JP2009109082A - 冷媒流量制御装置 - Google Patents

冷媒流量制御装置 Download PDF

Info

Publication number
JP2009109082A
JP2009109082A JP2007282360A JP2007282360A JP2009109082A JP 2009109082 A JP2009109082 A JP 2009109082A JP 2007282360 A JP2007282360 A JP 2007282360A JP 2007282360 A JP2007282360 A JP 2007282360A JP 2009109082 A JP2009109082 A JP 2009109082A
Authority
JP
Japan
Prior art keywords
temperature
temperature difference
temperature sensor
opening degree
electronic expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007282360A
Other languages
English (en)
Other versions
JP4798116B2 (ja
Inventor
Yuji Suzuki
祐司 鈴木
Tadashi Asada
浅田  規
Haruhiko Sudo
晴彦 須藤
Kenji Hirata
賢二 平田
Takeshi Watanabe
健 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Retail Systems Co Ltd
Original Assignee
Fuji Electric Retail Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Retail Systems Co Ltd filed Critical Fuji Electric Retail Systems Co Ltd
Priority to JP2007282360A priority Critical patent/JP4798116B2/ja
Publication of JP2009109082A publication Critical patent/JP2009109082A/ja
Application granted granted Critical
Publication of JP4798116B2 publication Critical patent/JP4798116B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】冷却効率の低下を防止し、かつ液バックの発生を防止するとともに、部品点数の増加を可及的に防止することができる冷媒流量制御装置を提供する。
【解決手段】冷媒流量制御装置は、入口側温度が中間温度より低い場合には電子膨張弁の開度を拡大し、かつ温度差が予め設定した下限閾値よりも小さい場合には電子膨張弁の開度を縮小する一方、温度差が予め設定した上限閾値Uよりも大きい場合には電子膨張弁の開度を拡大する弁開度調節手段を備えている。弁開度調節手段は、上流側温度差を算出し、かつ下流側温度差を算出し、上流側温度差と予め設定した第1閾値とを比較し、かつ下流側温度差と予め設定した第2閾値とを比較し、上流側温度差が第1閾値よりも大きく、かつ下流側温度差が第2閾値よりも大きいことを条件としてエラー出力を行う。
【選択図】 図1

