JP2009103098A - 内燃機関の排気浄化装置 - Google Patents

内燃機関の排気浄化装置 Download PDF

Info

Publication number
JP2009103098A
JP2009103098A JP2007277724A JP2007277724A JP2009103098A JP 2009103098 A JP2009103098 A JP 2009103098A JP 2007277724 A JP2007277724 A JP 2007277724A JP 2007277724 A JP2007277724 A JP 2007277724A JP 2009103098 A JP2009103098 A JP 2009103098A
Authority
JP
Japan
Prior art keywords
amount
release
concentration
catalyst
selective reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007277724A
Other languages
English (en)
Inventor
Kohei Yoshida
耕平 吉田
Takamitsu Asanuma
孝充 浅沼
Hiromasa Nishioka
寛真 西岡
Hiroshi Otsuki
寛 大月
Yuka Nakata
有香 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007277724A priority Critical patent/JP2009103098A/ja
Priority to US12/289,239 priority patent/US20090107121A1/en
Priority to EP08018708A priority patent/EP2053211B1/en
Priority to DE602008000446T priority patent/DE602008000446D1/de
Publication of JP2009103098A publication Critical patent/JP2009103098A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0814Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with catalytic converters, e.g. NOx absorption/storage reduction catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/04Sulfur or sulfur oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/14Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0871Regulation of absorbents or adsorbents, e.g. purging
    • F01N3/0885Regeneration of deteriorated absorbents or adsorbents, e.g. desulfurization of NOx traps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

【課題】硫化水素H2Sの刺激臭の発生を阻止する。
【解決手段】機関排気通路内に上流から順にSOxトラップ触媒12、酸化触媒13、パティキュレートフィルタ14、尿素水供給弁17およびNOx選択還元触媒16を配置する。SOxトラップ触媒12からSOxを放出させるときに硫化水素H2Sの排出濃度が予め定められた許容濃度以上になるか否かを予測し、SOx放出時に硫化水素H2Sの排出濃度DNが許容濃度DNO以上になると予測されたときにはSOx放出時に硫化水素H2Sの排出濃度DNが許容濃度DNO以下となるようにSOx放出前にNOx選択還元触媒16に吸着している吸着アンモニア量が減少せしめられる。
【選択図】図8

