JP2009085464A - エジェクタ式冷凍サイクル用ユニット - Google Patents

エジェクタ式冷凍サイクル用ユニット Download PDF

Info

Publication number
JP2009085464A
JP2009085464A JP2007253479A JP2007253479A JP2009085464A JP 2009085464 A JP2009085464 A JP 2009085464A JP 2007253479 A JP2007253479 A JP 2007253479A JP 2007253479 A JP2007253479 A JP 2007253479A JP 2009085464 A JP2009085464 A JP 2009085464A
Authority
JP
Japan
Prior art keywords
heat exchange
refrigerant
ejector
fin
exchange section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007253479A
Other languages
English (en)
Inventor
Takehiko Hasada
武彦 羽佐田
Teiyuya Aun
ティュヤ アウン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2007253479A priority Critical patent/JP2009085464A/ja
Publication of JP2009085464A publication Critical patent/JP2009085464A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0011Ejectors with the cooled primary flow at reduced or low pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/18Optimization, e.g. high integration of refrigeration components

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

【課題】フロストの成長を防ぐことができるエジェクタ式冷凍サイクル用ユニットを実現する。
【解決手段】圧縮機11と、放熱器12と、冷媒を減圧して蒸発させるノズル部14aおよびノズル部14aから噴射する高速度の冷媒流により冷媒を冷媒吸引口14bから吸引するエジェクタ14と、空気流れAの風上側に配置され、エジェクタ14の出口側に接続されてエジェクタ14から吐出された冷媒を蒸発させる第1蒸発器15と、第1蒸発器15に対して風下側に配置され、冷媒吸引口14bに接続されてエジェクタ14に吸引される冷媒を蒸発させる第2蒸発器18とを備え、第1、第2蒸発器15、18は、チューブ21とフィン22との積層構造体から構成されており、第1蒸発器15は、フィン22のフィンピッチFPが第2蒸発器18のフィンピッチFPよりも大きい。これにより、フロストの成長を防ぐことができる。
【選択図】図6