Description

本発明は、開度に応じて蒸発器に流入する冷媒量を制御する電子膨張弁と、蒸発器における冷媒流通路の入口部から出口部までの間に、入口部からの距離が互いに異なる態様で設置した3つの温度センサと、それらの温度センサの検出結果に応じて電子膨張弁の開度を調節する弁開度調節手段とを備える冷媒流量制御装置に関するものである。
例えば、商品を冷却した状態で陳列販売するオープンショーケースにおいては、収容庫の内部に蒸発器が設けられ、かつ収容庫の外部に圧縮機、凝縮器、および電子膨張弁が設けられており、これら蒸発器、圧縮機、凝縮器および電子膨張弁に冷媒を供給循環することによって冷凍サイクルを構成し、この冷凍サイクルで収容庫の内部を所定の温度状態に維持するようにしている。
この種のオープンショーケースの中には、開度に応じて蒸発器に流入する冷媒量を制御する電子膨張弁と、蒸発器における冷媒流通路(蒸発管)の入口部から出口部までの間に、入口部からの距離が互いに異なる態様で設置した3つの温度センサと、それらの温度センサの検出結果に応じて電子膨張弁の開度を調節する弁開度調節手段とを備えるものがある。各温度センサは、例えば蒸発管の周面にそれぞれ取り付けてあり、設置位置の蒸発管表面の温度を検出することで、当該位置を通過する冷媒温度を近似的に検出するものである。これら3つの温度センサのうち、第1の温度センサ(入口側温度センサ)は例えば蒸発管の入口部に設置してあり、第2の温度センサ(出口側温度センサ)は蒸発管の出口部に設置してあり、第3の温度センサ(中間温度センサ)は蒸発管の入口部と出口部との間の中間位置に設置してある。
このオープンショーケースは、3つの温度センサの検出結果に応じて電子膨張弁で蒸発器に流入する冷媒量を制御することによって、冷却効率が低下することを防止するとともに、蒸発器の出口部から液体の冷媒と気体の冷媒とが混合したものが吐出されて圧縮機に入る、いわゆる液バックと呼ばれる現象が発生するのを防止するようにしている。
具体的には、出口側温度センサによって検出した出口側温度から、中間温度センサによって検出した中間温度を差し引いた温度差(いわゆる過熱度)に応じて以下に記載するよう電子膨張弁の開度を変更する。
予め設定した下限閾値である1[K]より上記温度差が小さい場合には、電子膨張弁の開度を縮小することで上記温度差を大きくし、液バックが発生することを防止している。この液バックの発生を防止すれば、液バックの発生に起因した圧縮機の破損を防止することができる。
一方、予め設定した上限閾値である5[K]より上記温度差が大きい場合には、電子膨張弁の開度を拡大することで上記温度差を小さくし、冷却効率を向上させる。
また、上記温度差が、下限閾値以上であって上限閾値以下である場合には電子膨張弁の開度を維持している。
また、上記冷媒流量制御装置は、入口側温度が中間温度より低い場合には、電子膨張弁の開度を拡大することで、蒸発管で発生する圧力損失をも考慮した上で冷却効率が低下することを防止できる(例えば、特願2006−179966参照)。
ところで、上記冷媒流量制御装置において、蒸発管から上記温度センサが外れた場合には、正規の温度を温度センサで検出することができない虞れがある。具体的に説明すると、蒸発管から温度センサが外れると、当該温度センサは、蒸発管の周囲の空気温度を検出することとなる。蒸発管の周囲の空気温度が、蒸発管の表面温度より高いため、温度センサは、正規の温度より高い温度を検出することとなる。このように、正規の温度を検出できない温度センサが一つでもある場合には、冷却効率の低下を防止し、かつ液バックの発生を防止した電子膨張弁の開度制御を行うことができない。
この問題を解決するには、上記蒸発管から温度センサが外れたことを検出する脱落検出センサを各温度センサ毎に設ける必要がある。しかしながら、各温度センサにそのような脱落検出センサを設けた場合には、部品点数が増加することとなる。
本発明は、上記実情に鑑み、冷却効率の低下を防止し、かつ液バックの発生を防止するとともに、部品点数の増加を可及的に防止することができる冷媒流量制御装置を提供することにある。
上記の目的を達成するために、請求項1に係る発明は、開度に応じて蒸発器に流入する冷媒量を制御する電子膨張弁と、前記蒸発器における冷媒流通路の入口部から出口部までの間に、前記入口部からの距離が互いに異なる態様で設置した3つの温度センサと、最も上流側に設置した入口側温度センサで検出した入口側温度が、前記入口側温度センサの下流側に設置した中間温度センサで検出した中間温度より低い場合には前記電子膨張弁の開度を拡大し、かつ中間温度センサの下流側に設置した出口側温度センサで検出した出口側温度から前記中間温度を差し引いた温度差が予め設定した下限閾値よりも小さい場合には前記電子膨張弁の開度を縮小する一方、前記温度差が予め設定した上限閾値よりも大きい場合には前記電子膨張弁の開度を拡大する弁開度調節手段と、前記中間温度から前記入口側温度を差し引いた上流側温度差を算出し、かつ前記中間温度から前記出口側温度を差し引いた下流側温度差を算出し、前記上流側温度差と予め設定した第1閾値とを比較し、かつ前記下流側温度差と予め設定した第2閾値とを比較し、前記上流側温度差が前記第1閾値よりも大きく、かつ前記下流側温度差が第2閾値よりも大きいことを条件としてエラー出力を行うエラー出力手段とを備えることを特徴とする。
また、上記の目的を達成するために、請求項2に係る発明は、開度に応じて蒸発器に流入する冷媒量を制御する電子膨張弁と、前記蒸発器における冷媒流通路の入口部から出口部までの間に、前記入口部からの距離が互いに異なる態様で設置した3つの温度センサと、最も上流側に設置した入口側温度センサで検出した入口側温度が、前記入口側温度センサの下流側に設置した中間温度センサで検出した中間温度より低い場合には前記電子膨張弁の開度を拡大し、かつ中間温度センサの下流側に設置した出口側温度センサで検出した出口側温度から前記中間温度を差し引いた温度差が予め設定した下限閾値よりも小さい場合には前記電子膨張弁の開度を縮小する一方、前記温度差が予め設定した上限閾値よりも大きい場合には前記電子膨張弁の開度を拡大する弁開度調節手段と、前記中間温度から前記入口側温度を差し引いた上流側温度差を算出し、かつ前記中間温度から前記出口側温度を差し引いた下流側温度差を算出し、前記上流側温度差と予め設定した第1閾値とを比較し、かつ前記下流側温度差と予め設定した第2閾値とを比較し、前記上流側温度差が前記第1閾値よりも大きく、かつ前記下流側温度差が第2閾値よりも大きい場合にエラー出力を行うエラー出力手段とを備えることを特徴とする。
請求項1に係る冷媒流量制御装置によれば、出口側温度から中間温度を差し引いた温度差が、予め設定した下限閾値よりも小さい場合には弁開度調節手段が電子膨張弁の開度を縮小するため、液バックの発生を防止することができる。しかも、上記温度差が、予め設定した上限閾値よりも大きい場合には弁開度調節手段が電子膨張弁の開度を拡大するため、冷却効率の低下を防止することができる。
加えて、本発明に係る冷媒流量制御装置によれば、入口側温度が中間温度より低い場合には弁開度調節手段が電子膨張弁の開度を拡大するため、蒸発器の冷媒流通路で発生する圧力損失をも考慮した上で冷却効率が低下することを防止できる。
また、冷却装置を稼働している状態において、中間温度が、入口側温度より高く、かつ出口側温度より高くなる事態がない上、冷媒流通路から中間温度センサが外れた場合にのみ上述した事態が発生することに基づき、本発明に係る冷媒流量制御装置は、中間温度から入口側温度を差し引いた上流側温度差を算出し、かつ中間温度から出口側温度を差し引いた下流側温度差を算出し、上流側温度差と予め設定した第1閾値とを比較し、かつ下流側温度差と予め設定した第2閾値とを比較し、上流側温度差が第1閾値よりも大きく、かつ下流側温度差が第2閾値よりも大きいことを条件としてエラー出力を行うエラー出力手段を備えている。このような冷媒流量制御装置によれば、中間温度が、入口側温度よりも高く、かつ出口側温度よりも高いことを検出することができるため、冷媒流通路から中間温度センサが外れたことを検出することが可能である。従って、3つの温度センサのうち中間温度センサには、当該中間温度センサが冷媒流通路から外れたことを検出する脱落検出センサを設ける必要がないため、部品点数の増加を可及的に防止することができる。
請求項2に係る冷媒流量制御装置によれば、出口側温度から中間温度を差し引いた温度差が、予め設定した下限閾値よりも小さい場合には弁開度調節手段が電子膨張弁の開度を縮小するため、液バックの発生を防止することができる。しかも、上記温度差が、予め設定した上限閾値よりも大きい場合には弁開度調節手段が電子膨張弁の開度を拡大するため、冷却効率の低下を防止することができる。