Description

本発明は内燃機関の排気浄化装置に関する。
機関排気通路内に、流入する排気ガスの空燃比がリーンのときには排気ガス中に含まれるNOxを吸蔵し流入する排気ガスの空燃比が理論空燃比又はリッチになると吸蔵したNOxを放出するNOx吸蔵触媒を配置し、NOx吸蔵触媒下流の機関排気通路内に、排気ガスの空燃比がリーンのときにアンモニアによって排気ガス中のNOxを選択的に還元しうるNOx選択還元触媒を配置し、NOx吸蔵触媒から吸蔵されたNOxを放出すべきときにはNOx吸蔵触媒に流入する排気ガスの空燃比をリッチにするようにした内燃機関が公知である(特許文献1参照)。
この内燃機関ではリーン空燃比のもとで燃焼が行われているときに発生する大部分のNOxはNOx吸蔵触媒に吸蔵され、NOx吸蔵触媒に吸蔵されなかった一部のNOxが下流に位置するNOx選択還元触媒に流入する。ところがこの内燃機関ではNOx吸蔵触媒に流入する排気ガスの空燃比がリッチにされたときにNOx吸蔵触媒から放出したNOxと排気ガス中に多量に含まれるHCとが反応してアンモニアNH3が生成され、このアンモニアNH3がNOx選択還元触媒に吸着される。従ってリーン空燃比のもとで燃焼が行われているときにNOx吸蔵触媒をすり抜けたNOxはNOx選択還元触媒においてこの吸着アンモニアにより還元され、斯くしてNOxが良好に浄化せしめられる。
特開2006−512529号公報
ところで排気ガス中にはSOxが含まれており、このSOxもNOx吸蔵触媒に吸蔵される。ところがNOx吸蔵触媒へのSOxの吸蔵量が増大するとNOxの吸蔵量が減少し、従ってNOx吸蔵触媒を用いた場合にはNOx吸蔵触媒から時折りSOxを放出させる必要がある。この場合、NOx吸蔵触媒を600℃以上に昇温した状態でNOx吸蔵触媒に流入する排気ガスの空燃比をリッチにするとNOx吸蔵触媒からSOxを放出させることができる。
ところがNOx吸蔵触媒からSOxを放出させるとこのSOxはNOx選択還元触媒において吸着アンモニアと反応し、その結果硫化水素が発生する。しかしながらこの場合、NOx吸蔵触媒から放出されるSOx量はそれほど多くはなく、従って硫化水素の発生量もそれほど多くはない。
さて、排気ガス中に含まれるSOxは排気浄化用触媒等の後処理装置の性能や耐久性を大巾に低下させるので排気ガス中からはこれらSOxを除去する必要があり、そのためには排気ガス中に含まれるSOxを捕獲しうるSOxトラップ触媒を備えることが好ましい。ところでこのようなSOxトラップ触媒を用いた場合でもSOxトラップ触媒がSOxで飽和する前にSOxトラップ触媒からSOxを放出させる必要がある。ところがこのSOxトラップ触媒はNOx吸蔵触媒とは異なってSOxを捕獲することを目的としているのでSOxトラップ触媒には多量のSOxが捕獲されている。
従ってSOxトラップ触媒からのSOx放出時には多量のSOxが放出され、斯くしてSOxトラップ触媒を用いた場合にはNOx選択還元触媒において多量の硫化水素が発生することになる。この場合、大気中に排出される硫化水素の濃度が高くなると強力な刺激臭が発生し、従って硫化水素の排出濃度は刺激臭をほとんど感じることのない許容濃度以下に抑えることが必要となる。
そこで本発明では、機関排気通路内に、排気ガスの空燃比がリーンのときにアンモニアによって排気ガス中のNOxを選択的に還元しうるNOx選択還元触媒を配置した内燃機関において、NOx選択還元触媒上流の機関排気通路内に排気ガス中に含まれるSOxを捕獲しうるSOxトラップ触媒を配置し、SOxトラップ触媒からSOxを放出させるときにはSOx放出時に硫化水素の排出濃度が予め定められた許容濃度以下となるようにSOx放出前にNOx選択還元触媒に吸着している吸着アンモニア量を減少させるか、或いはSOx放出時にSOxトラップ触媒からのSOx放出量を減少させるようにしている。
硫化水素による刺激臭をほとんど感じさせないようにすることができる。
図1に圧縮着火式内燃機関の全体図を示す。
図1を参照すると、1は機関本体、2は各気筒の燃焼室、3は各燃焼室2内に夫々燃料を噴射するための電子制御式燃料噴射弁、4は吸気マニホルド、5は排気マニホルドを夫々示す。吸気マニホルド4は吸気ダクト6を介して排気ターボチャージャ7のコンプレッサ7aの出口に連結され、コンプレッサ7aの入口は吸入空気量検出器8を介してエアクリーナ9に連結される。吸気ダクト6内にはステップモータにより駆動されるスロットル弁10が配置され、更に吸気ダクト6周りには吸気ダクト6内を流れる吸入空気を冷却するための冷却装置11が配置される。図1に示される実施例では機関冷却水が冷却装置11内に導かれ、機関冷却水によって吸入空気が冷却される。
一方、排気マニホルド5は排気ターボチャージャ7の排気タービン7bの入口に連結される。排気タービン7bの出口はSOxトラップ触媒12の入口に連結され、SOxトラップ触媒12の出口は酸化触媒13の入口に連結される。また、酸化触媒13の出口はパティキュレートフィルタ14の入口に連結され、パティキュレートフィルタ14の出口は排気管15を介して、排気ガスの空燃比がリーンのときにアンモニアによって排気ガス中のNOxを選択的に還元しうるNOx選択還元触媒16に連結される。このNOx選択還元触媒16は例えばFeゼオライトからなる。
NOx選択還元触媒16上流の排気管15内には尿素水供給弁17が配置され、この尿素水供給弁17は供給管18、供給ポンプ19を介して尿素水タンク20に連結される。尿素水を供給すべきときには尿素水タンク20内に貯蔵されている尿素水が供給ポンプ19によって尿素水供給弁17から排気管15内を流れる排気ガス中に噴射され、このとき尿素から発生したアンモニア((NH22CO+H2O→2NH3+CO2)によって排気ガス中に含まれるNOxがNOx選択還元触媒16において還元される。
排気マニホルド5と吸気マニホルド4とは排気ガス再循環(以下、EGRと称す)通路21を介して互いに連結され、EGR通路21内には電子制御式EGR制御弁22が配置される。また、EGR通路21周りにはEGR通路21内を流れるEGRガスを冷却するための冷却装置23が配置される。図1に示される実施例では機関冷却水が冷却装置23内に導かれ、機関冷却水によってEGRガスが冷却される。一方、各燃料噴射弁3は燃料供給管24を介してコモンレール25に連結され、このコモンレール25は電子制御式の吐出量可変な燃料ポンプ26を介して燃料タンク27に連結される。燃料タンク27内に貯蔵されている燃料は燃料ポンプ26によってコモンレール25内に供給され、コモンレール25内に供給された燃料は各燃料供給管24を介して燃料噴射弁3に供給される。