Description

本発明は、複数の熱交換部を有する蒸発器ユニットに適用したエジェクタ式冷凍サイクル用ユニットに関するものであり、特に、空気流れの風上側と風下側とに一体的に配置される熱交換部の構造に関する。
従来、この種のエジェクタ式冷凍サイクル用ユニットとして、例えば、特許文献1に示すものが知られている。すなわち、冷却対象空間に送風する送風空気を、送風空気の風上側に配置された風上側熱交換部で冷却し、さらに、風上側熱交換部で冷却された空気を風下側熱交換部で冷却するエジェクタ式冷凍サイクル用ユニットが開示されている。
この特許文献1の装置では、エジェクタのディフューザ部に風上側熱交換部を接続し、さらにエジェクタの冷媒吸引口に風下側熱交換部を接続しており、ディフューザ部の昇圧作用によって風上側熱交換部の冷媒蒸発温度を風下側熱交換部の冷媒蒸発温度よりも上昇させることで、双方の蒸発器の冷媒蒸発温度と送風空気との温度差を確保して、効率的に送風空気を冷却している。
特開2007−57222号公報
しかしながら、上記特許文献1のエジェクタ式冷凍サイクル用ユニットでは、冷媒を風上側熱交換部と風下側熱交換部とに分岐させて、冷媒流量割合を変えているため圧縮機の駆動、停止時に圧力変動が生ずる。例えば、電磁クラッチの断続運転によって駆動される圧縮機を備えるエジェクタ式冷凍サイクル用ユニットでは、圧縮機が駆動したときに、風上側熱交換部側のタンク内の冷媒が風下側熱交換部側よりも圧縮機により吸引されやすくなっている。
そのため、風上側熱交換部側の出口側冷媒圧力が急激に低下して冷媒温度が、風下側熱交換部側よりも低温となっている。つまり、空気と冷媒との熱交換により発生する凝縮水が、風下側熱交換部よりも風上側熱交換部の方が多く発生する。従って、発生した凝縮水がフロストすることにより、熱交換器性能の低下を招く問題がある。
そこで、本発明の目的は、フロストの成長を防ぐことができるエジェクタ式冷凍サイクル用ユニットを提供することにある。
上記目的を達成するために、以下の技術的手段を採用する。すなわち、請求項1に記載の発明では、断続的に駆動運転されて、冷媒を圧縮して吐出する固定容量型の圧縮機(11)と、この圧縮機(11)から吐出された高温高圧冷媒を放熱させる放熱器(12)と、この放熱器(12)から供給される冷媒を減圧して蒸発させるノズル部(14a)およびそのノズル部(14a)から噴射する高速度の冷媒流により冷媒を吸引する冷媒吸引口(14b)を有するエジェクタ(14)と、冷媒と熱交換する空気流れ(A)の風上側に配置され、エジェクタ(14)の出口側に接続されてエジェクタ(14)から吐出された冷媒を蒸発させる風上側熱交換部(15)と、この風上側熱交換部(15)に対して空気流れ(A)の風下側に配置され、下流側の出口部が冷媒吸引口(14b)に接続されて、エジェクタ(14)に吸引される冷媒を蒸発させる風下側熱交換部(18)とを備えるエジェクタ式冷凍サイクル用ユニットにおいて、
風上側熱交換部(15)と風下側熱交換部(18)とが一体的に構成されており、
風上側熱交換部(15)と風下側熱交換部(18)の熱交換コア部(15a、18a)は、複数の偏平チューブ(21)とフィン(22)との積層構造体から構成されており、
風上側熱交換部(15)のフィン(22)のフィンピッチ(FP)またはフィン高さ(FH)の少なくとも一方を、風下側熱交換部(18)のフィン(22)のフィンピッチ(FP)またはフィン高さ(FH)よりも大きくすることにより、風上側熱交換部(15)のフィン密度が風下側熱交換部(18)のフィン密度よりも小さくなっていることを特徴としている。
この発明によれば、固定容量型の圧縮機(11)を備えるエジェクタ式冷凍サイクル用ユニットでは、圧縮機(11)が駆動したときに、風上側熱交換部(15)に圧縮機(11)の吸引による圧力変動が発生する。そのため、風下側熱交換部(18)よりも風上側熱交換部(15)の方が冷媒温度は低くなる。そこで、風上側のフィンピッチ(FP)を大きくする。または、風上側のフィン高さ(FH)を大きくする。ことにより、風上側熱交換部(15)のフィン(22)に発生した凝縮水の排水性が向上できる。従って、フロストの成長を防ぐことができる。
請求項2の記載の発明では、風上側熱交換部(15)のフィン(22)のフィン高さ(FH)は、約4mm以上で、かつ約7.5mm未満であることを特徴としている。この発明によれば、フィン高さ(FH)が約4mm以上であれば、凝縮水の排水性の向上が図れる。また、フィン高さ(FH)が約7.5mm未満であれば、所定の熱交換性能を確保できる。
請求項3の記載の発明では、風上側熱交換部(15)のフィン(22)のフィンピッチ(FP)は、約2.5mm以上で、かつ約3.5mm未満であることを特徴としている。この発明によれば、フィンピッチ(FP)が約2.5mm以上であれば、凝縮水の排水性の向上が図れるとともに、通風抵抗の減少も図れる。また、フィンピッチ(FP)が約3.5mm未満であれば、所定の熱交換性能を確保できる。
請求項4の記載の発明では、連続的に駆動運転されて、冷媒を圧縮して吐出する可変容量型の圧縮機(11)と、この圧縮機(11)から吐出された高温高圧冷媒を放熱させる放熱器(12)と、この放熱器(12)から供給される冷媒を減圧して蒸発させるノズル部(14a)およびそのノズル部(14a)から噴射する高速度の冷媒流により冷媒を吸引する冷媒吸引口(14b)を有するエジェクタ(14)と、冷媒と熱交換する空気流れ(A)の風上側に配置され、エジェクタ(14)の出口側に接続されてエジェクタ(14)から吐出された冷媒を蒸発させる風上側熱交換部(15)と、この風上側熱交換部(15)に対して空気流れ(A)の風下側に配置され、下流側の出口部が冷媒吸引口(14b)に接続されて、エジェクタ(14)に吸引される冷媒を蒸発させる風下側熱交換部(18)とを備えるエジェクタ式冷凍サイクル用ユニットにおいて、
風上側熱交換部(15)と風下側熱交換部(18)とが一体的に構成されており、
風上側熱交換部(15)と風下側熱交換部(18)の熱交換コア部(15a、18a)は、複数の偏平チューブ(21)とフィン(22)との積層構造体から構成されており、
風下側熱交換部(18)のフィン(22)のフィンピッチ(FP)またはフィン高さ(FH)のすくなくとも一方を、風上側熱交換部(15)のフィン(22)のフィンピッチ(FP)またはフィン高さ(FH)よりも大きくすることにより、風下側熱交換部(18)のフィン密度が風上側熱交換部(15)のフィン密度よりも小さくなっていることを特徴としている。
この発明によれば、可変容量型の圧縮機(11)を備えるエジェクタ式冷凍サイクル用ユニットでは、圧縮機(11)の吸引による圧力変動が発生しない。そのため、圧縮機(11)の作動中において、風上側熱交換部(15)よりも風下側熱交換部(18)の方が冷媒温度は低くなる。そこで、風下側のフィンピッチ(FP)を大きくする。または、風下側のフィン高さ(FH)を大きくする。ことにより、風下側熱交換部(18)のフィン(22)に発生した凝縮水の排水性が向上できるため、フロストの成長を防ぐことができる。
請求項5の記載の発明では、風下側熱交換部(18)のフィン(22)のフィン高さ(FH)は、約4mm以上で、かつ約7.5mm未満であることを特徴としている。この発明によれば、フィン高さ(FH)が約4mm以上であれば、凝縮水の排水性の向上が図れる。また、フィン高さ(FH)が約7.5mm未満であれば、所定の熱交換性能を確保できる。
請求項6の記載の発明では、風下側熱交換部(18)のフィン(22)のフィンピッチ(P)は、約2.5mm以上で、かつ約3.5mm未満であることを特徴としている。この発明によれば、フィンピッチ(FP)が約2.5mm以上であれば、凝縮水の排水性の向上が図れるとともに、通風抵抗の減少も図れる。また、フィンピッチ(FP)が約3.5mm未満であれば、所定の熱交換性能を確保できる。
請求項7の記載の発明では、冷媒を圧縮して吐出する圧縮機(11)と、この圧縮機(11)から吐出された高温高圧冷媒を放熱させる放熱器(12)と、この放熱器(12)から供給される冷媒を減圧して蒸発させるノズル部(14a)およびそのノズル部(14a)から噴射する高速度の冷媒流により冷媒を吸引する冷媒吸引口(14b)を有するエジェクタ(14)と、冷媒と熱交換する空気流れ(A)の風上側に配置され、エジェクタ(14)の出口側に接続されてエジェクタ(14)から吐出された冷媒を蒸発させる風上側熱交換部(15)と、この風上側熱交換部(15)に対して空気流れ(A)の風下側に配置され、下流側の出口部が冷媒吸引口(14b)に接続されて、エジェクタ(14)に吸引される冷媒を蒸発させる風下側熱交換部(18)とを備えるエジェクタ式冷凍サイクル用ユニットにおいて、
風上側熱交換部(15)と風下側熱交換部(18)とが一体的に構成されており、
風上側熱交換部(15)と風下側熱交換部(18)の熱交換コア部(15a、18a)は、複数の偏平チューブ(21)とフィン(22)との積層構造体から構成されており、