加えて、本発明に係る冷媒流量制御装置によれば、入口側温度が中間温度より低い場合には弁開度調節手段が電子膨張弁の開度を拡大するため、蒸発器の冷媒流通路で発生する圧力損失をも考慮した上で冷却効率が低下することを防止できる。
また、冷却装置を稼働している状態において、中間温度が、入口側温度より高く、かつ出口側温度より高くなる事態がない上、冷媒流通路から中間温度センサが外れた場合にのみ上述した事態が発生することに基づき、本発明に係る冷媒流量制御装置は、中間温度から入口側温度を差し引いた上流側温度差を算出し、かつ中間温度から出口側温度を差し引いた下流側温度差を算出し、上流側温度差と予め設定した第1閾値とを比較し、かつ下流側温度差と予め設定した第2閾値とを比較し、上流側温度差が第1閾値よりも大きく、かつ下流側温度差が第2閾値よりも大きい場合にエラー出力を行うエラー出力手段を備えている。このような冷媒流量制御装置によれば、中間温度が、入口側温度よりも高く、かつ出口側温度よりも高いことを検出することができるため、冷媒流通路から中間温度センサが外れたことを検出することが可能である。従って、3つの温度センサのうち中間温度センサには、当該中間温度センサが冷媒流通路から外れたことを検出する脱落検出センサを設ける必要がないため、部品点数の増加を可及的に防止することができる。
以下、添付図面を適宜参照しながら、本発明に係る冷媒流量制御装置の好適な実施の形態について詳細に説明する。
図1は、本発明の実施の形態に係る冷媒流量制御装置を適用した冷却装置の構成を示す説明図である。ここで例示する冷却装置は、収容庫10の内部に収容した商品を冷却した状態で陳列販売するオープンショーケース11に適用するもので、例えば収容庫10の内部に蒸発器12を備える一方、収容庫10の外部であって、オープンショーケース11の筐体の内部に電子膨張弁13を備え、かつオープンショーケース11の筐体の外部に圧縮機15、および凝縮器14を備えている。
これら蒸発器12、圧縮機15、凝縮器14、および電子膨張弁13は、それぞれの間が冷媒供給管16によって接続してあり、冷媒が循環供給される冷凍サイクルを構成している。すなわち、この冷却装置では、圧縮機15から吐出された高温高圧のガス冷媒が凝縮器14において冷却されて高温高圧の液冷媒となる。この高温高圧の液冷媒は、電子膨張弁13により断熱膨張されて低温低圧の気液2相冷媒となり、収容庫10の蒸発器12に供給される。蒸発器12に供給された低温低圧の気液2相冷媒は、送風ファン17によって供給された収容庫10の空気と熱交換し、空気から吸熱することで低温低圧のガス冷媒となることにより収容庫10の冷却を行う。蒸発器12から吐出された低温低圧のガス冷媒は、圧縮機15に吸入され、かつ圧縮機15で圧縮されることにより再び高温高圧のガス冷媒となって凝縮器14に供給される。本実施形態では、電子膨張弁13として開度指令が与えられた場合にその開度指令に応じて開度を変更し、開度に応じて蒸発器12に流入する冷媒量を調節することができるものを適用している。また、蒸発器12の内部には、蒸発管12aを配設してある。この蒸発管12aは、蒸発器12の内部において、冷媒が通過する流路を構成するものである。
蒸発器12における蒸発管12aの入口部から出口部までの間には、入口部からの距離が互いに異なる態様で3つの温度センサ21,22,23が設置してある。各温度センサ21,22,23は、例えば蒸発管12aの周面にそれぞれ取り付けてあり、取付位置の蒸発管12aの表面温度を検出することで、当該位置を通過する冷媒温度を近似的に検出するものである。
温度センサ21,22,23のうち、第1温度センサ(入口側温度センサ)21は、蒸発管12aの入口部の周面に取り付けてある。この第1温度センサ21は、蒸発管12aの入口部を通過する冷媒温度を近似的に検出するものである(以下、この第1温度センサ21で検出される冷媒温度を、単に「入口側温度(入口部冷媒温度)T1」という)。
温度センサ21,22,23のうち、第2温度センサ(中間温度センサ)22は、蒸発管12aの入口部と出口部との間の中間位置の周面に取り付けてある。この第2温度センサ22は、蒸発管12aの中間部を通過する冷媒温度を近似的に検出するものである(以下、この第2温度センサ22で検出される冷媒温度を、単に「中間温度(中間部冷媒温度)T2」という)。本実施の形態では、第2温度センサ22は、蒸発管12aの出口部近傍に取り付けてある。
温度センサ21,22,23のうち、第3温度センサ(出口部温度センサ)23は、蒸発管12aの出口部の周面に取り付けてある。この第3温度センサ23は、蒸発管12aの出口部を通過する冷媒温度を近似的に検出するものである(以下、この第3温度センサ23で検出される冷媒温度を、単に「出口側温度(出口部冷媒温度)T3」という)。
すなわち、上述した冷媒流量制御装置では、3つの温度センサ21,22,23のうち第1温度センサ21を最も上流側に設置してあり、第1温度センサ21の下流側に第2温度センサ22を設置してあり、第2温度センサ22の下流側に第3温度センサ23を設置してある。なお、第1温度センサ21および第3温度センサ23には、当該温度センサ21,23が蒸発管12aから外れたことを検出する不図示の脱落検出センサを設けてある。
この冷媒流量制御装置には、制御手段19を設けてある。制御手段19は、冷媒流量制御装置を統括的に制御する電子計算機(ハードウェア)であり、記憶部25と、弁開度調節手段(エラー出力手段)30とを備えている。
記憶部25には、冷媒流量制御装置を運転するためのプログラムやデータが格納してある。また、この記憶部25には、下限閾値L[K]、および上限閾値U[K]が格納してある。この実施形態では、例えば下限閾値Lとして1[K]が格納してあり、上限閾値Uとして5[K]が格納してある。また、この記憶部25には、第1サイクルタイム、および第2サイクルタイムを格納してある。第1サイクルタイムは、後述する電子膨張弁13の開度調節処理、およびエラー検出処理を行う間隔に基づき、例えば15秒に設定してある。第2サイクルタイムは、例えば5分に設定してある。さらに、この記憶部25には、第1閾値α1、および第2閾値α2を格納してある。本実施の形態では、第1閾値α1として0を格納してあり、かつ第2閾値α2として0を格納してある。第1閾値α1は、中間温度T2が入口側温度T1より高いか否かを算出するためのものであり、第2閾値α2は、中間温度T2が出口側温度T3より高いか否かを算出するためのものである。
弁開度調節手段30は、後述するように、上記3つの温度センサ21,22,23の検出結果に応じて電子膨張弁13に開度指令を与え、それにより電子膨張弁13の開度を調節するもの(ソフトウェア)で、温度差算出部31と、比較部32と、弁開度設定部34と、上流側温度差算出部36と、下流側温度差算出部37とを備えている。
温度差算出部31は、第3温度センサ23で検出した出口側温度T3から、第2温度センサ22で検出した中間温度T2を差し引いた温度差(過熱度)Δt1(T3−T2=Δt1)を算出するものである。
比較部32は、第1温度センサ21で検出した入口側温度T1と、第2温度センサ22で検出した中間温度T2との高低を比較するものである。
上流側温度差算出部36は、第2温度センサ22で検出した中間温度T2から、第1温度センサ21で検出した入口側温度T1を差し引いた上流側温度差X(T2−T1=X)を算出するものである。
下流側温度差算出部37は、第2温度センサ22で検出した中間温度T2から、第3温度センサ23で検出した出口側温度T3を差し引いた下流側温度差Y(T2−T3=Y)を算出するものである。
弁開度設定部34は、温度差算出部31で算出した温度差Δt1と、記憶部25に格納してある下限閾値Lおよび上限閾値Uとを比較し、その比較結果から蒸発器12の状態を判断し、蒸発器12の状態に応じて、電子膨張弁13に開度指令を非送信するもの、もしくは電子膨張弁13に開度指令を送信するものである。具体的には、弁開度設定部34は、温度差Δt1が下限閾値L以上であって上限閾値U以下である場合には、温度差Δt1が適正であると判断して電子膨張弁13の開度を維持するため開度指令を送信せず、温度差Δt1が下限閾値Lよりも小さい場合には、液バックが発生していると判断して電子膨張弁13に開度を縮小する旨の開度縮小指令を送信し、かつ温度差Δt1が上限閾値Uよりも大きい場合には、温度差Δt1が過大であると判断して電子膨張弁13に開度を拡大する旨の開度拡大指令を送信するものである。
しかも、この弁開度設定部34は、冷却装置を運転している状態において、比較部32による比較結果に基づき、後述する蒸発完了点が第2温度センサ22の設置位置の上流側にあるか否かを判断し、蒸発完了点が第2温度センサ22の設置位置の上流側にあると判断した場合には、電子膨張弁13に開度拡大指令を与えるものである。具体的には、この弁開度設定部34は、比較部32を通じて入口側温度T1と中間温度T2とを比較した場合に、入口側温度T1が中間温度T2より高い場合(T1>T2)には、蒸発完了点が第2温度センサ22の設置位置の下流側にあると判断して、電子膨張弁13に開度指令を送信しない一方、入口側温度T1が中間温度T2より高くない場合、すなわち入口側温度T1が中間温度T2以下である場合(T1≦T2)には、蒸発完了点が第2温度センサ22の設置位置の上流側にあると判断して、電子膨張弁13に開度拡大指令を与えるものである。