電子制御ユニット30はデジタルコンピュータからなり、双方向性バス31によって互いに接続されたROM(リードオンリメモリ)32、RAM(ランダムアクセスメモリ)33、CPU(マイクロプロセッサ)34、入力ポート35および出力ポート36を具備する。SOxトラップ触媒12にはSOxトラップ触媒12の床温を検出するための温度センサ28が取付けられ、NOx選択還元触媒16にはNOx選択還元触媒16の床温を検出するための温度センサ29が取付けられる。これら温度センサ28,29および吸入空気量検出器8の出力信号は夫々対応するAD変換器37を介して入力ポート35に入力される。また、アクセルペダル40にはアクセルペダル40の踏込み量Lに比例した出力電圧を発生する負荷センサ41が接続され、負荷センサ41の出力電圧は対応するAD変換器37を介して入力ポート35に入力される。更に入力ポート35にはクランクシャフトが例えば15°回転する毎に出力パルスを発生するクランク角センサ42が接続される。一方、出力ポート36は対応する駆動回路38を介して燃料噴射弁3、スロットル弁10の駆動用ステップモータ、尿素水供給弁17、供給ポンプ19、EGR制御弁22および燃料ポンプ26に接続される。
まず初めにSOxトラップ触媒12について説明すると、このSOxトラップ触媒12は例えばハニカム構造のモノリス触媒からなり、SOxトラップ触媒12の軸線方向にまっすぐに延びる多数の排気ガス流通孔を有する。図2にSOxトラップ触媒12の基体50の表面部分の断面を図解的に示す。図2に示されるように基体50の表面上にはコート層51が形成されており、このコート層51の表面上には貴金属触媒52が分散して担持されている。
図2に示される実施例では貴金属触媒52として白金が用いられており、コート層51を構成する成分としては例えばカリウムK、ナトリウムNa、セシウムCsのようなアルカリ金属、バリウムBa、カルシウムCaのようなアルカリ土類、ランタンLa、イットリウムYのような希土類から選ばれた少なくとも一つが用いられている。即ち、SOxトラップ触媒12のコート層51は強塩基性を呈している。
さて、排気ガス中に含まれるSOx、即ちSO2は図2に示されるように白金Pt52において酸化され、次いでコート層51内に捕獲される。即ち、SO2は硫酸イオンSO4 2-の形でコート層51内に拡散し、硫酸塩を形成する。なお、上述したようにコート層51は強塩基性を呈しており、従って図2に示されるように排気ガス中に含まれるSO2の一部は直接コート層51内に捕獲される。
図2においてコート層51内における濃淡は捕獲されたSOxの濃度を示している。図2からわかるようにコート層51内におけるSOx濃度はコート層51の表面近傍が最も高く、奥部に行くに従って次第に低くなっていく。コート層51の表面近傍におけるSOx濃度が高くなるとコート層51の表面の塩基性が弱まり、SOxの捕獲能力が弱まる。しかしながらこのようにSOxの捕獲能力が低下してもリーン空燃比のもとで燃焼が行われているときにSOxトラップ触媒12の温度が上昇するとSOxトラップ率が回復する。
即ち、SOxトラップ触媒12の温度が上昇するとコート層51内の表面近傍に集中的に存在するSOxはコート層51内におけるSOx濃度が均一となるようにコート層51の奥部に向けて拡散していく。即ち、コート層51内に生成されている硝酸塩はコート層51の表面近傍に集中している不安定な状態からコート層51内の全体に亘って均一に分散した安定した状態に変化する。コート層51内の表面近傍に存在するSOxがコート層51の奥部に向けて拡散するとコート層51の表面近傍のSOx濃度が低下し、斯くしてSOxトラップ率が回復することになる。
このようにSOxトラップ触媒12はSOxトラップ率の回復作用を繰返しながらSOxを捕獲し続けるがSOx捕獲能力が飽和に近ずくとSOxトラップ率を回復しえなくなる。このときにはSOxトラップ触媒12を600℃以上に昇温させると共にSOxトラップ触媒12に流入する排気ガスの空燃比をリッチにすることによってSOxトラップ触媒12から捕獲したSOxを放出させ、それによってSOxトラップ率を回復するようにしている。
図3(A)は排気ガスの空燃比が基準リッチ空燃比、例えば13.5とされたときにSOxトラップ触媒12から単位時間当り放出されるSOx量、即ちSOx放出速度W(g/sec)とSOxトラップ触媒12の床温TCとの関係を示しており、図3(B)はSOxトラップ触媒12からのSOx放出率Kと排気ガスの空燃比との関係を示している。SOxトラップ触媒12からの単位時間当りのSOx放出量(g/sec)はSOx放出速度WとSOx放出率Kとの積で表わされる。
従ってSOxトラップ触媒12からの単位時間当りのSOx放出量(g/sec)は図3(A)からわかるように触媒床温TCが600℃以上になると急速に増大し、図3(B)からわかるように排気ガスの空燃比が小さくなると、即ち排気ガスの空燃比のリッチの度合が大きくなると増大する。なお、SOxトラップ触媒12の昇温作用は例えば燃料の噴射時期を遅くらせたり、或いは排気行程中に補助燃料を噴射することによって行われる。また、例えば排気行程中に追加の燃料を供給することによってSOxトラップ触媒12に流入する排気ガスの空燃比がリッチにされる。
次にNOx選択還元触媒16について説明する。NOx選択還元触媒16はアンモニアNH3を吸着する性質を有しており、図4(A)のQmaxはNOx選択還元触媒16への最大アンモニア吸着量を示している。図4(A)からわかるように最大アンモニア吸着量QmaxはNOx選択還元触媒16の床温TSが高くなるほど減少する。排気ガス中に含まれるNOxはNOx選択還元触媒16に吸着されているアンモニアNH3により還元され、従ってNOx選択還元触媒16には常時十分な量のアンモニアNH3を吸着させておく必要がある。
そこで本発明による実施例では図4(A)に示されるように最大アンモニア吸着量Qmaxよりもわずかばかり少量のアンモニア吸着量Qtが目標アンモニア吸着量として予め定められており、アンモニア吸着量Qがこの目標アンモニア吸着量Qtとなるように尿素水の供給量が制御される。例えば図4(B)に示されるようにアンモニア吸着量Qが目標アンモニア吸着量Qtよりも少ないときには尿素水が間欠的に供給され、アンモニア吸着量Qが目標アンモニア吸着量Qtを越えると尿素水の供給が停止される。
本発明による実施例ではNOx選択還元触媒16に吸着されているアンモニア吸着量Qは尿素水供給弁17からの供給尿素水量と機関からの排出NOx量から算出される。即ち、概略的に云うとNOx選択還元触媒16に新たに吸着されるアンモニア量は供給尿素水量に比例し、消費される吸着アンモニア量は排出NOx量に比例するのでこれら供給尿素水量と排出NOx量からアンモニア吸着量Qが算出される。なお、機関から単位時間当り排出されるNOx量NOXAは要求トルクTQおよび機関回転数Nの関数として図4(C)に示すマップの形で予めROM32内に記憶されている。
図5に尿素水の供給制御ルーチンを示す。なお、このルーチンは一定時間毎の割込みによって実行される。
図5を参照すると、まず初めにステップ60において図4(C)に示されるマップから機関からの単位時間当りの排出NOx量NOXAが算出される。次いでステップ61ではNOx選択還元触媒16に吸着されているアンモニアNH3のうちでNOxにより単位時間当り消費されるアンモニアNH3の消費量ΔQが排出NOx量NOXAに基づいて算出される。次いでステップ62では吸着アンモニア量Qから消費量ΔQが減算される。
次いでステップ63では尿素水の供給を停止すべき指令が発せられているか否かが判別される。通常、この指令は発生せしめられていないのでステップ64に進み、吸着アンモニア量Qが目標アンモニア量Qtよりも少ないか否かが判別される。Q<Qtのときにはステップ65に進んで尿素水が間欠的に供給され続け、次いでステップ66では吸着アンモニア量Qに新たに吸着されるアンモニア量Qdが加算される。一方、ステップ64においてQ≧Qtであると判別されたときにはステップ67に進んで尿素水の供給が停止される。
このようにして尿素水供給停止指令が発せられていないときには吸着アンモニア量Qが目標アンモニア量Qtに維持される。これに対し尿素水供給停止指令が発せられるとステップ67に進んで尿素水の供給が停止される。
図6はSOxトラップ触媒12からのSOx放出処理ルーチンを示している。このルーチンも一定時間毎の割込みによって実行される。
図6を参照すると、まず初めにステップ70においてSOxトラップ触媒12に単位時間当り捕獲されるSOx量ΔSOXが算出される。燃料中には一定の割合で硫黄が含まれており、従ってステップ70では単位時間当りの燃料噴射量Qfに定数Cを乗算することによって単位時間当りの捕獲SOx量ΔSOXが算出される。次いでステップ71ではΣSOXにΔSOXを加算することによって捕獲SOx量の積算値ΣSOXが算出される。
次いでステップ72では捕獲SOx量の積算値ΣSOXが、SOxトラップ率が低下しはじめる許容値MAXを越えたか否かが判別される。ΣSOX≦MAXのときにはステップ74にジャンプする。これに対し、ΣSOX>MAXになるとステップ73に進んでSOxトラップ触媒12からSOxを放出すべきことを示すSOx放出フラグがセットされ、次いでステップ74に進む。
ステップ74ではSOxトラップ触媒12からSOxを放出する処理の実行を許可するSOx放出許可指令が発生しているか否かが判別され、SOx放出許可指令が発生していないときには処理サイクルを完了する。これに対し、SOx放出許可指令が発せられるとステップ75に進んでSOxトラップ触媒12を600℃以上に昇温させると共にSOxトラップ触媒12に流入する排気ガスの空燃比をリッチにすることによってSOxトラップ触媒12から捕獲したSOxを放出させるSOx放出処理が実行される。次いでステップ76ではSOx放出フラグがリセットされ、次いでステップ77ではΣSOXがクリアされる。
ところでSOxトラップ触媒12からSOxが放出されるとこのSOxはNOx選択還元触媒16に吸着しているアンモニアNH3と反応し、その結果硫化水素H2Sが発生する。このとき発生する硫化水素H2Sの濃度は概略的に言うと吸着アンモニア量Qに比例し、NOx選択還元触媒16に流入する排気ガス中のSOx濃度、即ちSOxトラップ触媒12から放出されたSOxの濃度DSに比例する。図7はNOx選択還元触媒16から流出して大気中に排出される排気ガス中の硫化水素H2Sの等濃度曲線a,b,c,d,eを示しており、図7において曲線aから曲線eに向かうに従って硫化水素H2Sの濃度DNが次第に高くなる。
ところで大気中に排出される硫化水素H2Sの濃度DNが高くなると強力な刺激臭が発生し、従って硫化水素H2Sの排出濃度DNは刺激臭をほとんど感じることのない許容濃度以下に抑えることが必要となる。この刺激臭をほとんど感じることのない許容濃度が図7においてDNOで示されている。そこで本発明では硫化水素H2Sの排出濃度DNを許容濃度DNO以下に抑えるようにしている。
この場合、NOx選択還元触媒16に吸着している吸着アンモニア量Qを減少させても、或いはSOxトラップ触媒12からのSOx放出濃度DS、即ちSOxトラップ触媒12からのSOx放出量を減少させても硫化水素H2Sの排出濃度DNは減少する。従って本発明では、SOxトラップ触媒12からSOxを放出させるときにはSOx放出時に硫化水素H2Sの排出濃度DNが予め定められた許容濃度DNO以下となるようにSOx放出前にNOx選択還元触媒16に吸着している吸着アンモニア量Qを減少させるか、或いはSOx放出時にSOxトラップ触媒12からのSOx放出量を減少させるようにしている。
次に図8から図15を参照しつつ種々の実施例について順次説明する。
本発明による第1実施例では、SOxトラップ触媒12からSOxを放出させたときに硫化水素H2Sの排出濃度DNが許容濃度DNO以上になるか否かを予測する予測手段を具備しており、SOx放出時に硫化水素H2Sの排出濃度DNが許容濃度DNO以上になると予測されたときにはSOx放出時に硫化水素H2Sの排出濃度DNが許容濃度DNO以下となるようにSOx放出前にNOx選択還元触媒16に吸着している吸着アンモニア量Qが減少せしめられる。
なおこの場合、尿素水の供給を停止すると吸着しているアンモニアNH3は排気ガス中に含まれるNOxによって徐々に消費され、従って吸着アンモニア量Qは徐々に減少する。従ってこの第1実施例では尿素水の供給を停止することによって吸着アンモニア量Qが減少せしめられる。なお、この場合、尿素水の供給量を減少させても吸着アンモニア量Qを減少させることができる。従って尿素水の供給を停止する代りに尿素水の供給量を減少させることもできる。
硫化水素H2Sの排出濃度DNが許容濃度DNO以下になると刺激臭はほとんど感じなくなる。従ってこの第1実施例では硫化水素H2Sの排出濃度DNが許容濃度DNO以下になったときにSOxトラップ触媒12からSOxを放出させるようにしている。
