一の実施の形態を示すラジアル型能動動圧軸受の図3のA−A線断面図及びその制御システムの概念図である。 本発明の可撓性軸受パッドの弾性変形の様子を示す図1の部分拡大図である。 本発明のラジアル型能動動圧軸受を用いたスピンドル装置の縦断面図である。 本発明のスピンドル装置における軸受面のパッド面の弾性変形量(横軸)を増加させたときの発生動圧による軸受面の負荷容量(縦軸)の変化を示す理論グラフである。 本発明のスピンドル装置の回転数変化(横軸)と発生負荷容量(縦軸)の変化を示す理論グラフである。 本発明のスピンドル装置のスピンドル回転を数変化(横軸)させたときのスピンドル変位(縦軸)の実測グラフである。 本発明スピンドル装置の能動動圧軸受を動作させたときの振動抑制効果を示した実測グラフである
符号の説明
1 動圧軸受(能動型動圧軸受)
3 軸受パッド(可撓性パッド)
4 固定部
5 厚肉部
5a パッド面
5b 厚肉部の反相手側面(背面)
7b 第一薄肉部
8b 第二の薄肉部
9 アクチュエータ(圧電素子)
10 スピンドル装置
12 変位センサ
20 回転スピンドル
20a 相手側面(スピンドル外周、回転軸外周)
21a 軸受(静圧軸受)

Claims (7)

  1. 相対移動する相手側面に対して傾斜面を形成して動圧を発生させる軸受パッドが複数配置された動圧軸受であって、前記軸受パッドはパッド面が前記相手側面に対して外部より制御可能なアクチュエータにより進退可能にされた可撓性パッドであり、前記軸受パッド間には固定部が設けられており、全ての前記パッド面を含む軸受パッドと前記固定部とが連続面で接続されていることを特徴とする動圧軸受。
  2. 前記可撓性パッドは厚肉部と、前記厚肉部の相対移動方向の一端側に設けられた第一薄肉部と、前記厚肉部の相対移動方向の他端に設けられ前記第一の薄肉部より相対移動方向長さが長くされた第二の薄肉部と、を有し、それぞれが前記固定部に連続面で接続され、前記厚肉部の反相手側面に設けられたアクチュエータにより前記厚肉部への押圧力を変化させることにより前記パッド面が相手側面に対して進退可能にされていることを特徴とする請求項1記載の動圧軸受。
  3. 前記アクチュエータは圧電素子であることを特徴とする請求項1又は2記載の動圧軸受。
  4. 前記固定部には相手側面との変位を測定する変位センサが設けられていることを特徴とする請求項1乃至3のいずれか一に記載の動圧軸受。
  5. 前記相手側面は回転軸の外周であることを特徴とする請求項1乃至4のいずれか一に記載のラジアル動圧軸受。
  6. 前記相手側面は回転円部の軸方向側面であることを特徴とする請求項1乃至4のいずれか一に記載のスラスト動圧軸受。
  7. 前記相手側面は回転スピンドルの出力端側に設けられたの外周面の一部であって、前記回転スピンドルはさらに、2以上の静圧又は転がり軸受で支持されていることを特徴とする請求項5記載のラジアル動圧軸受を用いたスピンドル装置。
JP2007286205A 2007-11-02 2007-11-02 動圧軸受及びラジアル動圧軸受を用いたスピンドル装置 Active JP5121047B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007286205A JP5121047B2 (ja) 2007-11-02 2007-11-02 動圧軸受及びラジアル動圧軸受を用いたスピンドル装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007286205A JP5121047B2 (ja) 2007-11-02 2007-11-02 動圧軸受及びラジアル動圧軸受を用いたスピンドル装置

Publications (2)

Publication Number Publication Date
JP2009115131A true JP2009115131A (ja) 2009-05-28
JP5121047B2 JP5121047B2 (ja) 2013-01-16

Family

ID=40782493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007286205A Active JP5121047B2 (ja) 2007-11-02 2007-11-02 動圧軸受及びラジアル動圧軸受を用いたスピンドル装置

Country Status (1)