また、この弁開度設定部34は、冷却装置を運転している状態において、上流側温度差算出部36で算出した上流側温度差Xと第1閾値α1との大小を比較し、かつ下流側温度差算出部37で算出した下流側温度差Yと第2閾値α2との大小を比較し、それら比較結果に基づいて蒸発管12aから第2温度センサ22が外れているか否かを判断するものである。弁開度設定部34は、比較結果に基づき蒸発管12aから第2温度センサ22が外れていると判断した場合には、例えば表示器40にエラー表示指令を送信する(エラー出力する)。なお、表示器(表示手段)40は、例えば液晶パネルで構成してある。
このような冷却装置は、第2温度センサ22の設置位置の下流側に蒸発完了点を位置させ、かつ上記温度差Δt1を可及的に小さくすることで蒸発器12を有効利用することができる。しかしながら、温度差Δt1が小さい状態が維持されると以下に説明する液バックが発生する虞れがある。
蒸発器12の蒸発管12aにおける冷媒の温度分布の概要を示したグラフを図2に示す。図2に示すように、蒸発器12における冷媒の温度分布は、過熱蒸気部分及び気液2相部分において温度変化がそれぞれ小さく、過熱蒸気部分と気液2相部分との境界部(蒸発完了点の下流側近傍部)において急激に変化する特徴を有する。具体的には、蒸発完了点の下流側近傍で、冷媒温度が急激に上昇する特徴を有する。この蒸発完了点は、図2(b)〜(d)に示すように、第2温度センサ22の設置位置の下流側に位置する場合、上記温度差Δt1が大きい場合には蒸発管12aの入口部に近接する一方、上記温度差Δt1が小さい場合には蒸発管12aの出口部に近接することとなる。
よって、第2温度センサ22の設置位置の下流側に蒸発完了点を位置させた状態において、電子膨張弁13の開度を徐々に拡大することで温度差Δt1を徐々に小さくした場合には、図2(b)〜図2(d)に示すように、蒸発完了点が蒸発管12aの出口部に徐々に近接する。さらに、図示省略するが、蒸発完了点が第3温度センサ23の設置位置の下流側に位置し、温度差Δt1がほぼ0[K]となった状態が維持されると、蒸発管12aの出口部から気体の冷媒と液体の冷媒とが混合したものが吐出されて圧縮機15に入る、いわゆる液バックとよばれる現象が発生する。この液バックという現象が発生すると圧縮機15を破損させる虞れある。一方、温度差Δt1が0[K]より大きい場合、液バックは発生しない。しかしながら、温度差Δt1が大きい値となった状態、例えば図2(b)に示すような状態、もしくは図2(a)に示すように、第2温度センサ22の設置位置の上流側に蒸発完了点が位置する状態が維持されると、冷却装置の冷却効率が低下する。
従って、冷却装置では、蒸発完了点を第2温度センサ22の設置位置の下流側に位置させるように運転するとともに、液バックが発生することに起因して圧縮機を破損させないよう可及的に温度差Δt1が小さい状態で運転することで、省エネルギー運転を実現することができる。そこで、上記運転を実現するため、この発明に係る冷却装置では、弁開度調節手段30によって、後述する電子膨張弁13の開度調節処理を行っている。
また、上記蒸発管12aにおいて、図3に示すように、冷媒が気液2相状態では、蒸発管12aで発生する圧力損失ΔTにより、下流側に向かうに従って蒸発管12aの管表面温度が低下する。また、蒸発管12aの管表面温度と同様に、冷媒の温度も低下することとなる。この冷媒の温度低下は、冷媒流量制御装置に影響を及ぼすものであるが、この冷媒流量制御装置では、上記圧力損失ΔTを考慮した上で、以下に示すように電子膨張弁13の開度を制御している。
この冷媒流量制御装置が備える弁開度調節手段30は、上記温度差Δt1、入口側温度T1、および中間温度T2に基づいて電子膨張弁13の開度を変更するものであり、その弁開度調節手段30が実施する電子膨張弁13の開度調節処理の内容を図4に示す。以下、図4を用いて冷媒流量制御装置の動作について説明する。
弁開度調節手段30は、冷却装置の運転状態下で、記憶部25に予め格納してある第1サイクルタイムが経過した場合には(ステップS101:Yes)、第1温度センサ21、第2温度センサ22,および第3温度センサ23を通じてそれぞれの冷媒温度T1,T2,T3を検出(ステップS102)した後、比較部32を通じて、入口側温度T1が中間温度T2より低いか(T1<T2)否かを判断する(ステップS103)。
この動作の理由を詳細に説明すると、入口側温度T1が中間温度T2より低い(T1<T2)状態(ステップS103:Yes)とは、図2を用いて上述で説明したように、気液2相状態において、蒸発管12aの圧力損失で冷媒温度が下流側に行くに従い徐々に低下すること、および蒸発完了点の下流側近傍で、冷媒温度が急激に上昇することを考えると、例えば図2(b)〜(d)に示す蒸発完了点が、第2温度センサ22の設置位置より下流側に位置している状態では成立せず、例えば図2(a)に示すように、蒸発完了点が、第2温度センサ22の設置位置よりも上流側に位置している状態である。蒸発完了点が、第2温度センサ22の設置位置よりも上流側に位置している状態では、冷却装置の冷却効率が低下する。これに基づき、弁開度調節手段30は、蒸発完了点が第2温度センサ22の設置位置よりも下流側に位置するように弁開度設定部34を通じて電子膨張弁13に開度拡大指令を送信する(ステップS104)。開度拡大指令が電子膨張弁13に与えられると、電子膨張弁13は開度の拡大動作を行う。そして、電子膨張弁13が開度を拡大すると、蒸発完了点が徐々に下流側に向けて移動し、蒸発完了点が、第2温度センサ22の設置位置の下流側まで移動した場合には、入口側温度T1が中間温度T2よりも高くなる(T1>T2)(例えば図2(b)〜(d)に示す状態)。
一方、弁開度調節手段30は、入口側温度T1が中間温度T2より低くない場合(ステップS103:No)、すなわち入口側温度T1が中間温度T2以上の場合(T1≧T2)、には、弁開度設定部34を通じて蒸発完了点が第2温度センサ22の設置位置の下流側にあると判断して電子膨張弁13に開度指令を送信することなく、そのまま手順をステップS105に移行させる。
この動作の理由を詳細に説明すると、先ず、入口側温度T1が中間温度T2以上(T1≧T2)の状態とは、図2を用いて上述で説明したすように、気液2相状態において、蒸発管12aの圧力損失で冷媒の温度が下流側に行くに従い徐々に低下すること、および蒸発完了点の下流側近傍で、冷媒温度が急激に上昇することを考えると、例えば図2(a)に示すように、蒸発完了点が、第2温度センサ22の設置位置よりも上流側に位置している状態では成立せず、例えば図2(b)〜(d)に示す蒸発完了点が、第2温度センサ22の設置位置より下流側に位置している状態である。この状態であれば、冷却効率が低下することを防止しながら冷却装置を運転することができるため、電子膨張弁13に開度指令を送信することなく、そのまま次の手順に移行する。
従って、この冷媒流量制御装置は、常時、蒸発完了点が、第2温度センサ22の設置位置よりも下流側に位置するように電子膨張弁13の開度調節処理を実施している。この処理を実施することで、蒸発管12aの圧力損失ΔTの影響を受けずに、蒸発器12を有効に利用することが可能となる。
次に、弁開度調節手段30は、弁開度設定部34を通じて、温度差算出部31の算出結果である温度差Δt1が、予め設定した下限閾値L[K]以上(L≦Δt1=T3−T2)であるか否かを判断する(ステップS105)。
弁開度調節手段30は、温度差Δt1が下限閾値L[K]以上でない場合、すなわち温度差Δt1が下限閾値L[K]より小さい((L>Δt1)場合(ステップS105:No)、弁開度設定部34を通じて液バックが発生していると判断し、電子膨張弁13に開度縮小指令を送信してから(ステップS106)、手順をリターンさせる。電子膨張弁13に開度縮小指令が与えられた場合、電子膨張弁13は、開度の縮小動作を行う。そして、電子膨張弁13が開度を縮小すると、温度差Δt1が徐々に大きくなり、やがて、温度差Δt1は、下限閾値L[K]を上回るよう推移することとなる。
一方、弁開度調節手段30は、弁開度設定部34を通じて、温度差Δt1が下限閾値L[K]以上(L≦Δt1)であると判断した場合(ステップS105:Yes)、手順をステップS107に移行する。
次に、弁開度調節手段30は、弁開度設定部34を通じて、温度差算出部31の算出結果である温度差Δt1が、予め設定した上限閾値U[K]以下(Δt1=T3−T2≦U)であるか否かを判断する(ステップS107)。