図8はこの第1実施例を実行するために図5および図6に示すルーチンに加えて実行されるSOx放出制御ルーチンを示しており、このルーチンも一定時間毎の割込みによって実行される。
図8を参照すると、まず初めにステップ80においてSOx放出フラグがセットされているか否かが判別され、SOx放出フラグがセットされていないときには処理サイクルを完了する。これに対し、SOx放出フラグがセットされているときにはステップ81に進み、図5に示すルーチンにおいて算出されている吸着アンモニア量Qが読込まれる。
次いでステップ82ではSOxトラップ触媒12からSOxを放出させたときの放出SOx濃度DSが予測される。即ち、SOxトラップ触媒12からSOxを放出させた場合の単位時間当りのSOx放出量(g/sec)は図3(A)に示すSOx放出速度W(g/sec)と図3(B)に示すSOx放出率Kとの積W・Kで表わされ、従ってこのSOx放出量W・Kを単位時間当りの排気ガスの体積流量G(l/sec)で除算することによってSOxトラップ触媒12からの放出SOx濃度DS(=W・K/G)を予測することができる。なお、排気ガスの体積流量Gは要求トルクTQおよび機関回転数Nの関数として予めROM32内に記憶されている。
次いでステップ83ではステップ81において読込まれた吸着アンモニア量Qおよびステップ82において予測された放出SOx濃度DSに基づいて図7に示す関係から硫化水素H2Sの排出濃度DNが予測される。次いでステップ84では硫化水素H2Sの排出濃度DNが図7に示される許容濃度DNO以下であるか否かが判別される。DN≧DNOのときにはステップ87に進む。
ステップ87ではSOx放出許可指令が解除される。即ち、SOx放出許可指令が発せられていない状態とされる。従って図6に示すSOx放出処理ルーチンからわかるようにこのときSOx放出処理は実行されず、SOx放出処理の待機状態となる。次いでステップ88では尿素水の供給停止指令が発せられ、このとき図5に示す尿素水の供給制御ルーチンからわかるように尿素水の供給が停止される。このようにSOx放出処理の実行が待機状態とされ、尿素水の供給が停止されると吸着アンモニア量Qは次第に減少し、それにより硫化水素H2Sの排出濃度DNの予測値が次第に減少する。
次いでステップ84においてDN>DNOになったと判断されるとステップ85に進んでSOx放出許可指令が発せられる。その結果、図6に示すルーチンからわかるようにSOx放出処理が実行される。このとき硫化水素H2Sの排出濃度DNは許容濃度DNO以下となる。次いでステップ86において尿素水の供給停止指令が解除され、尿素水の供給が再開される。なお、この尿素水の供給の再開は、SOx放出許可指令が発生せしめられた後、SOx放出量が或る程度低下した後に行うのが好ましい。
図9および図10に第2実施例を示す。この第2実施例を実行するための図9に示すSOx放出制御ルーチンにおいて図8に示すルーチンと異なるところはステップ89のみであり、その他のステップ80から88は図8に示すルーチンと同じである。従って図9に示されるSOx放出制御ルーチンについてはステップ89のみを説明し、その他のステップ80から88についての説明を省略する。
この第2実施例ではSOxトラップ触媒12からのSOx放出処理の待機状態のときに吸着アンモニア量Qを急速に減少させるために機関から排出されるNOx量を増大するようにしている。即ち、この第2実施例では図9のステップ89において排出NOxの増量制御が行われる。
この排出NOxの増量制御は例えば図10(A)に示すように燃料噴射弁3からの燃料噴射時期を進行させることによって、或いはEGR率を低下させることによって行われる。また、この第2実施例では排出NOx量を増量したときに機関から単位時間当り排出されるNOx量NOXAが要求トルクTQおよび機関回転数Nの関数として図10(B)に示すマップの形で予めROM32内に記憶されており、排出NOx量の増量制御が行われているときには図5に示されるステップ60ではNOx量NOXAが図10(B)に示すマップから算出される。
SOx放出フラグがセットされた後、SOx放出処理の待機期間が長くなるとリーン空燃比のもとでSOxトラップ触媒12からSOxが流出し出す危険性がある。この場合、第2実施例におけるように排出NOxを増量させると吸着アンモニア量が急速に減少するためにSOx放出処理の待機期間を短かくすることができる。その結果、リーン空燃比のもとでSOxトラップ触媒12からSOxが流出するのを阻止することができる。
図11および図12に第3実施例を示す。この第3実施例を実行するための図11に示すSOx放出制御ルーチンにおいて図8に示すルーチンと異なるところはステップ89から91のみであり、その他のステップ80から88は図8に示すルーチンと同じである。従って図11に示されるSOx放出制御ルーチンについてはステップ89から91のみを説明し、その他のステップ80から88についての説明を省略する。
この第3実施例ではSOxトラップ触媒12からのSOx放出処理の待機状態のときに吸着アンモニア量Qを急速に減少させるためにNOx選択還元触媒16を昇温するようにしている。即ち、この第3実施例では図11のステップ89においてNOx選択還元触媒16の昇温制御が行われる。このNOx選択還元触媒16の昇温制御は、例えば燃料噴射時期を遅角させ、それによりリーン空燃比のもとで排気ガス温を上昇させることによって行われる。
図12(A),(B)は夫々NOx選択還元触媒16からの吸着アンモニアNH3の脱離率K1,K2を示している。図12(A)に示されるように吸着アンモニアNH3の脱離率K1はNOx選択還元触媒16の床温TSが高くなると急速に上昇し、従ってNOx選択還元触媒16を昇温させることによって吸着アンモニア量Qを急速に減少させうることがわかる。また、図12(B)に示されるように脱離率K2は排気ガスの体積流量Gが増大するほど大きくなる。
吸着アンモニアの脱離量は吸着アンモニア量Qに脱離率K1およびK2を乗算することによって得られる。従ってこの第3実施例では図11に示されるようにステップ89においてNOx選択還元触媒16の昇温制御が行われているときにステップ90において図12(A),(B)から脱離率K1,K2が算出され、次いでステップ91では吸着アンモニア量Qから脱離量(K1・K2・Q)が減算される。従って吸着アンモニア量Qは徐々に減少することになる。