Country Link
JP (1) JP5121047B2 (ja)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011073118A (ja) * 2009-10-01 2011-04-14 Jtekt Corp 流体保持装置
CN102133647A (zh) * 2009-12-24 2011-07-27 财团法人大邱机械部品研究院 高速主轴压电式负荷传感器
CN103075420A (zh) * 2013-01-25 2013-05-01 西安交通大学 一种可变支点智能型径向可倾瓦滑动轴承装置
JP2013124756A (ja) * 2011-12-16 2013-06-24 Mitsubishi Heavy Ind Ltd スラスト軸受装置
CN103410856A (zh) * 2013-07-18 2013-11-27 北京航空航天大学 一种基于尺蠖效应的全周柔性轴承
CN104895827A (zh) * 2015-06-19 2015-09-09 湖南大学 一种使用超声波轴承的空气压缩机
KR20190023819A (ko) * 2017-08-30 2019-03-08 현대위아 주식회사 가변형 로브 베어링 시스템
CN109737093A (zh) * 2019-03-14 2019-05-10 湖南大学 一种基于气体悬浮的高速离心压缩机
CN110145536A (zh) * 2019-05-31 2019-08-20 西安交通大学 一种带有自动调节挡油装置的径向滑动轴承
KR102053727B1 (ko) * 2019-07-18 2019-12-09 강덕균 난간 파이프 가공용 선반 장치
KR102114664B1 (ko) * 2019-10-01 2020-05-25 김성숙 오링부가 구비된 알루미늄 가스켓 제조 장치
KR102134175B1 (ko) * 2019-09-06 2020-07-15 주식회사 에스케이엘시스템 실시간 확인형 레이저 마킹 장치
KR102150918B1 (ko) * 2019-09-19 2020-09-02 주식회사부성화학 티피오 시트 제조 장치
TWI704295B (zh) * 2015-05-19 2020-09-11 羅立峰 槽式動壓氣體徑向軸承
KR102209677B1 (ko) * 2019-11-07 2021-01-28 학교법인 송원대학교 전동 대파 장치
CN112453953A (zh) * 2020-10-30 2021-03-09 中北大学 可用于车床或镗床的加工装置
CN112589484A (zh) * 2020-10-30 2021-04-02 中北大学 一种用于车床或镗床的孔加工方法
CN113669362A (zh) * 2021-08-10 2021-11-19 青岛科技大学 一种主动控制油膜间隙的可倾瓦轴承
CN113669369A (zh) * 2021-08-10 2021-11-19 青岛科技大学 一种主动控制气体可倾瓦轴承
CN114151438A (zh) * 2021-11-05 2022-03-08 上海大学 一种基于压电作动器主动控制的柔性可倾瓦轴承
CN114309739A (zh) * 2021-12-16 2022-04-12 哈尔滨电气动力装备有限公司 屏蔽电机推力瓦瓦基加工工艺

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110185701B (zh) * 2019-05-31 2020-03-31 西安交通大学 一种带有自适应挡油装置的径向滑动轴承
KR102074862B1 (ko) * 2019-10-02 2020-03-02 (주)디엠 인공 석재 접합 장치
KR102319552B1 (ko) * 2019-11-07 2021-10-28 학교법인 송원대학교 제어부를 구비하는 다중 스마트 뷰티 디바이스

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05506911A (ja) * 1990-04-30 1993-10-07 アイド、ラセル、ディー. ビームに支持された連続軸受面を有する流体力学的軸受
JPH07180721A (ja) * 1993-12-24 1995-07-18 Toshiba Corp ティルティングパッドジャーナル軸受装置
JPH07293553A (ja) * 1994-04-21 1995-11-07 Ebara Corp 傾斜パッド軸受
JPH08219160A (ja) * 1994-11-29 1996-08-27 Gerhard Wanger 高速回転する工具の気体支承のための、特に開放端紡糸ロータの空気静圧支承のためのスピンドル

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05506911A (ja) * 1990-04-30 1993-10-07 アイド、ラセル、ディー. ビームに支持された連続軸受面を有する流体力学的軸受
JPH07180721A (ja) * 1993-12-24 1995-07-18 Toshiba Corp ティルティングパッドジャーナル軸受装置
JPH07293553A (ja) * 1994-04-21 1995-11-07 Ebara Corp 傾斜パッド軸受
JPH08219160A (ja) * 1994-11-29 1996-08-27 Gerhard Wanger 高速回転する工具の気体支承のための、特に開放端紡糸ロータの空気静圧支承のためのスピンドル

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011073118A (ja) * 2009-10-01 2011-04-14 Jtekt Corp 流体保持装置
CN102133647B (zh) * 2009-12-24 2013-12-04 财团法人大邱机械部品研究院 高速主轴压电式负荷传感器
CN102133647A (zh) * 2009-12-24 2011-07-27 财团法人大邱机械部品研究院 高速主轴压电式负荷传感器
JP2013124756A (ja) * 2011-12-16 2013-06-24 Mitsubishi Heavy Ind Ltd スラスト軸受装置
CN103075420A (zh) * 2013-01-25 2013-05-01 西安交通大学 一种可变支点智能型径向可倾瓦滑动轴承装置
CN103410856B (zh) * 2013-07-18 2015-09-09 北京航空航天大学 一种基于尺蠖效应的全周柔性轴承
CN103410856A (zh) * 2013-07-18 2013-11-27 北京航空航天大学 一种基于尺蠖效应的全周柔性轴承
TWI704295B (zh) * 2015-05-19 2020-09-11 羅立峰 槽式動壓氣體徑向軸承
CN104895827A (zh) * 2015-06-19 2015-09-09 湖南大学 一种使用超声波轴承的空气压缩机
KR20190023819A (ko) * 2017-08-30 2019-03-08 현대위아 주식회사 가변형 로브 베어링 시스템
KR101971353B1 (ko) * 2017-08-30 2019-04-22 현대위아 주식회사 가변형 로브 베어링 시스템
CN109737093A (zh) * 2019-03-14 2019-05-10 湖南大学 一种基于气体悬浮的高速离心压缩机
CN110145536A (zh) * 2019-05-31 2019-08-20 西安交通大学 一种带有自动调节挡油装置的径向滑动轴承
KR102053727B1 (ko) * 2019-07-18 2019-12-09 강덕균 난간 파이프 가공용 선반 장치
KR102134175B1 (ko) * 2019-09-06 2020-07-15 주식회사 에스케이엘시스템 실시간 확인형 레이저 마킹 장치
KR102150918B1 (ko) * 2019-09-19 2020-09-02 주식회사부성화학 티피오 시트 제조 장치
KR102114664B1 (ko) * 2019-10-01 2020-05-25 김성숙 오링부가 구비된 알루미늄 가스켓 제조 장치
KR102209677B1 (ko) * 2019-11-07 2021-01-28 학교법인 송원대학교 전동 대파 장치
CN112453953A (zh) * 2020-10-30 2021-03-09 中北大学 可用于车床或镗床的加工装置
CN112589484A (zh) * 2020-10-30 2021-04-02 中北大学 一种用于车床或镗床的孔加工方法
CN113669362A (zh) * 2021-08-10 2021-11-19 青岛科技大学 一种主动控制油膜间隙的可倾瓦轴承
CN113669369A (zh) * 2021-08-10 2021-11-19 青岛科技大学 一种主动控制气体可倾瓦轴承
CN113669362B (zh) * 2021-08-10 2023-03-14 青岛科技大学 一种主动控制油膜间隙的可倾瓦轴承
CN114151438A (zh) * 2021-11-05 2022-03-08 上海大学 一种基于压电作动器主动控制的柔性可倾瓦轴承
CN114309739A (zh) * 2021-12-16 2022-04-12 哈尔滨电气动力装备有限公司 屏蔽电机推力瓦瓦基加工工艺
CN114309739B (zh) * 2021-12-16 2023-09-29 哈尔滨电气动力装备有限公司 屏蔽电机推力瓦瓦基加工工艺

Also Published As

Publication number Publication date
JP5121047B2 (ja) 2013-01-16

Similar Documents

Publication Publication Date Title
JP5121047B2 (ja) 動圧軸受及びラジアル動圧軸受を用いたスピンドル装置
CN108620948B (zh) 一种针对空气静压主轴的检测补偿控制系统
KR101076129B1 (ko) 공기 및 자기 하이브리드 스러스트 베어링
JPH0953640A (ja) 静圧軸受装置
US6494620B1 (en) Fluid bearing and rotary drive apparatus using the same
KR100196929B1 (ko) 간극 편차 보정 유체베어링 장치
JP3789650B2 (ja) 加工機械およびそのスピンドル装置
CN117515036A (zh) 一种空气轴承转子系统及其气浮间隙调控方法
JP3254825B2 (ja) 予圧を付与された転がり軸受装置の製造方法
JP2008175254A (ja) 回転軸の支持方法
EP0794344B1 (en) High speed rotor assembly
US20060127171A1 (en) Monolithic rotational flexure bearing and methods of manufacture
JPS61107523A (ja) 回転ドラム装置
JP3100916B2 (ja) 回転型静圧軸受装置
JP2007192358A (ja) 回転機構付軸方向微動機構および粗微動位置決め装置、並びに回転機構付軸方向微動機構の設置方法および粗微動位置決め装置の設置方法
JPH1113755A (ja) 予圧を付与された転がり軸受装置
JP3290087B2 (ja) 静圧軸受を用いた位置決め装置
JP5016232B2 (ja) スライダ装置
JP2531837Y2 (ja) 高速静圧気体軸受装置
JP2004036748A (ja) 主軸装置及び予圧制御方法
JPH0828565A (ja) 静圧気体軸受
WO2020075701A1 (ja) 主軸装置
JP5404296B2 (ja) 気体軸受及び位置決め装置
An et al. Calculation and structural analysis for the rigidity of air spindle in the single point diamond turning lathe
JPH0885005A (ja) 可変型空気軸受装置

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100928

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101008

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121022

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5121047

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350