弁開度調節手段30は、温度差Δt1が上限閾値U[K]以下でない場合、すなわち温度差Δt1が上限閾値U[K]より大きい(Δt1>U)場合(ステップS107:No)、弁開度設定部34を通じて温度差Δt1が過大であると判断して電子膨張弁13に開度拡大指令を送信してから(ステップS108)、手順をリターンさせる。電子膨張弁13に開度拡大指令が与えられた場合、電子膨張弁13は、開度の拡大動作を行う。そして、電子膨張弁13が開度を拡大すると、温度差Δt1が徐々に小さくなり、やがて、温度差Δt1は、上限閾値U[K]を下回るよう推移することとなる。
一方、弁開度調節手段30は、温度差Δt1が上限閾値U[K]以下(Δt1≦U)であると判断した場合(ステップS107:Yes)、温度差Δt1が適正であると判断して電子膨張弁13の開度を維持するため、開度拡大指令および開度縮小指令を送信せず、手順をそのままリターンさせる。
この弁開度調節手段30が行う判断と、電子膨張弁13の開度調節処理とをまとめると、図5に示すようになる。すなわち、弁開度調節手段30は、弁開度設定部34を通じ、温度差Δt1が、下限閾値L[K]より小さい場合には、液バックと判断して電子膨張弁13の開度を縮小し、温度差Δt1が、上限閾値U[K]より大きい場合には、温度差Δt1が過大であると判断して電子膨張弁13の開度を拡大し、かつ温度差Δt1が、下限閾値L[K]以上であり、かつ上限閾値U[K]以下の場合には、温度差Δt1が適正であると判断して電子膨張弁13の開度を維持する。よって、この冷媒流量制御装置によれば、弁開度調節手段30によって、温度差Δt1が下限閾値L[K]よりも小さい状態が維持されることを防止できるので、液バックが発生することに起因して圧縮機15が破損することを防止することができる。しかも、温度差Δt1が上限閾値U[K]よりも大きい状態が維持されることを防止できるので、冷却効率が低下することを防止することができる。
また、この冷媒流量制御装置が備える弁開度調節手段30は、第1温度センサ21、第2温度センサ22,および第3温度センサ23の検出した冷媒温度に基づいてエラー検出をも行うものである。以下、図6を用いて、この弁開度調節手段30が行うエラー検出処理を説明する。
弁開度調節手段30は、冷却装置の運転状態下で、記憶部25に予め格納してある第1サイクルタイムが経過した場合には(ステップS201:Yes)、第1温度センサ21、第2温度センサ22、第3温度センサ23を通じてそれぞれの冷媒温度を検出し(ステップS202)、その後、弁開度設定部34によって上流側温度差算出部36で算出した上流側温度差Xと第1閾値α1との大小を比較し、かつ下流側温度差算出部37で算出した下流側温度差Yと第2閾値α2との大小を比較し、上流側温度差Xが第1閾値α1より大きく、かつ下流側温度差Yが第2閾値α2より大きい状態(X>α1、かつY>α2)であるか否かを判断する(ステップS203)。
弁開度調節手段30は、上記条件を満たさない場合、すなわち、上流側温度差Xが第1閾値α1以下(X≦α1)である場合、もしくは下流側温度差Yが第2閾値α2以下(Y≦α2)である場合(ステップS203:No)には、弁開度設定部34を通じて、蒸発管12aから第2温度センサ22が外れていないと判断して、そのまま手順をリターンさせて今回の処理を終了する。
一方、弁開度調節手段30は、上記条件を満たす場合、すなわち上流側温度差Xが第1閾値α1より大きく、かつ下流側温度差Yが第2閾値α2より大きい(X>α1、かつY>α2)場合(ステップS203:Yes)には、弁開度設定部34を通じて、蒸発管12aから第2温度センサ22が外れたことによって、電子膨張弁13の開度調節処理が機能していない虞れがあると判断してステップS204に移行する。
以下、この動作の理由を詳細に説明する。上記冷却装置において、上流側温度差Xと第1閾値α1との大小関係、および下流側温度差Yと第2閾値α2との大小関係は、蒸発完了点の位置に応じて、以下の3態様が存在する。
先ず、図2(a)に示すように、蒸発完了点が、第2温度センサ22の設置位置よりも上流側に位置している状態では、中間温度T2が入口側温度T1より高く(T2>T1)、かつ中間温度T2が出口側温度T3より低い(T2<T3)。すなわち、上流側温度差Xが第1閾値α1より大きく(T2−T1=X>α1=0)、かつ下流側温度差Yが第2閾値α2より小さい(T2−T3=Y<α2=0)。
次に、図2(b)〜(d)に示すように、蒸発完了点が、第2温度センサ22の設置位置の下流側であって、第3温度センサ23の設置位置の上流側に位置している状態では、中間温度T2が入口側温度T1より低く(T2<T1)、かつ中間温度T2が出口側温度T3より低い(T2<T3)。すなわち、上流側温度差Xが第1閾値α1より小さく(T2−T1=X<α1=0)、かつ下流側温度差Yが第2閾値α2より小さい(T2−T3=Y<α2=0)。
次いで、図示省略するが、蒸発完了点が、第3温度センサ23の設置位置の下流側に位置している状態では、蒸発管12aで発生する圧力損失で冷媒の温度が下流側に行くに従い徐々に低下するため、中間温度T2が入口側温度T1より低く(T2<T1)、かつ中間温度T2が出口側温度T3より高い(T2>T3)。すなわち、上流側温度差Xが第1閾値α1より小さく(T2−T1=X<α1=0)、かつ下流側温度差Yが第2閾値α2より大きい(T2−T3=Y>α2=0)。
以上説明したように、冷却装置を稼働している状態において、中間温度T2が入口側温度T1より高く(T2>T1)、かつ中間温度T2が出口側温度T3より高い状態(T2>T3)、すなわち、上流側温度差Xが第1閾値α1より大きく(T2−T1=X>α1=0)、かつ下流側温度差Yが第2閾値α2より大きい(T2−T3=Y>α2=0)場合はない。また、蒸発管12aから第2温度センサ22が外れた場合には、当該第2温度センサ22は、蒸発管12aの周囲の空気温度を検出することとなり、正規の温度よりも高い温度を検出することとなるため、中間温度T2が入口側温度T1より高く(T2>T1)、かつ中間温度T2が出口側温度T3より高い状態(T2>T3)、すなわち、上流側温度差Xが第1閾値α1より大きく(T2−T1=X>α1=0)、かつ下流側温度差Yが第2閾値α2より大きい(T2−T3=Y>α2=0)状態が生じる。上記原理に基づき、弁開度調節手段30は、3つの温度センサ21,22,23の検出結果から、上述した関係を検出した場合、弁開度設定部34を通じて、蒸発管12aから第2温度センサ22が外れた虞れがあると判断する。
次に、弁開度調節手段30は、蒸発管12aから第2温度センサ22が外れていないにも係わらず、一時的に、中間温度T2が入口側温度T1より高く(T2>T1)、かつ中間温度T2が出口側温度T3より高い(T2>T3)場合に、誤ってエラー出力することを防止するため、第2サイクルタイムが経過するまで待機(ステップS204)した後、ステップS205に移行する。
次に、弁開度調節手段30は、再度、弁開度設定部34を通じて、上流側温度差算出部36で算出した上流側温度差Xと第1閾値α1との大小を比較し、かつ下流側温度差算出部37で算出した下流側温度差Yと第2閾値α2との大小を比較し、上流側温度差Xが第1閾値α1より大きく、かつ下流側温度差Yが第2閾値α2より大きい状態(X>α1、かつY>α2)であるか否かを判断する(ステップS205)。
弁開度調節手段30は、上記条件を満たさない場合、すなわち、上流側温度差Xが第1閾値α1以下(X≦α1)である場合、もしくは下流側温度差Yが第2閾値α2以下(Y≦α2)である場合(ステップS205:No)には、弁開度設定部34を通じて、蒸発管12aから第2温度センサ22が外れていないと判断して、そのまま手順をリターンさせて今回の処理を終了する。
一方、弁開度調節手段30は、上記条件を満たす場合、すなわち上流側温度差Xが第1閾値α1より大きく、かつ下流側温度差Yが第2閾値α2より大きい(X>α1、かつY>α2)場合(ステップS205:Yes)には、弁開度設定部34を通じて、蒸発管12aから第2温度センサ22が外れたと判断してステップS206に移行する。
弁開度調節手段30は、その判断に基づき、弁開度設定部34を通じてエラー表示指令を表示器40に送信(ステップS206)した後、そのまま手順をリターンさせて今回の処理を終了する。表示器40は、エラー表示指令が与えられた場合には、第2温度センサ22が蒸発管12aから外れた旨を表示する。
この実施の形態に係る冷媒流量制御装置によれば、出口側温度T3から中間温度T2を差し引いた温度差Δt1が、予め設定した下限閾値Lよりも小さい場合には弁開度調節手段30が電子膨張弁13の開度を縮小するため、液バックの発生を防止することができる。しかも、上記温度差Δt1が、予め設定した上限閾値Uよりも大きい場合には弁開度調節手段30が電子膨張弁の開度を拡大するため、冷却効率の低下を防止することができる。