図13および図14は、簡便な方法によってSOxトラップ触媒からSOxを放出させるときには硫化水素H2Sの排出濃度DNが許容濃度DNO以下となるようにした第4実施例を示している。この第4実施例では図13に示されるように放出NOx濃度DSには関係なく、吸着アンモニア量Qのみに対する許容吸着量QXが設定されている。
即ち、この第4実施例ではSOxトラップ触媒12からSOxを放出すべきときにNOx選択還元触媒16に吸着している吸着アンモニア量Qが予め定められている許容吸着量QX以上であると判断されたときにはSOx放出前に尿素水の供給が停止される。この場合にも、尿素水の供給を停止するのではなくて、尿素水の供給量を減少させることもできる。
図14はこの第4実施例を実行するために図5および図6に示すルーチンに加えて実行されるSOx放出制御ルーチンを示している。
図14を参照すると、まず初めにステップ100においてSOx放出フラグがセットされているか否かが判別され、SOx放出フラグがセットされていないときには処理サイクルを完了する。これに対し、SOx放出フラグがセットされているときにはステップ101に進み、図5に示すルーチンにおいて算出されている吸着アンモニア量Qが読込まれる。
次いでステップ102では吸着アンモニア量Qが許容吸着量QX以下であるか否かが判別され、Q≧QXのときにはステップ105に進む。ステップ105ではSOx放出許可指令が解除される。即ち、SOx放出許可指令が発せられていない状態とされる。従って図6に示すSOx放出処理ルーチンからわかるようにこのときSOx放出処理は実行されない。次いでステップ106では尿素水の供給停止指令が発せられ、このとき図5に示す尿素水の供給制御ルーチンからわかるように尿素水の供給が停止される。
一方、ステップ102においてQ<QXであると判断されるとステップ103に進んでSOx放出許可指令が発せられる。その結果、図6に示すルーチンからわかるようにSOx放出処理が実行される。次いでステップ104において尿素水の供給停止指令が解除され、尿素水の供給が再開される。
一方、図7に示されるようにSOxトラップ触媒12からのSOx放出時に放出NOx濃度DSが低いときには吸着アンモニア量Qにかかわらずに硫化水素H2Sの排出濃度DNが許容濃度DNO以下となる。そこで第5実施例ではSOxトラップ触媒12からSOxを放出させるときには硫化水素H2Sの排出濃度DNが許容濃度DNO以下となるようにSOxトラップ触媒12からのSOx放出量を減少させるようにしている。
即ち、この第5実施例では図15に示されるようにSOx放出時に放出NOx濃度DSがいかなる濃度であっても硫化水素H2Sの排出濃度DNが許容濃度DNO以下となる吸着アンモニア量Qの許容吸着量QXが予め設定されており、SOx放出時に吸着アンモニア量Qがいかなる量であっても硫化水素H2Sの排出濃度DNが許容濃度DNO以下となる放出NOx濃度DSの許容濃度DXが予め設定されており、これら許容吸着量QXおよび許容濃度DXを用いてNOxの放出制御が行われる。
即ち、図15においてQ<QXの領域では放出SOx濃度DSにかかわらずにDN<DNOとなる。従ってこの第5実施例ではQ<QXのときにはSOxトラップ触媒12から多量のSOx放出させるために空燃比がリッチ度合の高い目標空燃比とされる。これに対し、図15においてQ≧QXの領域では放出SOx濃度DSが許容濃度DXとなるように空燃比のリッチ度合が低下せしめられる。このときの空燃比は次のようにして算出される。
即ち、前述したようにSOxトラップ触媒12からSOxを放出させた場合の単位時間当りのSOx放出量(g/sec)は図3(A)に示すSOx放出速度W(g/sec)と図3(B)に示すSOx放出率Kとの積W・Kで表わされ、従ってこのSOx放出量W・Kを単位時間当りの排気ガスの体積流量G(l/sec)で除算することによってSOxトラップ触媒12からの放出SOx濃度DS(=W・K/G)を算出することができる。従って放出SOx濃度DSを許容濃度DXにするにはSOx放出率Kを(DX・G/W)とすればよく、このSOx放出率Kから図3(B)に示す関係を用いて空燃比が算出される。
図16はこの第5実施例を実行するために図5および図6に示すルーチンに加えて実行されるSOx放出制御ルーチンを示している。
図16を参照すると、まず初めにステップ110においてSOx放出フラグがセットされているか否かが判別され、SOx放出フラグがセットされていないときには処理サイクルを完了する。これに対し、SOx放出フラグがセットされているときにはステップ111に進み、図5に示すルーチンにおいて算出されている吸着アンモニア量Qが読込まれる。
次いでステップ112では吸着アンモニア量Qが許容吸着量QXよりも低いか否かが判別される。Q<QXのときにはステップ113に進んでSOx放出時の空燃比がリッチ度合の高い目標空燃比とされ、次いでステップ116に進む。これに対し、Q≧QXのときにはステップ114に進んでSOx放出率K(=DK・G/W)が算出され、次いでステップ115ではこのSOx放出率Kから図3(B)に示す関係に基づいてSOx放出時の空燃比が算出される。次いでステップ116に進む。
ステップ116ではSOx放出許可指令が発せられる。その結果、図6に示すルーチンからわかるようにSOx放出処理が実行される。なお、この第5実施例では尿素水の供給停止指令は発せられることがない。
圧縮着火式内燃機関の全体図である。 SOxトラップ触媒の基体の表面部分の断面図である。 SOxトラップ触媒からのSOx放出速度等を示す図である。 吸着アンモニア量Q等を示す図である。 尿素水の供給を制御するためのフローチャートである。 SOxの放出処理を行うためのフローチャートである。 硫化水素H2Sの排出濃度DNおよび許容濃度DNOを示す図である。 SOx放出制御の第1実施例を実行するためのフローチャートである。 SOx放出制御の第2実施例を実行するためのフローチャートである。 機関からの排出NOx量の増量制御を説明するための図である。 SOx放出制御の第3実施例を実行するためのフローチャートである。 吸着アンモニアの脱離率を示す図である。 硫化水素H2Sの排出濃度DNの許容濃度DNO等を示す図である。 SOx放出制御の第4実施例を実行するためのフローチャートである。 硫化水素H2Sの排出濃度DNの許容濃度DNO等を示す図である。 SOx放出制御の第5実施例を実行するためのフローチャートである。
符号の説明
4 吸気マニホルド
5 排気マニホルド
7 排気ターボチャージャ
12 SOxトラップ触媒
13 酸化触媒
14 パティキュレートフィルタ
16 NOx選択還元触媒
17 尿素水供給弁

Claims (9)

  1. 機関排気通路内に、排気ガスの空燃比がリーンのときにアンモニアによって排気ガス中のNOxを選択的に還元しうるNOx選択還元触媒を配置した内燃機関において、該NOx選択還元触媒上流の機関排気通路内に排気ガス中に含まれるSOxを捕獲しうるSOxトラップ触媒を配置し、SOxトラップ触媒からSOxを放出させるときにはSOx放出時に硫化水素の排出濃度が予め定められた許容濃度以下となるようにSOx放出前にNOx選択還元触媒に吸着している吸着アンモニア量を減少させるか、或いはSOx放出時にSOxトラップ触媒からのSOx放出量を減少させる内燃機関の排気浄化装置。
  2. SOxトラップ触媒からSOxを放出させたときに硫化水素の排出濃度が予め定められた許容濃度以上になるか否かを予測する予測手段を具備しており、SOx放出時に硫化水素の排出濃度が予め定められた許容濃度以上になると予測されたときにはSOx放出時に硫化水素の排出濃度が予め定められた許容濃度以下となるようにSOx放出前にNOx選択還元触媒に吸着している吸着アンモニア量を減少させるか、或いはSOx放出時にSOxトラップ触媒からのSOx放出量を減少させる請求項1に記載の内燃機関の排気浄化装置。
  3. SOxトラップ触媒からSOxを放出させるときにはSOx放出前にNOx選択還元触媒に吸着している吸着アンモニア量が予め定められている許容吸着量以下になるように吸着アンモニア量を減少させる請求項1に記載の内燃機関の排気浄化装置。
  4. SOxトラップ触媒からSOxを放出すべきときにNOx選択還元触媒に吸着している吸着アンモニア量が予め定められている許容吸着量以上であるか否かを判断する判断手段を具備しており、該判断手段によってNOx選択還元触媒に吸着している吸着アンモニア量が予め定められている許容吸着量以上であると判断されたときにはSOx放出前にNOx選択還元触媒に吸着している吸着アンモニア量が予め定められている許容吸着量以下になるように吸着アンモニア量を減少させる請求項3に記載の内燃機関の排気浄化装置。
  5. SOxトラップ触媒からSOxを放出させるときにはSOxトラップ触媒に流入する排気ガスの空燃比をリッチにするようにした請求項1に記載の内燃機関の排気浄化装置。
  6. NOx選択還元触媒上流の機関排気通路内に尿素水供給弁を配置し、SOxトラップ触媒からSOxを放出させたときに硫化水素の排出濃度が予め定められた許容濃度以上になると予測されるときにはSOx放出時に硫化水素の排出濃度が予め定められた許容濃度以下になるようにSOx放出前に尿素水の供給量を減少させるか、又は尿素水の供給を停止するようにした請求項1に記載の内燃機関の排気浄化装置。
  7. 尿素水の供給量が減少せしめられるか、又は尿素水の供給が停止されたときには機関から排出されるNOx量を増大させるようにした請求項6に記載の内燃機関の排気浄化装置。
  8. 尿素水の供給量が減少せしめられるか、又は尿素水の供給が停止されたときにはNOx選択還元触媒を昇温させるようにした請求項6に記載の内燃機関の排気浄化装置。
  9. SOxトラップ触媒からSOxを放出すべきときにNOx選択還元触媒に吸着している吸着アンモニア量が予め定められている許容吸着量以上であると判断されたときにはSOx放出前に尿素水の供給量を減少させるか、又は尿素水の供給を停止するようにした請求項6に記載の内燃機関の排気浄化装置。
JP2007277724A 2007-10-25 2007-10-25 内燃機関の排気浄化装置 Pending JP2009103098A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007277724A JP2009103098A (ja) 2007-10-25 2007-10-25 内燃機関の排気浄化装置
US12/289,239 US20090107121A1 (en) 2007-10-25 2008-10-23 Exhaust gas control apparatus for internal combustion engine
EP08018708A EP2053211B1 (en) 2007-10-25 2008-10-24 Exhaust gas control apparatus for internal combustion engine
DE602008000446T DE602008000446D1 (de) 2007-10-25 2008-10-24 Abgassteuerungsvorrichtung für Brennkraftmaschine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007277724A JP2009103098A (ja) 2007-10-25 2007-10-25 内燃機関の排気浄化装置

Publications (1)

Publication Number Publication Date
JP2009103098A true JP2009103098A (ja) 2009-05-14

Family

ID=40261958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007277724A Pending JP2009103098A (ja) 2007-10-25 2007-10-25 内燃機関の排気浄化装置

Country Status (4)

Country Link
US (1) US20090107121A1 (ja)
EP (1) EP2053211B1 (ja)
JP (1) JP2009103098A (ja)
DE (1) DE602008000446D1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013104346A (ja) * 2011-11-14 2013-05-30 Toyota Motor Corp 内燃機関の排気浄化装置
CN113107644A (zh) * 2021-05-28 2021-07-13 潍柴动力股份有限公司 一种后处理系统及其脱硫装置、控制方法与存储介质

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4821737B2 (ja) * 2007-08-21 2011-11-24 トヨタ自動車株式会社 内燃機関の排気浄化装置
ES2429449T3 (es) * 2008-10-31 2013-11-14 Volvo Lastvagnar Ab Procedimiento y aparato para el arranque en frío de un motor de combustión interna
US8370049B1 (en) * 2010-05-21 2013-02-05 Toyota Jidosha Kabushiki Kaisha Control system of internal combustion engine
US8423265B2 (en) * 2010-05-21 2013-04-16 Toyota Jidosha Kabushiki Kaisha Control system of internal combustion engine
JP6133183B2 (ja) * 2013-09-25 2017-05-24 キャタピラー エス エー アール エル エンジンの排気浄化装置
JP6969522B2 (ja) 2018-08-22 2021-11-24 トヨタ自動車株式会社 内燃機関の排気浄化装置
US20200131961A1 (en) * 2018-10-29 2020-04-30 GM Global Technology Operations LLC Exhaust gas treatment systems and methods for diagnosing the same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3702544B2 (ja) * 1996-03-22 2005-10-05 トヨタ自動車株式会社 内燃機関の排気浄化装置
DE10300298A1 (de) 2003-01-02 2004-07-15 Daimlerchrysler Ag Abgasnachbehandlungseinrichtung und -verfahren
JP4001129B2 (ja) * 2004-06-10 2007-10-31 トヨタ自動車株式会社 内燃機関の排気浄化装置
US7178328B2 (en) * 2004-12-20 2007-02-20 General Motors Corporation System for controlling the urea supply to SCR catalysts
US20070056268A1 (en) * 2005-09-10 2007-03-15 Eaton Corporation LNT-SCR packaging
US7063642B1 (en) * 2005-10-07 2006-06-20 Eaton Corporation Narrow speed range diesel-powered engine system w/ aftertreatment devices
JP4789242B2 (ja) * 2005-12-09 2011-10-12 Udトラックス株式会社 排気浄化装置
US7861518B2 (en) * 2006-01-19 2011-01-04 Cummins Inc. System and method for NOx reduction optimization
US20080202097A1 (en) * 2007-02-28 2008-08-28 Caterpillar Inc. Engine exhaust treatment system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013104346A (ja) * 2011-11-14 2013-05-30 Toyota Motor Corp 内燃機関の排気浄化装置
CN113107644A (zh) * 2021-05-28 2021-07-13 潍柴动力股份有限公司 一种后处理系统及其脱硫装置、控制方法与存储介质

Also Published As

Publication number Publication date
EP2053211A1 (en) 2009-04-29
US20090107121A1 (en) 2009-04-30
EP2053211B1 (en) 2009-12-23
DE602008000446D1 (de) 2010-02-04

Similar Documents

Publication Publication Date Title
JP4420048B2 (ja) 内燃機関の排気浄化装置
JP2009103098A (ja) 内燃機関の排気浄化装置
JP4983491B2 (ja) 内燃機関の排気浄化装置
JP5018325B2 (ja) 内燃機関の排気浄化装置
JP4697305B2 (ja) 内燃機関の排気浄化装置
JP2009114879A (ja) 内燃機関の排気浄化装置
JP4305445B2 (ja) 内燃機関
JP4792424B2 (ja) 内燃機関の排気浄化装置
US20090031705A1 (en) Exhaust Gas Purification Device of Compression Ignition Type Internal Combustion Engine
JP2009257231A (ja) 内燃機関の排気浄化装置
WO2014167652A1 (ja) 内燃機関の排気浄化装置
JP2008208739A (ja) 内燃機関の排気浄化装置
JP2008286001A (ja) 内燃機関の排気浄化装置
JP5052208B2 (ja) 内燃機関の排気浄化装置
JP2008208722A (ja) 内燃機関の排気浄化装置
WO2014167650A1 (ja) 内燃機関の排気浄化装置
JP4605174B2 (ja) 内燃機関の排気浄化装置
JP4737144B2 (ja) 内燃機関の排気浄化装置
JP2008303791A (ja) 内燃機関の排気浄化装置
JP6183537B2 (ja) 内燃機関の排気浄化装置
JP2009250130A (ja) 内燃機関の排気浄化装置
JP2005106005A (ja) 内燃機関の排気浄化装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100216