冷媒を蒸発させたときに風上側熱交換部(15)と風下側熱交換部(18)の外表面に発生する凝縮水の発生量が多い方の熱交換部(15、18)のフィン(22)は、他方の熱交換部(15、18)のフィン(22)よりも、凝縮水が排水され易い、または滴下し易い形状に形成されていることを特徴としている。
この発明によれば、凝縮水の発生量が多い方の熱交換部(15、18)のフィン(22)に発生した凝縮水の排水性が向上できるため、フロストの成長を防ぐことができる。
請求項8の記載の発明では、凝縮水の発生量が多い方の熱交換部(15、18)のフィン(22)の下方端側に、凝縮水が排水され易いように、空間(22b)が形成されていることを特徴としている。この発明によれば、凝縮水の発生量が多い方の熱交換部(15、18)に発生した凝縮水の排水性が向上できる。
請求項9の記載の発明では、風上側熱交換部(15)と風下側熱交換部(18)のフィン(22)のフィンピッチ(FP)およびフィン高さ(FH)は、相互に同一に形成されており、凝縮水の発生量が多い方の熱交換部(15、18)のフィン(22)に、複数の排水孔(22c)が形成されていることを特徴としている。この発明によれば、凝縮水の発生量が多い方の熱交換部(15、18)に発生した凝縮水の排水性が向上できる。
なお、上記各手段の括弧内の符号は、後述する実施形態の具体的手段との対応関係を示すものである。
(第1実施形態)
以下、エジェクタ式冷凍サイクル用ユニットを備えるエジェクタ式冷凍サイクルの実施形態を説明する。このエジェクタ式冷凍サイクル用ユニットは、エジェクタ式冷凍サイクル用蒸発器ユニット、あるいはエジェクタ付き蒸発器ユニットとも呼ばれるものである。
エジェクタ式冷凍サイクル用ユニットは、エジェクタを備える冷凍サイクルを構成するために、配管を介して冷凍サイクルの他の構成部品である凝縮器および圧縮機と接続される。エジェクタ式冷凍サイクル用ユニットは、ひとつの形態では室内機として空気を冷却する用途に用いられる。また、他の形態では、エジェクタ式冷凍サイクル用ユニットは、室外機として用いることができる。
エジェクタ式冷凍サイクル用ユニットを、図1乃至図9に基づいて説明する。図1は、エジェクタ式冷凍サイクル10を車両用冷凍サイクル装置に適用した例を示す。本実施形態のエジェクタ式冷凍サイクル10において、冷媒を吸入して圧縮する圧縮機11は、電磁クラッチ11a、ベルト等を介して図示しない車両走行用エンジンにより駆動される。本実施形態のエジェクタ式冷凍サイクル用ユニットでは、電磁クラッチ11aの断続運転により、圧縮機11作動の稼働率を変化させて冷媒吐出能力を調整する固定容量型圧縮機が使用されている。
圧縮機11の冷媒吐出側には、放熱器12が配置されている。この放熱器12は、圧縮機11から吐出された高圧冷媒と図示しない冷却ファンにより送風される外気(車室外空気)との間で熱交換を行って高圧冷媒を冷却する。
ここで、エジェクタ式冷凍サイクル10の冷媒として、本実施形態ではフロン系、HC系等の冷媒のように、高圧圧力が臨界圧力を超えない冷媒を用いて、蒸気圧縮式の亜臨界サイクルを構成している。このため、放熱器12は、冷媒を凝縮する凝縮器として作用する。
放熱器12の出口側には、受液器12aが設けられている。この受液器12aは、周知のように縦長のタンク形状のものであり、冷媒の気液を分離して冷凍サイクル内の余剰液冷媒を溜める気液分離器を構成する。受液器12aの出口には、タンク形状内部の下部側から液冷媒を導出するようになっている。受液器12aは、本例では放熱器12と一体的に設けられている。
また、放熱器12として、冷媒流れ上流側に位置する凝縮用熱交換部と、この凝縮用熱交換部からの冷媒を導入して冷媒の気液を分離する受液器12aと、この受液器12aからの飽和液冷媒を過冷却する過冷却用熱交換部とを有する公知の構成を採用してもよい。
受液器12aの出口側には、温度式膨張弁13が配置されている。この温度式膨張弁13は、受液器12aからの液冷媒を減圧する減圧手段であって、圧縮機11の吸入側通路に配置された感温部13aを有している。
温度式膨張弁13は、周知のように、圧縮機11の吸入側冷媒(後述の蒸発器出口側冷媒)の温度と圧力とに基づいて圧縮機吸入側冷媒の過熱度を検出し、圧縮機吸入側冷媒の過熱度が予め設定された所定値となるように弁開度(冷媒流量)を調整するものである。
温度式膨張弁13の出口側にエジェクタ14が配置されている。このエジェクタ14は、冷媒を減圧する減圧手段であるとともに、高速で噴出する冷媒流の吸引作用(巻き込み作用)によって冷媒の循環を行う(流体輸送)冷媒循環手段(運動量輸送式ポンプ)でもある。
エジェクタ14には、膨張弁13通過後の冷媒(中間圧冷媒)の通路面積を小さく絞って、冷媒をさらに減圧膨張させるノズル部14aと、このノズル部14aの冷媒噴出口と同一空間に配置され、後述する第2蒸発器18からの気相冷媒を吸引する冷媒吸引口14bが備えられている。
さらに、ノズル部14aおよび冷媒吸引口14bの冷媒流れ下流側部位には、ノズル部14aからの高速度の冷媒流と冷媒吸引口14bの吸引冷媒とを混合する混合部14cが設けられている。そして、混合部14cの冷媒流れ下流側に昇圧部をなすディフューザ部14dが配置されている。
このディフューザ部14dは、冷媒の通路面積を徐々に大きくする形状に形成されており、冷媒流れを減速して冷媒圧力を上昇させる作用、つまり、冷媒の速度エネルギーを圧力エネルギーに変換する作用を果たす。エジェクタ14のディフューザ部14dの出口側に第1蒸発器15が接続され、この第1蒸発器15の出口側は、圧縮機11の吸入側に接続される。
一方、エジェクタ14の入口側(温度式膨張弁13の出口側とエジェクタ14の入口側との間の中間部位)から冷媒分岐通路16が分岐され、この冷媒分岐通路16の下流側はエジェクタ14の冷媒吸引口14bに接続される。図1中の符号Zは、冷媒分岐通路16の分岐点を示す。
この冷媒分岐通路16には、絞り機構17が配置され、この絞り機構17よりも冷媒流れ下流側には、第2蒸発器18が配置されている。絞り機構17は、第2蒸発器18への冷媒流量の調節作用をなす減圧手段であって、具体的にはキャピラリチューブやオリフィスのような固定絞りで構成できる。
本実施形態では、2つの蒸発器15、18を後述の構成により一体構造に組み付けるようになっている。この2つの蒸発器15、18を図示しないケース内に収納し、そして、このケース内に構成される空気通路に共通の電動送風機19により空気(被冷却空気)を矢印Aのごとく送風し、この送風空気を2つの蒸発器15、18で冷却するようになっている。
2つの蒸発器15、18で冷却された冷風を共通の冷却対象空間(図示せず)に送り込み、これにより、2つの蒸発器15、18にて共通の冷却対象空間を冷却するようになっている。ここで、2つの蒸発器15、18のうち、エジェクタ14下流側の主流路に接続される第1蒸発器15を空気流れAの上流側(風上側)に配置し、エジェクタ14の冷媒吸引口14bに接続される第2蒸発器18を空気流れAの下流側(風下側)に配置している。
なお、本実施形態のエジェクタ式冷凍サイクル10を車両空調用冷凍サイクル装置に適用する場合は、車室内空間が冷却対象空間となる。また、本実施形態のエジェクタ式冷凍サイクル10を冷凍車用冷凍サイクル装置に適用する場合は、冷凍車の冷凍冷蔵庫内空間が冷却対象空間となる。
ところで、本実施形態では、エジェクタ14、第1、第2蒸発器15、18および絞り機構17を1つの一体化ユニット20として組み付けている。この一体化ユニット20の具体例を図2乃至図4により説明すると、図2は、一体化ユニット20の全体構成の概要を示す斜視図であり、図3は、第1、第2蒸発器15、18の上側タンク部の横(長手方向)断面図であり、図4は、第2蒸発器18の上側タンク部の模式図である。
次に、2つの蒸発器15、18の一体化構造の具体例を図2により説明する。この図2の例では、2つの蒸発器15、18が完全に1つの蒸発器構造として一体化されるようになっている。そのため、第1蒸発器15は、1つの蒸発器構造のうち、空気流れAの上流側領域を構成し、そして、第2蒸発器18は、1つの蒸発器構造のうち、空気流れAの下流側領域を構成するようになっている。
第1蒸発器15および第2蒸発器18の基本的構成は同一であり、それぞれ熱交換コア部15a、18aと、この熱交換コア部15a、18aの上下両側に位置するタンク部15b、15c、18b、18cとを備えている。
ここで、熱交換コア部15a、18aは、それぞれ上下方向に延びる複数のチューブ21を備える。これら複数のチューブ21の間には、被熱交換媒体、この実施形態では冷却される空気が通る通路が形成される。これら複数のチューブ21相互間には、フィン22を配置し、チューブ21とフィン22とを接合することができる。