加えて、この冷媒流量制御装置によれば、入口側温度T1が中間温度T2より低い場合には、弁開度調節手段30が電子膨張弁13の開度を拡大するため、蒸発管12aで発生する圧力損失をも考慮した上で冷却効率が低下することを防止できる。
さらに、冷却装置を稼働している状態において、中間温度T2が入口側温度T1より高く、かつ中間温度T2が出口側温度T3より高くなる事態がない上、蒸発管12aから第2温度センサ22が外れた場合にのみ上述した事態が発生することに基づき、冷媒流量制御装置は、上流側温度差Xが第1閾値α1より大きく、かつ下流側温度差Yが第2閾値α2より大きいことを条件としてエラー出力を行う弁開度調節手段30を備えている。このような冷媒流量制御装置によれば、中間温度T2が入口側温度T1より高く、かつ中間温度T2が出口側温度T3より高いことを検出することができるため、蒸発管12aから第2温度センサ22が外れたことを検出することができる。従って、3つの温度センサ21,22,23のうち第2温度センサ22には、当該第2温度センサ22が蒸発管12aから外れたことを検出する脱落検出センサを設ける必要がないため、部品点数の増加を可及的に防止することができる。
なお、上述した実施の形態には、第1閾値α1として0を設定し、中間温度T2から入口側温度T1を差し引いた上流側温度差Xが第1閾値α1より高い(T2−T1=X>α1=0)ことを条件に、弁開度調節手段30が、蒸発管12aから第2温度センサ22が外れた虞れがあると判断するもので説明した。しかし、この発明はそれに限られず、第1温度センサ21および第2温度センサ22の誤差を考慮して、0よりも大きい数を第1閾値α1′(α1′=α1+ΔTX1:ただし、ΔTX1は、0より大きい数)として設定し、その第1閾値α1′より上流側温度差Xが大きい(T2−T1=X<α1′)ことを条件に、弁開度調節手段30が、蒸発管12aから第2温度センサ22が外れた虞れがあると判断しても良い。このように第1閾値α1′を設定すれば、蒸発管12aから第2温度センサ22が外れていないにも係わらず、一時的に、中間温度T2が入口側温度T1より高い場合に(T2>T1)誤ってエラー出力することを防止することができる。ただし、第1閾値α1′を0より大きい正の数に設定する場合には、エラー出力が行われなくなる事態を防止するため、可及的に小さい方が好ましい。例えば、第1閾値α1′として、1を設定する。
また、上述した実施の形態には、第2閾値α2として0を設定し、中間温度T2から出口側温度T3を差し引いた下流側温度差Yが第2閾値α2より高い(T2−T3=Y>α2=0)ことを条件に、弁開度調節手段30が、蒸発管12aから第2温度センサ22が外れた虞れがあると判断するもので説明した。しかし、この発明はそれに限られず、第2温度センサ22および第3温度センサ23の誤差を考慮して、0よりも大きい数を第2閾値α2′(α2′=α2+ΔTX2:ただし、ΔTX2は、0より大きい数)として設定し、その第2閾値α2′より下流側温度差Yが大きい(T2−T3=Y<α2′)ことを条件に、弁開度調節手段30が、蒸発管12aから第2温度センサ22が外れた虞れがあると判断しても良い。このように第2閾値α2′を設定すれば、蒸発管12aから第2温度センサ22が外れていないにも係わらず、一時的に、中間温度T2が出口側温度T3より高い場合に(T2>T3)誤ってエラー出力することを防止することができる。ただし、第2閾値α2′を0より大きい正の数に設定する場合には、エラー出力が行われなくなる事態を防止するため、可及的に小さい方が好ましい。例えば、第2閾値α2′として、1を設定する。
さらに、上述した実施の形態には、温度差Δt1の下限閾値Lを1[K]と設定するもので説明した。しかし、この発明はそれに限られず、温度差Δt1の下限閾値Lは、任意に設定しても良い。ただし、上述したように、温度差Δt1が0[K]となった状態が維持されると、液バックが発生する虞れが生じることから、下限閾値Lは、0[K]より大きい値で、可及的に小さいものが好ましい。
また、上述した実施の形態には、温度差Δt1の上限閾値Uの初期値を5[K]と設定するもので説明した。しかし、この発明はそれに限られず、温度差Δt1の上限閾値Uの初期値は、下限閾値Lよりも大きい値であれば任意に設定しても良い。ただし、上述したように、温度差Δt1が大きい場合には、冷却効率が低下するため、下限閾値Lよりも大きい値で可及的に小さいものが好ましい。
さらに、上述した実施の形態には、蒸発管12aの入口部に第1温度センサ21を取り付け、蒸発管12aの入口部と出口部との間の中間位置に第2温度センサ22を取り付け、蒸発管12aの出口部に第3温度センサ23を取り付けるもので説明した。しかし、温度センサ21,22,23の取り付け位置は、上記位置に限られない。例えば、蒸発管12aの入口部の下流側に第1温度センサ21を取り付けても良いし、蒸発管12aの出口部の上流側に第3温度センサ23を取り付けても良い。ただし、第1温度センサ21の下流側に第2温度センサ22を取り付け、かつ第2温度センサ22の下流側に第3温度センサ23を取り付ける必要がある。また、第2温度センサ22は、蒸発管12aの出口部の近傍に取り付けることが好ましい。
また、上述した実施の形態には、温度センサ21,22,23の検出結果に応じて電子膨張弁13の開度を調節する弁開度調節手段30が、温度センサ21,22,23の検出結果に応じて蒸発管12aから第2温度センサ22が外れたことを検出し、エラー出力を行うもので説明した。しかしこの発明はそれに限られず、温度センサ21,22,23の検出結果に応じて電子膨張弁13の開度を調節する弁開度調節手段30と、温度センサ21,22,23の検出結果に応じて蒸発管12aから第2温度センサ22が外れたことを検出し、エラー出力を行うエラー出力手段とを別個、制御手段19の内部に設けても良い。
さらに、上述した実施の形態には、弁開度設定部34が蒸発管12aから第2温度センサ22が外れていると判断した場合に、弁開度設定部34が表示器40にエラー表示指令を送信し、第2温度センサ22が蒸発管12aから外れている旨を表示器40に表示することで、使用者に報知するもので説明した。しかし、第2温度センサ22が蒸発管12aから外れている旨を使用者に報知する手段は、視覚を通じたものに限られない。例えば、弁開度設定部34が蒸発管12aから第2温度センサ22が外れていると判断した場合に、弁開度設定部34がブザーにエラー表示指令を送信し、第2温度センサ22が蒸発管12aから外れている旨を警告音を発生することで、使用者に報知しても良い。
また、上述した実施の形態には、上流側温度差Xが第1閾値より高く、かつ下流側温度差Yが第2閾値より高いことを第1条件とし、その状態が一定時間継続することを第2条件とし、第1条件および第2条件を充足した場合に、エラー出力を行うもので説明した。これは、蒸発管12aから第2温度センサ22が外れていないにも係わらず、一時的に、中間温度T2が入口側温度T1より高く(T2>T1)、かつ中間温度T2が出口側温度T3より高い場合に誤ってエラー出力することを防止することを目的とするためである。よって、本発明は、それら2つの条件を満たす場合にエラー出力を行うものに限られず、上記第1条件のみを充足する場合にエラー出力を行っても良い。
本発明の実施の形態である冷媒流量制御装置を適用した冷却装置の構成を示す説明図である。 図1に示した冷却装置の蒸発器における冷媒の温度分布を示すグラフである。 図2に示した冷媒の温度分布を詳細に説明するグラフである。 図1に示した冷媒流量制御装置が備える弁開度調節手段が実施する開度調節処理の内容を示すフローチャートである。 図1に示した冷媒流量制御装置で電子膨張弁の開度を調節した場合において、弁開度調節手段が行う温度差Δt1の判断と、その判断により行う制御との関係を示す図表である。 図1に示した冷媒流量制御装置が備える弁開度調節手段が実施するエラー検出処理の内容を示すフローチャートである。
符号の説明
10 収容庫
11 オープンショーケース
12 蒸発器
12a 蒸発管(冷媒流通路)
13 電子膨張弁
14 凝縮器
15 圧縮機
16 冷媒供給管
17 送風ファン
19 制御手段
21 第1温度センサ(入口側温度センサ)
22 第2温度センサ(中間温度センサ)
23 第3温度センサ(出口側温度センサ)
25 記憶部
30 弁開度調節手段
31 温度差算出部
32 比較部
34 弁開度設定部(エラー出力手段)
36 上流側温度差算出部
37 下流側温度差算出部
40 表示器
L 下限閾値
T1 入口側温度
T2 中間温度
T3 出口側温度
U 上限閾値
X 上流側温度差
Y 下流側温度差
ΔT 圧力損失
Δt1 温度差(過熱度)
α1 第1閾値
α2 第2閾値

Claims (2)

  1. 開度に応じて蒸発器に流入する冷媒量を制御する電子膨張弁と、
    前記蒸発器における冷媒流通路の入口部から出口部までの間に、前記入口部からの距離が互いに異なる態様で設置した3つの温度センサと、
    最も上流側に設置した入口側温度センサで検出した入口側温度が、前記入口側温度センサの下流側に設置した中間温度センサで検出した中間温度より低い場合には前記電子膨張弁の開度を拡大し、かつ中間温度センサの下流側に設置した出口側温度センサで検出した出口側温度から前記中間温度を差し引いた温度差が予め設定した下限閾値よりも小さい場合には前記電子膨張弁の開度を縮小する一方、前記温度差が予め設定した上限閾値よりも大きい場合には前記電子膨張弁の開度を拡大する弁開度調節手段と、
    前記中間温度から前記入口側温度を差し引いた上流側温度差を算出し、かつ前記中間温度から前記出口側温度を差し引いた下流側温度差を算出し、前記上流側温度差と予め設定した第1閾値とを比較し、かつ前記下流側温度差と予め設定した第2閾値とを比較し、前記上流側温度差が前記第1閾値よりも大きく、かつ前記下流側温度差が第2閾値よりも大きいことを条件としてエラー出力を行うエラー出力手段と
    を備えることを特徴とする冷媒流量制御装置。
  2. 開度に応じて蒸発器に流入する冷媒量を制御する電子膨張弁と、
    前記蒸発器における冷媒流通路の入口部から出口部までの間に、前記入口部からの距離が互いに異なる態様で設置した3つの温度センサと、
    最も上流側に設置した入口側温度センサで検出した入口側温度が、前記入口側温度センサの下流側に設置した中間温度センサで検出した中間温度より低い場合には前記電子膨張弁の開度を拡大し、かつ中間温度センサの下流側に設置した出口側温度センサで検出した出口側温度から前記中間温度を差し引いた温度差が予め設定した下限閾値よりも小さい場合には前記電子膨張弁の開度を縮小する一方、前記温度差が予め設定した上限閾値よりも大きい場合には前記電子膨張弁の開度を拡大する弁開度調節手段と、
    前記中間温度から前記入口側温度を差し引いた上流側温度差を算出し、かつ前記中間温度から前記出口側温度を差し引いた下流側温度差を算出し、前記上流側温度差と予め設定した第1閾値とを比較し、かつ前記下流側温度差と予め設定した第2閾値とを比較し、前記上流側温度差が前記第1閾値よりも大きく、かつ前記下流側温度差が第2閾値よりも大きい場合にエラー出力を行うエラー出力手段と
    を備えることを特徴とする冷媒流量制御装置。
JP2007282360A 2007-10-30 2007-10-30 冷媒流量制御装置 Expired - Fee Related JP4798116B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007282360A JP4798116B2 (ja) 2007-10-30 2007-10-30 冷媒流量制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007282360A JP4798116B2 (ja) 2007-10-30 2007-10-30 冷媒流量制御装置

Publications (2)

Publication Number Publication Date
JP2009109082A true JP2009109082A (ja) 2009-05-21
JP4798116B2 JP4798116B2 (ja) 2011-10-19

Family

ID=40777751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007282360A Expired - Fee Related JP4798116B2 (ja) 2007-10-30 2007-10-30 冷媒流量制御装置

Country Status (1)

Country Link
JP (1) JP4798116B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103424244A (zh) * 2012-05-22 2013-12-04 珠海格力电器股份有限公司 变频多联空调的室外机阀门检测方法和变频多联空调
JP2018194232A (ja) * 2017-05-17 2018-12-06 富士電機株式会社 製氷装置
JP2021032466A (ja) * 2019-08-23 2021-03-01 株式会社コロナ ヒートポンプ装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS611954A (ja) * 1984-06-14 1986-01-07 三菱電機株式会社 容量制御形冷凍サイクル装置
JPH0229558A (ja) * 1988-07-19 1990-01-31 Sanyo Electric Co Ltd 空気調和装置
JPH10220881A (ja) * 1997-02-05 1998-08-21 Toshiba Corp 空気調和機の制御方法
JP2002122364A (ja) * 2000-10-13 2002-04-26 Sanyo Electric Co Ltd 冷凍装置及びこの装置を用いた空気調和機
JP2005214444A (ja) * 2004-01-27 2005-08-11 Sanyo Electric Co Ltd 冷凍装置
JP2005351575A (ja) * 2004-06-11 2005-12-22 Mitsubishi Heavy Ind Ltd 空気調和装置
JP2007078348A (ja) * 2006-12-20 2007-03-29 Mitsubishi Electric Corp 空気調和機

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS611954A (ja) * 1984-06-14 1986-01-07 三菱電機株式会社 容量制御形冷凍サイクル装置
JPH0229558A (ja) * 1988-07-19 1990-01-31 Sanyo Electric Co Ltd 空気調和装置
JPH10220881A (ja) * 1997-02-05 1998-08-21 Toshiba Corp 空気調和機の制御方法
JP2002122364A (ja) * 2000-10-13 2002-04-26 Sanyo Electric Co Ltd 冷凍装置及びこの装置を用いた空気調和機
JP2005214444A (ja) * 2004-01-27 2005-08-11 Sanyo Electric Co Ltd 冷凍装置
JP2005351575A (ja) * 2004-06-11 2005-12-22 Mitsubishi Heavy Ind Ltd 空気調和装置
JP2007078348A (ja) * 2006-12-20 2007-03-29 Mitsubishi Electric Corp 空気調和機

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103424244A (zh) * 2012-05-22 2013-12-04 珠海格力电器股份有限公司 变频多联空调的室外机阀门检测方法和变频多联空调
JP2018194232A (ja) * 2017-05-17 2018-12-06 富士電機株式会社 製氷装置
JP2021032466A (ja) * 2019-08-23 2021-03-01 株式会社コロナ ヒートポンプ装置
JP7211913B2 (ja) 2019-08-23 2023-01-24 株式会社コロナ ヒートポンプ装置

Also Published As

Publication number Publication date
JP4798116B2 (ja) 2011-10-19

Similar Documents

Publication Publication Date Title
JP6341808B2 (ja) 冷凍空調装置
JP5185375B2 (ja) 蒸気圧縮システムを制御する方法
US9273898B2 (en) Device for detecting abnormality in refrigeration cycle of refrigerator and method therefor
EP2729743B1 (en) A method for controlling operation of a vapour compression system in a subcritical and a supercritical mode
JP2007255818A (ja) 冷凍サイクル装置の診断装置並びにその診断装置を有する熱源側ユニット、利用側ユニット及び冷凍サイクル装置
JP2007255845A (ja) 冷凍サイクル装置
JP4798116B2 (ja) 冷媒流量制御装置
WO2020035993A1 (ja) 制御装置、冷凍機、制御方法及び異常検出方法
JP2010054094A (ja) 空気調和装置
JP5718629B2 (ja) 冷媒量検知装置
JP4952535B2 (ja) 冷却装置
JP4930353B2 (ja) 冷却装置
JP4997012B2 (ja) 冷凍装置
JP4910725B2 (ja) 冷却装置
JP4935403B2 (ja) 冷媒流量制御装置
JP2008008555A (ja) 冷媒流量制御装置
JP5458656B2 (ja) 冷却装置
JP6621275B2 (ja) 冷凍装置
JP2017161195A (ja) 冷凍サイクル装置
JP6042024B2 (ja) 空気調和装置
JP6111692B2 (ja) 冷凍装置
WO2021048905A1 (ja) 室外ユニットおよび冷凍サイクル装置
JP2007333298A (ja) 冷媒流量制御装置
JP2008249240A (ja) コンデンシングユニット及びそれを備えた冷凍装置
JP2015143614A (ja) 冷媒量検知装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100216

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100818

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100819

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100819

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110718

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4798116

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees