JP2009058324A - Position measuring method and device for current-carrying part - Google Patents

Position measuring method and device for current-carrying part Download PDF

Info

Publication number
JP2009058324A
JP2009058324A JP2007225010A JP2007225010A JP2009058324A JP 2009058324 A JP2009058324 A JP 2009058324A JP 2007225010 A JP2007225010 A JP 2007225010A JP 2007225010 A JP2007225010 A JP 2007225010A JP 2009058324 A JP2009058324 A JP 2009058324A
Authority
JP
Japan
Prior art keywords
current
measuring
carrying part
metal plate
metal plates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007225010A
Other languages
Japanese (ja)
Other versions
JP5157323B2 (en
Inventor
Yuichi Watanabe
裕一 渡辺
Toshio Ishii
俊夫 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2007225010A priority Critical patent/JP5157323B2/en
Publication of JP2009058324A publication Critical patent/JP2009058324A/en
Application granted granted Critical
Publication of JP5157323B2 publication Critical patent/JP5157323B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a position measuring method and a device for a current-carrying part for measuring accurately the position of the current-carrying part in evaluation of electromagnetic leakage. <P>SOLUTION: In this position measuring method of the current-carrying part for measuring the position and the shape of the current-carrying part in evaluation of an electromagnetic wave leaking through a gap between metal plates, a high frequency current is made to flow between the metal plates, and a potential distribution generated on the metal plate surface is measured. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、OA・電機製品などの内部に組み込まれた電子回路からの電磁波漏洩の評価に関し、特に電磁波漏洩の評価にあたって通電部の位置を正確に測定する通電部の位置測定方法および装置に関するものである。   The present invention relates to the evaluation of electromagnetic wave leakage from an electronic circuit incorporated in an OA / electrical product, and more particularly to a position measuring method and apparatus for a current-carrying part that accurately measures the position of the current-carrying part in the evaluation of electromagnetic wave leakage. It is.

OA・電機製品には、製品内部に組み込まれた電子回路からの漏洩電磁波をシールドすることが求められている。これは、漏洩電磁波が他のOA・電機商品を誤作動させる可能性があるだけでなく、心臓ペースメーカなどの電子機器を誤作動させて、使用している人へ影響を及ぼす可能性があるためである。   OA / electrical products are required to shield leakage electromagnetic waves from electronic circuits incorporated in the product. This is because leaked electromagnetic waves may not only cause other OA / electrical products to malfunction, but may also cause electronic devices such as cardiac pacemakers to malfunction and affect people who use them. It is.

OA・電機製品の筐体は、鋼板やアルミ板等の金属で作製されている場合が多い。そして、金属製の筐体内部に電磁波の発信源がある場合に、金属板が重なった部分を溶接など連続的な接合を施さない限り、隙間ができてしまい、ここから電磁波が漏洩することが問題となる。そのため、筐体外部へ電磁波が漏洩する機構に基いて、その漏洩電磁波の強度を評価する手法は、電磁波漏洩を制御する上で重要な技術である。   The casing of OA / electrical products is often made of a metal such as a steel plate or an aluminum plate. If there is an electromagnetic wave source inside the metal housing, a gap will be created unless the metal plate overlaps the welded part, and electromagnetic waves may leak from here. It becomes a problem. Therefore, a technique for evaluating the strength of the leaked electromagnetic wave based on a mechanism for leaking the electromagnetic wave to the outside of the housing is an important technique for controlling the electromagnetic wave leakage.

このような漏洩電磁波の強度を評価する技術として、特許文献1に開示された技術がある。この技術は、通電部の位置と形状を測定し、通電部の間隔および長さを求めて電磁波の強度を評価するようにしたものであり、簡便かつ高精度に漏洩電磁波の強度を評価することができるという特徴がある。
特開2007−139750号公報
As a technique for evaluating the strength of such leakage electromagnetic waves, there is a technique disclosed in Patent Document 1. This technology measures the position and shape of the current-carrying part, calculates the interval and length of the current-carrying part, and evaluates the strength of the electromagnetic wave, and evaluates the strength of the leaked electromagnetic wave easily and with high accuracy. There is a feature that can be.
JP 2007-139750 A