熱交換コア部15a、18aは、チューブ21とフィン22との積層構造体からなる。このチューブ21とフィン22は熱交換コア部15a、18aの左右方向に交互に積層配置される。なお、図2では、チューブ21とフィン22の積層構造体の一部のみ図示しているが、熱交換コア部15a、18aの全域にチューブ21とフィン22の積層構造が構成され、この積層構造体の空隙部を電動送風機19の送風空気が通過するようになっている。
チューブ21は、冷媒通路を構成するもので、断面形状が空気流れ方向Aに沿って扁平な扁平チューブよりなる。フィン22は、薄板材を波状に曲げ成形したコルゲートフィンであり、折り曲げ部と折り曲げ部との間に熱交換を促進するルーバー22a(図6参照)が設けられ、チューブ21の平坦な外面側に接合され空気側伝熱面積を拡大する。
熱交換コア部15aのチューブ21と熱交換コア部18aのチューブ21は、互いに独立した冷媒通路を構成し、第1蒸発器15の上下両側のタンク部15b、15cと、第2蒸発器18の上下両側のタンク部18b、18cは、互いに独立した冷媒通路空間を構成している。
第1蒸発器15の上下両側のタンク部15b、15cは、熱交換コア部15aのチューブ21の上下両端部が挿入され、かつ接合されるチューブ嵌合穴部(図示せず)を有し、チューブ21の上下両端部がタンク部15b、15cの内部空間に連通するようになっている。
同様に、第2蒸発器18の上下両側のタンク部18b、18cは、熱交換コア部18aのチューブ21の上下両端部が挿入され、かつ接合されるチューブ嵌合穴部(図示せず)を有し、チューブ21の上下両端部がタンク部18b、18cの内部空間に連通するようになっている。
これにより、上下両側のタンク部15b、15c、18b、18cは、それぞれ対応する熱交換コア部15a、18aの複数のチューブ21へ冷媒流れを分配し、あるいは複数のチューブ21からの冷媒流れを集合する役割を果たす。
2つの上側タンク15b、18b、および2つの下側タンク15c、18cは、空気流れ方向Aにおいて、隣接しているので、2つの上側タンク15b、18b同士、および2つの下側タンク15c、18c同士を一体成形することができる。もちろん、2つの上側タンク15b、18b、および2つの下側タンク15c、18cをそれぞれ独立の部材として成形してもよい。
なお、チューブ21、フィン22、タンク部15b、15c、18b、18c等の蒸発器構成部品の具体的材質としては、熱伝導性やろう付け性に優れた金属であるアルミニウムが好適であり、このアルミニウム材にて各部品を成形することにより、第1、第2蒸発器15、18の全体構成を一体ろう付けにて組み付けることができる。
ここで、本実施形態では、図3に示す冷媒通路の第1、第2接続ブロック23、24、および絞り機構17を構成するキャピラリチューブ17aもろう付けにて第1、第2蒸発器15、18と一体に組み付けるようになっている。
これに対し、エジェクタ14は、ノズル部14aに高精度な微小通路を形成しているので、エジェクタ14をろう付けすると、ろう付け時の高温度(アルミニウムのろう付け温度:600℃付近)にてノズル部14aが熱変形して、ノズル部14aの通路形状、寸法等を所期の設計通りに維持できないという不具合が生じる。
そこで、エジェクタ14については、第1、第2蒸発器15、18、第1、第2接続ブロック23、24およびキャピラリチューブ17aの一体ろう付けを行った後に、蒸発器側に組み付けするようにしてある。
エジェクタ14、キャピラリチューブ17a、および第1、第2接続ブロック23、24の組み付け構造を、より具体的に説明する。キャピラリチューブ17aおよび第1、第2接続ブロック23、24は、蒸発器部品と同様にアルミニウム材にて成形される。第1接続ブロック23は、図3に示すように、第1、第2蒸発器15、18の上側タンク15b、18bの長手方向の一方の側面部にろう付け固定される部材であって、図1に示す一体化ユニット20の1つの冷媒入口25と1つの冷媒出口26とを構成する。
冷媒入口25は、第1接続ブロック23の厚さ方向の途中にて、エジェクタ14の入口側に向かう第1通路をなす主通路25aと、キャピラリチューブ17aの入口側に向かう第2通路をなす分岐通路16とに分岐される。この分岐通路16は、図1の分岐通路16の入口部分に相当する。従って、図1の分岐点Zは、第1接続ブロック23の内部に構成されることになる。
これに対し、冷媒出口26は、第1接続ブロック23の厚さ方向に貫通する1つの単純な通路穴(円形穴等)で構成される。そして、第1接続ブロック23の分岐通路16は、キャピラリチューブ17aの一端部(図2、図3の左端部)にろう付けによりシール接合される。
第2接続ブロック24は、第2蒸発器18の上側タンク18bの内部空間の長手方向の略中央部に配置され、上側タンク18bの内壁面にろう付けされる部材である。この第2接続ブロック24は、上側タンク18bの内部空間をタンク長手方向の2つの空間、すなわち、左側空間27と右側空間28とに仕切る役割を果たす。
そして、キャピラリチューブ17aの他端側(右端側)は、図3に示すように、第2接続ブロック24の支持穴24aを貫通して上側タンク18bの右側空間28内に開口している。なお、キャピラリチューブ17aの外周面と支持穴24aの内周面との間は、ろう付けにより密閉されるので、上記左右の両空間27と28の間は遮断されたままである。
エジェクタ14のうち、ノズル部14aは、ステンレス、黄銅等の材質で形成され、ノズル部14a以外の部分(冷媒吸引口14bを形成するハウジング部分、混合部14c、ディフューザ部14d等)は、銅、アルミニウムといった金属材にて構成するが、樹脂(非金属材)で構成してもよい。
エジェクタ14は、第1、第2蒸発器15、18等を一体ろう付けする組み付け工程(ろう付け工程)の終了後に、第1接続ブロック23の冷媒入口25および主通路25aの穴を貫通して上側タンク18bの内部に差し込まれる。
ここで、エジェクタ14の長手方向の先端部は、図1のディフューザ部14dの出口部に相当する部分であり、このエジェクタ先端部は、第2接続ブロック24の円形凹部24b内に挿入され、Oリング29aを用いてシール固定される。そして、エジェクタ先端部は、第2接続ブロック24の連通穴部24cに連通する。
第1蒸発器15の上側タンク15bの内部空間の長手方向の略中央部には、仕切板30が配置され、この仕切板30によって上側タンク15bの内部空間が長手方向の2つの空間、すなわち、左側空間31と右側空間32とに仕切られている。
第2接続ブロック24の連通穴部24cは、両上側タンク15b、18bの中間壁面33の貫通穴33aを介して第1蒸発器15の上側タンク15bの右側空間32に連通している。エジェクタ14の長手方向の左端部(図3の左端部)は、図1のノズル部14aの入口部に相当する部分であり、この左端部は、Oリング29bを用いて第1接続ブロック23の主通路25aの内壁面に嵌合し、シール固定される。
なお、エジェクタ14の長手方向の固定は、例えば、図示しないねじ止め固定手段を用いて行えばよい。Oリング29aは、第2接続ブロック24の溝部(図示省略)に、Oリング29bは、第1接続ブロック23の溝部(図示省略)にそれぞれ保持される。
第1接続ブロック23は、その冷媒出口26が上側タンク15bの左側空間31と連通し、主通路25aが上側タンク18bの左側空間27と連通し、かつ、分岐通路16がキャピラリチューブ17aの一端部と連通した状態で上側タンク15b、18bの側面壁にろう付けされる。また、エジェクタ14の冷媒吸引口14bは、第2蒸発器18の上側タンク18bの左側空間27に連通するようになっている。
本実施形態では、第2接続ブロック24により第2蒸発器18の上側タンク部18bの内部を左右の空間27、28に仕切り、左側空間27が複数のチューブ21からの冷媒を集合させる集合タンクとしての役割を果たし、右側空間28が冷媒を複数のチューブ21へ分配する分配タンクとしての役割を果たす。
エジェクタ14は、そのノズル部14aの軸方向に延びる細長の円筒形状となっており、その細長円筒形状の長手方向を上側タンク部18bの長手方向に一致させて、エジェクタ14が上側タンク部18bと平行に設置されている。
この構成は、エジェクタ14と第2蒸発器18とをコンパクトに配置することができ、ひいては、ユニット全体の体格をコンパクトにまとめることができる。しかも、エジェクタ14は、集合タンクをなす左側空間27内に配置され、その冷媒吸引口14bを、集合タンクをなす左側空間27内において、直接に開口させて設置されている。この構成は、冷媒配管を減らすことを可能とする。この構成は、複数のチューブ21からの冷媒の集合と、エジェクタ14への冷媒供給(冷媒吸引)とをひとつのタンクで実現できる利点を提供する。
また、本実施形態では、第1蒸発器15が第2蒸発器18と隣接して設けられており、エジェクタ14の下流側端部は、第1蒸発器15の分配タンク(上側タンク部15の右側空間32)と隣接して設置されている。この構成は、エジェクタ14が第2蒸発器18側のタンク部に内蔵される配置形態であっても、エジェクタ14からの流出冷媒をごく短い簡単な冷媒通路(穴部24c、33a)にて第1蒸発器15側へ供給できるという利点を提供する。
以上の構成において、一体化ユニット20全体の冷媒流路を図2、図3により具体的に説明する。第1接続ブロック23の冷媒入口25は、前述の通り、主通路25aと分岐通路16とに分岐されている。主通路25aの冷媒は、まず、エジェクタ14(ノズル部14a→混合部14c→ディフューザ部14d)を通過して減圧され、この減圧後の低圧冷媒は、第2接続ブロック24の連通穴部24c、中間壁面33の貫通穴33aを経て、矢印aのように、第1蒸発器15の上側タンク15bの右側空間32に流入する。
この右側空間32の冷媒は、熱交換コア部15aの右側部の複数のチューブ21を、矢印bのように、下降して下側タンク15c内の右側部に流入する。この下側タンク15c内には、仕切板が設けてないので、この下側タンク15cの右側部から冷媒は、矢印cのように、左側部へと移動する。
この下側タンク15cの左側部の冷媒は、熱交換コア部15aの左側部の複数のチューブ21を、矢印dのように、上昇して上側タンク15bの左側空間31に流入し、さらに、ここから冷媒は、矢印eのように、第1接続ブロック23の冷媒出口26へと流れる。
これに対し、第1接続ブロック23の分岐通路16の冷媒は、まずキャピラリチューブ17aを通過して減圧され、この減圧後の低圧冷媒は、矢印fのように、第2蒸発器18の上側タンク18bの右側空間28に流入する。
この右側空間28の冷媒は、熱交換コア部18aの右側部の複数のチューブ21を、矢印gのように、下降して下側タンク18c内の右側部に流入する。この下側タンク18c内には、仕切板が設けてないので、この下側タンク18cの右側部から冷媒は、矢印hのように左側部へと移動する。
この下側タンク18cの左側部の冷媒は、熱交換コア部18aの左側部の複数のチューブ21を、矢印iのように、上昇して上側タンク18bの左側空間27に流入する。この左側空間27にエジェクタ14の冷媒吸引口14bが連通しているので、この左側空間27内の冷媒は、冷媒吸引口14bからエジェクタ14内に吸引される。
一体化ユニット20は、以上のような冷媒流路構成を持つため、一体化ユニット20全体として冷媒入口25は、第1接続ブロック23に1つ設けるだけでよく、また冷媒出口26も第1接続ブロック23に1つ設けるだけでよい。
以上の構成によるエジェクタ式冷凍サイクル用ユニットの作動を説明する。圧縮機11を車両エンジンにより駆動すると、圧縮機11で圧縮され吐出された高温高圧状態の冷媒は、放熱器12に流入する。放熱器12では、高温の冷媒が外気により冷却されて凝縮する。放熱器12から流出した高圧冷媒は、受液器12a内に流入し、この受液器12a内にて冷媒の気液が分離され、液冷媒が受液器12aから導出され膨張弁13を通過する。
この膨張弁13では、第1蒸発器15の出口冷媒(圧縮機吸入冷媒)の過熱度が所定値となるように弁開度(冷媒流量)が調整され、高圧冷媒が減圧される。この膨張弁13通過後の冷媒(中間圧冷媒)は、一体化ユニット20の第1接続ブロック23に設けられた1つの冷媒入口25に流入する。
ここで、冷媒流れは、第1接続ブロック23の主通路25aからエジェクタ14に向かう冷媒流れと、第1接続ブロック23の冷媒分岐通路16からキャピラリチューブ17aに向かう冷媒流れとに分流する。
そして、エジェクタ14に流入した冷媒流れは、ノズル部14aで減圧され膨張する。従って、ノズル部14aで冷媒の圧力エネルギーが速度エネルギーに変換され、このノズル部14aの噴出口から冷媒は、高速度となって噴出する。この際の冷媒圧力低下により、冷媒吸引口14bから分岐冷媒通路16の第2蒸発器18通過後の冷媒(気相冷媒)を吸引する。
ノズル部14aから噴出した冷媒と冷媒吸引口14bに吸引された冷媒は、ノズル部14a下流側の混合部14cで混合してディフューザ部14dに流入する。このディフューザ部14dでは、通路面積の拡大により、冷媒の速度(膨張)エネルギーが圧力エネルギーに変換されるため、冷媒の圧力が上昇する。
そして、エジェクタ14のディフューザ部14dから流出した冷媒は、第1蒸発器15における図2の矢印a乃至eの冷媒流路に沿って流れる。この間に、第1蒸発器15の熱交換コア部15aでは、低温の低圧冷媒が矢印A方向の送風空気から吸熱して蒸発する。この蒸発後の気相冷媒は、1つの冷媒出口26から圧縮機11に吸入され、再び圧縮される。
一方、冷媒分岐通路16に流入した冷媒流れは、キャピラリチューブ17aで減圧されて低圧冷媒となり、この低圧冷媒が第2蒸発器18における図2の矢印f乃至iの冷媒流路に沿って流れる。この間に、第2蒸発器18の熱交換コア部18aでは、低温の低圧冷媒が、第1蒸発器15通過後の送風空気から吸熱して蒸発する。この蒸発後の気相冷媒は冷媒吸引口14bからエジェクタ14内に吸引される。
ところで、本実施形態のように、電磁クラッチ11aの断続運転によって駆動される圧縮機11を備えるエジェクタ式冷凍サイクル用ユニットでは、過渡期、低負荷時において、フロスト制御を電磁クラッチ11aのON、OFF運転によって行っている。そのため、電磁クラッチ11aをONにしたとき、即ち圧縮機11が駆動したとき、第1蒸発器15のタンク15b内の冷媒が、第2蒸発器18側よりも強く圧縮機11により吸引される。
その結果、第1蒸発器15の出口側冷媒圧力が急激に低下して冷媒温度が第2蒸発器18よりも低温になるため、第2蒸発器18よりも第1蒸発器15にフロスト(霜)が成長し易い問題がある。
そこで、本実施形態では、第1蒸発器15のフィン密度を第2蒸発器18のフィン密度よりも小さくなるように構成している。言い換えると、第1蒸発器15の方が、第2蒸発器18よりも、凝縮水の滴下がし易いフィン密度となるように構成されている。つまり、第1蒸発器15側の凝縮水の排水性が向上することにより、フロストの成長を防止することができる。
第1蒸発器15および第2蒸発器18の具体例を図5乃至図9により説明する。図5は、図2に示すチューブ21とフィン22の積層構造体を示す部分拡大図である。図6は、図2の一体化ユニットの第1、第2蒸発器の構成を示す模式図である。図7は、図2の一体化ユニットの第1、第2蒸発器の変形例の構成を示す模式図である。図8は、フィン高さFHに対する伝熱量との関係をフィンピッチFPごとに示す特性図である。図9は、通風抵抗とフィンピッチFPとの関係を示す特性図である。
ここで、フィン密度は、図5に示すように、フィンピッチFPまたはフィン高さFHの大きさを変えることで設定できる。フィンピッチFPは、波形に折り曲げられたフィン22の隣り合う山(もしくは谷)間の距離を言う。また、フィン高さFHは、波形に折り曲げられたフィン22の山と谷との間の距離、即ち谷の底面から山の頂点までの高さ寸法を言う。
なお、本実施形態では、風上側のフィンピッチFPをFP15と称し、風下側のフィンピッチFPをFP18と称する。また、風上側のフィン高さFHをFH15と称し、風下側のフィン高さFHをFH18と称する。
従って、フィンピッチFPを小さくすることにより、フィン密度を大きくできる。また、フィンピッチFPを大きくすることにより、フィン密度を小さくできる。同じように、フィン高さFHを小さくすることにより、フィン密度を大きくできる。また、フィン高さFHを大きくすることにより、フィン密度を小さくできる。
そこで、本実施形態では、図6に示すように、第1蒸発器15側のフィンピッチFP15が、第2蒸発器18側のフィンピッチFP18よりも大きくなるように構成されている。そして、第1蒸発器15側のフィン高さFH15と第2蒸発器18側のフィン高さFH18とが同等となるように構成されている。これにより、風上側の第1蒸発器15の方が風下側の第2蒸発器18よりもフィン密度を小さく形成できる。
また、これに限らす、図7に示すように、第1蒸発器15側のフィン高さFH15が、第2蒸発器18側のフィン高さFH18よりも大きくなるように構成されている。そして、第1蒸発器15側のフィンピッチFP15と第2蒸発器18側のフィンピッチFP18とが同等となるように構成されている。これにより、風上側の第1蒸発器15の方が風下側の第2蒸発器18よりもフィン密度が小さく形成できる。
凝縮水の排水性を高めるためには、フィン密度が小さくなることが望ましい。ところが、フィン密度が小さくなると、蒸発器15、18の熱交換器性能に影響を及ぼす。そのため、発明者らは、図8に示す特性図に基づいて、排水性の優れるフィンピッチFPおよびフィン高さFHを実験によって求めた。
フィン高さFHと伝熱量との関係は、図8に示すように、フィン高さFHがある範囲内(約4mm〜約7.5mm)の値のときに、伝熱量の最大値が得られる。また、フィンピッチFPと伝熱量との関係は、フィンピッチFPが小さくなるに連れて伝熱量を増加できる。そして、フィン高さFHが少なくとも約4mm以上あれば、凝縮水の排水性が良好であることが分った。そして、フィン高さFHが約7.5mm以下であれば、伝熱量を確保できることが分った。
一方、フィンピッチFPにおいては、図9に示すように、フィンピッチFPが少なくとも約2.5mm以上であれば、凝縮水の排水性が良好であるとともに、通風抵抗の低減ができることが分った。そして、フィンピッチFPが約3.5mm以下であれば、伝熱量を確保できることが分った。
つまり、フィン高さFHが約4mm〜約7.5mmの範囲内であれば、排水性が優れるとともに、伝熱量の確保ができる。また、フィンピッチFPが約2.5mm〜約3.5mmの範囲内であれば、排水性が優れるとともに、伝熱量の確保ができる。
風上側に設置される第1蒸発器15を、上述したようなフィンピッチFPもしくはフィン高さFHとすることにより、第1蒸発器15のフィン22に発生した凝縮水の排水性を向上できる。従って、フロスト(霜)の成長を防ぐことができるため、フロスト性の向上が図れる。
(第2実施形態)
以上の第1実施形態では、固定容量型の圧縮機11を用いたエジェクタ式冷凍サイクル用ユニットに本発明を適用させたが、吐出容量の変化により冷媒吐出能力を調整できる可変容量型の圧縮機11を用いたエジェクタ式冷凍サイクル用ユニットに本発明を適用させても良い。
この場合には、冷媒の吐出量を変化させてフロスト運転を行っている。そのため、低負荷時において、圧縮機11の吸引による急激な圧力変動が起きない。つまり、風下側に配置された第2蒸発器18の方が、第1蒸発器15よりも常に低温となっている。
従って、凝縮水は、風上側の第1蒸発器15よりも、風下側の第2蒸発器18の方が多量に発生する。そのため、第1蒸発器15よりも第2蒸発器18にフロストが成長し易い問題がある。そこで、本実施形態では、第2蒸発器18のフィン密度を第1蒸発器15のフィン密度よりも小さくなるように構成している。
言い換えると、第1蒸発器15の方が、第2蒸発器18よりも、凝縮水の滴下がし易いフィン密度となるように構成されている。第1蒸発器15および第2蒸発器18の具体例を図10により説明する。図10は、本実施形態における一体化ユニットの第1、第2蒸発器の構成を示す模式図である。本実施形態では、図10に示すように、風下側の第2蒸発器18側のフィンピッチFP18が、風上側の第1蒸発器15側のフィンピッチFP15よりも大きくなるように構成されている。
そして、第2蒸発器18側のフィン高さFH18と第1蒸発器15側のフィン高さFH15とが同等となるように構成されている。これにより、第2蒸発器18の方が第1蒸発器15よりもフィン密度が小さく形成できる。従って、第2蒸発器18側の凝縮水の排水性が向上することにより、フロストの成長を防止することができる。
また、これに限らず、図示しないが、第2蒸発器18側のフィン高さFH18を、第1蒸発器15側のフィン高さFH15よりも大きくなるように構成しても良い。ただし、このときは、第2蒸発器18側のフィンピッチFP18と第1蒸発器15側のフィンピッチFP15とを同等となるように構成している。これにより、第2蒸発器18の方が第1蒸発器15よりもフィン密度が小さく形成できる。
(第3実施形態)
以上の実施形態では、低温側となる蒸発器15、18のフィン密度を小さくするように構成したが、低温側となる蒸発器15、18を、凝縮水が排水し易いように形成しても良い。第1蒸発器15および第2蒸発器18の具体例を図11により説明する。図11は、本実施形態における一体化ユニットの第1、第2蒸発器の構成を示す模式図である。
ここで、固定容量型の圧縮機11を用いたエジェクタ式冷凍サイクル用ユニットの場合には、図11に示すように、風上側の第1蒸発器15が低温側となっている。従って、本実施形態では、風上側の第1蒸発器15の下方側に空間22bを有するようにフィン22が配設されている。つまり、第1蒸発器15側の凝縮水が排水され易いように第1蒸発器15の下方側に空間22bが形成されている。
例えば、フィン22の末端に形成されるルーバー22aの代わりに、開口孔を形成すれば良い。つまり、薄板材にルーバー22aおよび開口孔を形成した後に、波状に曲げ成形すれば、フィン22の下方端側に、図11に示すような空間22bが形成できる。これにより、上方から流れ落ちた凝縮水の滴下が促進される。従って、低温側の第1蒸発器15において、凝縮水の排水性が向上する。
また、可変容量型の圧縮機11を用いたエジェクタ式冷凍サイクル用ユニットの場合は、風下側の第2蒸発器18の下方側に空間22bを有するようにフィン22を配設すれば良い。
(第4実施形態)
以上の第3実施形態では、低温側となる第1蒸発器15の下方端側に空間22bを有するようにフィン22を配設させたが、これに限らず、フィン22を凝縮水が滴下し易いように形成しても良い。第1蒸発器15および第2蒸発器18の具体例を図12及び図13により説明する。図12は、本実施形態における一体化ユニットの第1、第2蒸発器の構成を示す模式図である。図13は、第1、第2蒸発器に配設されるフィンの斜視図である。
本実施形態のフィン22は、図13に示すように、風上側の第1蒸発器15と風下側の第2蒸発器18とが一体となるように形成されている。そして、風上側に配置されるフィン22の中途に排水孔22cが形成されている。従って、本実施形態のフィン22は、同一のフィンピッチFPおよびフィン高さFHとなっている。
そして、この種のフィン22が、蒸発器15、18に配列されると、図12に示すように、第1蒸発器15側に、高さ方向の中途に排水孔22cが配置されることになる。これにより、上方から流れ落ちた凝縮水の滴下が促進される。従って、低温側の第1蒸発器15において、凝縮水の排水性が向上する。
(他の実施形態)
以上の実施形態では、冷媒として高圧圧力が臨界圧力を超えないフロン系、HC系等の冷媒を用いる蒸気圧縮式の亜臨界サイクルについて説明したが、冷媒として二酸化炭素(CO2)のように高圧圧力が臨界圧力を超える冷媒を用いる蒸気圧縮式の超臨界サイクルに本発明を適用してもよい。
但し、超臨界サイクルでは、圧縮機吐出冷媒が放熱器12にて超臨界状態のまま放熱するのみであり、凝縮しないので、高圧側に配置される受液器12aでは冷媒の気液分離作用および余剰液冷媒の貯留作用を発揮できない。そこで、超臨界サイクルでは、第1蒸発器15の出口側に低圧側気液分離器をなす図示しないアキュムレータを配置する構成を採用すればよい。
また、以上の実施形態では、絞り機構17をキャピラリチューブ17aまたはオリフィスで構成しているが、絞り機構17を電動アクチュエータにより弁開度(通路絞り開度)が調整可能になっている電気制御弁で構成してもよい。また、絞り機構17をキャピラリチューブ17aのごとき固定絞りと電磁弁との組み合わせで構成してもよい。
また、以上の実施形態では、第1、第2蒸発器15、18の冷却対象空間として、車室内空間である場合や、冷凍車の冷凍冷蔵庫内空間である場合について述べたが、本発明は、これらの車両用に限らず、定置用等の種々な用途の冷凍サイクルに対して広く適用可能である。
また、以上の実施形態では、温度式膨張弁13と感温部13aとを、エジェクタ式冷凍サイクル用ユニットとは別体として構成した。しかし、エジェクタ式冷凍サイクル用ユニットに、温度式膨張弁13と感温部13aとを一体的に組みつけてもよい。例えば、温度式膨張弁13と感温部13aとを一体化ユニット20の第1接続ブロック23内に収容する構成を採用することができる。この場合、冷媒入口25は、受液器12aと温度式膨張弁13との間に位置し、冷媒出口26は感温部13aを設置した通路部位と圧縮機11との間に位置することとなる。
第1実施形態におけるエジェクタ式冷凍サイクルの冷媒回路図である。 第1実施形態における一体化ユニットの全体構成の概要を示す斜視図である。 第1実施形態における第1、第2蒸発器の上側タンク部の横断面図である。 第1実施形態における第2蒸発器の上側タンク部の模式図である。 図2に示すチューブとフィンの積層構造体を示す部分拡大図である。 図2の一体化ユニットの第1、第2蒸発器の構成を示す模式図である。 図2の一体化ユニットの第1、第2蒸発器の変形例の構成を示す模式図である。 フィン高さFHに対する伝熱量との関係をフィンピッチFPごとに示す特性図である。 通風抵抗とフィンピッチFPとの関係を示す特性図である。 第2実施形態における一体化ユニットの第1、第2蒸発器の構成を示す模式図である。 第3実施形態における一体化ユニットの第1、第2蒸発器の構成を示す模式図である。 第4実施形態における一体化ユニットの第1、第2蒸発器の構成を示す模式図である。 図12に示す第1、第2蒸発器に配設されるフィンの斜視図である。
符号の説明
11a…電磁クラッチ
12…放熱器
14…エジェクタ
14a…ノズル部
14b…冷媒吸引口
15…第1蒸発器(風上側熱交換部)
15a…熱交換コア部
18…第2蒸発器(風下側熱交換部)
18a…熱交換コア部
21…チューブ(偏平チューブ)
22…フィン
22b…空間
22c…排水孔
A…空気流れ
FH…フィン高さ
FP…フィンピッチ

Claims (9)

  1. 断続的に駆動運転されて、冷媒を圧縮して吐出する固定容量型の圧縮機(11)と、
    前記圧縮機(11)から吐出された高温高圧冷媒を放熱させる放熱器(12)と、
    前記放熱器(12)から供給される冷媒を減圧して蒸発させるノズル部(14a)および前記ノズル部(14a)から噴射する高速度の冷媒流により冷媒を吸引する冷媒吸引口(14b)を有するエジェクタ(14)と、
    冷媒と熱交換する空気流れ(A)の風上側に配置され、前記エジェクタ(14)の出口側に接続されて前記エジェクタ(14)から吐出された冷媒を蒸発させる風上側熱交換部(15)と、
    前記風上側熱交換部(15)に対して前記空気流れ(A)の風下側に配置され、下流側の出口部が前記冷媒吸引口(14b)に接続されて、前記エジェクタ(14)に吸引される冷媒を蒸発させる風下側熱交換部(18)とを備えるエジェクタ式冷凍サイクル用ユニットにおいて、
    前記風上側熱交換部(15)と前記風下側熱交換部(18)とが一体的に構成されており、
    前記風上側熱交換部(15)と前記風下側熱交換部(18)の熱交換コア部(15a、18a)は、複数の偏平チューブ(21)とフィン(22)との積層構造体から構成されており、
    前記風上側熱交換部(15)のフィン(22)のフィンピッチ(FP)またはフィン高さ(FH)の少なくとも一方を、前記風下側熱交換部(18)のフィン(22)のフィンピッチ(FP)またはフィン高さ(FH)よりも大きくすることにより、前記風上側熱交換部(15)のフィン密度が前記風下側熱交換部(18)のフィン密度よりも小さくなっていることを特徴とするエジェクタ式冷凍サイクル用ユニット。
  2. 前記風上側熱交換部(15)のフィン(22)のフィン高さ(FH)は、約4mm以上で、かつ約7.5mm未満であることを特徴とする請求項1に記載のエジェクタ式冷凍サイクル用ユニット。
  3. 前記風上側熱交換部(15)のフィン(22)のフィンピッチ(FP)は、約2.5mm以上で、かつ約3.5mm未満であることを特徴とする請求項1または請求項2に記載のエジェクタ式冷凍サイクル用ユニット。
  4. 連続的に駆動運転されて、冷媒を圧縮して吐出する可変容量型の圧縮機(11)と、
    前記圧縮機(11)から吐出された高温高圧冷媒を放熱させる放熱器(12)と、
    前記放熱器(12)から供給される冷媒を減圧して蒸発させるノズル部(14a)および前記ノズル部(14a)から噴射する高速度の冷媒流により冷媒を吸引する冷媒吸引口(14b)を有するエジェクタ(14)と、
    冷媒と熱交換する空気流れ(A)の風上側に配置され、前記エジェクタ(14)の出口側に接続されて前記エジェクタ(14)から吐出された冷媒を蒸発させる風上側熱交換部(15)と、
    前記風上側熱交換部(15)に対して前記空気流れ(A)の風下側に配置され、下流側の出口部が前記冷媒吸引口(14b)に接続されて、前記エジェクタ(14)に吸引される冷媒を蒸発させる風下側熱交換部(18)とを備えるエジェクタ式冷凍サイクル用ユニットにおいて、
    前記風上側熱交換部(15)と前記風下側熱交換部(18)とが一体的に構成されており、
    前記風上側熱交換部(15)と前記風下側熱交換部(18)の熱交換コア部(15a、18a)は、複数の偏平チューブ(21)とフィン(22)との積層構造体から構成されており、
    前記風下側熱交換部(18)のフィン(22)のフィンピッチ(FP)またはフィン高さ(FH)のすくなくとも一方を、前記風上側熱交換部(15)のフィン(22)のフィンピッチ(FP)またはフィン高さ(FH)よりも大きくすることにより、前記風下側熱交換部(18)のフィン密度が前記風上側熱交換部(15)のフィン密度よりも小さくなっていることを特徴とするエジェクタ式冷凍サイクル用ユニット。
  5. 前記風下側熱交換部(18)のフィン(22)のフィン高さ(FH)は、約4mm以上で、かつ約7.5mm未満であることを特徴とする請求項4に記載のエジェクタ式冷凍サイクル用ユニット。
  6. 前記風下側熱交換部(18)のフィン(22)のフィンピッチ(P)は、約2.5mm以上で、かつ約3.5mm未満であることを特徴とする請求項4または請求項5に記載のエジェクタ式冷凍サイクル用ユニット。
  7. 冷媒を圧縮して吐出する圧縮機(11)と、
    前記圧縮機(11)から吐出された高温高圧冷媒を放熱させる放熱器(12)と、
    前記放熱器(12)から供給される冷媒を減圧して蒸発させるノズル部(14a)および前記ノズル部(14a)から噴射する高速度の冷媒流により冷媒を吸引する冷媒吸引口(14b)を有するエジェクタ(14)と、
    冷媒と熱交換する空気流れ(A)の風上側に配置され、前記エジェクタ(14)の出口側に接続されて前記エジェクタ(14)から吐出された冷媒を蒸発させる風上側熱交換部(15)と、
    前記風上側熱交換部(15)に対して前記空気流れ(A)の風下側に配置され、下流側の出口部が前記冷媒吸引口(14b)に接続されて、前記エジェクタ(14)に吸引される冷媒を蒸発させる風下側熱交換部(18)とを備えるエジェクタ式冷凍サイクル用ユニットにおいて、
    前記風上側熱交換部(15)と前記風下側熱交換部(18)とが一体的に構成されており、
    前記風上側熱交換部(15)と前記風下側熱交換部(18)の熱交換コア部(15a、18a)は、複数の偏平チューブ(21)とフィン(22)との積層構造体から構成されており、
    前記冷媒を蒸発させたときに前記風上側熱交換部(15)と前記風下側熱交換部(18)の外表面に発生する凝縮水の発生量が多い方の熱交換部(15、18)のフィン(22)は、他方の熱交換部(15、18)のフィン(22)よりも、前記凝縮水が排水され易い、または滴下し易い形状に形成されていることを特徴とするエジェクタ式冷凍サイクル用ユニット。
  8. 凝縮水の発生量が多い方の熱交換部(15、18)のフィン(22)の下方端側に、凝縮水が排水され易いように、空間(22b)が形成されていることを特徴とする請求項7に記載のエジェクタ式冷凍サイクル用ユニット。
  9. 前記風上側熱交換部(15)と前記風下側熱交換部(18)のフィン(22)のフィンピッチ(FP)およびフィン高さ(FH)は、相互に同一に形成されており、
    凝縮水の発生量が多い方の熱交換部(15、18)のフィン(22)に、複数の排水孔(22c)が形成されていることを特徴とする請求項7に記載のエジェクタ式冷凍サイクル用ユニット。
JP2007253479A 2007-09-28 2007-09-28 エジェクタ式冷凍サイクル用ユニット Pending JP2009085464A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007253479A JP2009085464A (ja) 2007-09-28 2007-09-28 エジェクタ式冷凍サイクル用ユニット

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007253479A JP2009085464A (ja) 2007-09-28 2007-09-28 エジェクタ式冷凍サイクル用ユニット

Publications (1)

Publication Number Publication Date
JP2009085464A true JP2009085464A (ja) 2009-04-23

Family

ID=40659120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007253479A Pending JP2009085464A (ja) 2007-09-28 2007-09-28 エジェクタ式冷凍サイクル用ユニット

Country Status (1)

Country Link
JP (1) JP2009085464A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102252464A (zh) * 2011-06-10 2011-11-23 三花丹佛斯(杭州)微通道换热器有限公司 换热器
CN103032983A (zh) * 2013-01-09 2013-04-10 唐玉敏 一种带两级蒸发器的热利用系统
CN113571797A (zh) * 2021-06-29 2021-10-29 哈尔滨工程大学 一种包裹v形翅片的电池雾冷热管理系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5998253A (ja) * 1982-11-27 1984-06-06 Toshiba Corp マイクロプログラム制御装置
JPS60144579A (ja) * 1983-12-29 1985-07-30 日産自動車株式会社 蒸発器
JPH05322478A (ja) * 1991-10-24 1993-12-07 Nippondenso Co Ltd 熱交換器
JPH1130494A (ja) * 1997-05-16 1999-02-02 Hitachi Ltd 熱交換装置およびこれを用いた空気調和機
JP2001255093A (ja) * 2000-03-09 2001-09-21 Zexel Valeo Climate Control Corp 蒸発器
JP2003214790A (ja) * 2002-01-23 2003-07-30 Denso Corp 熱交換器
JP2007057222A (ja) * 2005-04-05 2007-03-08 Denso Corp エジェクタ式冷凍サイクル用ユニット

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5998253A (ja) * 1982-11-27 1984-06-06 Toshiba Corp マイクロプログラム制御装置
JPS60144579A (ja) * 1983-12-29 1985-07-30 日産自動車株式会社 蒸発器
JPH05322478A (ja) * 1991-10-24 1993-12-07 Nippondenso Co Ltd 熱交換器
JPH1130494A (ja) * 1997-05-16 1999-02-02 Hitachi Ltd 熱交換装置およびこれを用いた空気調和機
JP2001255093A (ja) * 2000-03-09 2001-09-21 Zexel Valeo Climate Control Corp 蒸発器
JP2003214790A (ja) * 2002-01-23 2003-07-30 Denso Corp 熱交換器
JP2007057222A (ja) * 2005-04-05 2007-03-08 Denso Corp エジェクタ式冷凍サイクル用ユニット

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102252464A (zh) * 2011-06-10 2011-11-23 三花丹佛斯(杭州)微通道换热器有限公司 换热器
CN103032983A (zh) * 2013-01-09 2013-04-10 唐玉敏 一种带两级蒸发器的热利用系统
CN113571797A (zh) * 2021-06-29 2021-10-29 哈尔滨工程大学 一种包裹v形翅片的电池雾冷热管理系统

Similar Documents

Publication Publication Date Title
JP4259531B2 (ja) エジェクタ式冷凍サイクル用ユニット
JP4548350B2 (ja) エジェクタ式冷凍サイクル用ユニット
JP4692295B2 (ja) 蒸発器ユニットおよびエジェクタ式冷凍サイクル
JP4770474B2 (ja) エジェクタ式冷凍サイクル用ユニットおよびその製造方法
JP2007192502A (ja) 熱交換器
JP4720855B2 (ja) 熱交換器
JP5050563B2 (ja) エジェクタ及びエジェクタ式冷凍サイクル用ユニット
JP4645681B2 (ja) 蒸発器ユニット
US7726150B2 (en) Ejector cycle device
JP2007333292A (ja) エジェクタ式冷凍サイクル
JP2005308384A (ja) エジェクタサイクル
JP2009085569A (ja) 蒸発器ユニット
JP4770891B2 (ja) エジェクタ式冷凍サイクル用ユニット
JP5062066B2 (ja) エジェクタ式冷凍サイクル用蒸発器ユニット
JP2008138895A (ja) 蒸発器ユニット
JP2009085464A (ja) エジェクタ式冷凍サイクル用ユニット
JP4577291B2 (ja) 冷媒蒸発器
JP4784418B2 (ja) エジェクタ式冷凍サイクルおよび蒸発器ユニット
JP2008281338A (ja) エジェクタサイクル
JP2007057177A (ja) 蒸気圧縮式冷凍サイクル装置
JP2009058179A (ja) エジェクタ式冷凍サイクル用ユニット
JP4910567B2 (ja) エジェクタ式冷凍サイクル
JP4998445B2 (ja) 蒸発器および冷凍サイクル装置
JP2008075904A (ja) 蒸発器ユニットおよびエジェクタ式冷凍サイクル

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20091202

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110729

A131 Notification of reasons for refusal

Effective date: 20110809

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111206