特許文献1に開示された技術では、電磁波減衰の評価を以下のように行っている。すなわち、図8に示すように金属板と金属板を重ねたときの通電部の間隔をd、d(d>d)とする。このときの通電部の最大距離(dmax)は、dとなり、金属板と金属板の隙間を電磁波が透過する場合、電磁波の減衰量はこのdmaxで決まる。そこで、金属板を重ねた部分に生じる通電部の位置を測定してdmaxを求め、dmaxから隙間を透過する電磁波の減衰を推定するものである。 In the technique disclosed in Patent Document 1, the electromagnetic wave attenuation is evaluated as follows. That is, as shown in FIG. 8, the intervals between the current-carrying portions when the metal plates are stacked are d 1 and d 2 (d 1 > d 2 ). At this time, the maximum distance (d max ) of the energization part is d 1 , and when electromagnetic waves are transmitted through the gap between the metal plates, the attenuation amount of the electromagnetic waves is determined by this d max . Therefore, seeking d max by measuring the position of the conductive portion occurring in a portion overlapped metal plates, and estimates the attenuation of electromagnetic waves transmitted through the gap from d max.

2枚の金属板が重ねられている場合、通電部の位置測定にあたっては、図9に示すように一方の板の表面に導線を接続し、この2枚の板に直流電流を印加して、そのときの板表面の電位分布を板表面に接続された導線によって測定する。測定された電位分布より、電位が極小(あるいは極大)となっている部分を通電部と判断でき、より正確に通電部を以下の方法で求めている。   When two metal plates are stacked, in measuring the position of the current-carrying part, as shown in FIG. 9, a conductive wire is connected to the surface of one plate, a direct current is applied to the two plates, The potential distribution on the plate surface at that time is measured by a conductive wire connected to the plate surface. From the measured potential distribution, the portion where the potential is minimum (or maximum) can be determined as the energized portion, and the energized portion is obtained more accurately by the following method.

板表面で測定された2次元(x,y)の電位分布をV(x,y)とする。板の導電率をσとすると電流密度の分布(i(x,y))は、(1)式で与えられる。   Let V (x, y) be a two-dimensional (x, y) potential distribution measured on the plate surface. If the conductivity of the plate is σ, the current density distribution (i (x, y)) is given by equation (1).

Figure 2009058324
Figure 2009058324

さらに、上述の電流密度の分布から以下の(2)式のように発散(divergence)を求める。   Further, the divergence is obtained from the above-described current density distribution as shown in the following equation (2).

Figure 2009058324
Figure 2009058324

求めた発散の値が、負である部分では電流の吸い込みが、正である部分では電流の湧き出しが生じている部分である。このように、電位分布から電流密度の分布を求め、その発散が負(あるいは正)である部分は通電部とみなせる。こうして得られた通電部の位置から通電部の間隔を測定し、最も大きなものをdmaxとしている。 In the portion where the obtained divergence value is negative, the current is absorbed, and in the portion where the divergence is positive, the current is generated. In this way, the current density distribution is obtained from the potential distribution, and the portion where the divergence is negative (or positive) can be regarded as the energization portion. The distance between the energized portions is measured from the position of the energized portion thus obtained, and the largest value is defined as dmax .

しかし、金属板と金属板を重ねた隙間を電磁波が透過するとき、金属板の表面にはその電磁波と同じ周波数の高周波電流が流れる。したがって、金属板間の隙間を電磁波が透過するとき、直流に対して通電部とならない部分でも、透過する電磁波の周波数より低い周波数の高周波に対してインピーダンスが低くなる部分では、通電部となってしまう。このように、直流電流によって通電部の位置を測定する特許文献1に開示された技術では、通電部の位置を正確に測定できなくなることがあり、しいては高精度に漏洩電磁波の強度を評価できなくなるという問題がある。   However, when electromagnetic waves pass through the gap between the metal plates, a high-frequency current having the same frequency as the electromagnetic waves flows on the surface of the metal plates. Therefore, when electromagnetic waves are transmitted through the gaps between the metal plates, even in a portion that does not become a current-carrying part with respect to direct current, in a part where the impedance is low with respect to a high frequency that is lower than the frequency of the transmitted electromagnetic wave, it becomes a current-carrying part. End up. As described above, in the technique disclosed in Patent Document 1 that measures the position of the energization unit using a direct current, the position of the energization unit may not be accurately measured, and the strength of the leakage electromagnetic wave is evaluated with high accuracy. There is a problem that it cannot be done.

本発明は上記事情に鑑みてなされたもので、電磁波漏洩の評価にあたって通電部の位置を正確に測定する通電部の位置測定方法および装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a position measuring method and apparatus for a current-carrying part that accurately measures the position of the current-carrying part in evaluating electromagnetic wave leakage.

本発明の請求項1に係る発明は、金属板間の隙間を漏洩する電磁波の評価にあたって通電部の位置と形状を測定する通電部の位置測定方法であって、前記金属板間に高周波電流を流し、金属板表面に生ずる電位分布を測定することを特徴とする通電部の位置測定方法である。   The invention according to claim 1 of the present invention is a position measuring method for a current-carrying part that measures the position and shape of a current-carrying part in evaluating electromagnetic waves leaking through a gap between metal plates, and a high-frequency current is applied between the metal plates. This is a method for measuring the position of a current-carrying part, characterized by measuring the potential distribution generated on the surface of the metal plate.

また本発明の請求項2に係る発明は、請求項1に記載の通電部の位置測定方法において、前記金属板表面に複数の導線を接続して、その導線間の電位差を測定することによって、前記金属板表面の電位分布を測定することを特徴とする通電部の位置測定方法である。   Moreover, the invention which concerns on Claim 2 of this invention is a position measuring method of the electricity supply part of Claim 1, By connecting several conducting wire to the said metal plate surface, and measuring the electrical potential difference between the conducting wires, A method for measuring a position of a current-carrying portion, wherein the potential distribution on the surface of the metal plate is measured.

また本発明の請求項3に係る発明は、請求項1または請求項2に記載の通電部の位置測定方法において、金属板表面の電位分布より電流密度の分布を求め、求めた電流密度分布の発散の値が負または正となっている部分を通電部と判断して電磁波漏洩を評価することを特徴とする通電部の位置測定方法である。   The invention according to claim 3 of the present invention is the method for measuring the position of the current-carrying part according to claim 1 or 2, wherein the current density distribution is obtained from the potential distribution on the surface of the metal plate, and the obtained current density distribution A method for measuring a position of an energization unit, characterized in that a portion where a divergence value is negative or positive is determined as an energization unit and electromagnetic leakage is evaluated.

また本発明の請求項4に係る発明は、請求項1ないし請求項3のいずれか1項に記載の通電部の位置測定方法において、前記金属板は、鋼板であることを特徴とする通電部の位置測定方法である。   The invention according to claim 4 of the present invention is the energization part position measuring method according to any one of claims 1 to 3, wherein the metal plate is a steel plate. This is a position measurement method.

さらに本発明の請求項5に係る発明は、金属板間の隙間を漏洩する電磁波の評価にあたって通電部の位置と形状を測定する通電部の位置測定装置であって、前記金属板間に高周波電流を流す高周波電源と、前記金属板の表面に接続した導線と、該導線間の電位差信号を増幅するアンプと、増幅された信号のノイズをカットするフィルターと、ノイズカットされた信号の波形を測定するオシロスコープとを備えることを特徴とする通電部の位置測定装置である。   Furthermore, the invention according to claim 5 of the present invention is a position measuring device for a current-carrying part that measures the position and shape of the current-carrying part in evaluating electromagnetic waves leaking through a gap between the metal plates, and a high-frequency current between the metal plates. Measures the waveform of the noise-cut signal, a high-frequency power source for supplying a current, a conductor connected to the surface of the metal plate, an amplifier for amplifying a potential difference signal between the conductors, a filter for cutting noise of the amplified signal, An oscilloscope for measuring the position of the energization unit.

本発明では、金属板間に高周波電流を流し、金属板表面に生ずる電位分布を測定するようにしたので、通電部の位置を正確に測定できるようになった。またこれにより、高精度に漏洩電磁波の強度を評価することができるようになった。   In the present invention, since a high-frequency current is passed between the metal plates and the potential distribution generated on the surface of the metal plate is measured, the position of the energization part can be accurately measured. As a result, the intensity of the leaked electromagnetic wave can be evaluated with high accuracy.

図2は、金属板と金属板を重ねた部分の断面を模式的に示す図である。図2の板表面と板表面が完全に接触している部分(A)は、直流電流、および高周波電流に対しても通電部となる。特許文献1のように直流で通電部の位置を測定した場合、通電部としてA部が測定され、dmaxはdとなる。 FIG. 2 is a diagram schematically showing a cross section of a portion where the metal plate and the metal plate are overlapped. The portion (A) in which the plate surface and the plate surface are completely in contact with each other in FIG. 2 serves as a current-carrying portion for direct current and high-frequency current. When the position of the energization part is measured by direct current as in Patent Document 1, the A part is measured as the energization part, and d max is d 0 .

しかし、図2の板表面と板表面が接触していない部分(A部以外の部分)では、直流電流に対しては抵抗が高く通電部とはならない。一般に、金属板と金属板の間に隙間がある部分をコンデンサーとみなした場合、この部分に印加される高周波に対する抵抗(インピーダンス:Z)は、次式で与えられる。   However, in the portion where the plate surface and the plate surface in FIG. 2 are not in contact with each other (portion other than the portion A), the resistance to the direct current is high and it does not become a conducting portion. In general, when a portion having a gap between a metal plate and a metal plate is regarded as a capacitor, a resistance (impedance: Z) to a high frequency applied to this portion is given by the following equation.

Figure 2009058324
Figure 2009058324

従って、金属板と金属板の間に隙間がある場合、隙間が狭い程、また隙間の誘電率が高い程、この部分のインピーダンスは低くなる。また、印加される高周波の周波数が高いほどインピーダンスは低くなる。   Therefore, when there is a gap between the metal plates, the impedance of this portion becomes lower as the gap is narrower and the dielectric constant of the gap is higher. Further, the higher the frequency of the applied high frequency, the lower the impedance.

このため、図2のB部のように板-板間の隙間が小さい部分、あるいはC部のように隙間の誘電率が高い部分は、直流に対しては通電部とはならないが、周波数を高くした場合、高周波に対してはインピーダンスが低くなり通電部となる(後述する図7を参照)。   For this reason, a portion where the gap between the plates is small, such as part B of FIG. 2, or a part where the dielectric constant of the gap is high, such as part C, is not a current-carrying part for direct current, but the frequency is When it is increased, the impedance becomes lower with respect to the high frequency and becomes a current-carrying portion (see FIG. 7 described later).

金属板と金属板を重ねた隙間を電磁波が透過するとき、金属板の表面にはその電磁波と同じ周波数の高周波電流が流れる。したがって、金属板間の隙間を電磁波が透過するとき、直流に対して通電部とならない部分でも、透過する電磁波の周波数(fin)より低い周波数の高周波に対してインピーダンスが低くなる部分は、その電磁波が透過する場合に通電部となる。 When electromagnetic waves are transmitted through the gap between the metal plates, a high-frequency current having the same frequency as the electromagnetic waves flows on the surface of the metal plates. Therefore, when the electromagnetic wave passes through the gap between the metal plates, even the part that does not become a current-carrying part for direct current, the part where the impedance becomes low for the high frequency of the frequency lower than the frequency (f in ) of the transmitted electromagnetic wave, When the electromagnetic wave is transmitted, it becomes an energizing part.

図2に示すように(紙面に垂直に)電磁波(周波数fin)が、金属板間の隙間を透過するとき、B部およびC部がfinより低い周波数でインピーダンスが低くなれば、B部およびC部は周波数finの高周波に対して通電部となる。このとき、d>d>dであればdmaxはdとなり、透過する電磁波の減衰量は、直流電流によって測定されたdではなくdで決まることとなる。 As shown in FIG. 2 (perpendicular to the paper surface) waves (frequency f in) is, when transmitted through the gaps between the metal plates, if B unit and C unit is low impedance at frequencies below f in, Part B and C portion is the conductive portion with respect to the high frequency of the frequency f in. At this time, if d 1 > d 2 > d 3 , d max is d 1 , and the attenuation of the transmitted electromagnetic wave is determined by d 1 instead of d 0 measured by the direct current.

すなわち、特許文献1に開示された技術では、直流電流によって通電部の位置を測定しdmaxを求めるため、正確に電磁波の減衰量が評価できない可能性がある。本発明は、金属板と金属板を重ねた状態で、金属板間に生ずる通電部の位置を、金属板間に高周波電流を印加して、そのときの板表面の電位分布から求めるものである。 That is, in the technique disclosed in Patent Document 1, the position of the current-carrying part is measured with a direct current to obtain dmax, and thus there is a possibility that the electromagnetic wave attenuation cannot be accurately evaluated. The present invention obtains the position of the current-carrying portion generated between the metal plates in a state where the metal plates are overlapped with each other from the potential distribution on the plate surface at that time by applying a high-frequency current between the metal plates. .

図1は、本発明に係る通電部の位置測定装置の構成例を示す図である。図中、1は金属板A、2は金属板B、3は導線、4は高周波電源、5はアンプ、6はLow Passフィルター、7はHigh Passフィルター、および8はオシロスコープをそれぞれ表す。   FIG. 1 is a diagram illustrating a configuration example of a position measuring device for a current-carrying unit according to the present invention. In the figure, 1 is a metal plate A, 2 is a metal plate B, 3 is a conducting wire, 4 is a high frequency power source, 5 is an amplifier, 6 is a Low Pass filter, 7 is a High Pass filter, and 8 is an oscilloscope.

金属板A1の表面に複数の導線3を接続し、この金属板A1に金属板B2を重ねて板間に高周波電源4からの高周波電流を印加する。板表面の電位分布は任意の導線を基準(Ground)として、それに対する電位差を測定する。図1に示すように、Groundに接地した導線と他の導線との間の電位差を測定する場合、2本の導線から測定される信号をアンプ5で増幅する。   A plurality of conducting wires 3 are connected to the surface of the metal plate A1, a metal plate B2 is overlapped on the metal plate A1, and a high frequency current from the high frequency power source 4 is applied between the plates. The potential distribution on the surface of the plate is measured by measuring a potential difference with respect to an arbitrary conductive wire as a reference (Ground). As shown in FIG. 1, when measuring a potential difference between a conductor grounded to Ground and other conductors, an amplifier 5 amplifies signals measured from the two conductors.

増幅された信号を、fhigh以下の高周波を透過するLow Passフィルター6とflow以上の周波数の高周波を透過するHigh Passフィルター7に直列に通して、オシロスコープ8に入力し測定される波形の振幅の値を電位差とする。この電位差を板表面全体で測定して電位分布を求める。金属板に印加する高周波の周波数をfmesとすると、flow=0.8×fmes、fhigh=1.2×fmes程度とするとノイズが少なく安定に測定ができる。ここでは、Low Passフィルター6とHigh Passフィルター7の個別のフィルターを用いたが、上下限を一つのフィルターで設定できるBand Passフィルターを用いてもかまわない。 The amplified signal is passed in series through a Low Pass filter 6 that transmits high frequencies below f high and a High Pass filter 7 that transmits high frequencies above f low, and is input to the oscilloscope 8 to measure the amplitude of the waveform Is the potential difference. This potential difference is measured over the entire plate surface to determine the potential distribution. Assuming that the frequency of the high frequency applied to the metal plate is f mes , when f low = 0.8 × f mes and f high = 1.2 × f mes, there is little noise and stable measurement is possible. Here, the individual filters of the Low Pass filter 6 and the High Pass filter 7 are used, but a Band Pass filter in which the upper and lower limits can be set with one filter may be used.

金属板に印加する高周波の周波数fmesは、板の隙間を透過する電磁波の周波数(fin)と同じにすべきであるが、周波数が高くなるとノイズが著しく大きくなり、S/Nが悪くなり正確な板表面の電位分布の測定が困難となる。この場合には、fmesはfinより低くせざるをえない(fmes<fin)が、前述のようにインピーダンスは周波数が高くなる程低くなるので、直流で通電部と測定されず周波数fmesの高周波で通電部と測定された部分は、finの高周波に対しても通電部となる。このため、少なくとも直流で通電部の位置を測定した場合よりも、透過する電磁波の周波数より低くても、高周波で通電部の位置を測定した方が、より正確に電磁波の減衰を推定できる可能性がある。 High frequency of f mes to be applied to the metal plate, but should be the same as the electromagnetic wave of a frequency which passes the gap of the plate (f in), noise increases significantly as the frequency increases, S / N is deteriorated It is difficult to accurately measure the potential distribution on the plate surface. In this case, f mes no choice but to lower than f in (f mes <f in ) is, the impedance is low enough that frequency increases as described above, the frequency is not determined to be conducting portion in DC the measured portion and the conductive portion in a high frequency of f mes also becomes conducting portion with respect to high frequency f in. For this reason, there is a possibility that the attenuation of electromagnetic waves can be estimated more accurately by measuring the position of the current-carrying part at a high frequency even if it is lower than the frequency of the transmitted electromagnetic wave, rather than at least when the position of the current-carrying part is measured by direct current. There is.

本発明に係る実施例について以下説明を行う。図3は、本発明に係る実施例を説明する図である。幅100mm長さ30mmの鋼板(板(下))の上に、鋼板(板(上)、幅長さとも板(下)よりサイズが大きい)を載せて、上下の板を高周波電源に接続し、高周波電流を印加する。そして、上の板には幅110mmの範囲に5mm間隔で導線を取り付け、この導線によって板表面の電位分布を測定した。   Embodiments according to the present invention will be described below. FIG. 3 is a diagram for explaining an embodiment according to the present invention. Place a steel plate (plate (top), both width and length larger than the plate (bottom)) on a steel plate (plate (bottom)) with a width of 100 mm and a length of 30 mm, and connect the upper and lower plates to a high-frequency power source. Apply high frequency current. Then, conducting wires were attached to the upper plate at intervals of 5 mm within a width of 110 mm, and the potential distribution on the plate surface was measured using the conducting wires.

板(下)と板(上)の間に誘電体を挟み、誘電体を挟んだ部分が高周波に対して通電部となるようにし、誘電体を挟む位置を2通り(条件−1および2)変化させて、板表面の電位分布を測定したものである。   A dielectric is sandwiched between the plate (lower) and the plate (upper) so that the portion sandwiched between the dielectrics becomes a current-carrying portion for high frequency, and there are two positions for sandwiching the dielectric (conditions 1 and 2). The potential distribution on the surface of the plate was measured while changing.

条件−1の場合、図4に示すように原点からの距離が15〜35mmおよび75〜95mmの範囲に誘電体を挟み、条件−2の場合、図5に示すように原点からの距離が5〜25mmおよび85〜105mmの範囲に誘電体を挟み、高周波に対して通電部となるようにした。   In the case of condition-1, as shown in FIG. 4, the dielectric is sandwiched in the range of 15 to 35 mm and 75 to 95 mm from the origin, and in the case of condition-2, the distance from the origin is 5 as shown in FIG. A dielectric was sandwiched between -25 mm and 85-105 mm so as to be a current-carrying part for high frequencies.

図6は、高周波電流による電位分布測定の結果の一例を示す図である。10kHzの高周波を印加した場合の電位分布を示しており、図中の点線および実線で示す間隔で、条件−1および2それぞれでの通電部の位置を表している。条件−1、2いずれの場合でも、通電部の位置でGroundに対する電位が極小値となっていることが分かる。   FIG. 6 is a diagram illustrating an example of a result of potential distribution measurement using a high-frequency current. The potential distribution when a high frequency of 10 kHz is applied is shown, and the position of the energization part in each of the conditions -1 and 2 is represented by the intervals indicated by the dotted line and the solid line in the figure. It can be seen that in both cases of Conditions-1 and 2, the potential with respect to Ground has a minimum value at the position of the energization portion.

さらに、図7は、印加する高周波の周波数は変化させた場合の板/板間のインピーダンスの変化を示す図である。板(下)と板(上)間に印加した高周波の周波数が高くなるほどインピーダンスは低くなり、通電部を測定した高周波の周波数10kHzの場合インピーダンスは10Ω程度まで低くなった。これに対して直流電流に対する抵抗は500KΩ〜1000kΩ程度であり、直流に対しては通電部がない状態、つまり絶縁状態とみなしてよいことを確認した。   Further, FIG. 7 is a diagram showing a change in impedance between the plates when the frequency of the applied high frequency is changed. The higher the frequency of the high frequency applied between the plate (lower) and the plate (upper), the lower the impedance. In the case of a high frequency of 10 kHz when the current-carrying part was measured, the impedance was reduced to about 10Ω. On the other hand, the resistance to direct current is about 500 KΩ to 1000 kΩ, and it was confirmed that the direct current can be regarded as having no current-carrying portion, that is, an insulating state.

これらの結果より、直流に対しては通電部とはならない部分が、高周波に対しては通電部となり、その位置は高周波を印加した場合の板表面の電位分布から求められることが分かる。   From these results, it can be seen that the portion that does not become a current-carrying portion for direct current becomes a current-carrying portion for high frequency, and the position is obtained from the potential distribution on the plate surface when a high frequency is applied.

本発明に係る通電部の位置測定装置の構成例を示す図である。It is a figure which shows the structural example of the position measuring apparatus of the electricity supply part which concerns on this invention. 金属板と金属板を重ねた部分の断面を模式的に示す図である。It is a figure which shows typically the cross section of the part which accumulated the metal plate and the metal plate. 本発明に係る実施例を説明する図である。It is a figure explaining the Example which concerns on this invention. 実施例における条件−1を説明する図である。It is a figure explaining the condition-1 in an Example. 実施例における条件−2を説明する図である。It is a figure explaining the condition-2 in an Example. 高周波電流による電位分布測定の結果の一例を示す図である。It is a figure which shows an example of the result of the electric potential distribution measurement by a high frequency current. 印加する高周波の周波数は変化させた場合の板/板間のインピーダンスの変化を示す図である。It is a figure which shows the change of the impedance between board | plates at the time of changing the frequency of the high frequency to apply. 金属板を重ねた部分を透過する電磁波と通電部を示す図である。It is a figure which shows the electromagnetic wave which permeate | transmits the part which accumulated the metal plate, and an electricity supply part. 直流電流を印加した場合の電位分布の測定の様子を示す図である。It is a figure which shows the mode of the measurement of electric potential distribution at the time of applying a direct current.

符号の説明Explanation of symbols

1 金属板A
2 金属板B
3 導線
4 高周波電源
5 アンプ
6 Low Passフィルター
7 High Passフィルター
8 オシロスコープ
1 Metal plate A
2 Metal plate B
3 Conductor 4 High frequency power supply 5 Amplifier 6 Low Pass filter 7 High Pass filter 8 Oscilloscope

Claims (5)

金属板間の隙間を漏洩する電磁波の評価にあたって通電部の位置と形状を測定する通電部の位置測定方法であって、
前記金属板間に高周波電流を流し、金属板表面に生ずる電位分布を測定することを特徴とする通電部の位置測定方法。
A method for measuring the position of a current-carrying part for measuring the position and shape of the current-carrying part in evaluating electromagnetic waves leaking through a gap between metal plates,
A method for measuring a position of a current-carrying part, wherein a high-frequency current is passed between the metal plates to measure a potential distribution generated on the surface of the metal plate.
請求項1に記載の通電部の位置測定方法において、
前記金属板表面に複数の導線を接続して、その導線間の電位差を測定することによって、前記金属板表面の電位分布を測定することを特徴とする通電部の位置測定方法。
In the method for measuring the position of the energization unit according to claim 1,
A method for measuring a position of a current-carrying part, comprising: measuring a potential distribution on the surface of the metal plate by connecting a plurality of conductive wires to the surface of the metal plate and measuring a potential difference between the conductive wires.
請求項1または請求項2に記載の通電部の位置測定方法において、
金属板表面の電位分布より電流密度の分布を求め、求めた電流密度分布の発散の値が負または正となっている部分を通電部と判断して電磁波漏洩を評価することを特徴とする通電部の位置測定方法。
In the method of measuring the position of the energization unit according to claim 1 or 2,
A current density distribution is obtained from the potential distribution on the surface of the metal plate, and the current leakage distribution is evaluated by evaluating a portion where the divergence value of the obtained current density distribution is negative or positive as a current-carrying part. Part position measurement method.
請求項1ないし請求項3のいずれか1項に記載の通電部の位置測定方法において、
前記金属板は、鋼板であることを特徴とする通電部の位置測定方法。
In the method for measuring the position of the energization unit according to any one of claims 1 to 3,
The metal plate is a steel plate.
金属板間の隙間を漏洩する電磁波の評価にあたって通電部の位置と形状を測定する通電部の位置測定装置であって、
前記金属板間に高周波電流を流す高周波電源と、
前記金属板の表面に接続した導線と、
該導線間の電位差信号を増幅するアンプと、
増幅された信号のノイズをカットするフィルターと、
ノイズカットされた信号の波形を測定するオシロスコープとを備えることを特徴とする通電部の位置測定装置。
A position measuring device for a current-carrying part that measures the position and shape of a current-carrying part in evaluating electromagnetic waves leaking through a gap between metal plates,
A high frequency power source for passing a high frequency current between the metal plates;
A conducting wire connected to the surface of the metal plate;
An amplifier for amplifying a potential difference signal between the conductors;
A filter that cuts noise in the amplified signal;
An oscilloscope for measuring a waveform of a noise-cut signal, and a position measuring device for a current-carrying unit.
JP2007225010A 2007-08-31 2007-08-31 Method and apparatus for measuring position of current-carrying part Expired - Fee Related JP5157323B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007225010A JP5157323B2 (en) 2007-08-31 2007-08-31 Method and apparatus for measuring position of current-carrying part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007225010A JP5157323B2 (en) 2007-08-31 2007-08-31 Method and apparatus for measuring position of current-carrying part

Publications (2)

Publication Number Publication Date
JP2009058324A true JP2009058324A (en) 2009-03-19
JP5157323B2 JP5157323B2 (en) 2013-03-06

Family

ID=40554198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007225010A Expired - Fee Related JP5157323B2 (en) 2007-08-31 2007-08-31 Method and apparatus for measuring position of current-carrying part

Country Status (1)

Country Link
JP (1) JP5157323B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011232063A (en) * 2010-04-26 2011-11-17 Jfe Steel Corp Method and device for measuring potential distribution of metal plate
JP2011257283A (en) * 2010-06-10 2011-12-22 Jfe Steel Corp Method and device for measuring position of current-carrying part
JP2012255659A (en) * 2011-06-07 2012-12-27 Jfe Steel Corp Electric conduction point evaluation device of metal plate surface
JP2015148596A (en) * 2014-01-10 2015-08-20 Jfeスチール株式会社 Method and device for measuring position of current-carrying part
JP2017009420A (en) * 2015-06-22 2017-01-12 Jfeスチール株式会社 Method and device for measuring current
CN107643440A (en) * 2017-11-08 2018-01-30 湖南省湘电试验研究院有限公司 A kind of detection means and its application process of human body line-frequency induction electric current
CN108459209A (en) * 2018-02-08 2018-08-28 中国科学院信息工程研究所 A kind of computer video electromagnetic leakage synchronization parameter extracting method and device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04178571A (en) * 1990-11-14 1992-06-25 Hitachi Ltd Inspecting method for printed board
JPH05302946A (en) * 1992-04-15 1993-11-16 Nec Corp Evaluation method of electromagnetic shielding effect
JP2003294706A (en) * 2002-03-28 2003-10-15 Mitsubishi Electric Corp Device for estimating electromagnetic wave shielding performance
JP2007139750A (en) * 2005-10-18 2007-06-07 Jfe Steel Kk Method and device for estimating leakage of electromagnetic wave

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04178571A (en) * 1990-11-14 1992-06-25 Hitachi Ltd Inspecting method for printed board
JPH05302946A (en) * 1992-04-15 1993-11-16 Nec Corp Evaluation method of electromagnetic shielding effect
JP2003294706A (en) * 2002-03-28 2003-10-15 Mitsubishi Electric Corp Device for estimating electromagnetic wave shielding performance
JP2007139750A (en) * 2005-10-18 2007-06-07 Jfe Steel Kk Method and device for estimating leakage of electromagnetic wave

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011232063A (en) * 2010-04-26 2011-11-17 Jfe Steel Corp Method and device for measuring potential distribution of metal plate
JP2011257283A (en) * 2010-06-10 2011-12-22 Jfe Steel Corp Method and device for measuring position of current-carrying part
JP2012255659A (en) * 2011-06-07 2012-12-27 Jfe Steel Corp Electric conduction point evaluation device of metal plate surface
JP2015148596A (en) * 2014-01-10 2015-08-20 Jfeスチール株式会社 Method and device for measuring position of current-carrying part
JP2017009420A (en) * 2015-06-22 2017-01-12 Jfeスチール株式会社 Method and device for measuring current
CN107643440A (en) * 2017-11-08 2018-01-30 湖南省湘电试验研究院有限公司 A kind of detection means and its application process of human body line-frequency induction electric current
CN107643440B (en) * 2017-11-08 2024-01-09 湖南省湘电试验研究院有限公司 Detection device for human body power frequency induced current and application method thereof
CN108459209A (en) * 2018-02-08 2018-08-28 中国科学院信息工程研究所 A kind of computer video electromagnetic leakage synchronization parameter extracting method and device

Also Published As

Publication number Publication date
JP5157323B2 (en) 2013-03-06

Similar Documents

Publication Publication Date Title
JP5157323B2 (en) Method and apparatus for measuring position of current-carrying part
JP4904509B2 (en) Method and system for measuring passive intermodulation distortion
JP2006292763A (en) Device for measuring current
EP2975417A1 (en) Measurement device and mounting unit
RU2019121920A (en) METHOD FOR MEASURING ELECTRICAL CABLE IMPEDANCE, CONNECTOR LAYOUT AND THEIR APPLICATION
Itose et al. Partial discharge detection and induced surface current analysis using transient earth voltage method for high voltage equipment
CA2558042A1 (en) Electrode configuration for limca
Fujii et al. Highly sensitive partial discharge detection by TEV method under severe noise conditions
JP4998682B2 (en) Electromagnetic leakage evaluation method and apparatus
CN101877936A (en) Flexible printed circuit board
JPH02290532A (en) Instrument for detecting and measuring particle in liquid metal
Satav et al. Do-it-yourself fabrication of an open TEM cell for EMC pre-compliance
JP6338830B2 (en) Method for evaluating a device including a plurality of electric circuits
JP6142865B2 (en) Method and apparatus for measuring position of energization unit
JP2006078390A (en) Measuring apparatus for characteristics of ultrasonic motor
JP2006333290A (en) Monitor circuit
JP5456591B2 (en) Method and apparatus for measuring position of energization unit
JP2009536323A (en) Method and sensor system for measuring the mixing ratio of substance mixtures
JP2015059838A (en) Wiring current detection structure
JP2011232063A (en) Method and device for measuring potential distribution of metal plate
CN1108512C (en) Underwater displacement measuring method and equipment
JP4775302B2 (en) Semiconductor evaluation equipment
KR20220156529A (en) Apparatus and method for locating partial discharges in medium and high voltage equipment
JP2008058243A (en) Magnetic field generator and permeability measuring device using the same
JP2004257770A (en) High-frequency electric potential detection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100422

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121126

R150 Certificate of patent or registration of utility model

Ref document number: 5157323

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees