JP2012255659A - Electric conduction point evaluation device of metal plate surface - Google Patents

Electric conduction point evaluation device of metal plate surface Download PDF

Info

Publication number
JP2012255659A
JP2012255659A JP2011127425A JP2011127425A JP2012255659A JP 2012255659 A JP2012255659 A JP 2012255659A JP 2011127425 A JP2011127425 A JP 2011127425A JP 2011127425 A JP2011127425 A JP 2011127425A JP 2012255659 A JP2012255659 A JP 2012255659A
Authority
JP
Japan
Prior art keywords
substrate
metal
potential distribution
sample plate
point evaluation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011127425A
Other languages
Japanese (ja)
Other versions
JP5741228B2 (en
Inventor
Yuichi Watanabe
裕一 渡辺
Toshio Ishii
俊夫 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011127425A priority Critical patent/JP5741228B2/en
Publication of JP2012255659A publication Critical patent/JP2012255659A/en
Application granted granted Critical
Publication of JP5741228B2 publication Critical patent/JP5741228B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electric conduction point evaluation device of a metal plate surface, capable of easily evaluating the state of electrical conduction parts of a replaceable metal sample plate.SOLUTION: An inventive electric conduction point evaluation device includes: a metal base plate 1 provided on insulator-made legs, having a thickness of equal to or less than 1 mm, and having a smooth surface; a plurality of measuring terminals 3 connected to the rear side of the base plate 1 in a grid and a ground line G connected to the rear side of the base plate; a power source 4 applying a voltage between the base plate 1 and a sample plate S mounted thereon to cause electric conduction; a relay part 5 changing connection for each measuring terminal 3; a potentiometer 6 for measuring a potential to the ground line G for each terminal; potential distribution calculation means 7 for obtaining potential distribution of a measuring object part of the rear face of the base plate 1 from measured potentials of all of the plurality of measuring terminals 3 measured by the potentiometer 6; and electrical conduction state information acquisition means 8 for acquiring electrical conduction state information such as the positions and the numbers of electrical conduction parts of the sample plate S on the basis of acquired potential distribution information.

Description

本発明は、電子機器の筐体等に使用される金属板に対しその表面の通電点の評価に用いられる金属板表面の通電点評価装置に関する。   The present invention relates to a conduction point evaluation device for a metal plate surface used for evaluation of a conduction point on the surface of a metal plate used for a housing or the like of an electronic device.

OA機器や電器製品には、製品内部に組み込まれた電子回路からの漏洩電磁波をシールドすることが求められている。これは、漏洩電磁波が、他のOA機器や電器製品を誤動作させる可能性があるだけでなく、心臓ペースメーカなどの電子機器を誤動作させて、使用している人に悪影響を及ぼす可能性があるためである。
OA機器や電器製品では、鋼板やアルミ板等金属製の筐体の中に電磁波源を収納して、電磁波の漏洩を抑制する場合が多い。一般に筐体は、図5に示すように、フランジのついた金属製の箱に、金属製のふたを重ねた構造となっている。同図に示すように、筐体のフランジとふたが重なった部分は、「二枚の金属板が重なった部分」となっている。この金属板が重なった部分を溶接などで連続的に接合しない限り、金属板間に隙間が生じ、この隙間から電磁波が漏洩することが問題となる。
OA equipment and electrical appliances are required to shield electromagnetic waves leaking from electronic circuits incorporated in the products. This is because leaked electromagnetic waves not only may cause other OA devices and appliances to malfunction, but also may cause electronic devices such as cardiac pacemakers to malfunction and adversely affect the person using them. It is.
In many office automation equipment and electrical appliances, an electromagnetic wave source is housed in a metal casing such as a steel plate or an aluminum plate to suppress leakage of electromagnetic waves. Generally, as shown in FIG. 5, the housing has a structure in which a metal lid is stacked on a metal box with a flange. As shown in the figure, the portion where the flange and the lid of the housing overlap is the “portion where the two metal plates overlap”. Unless the overlapping portions of the metal plates are continuously joined by welding or the like, a gap is generated between the metal plates, and electromagnetic waves leak from the gap.

ここで、金属板が重なった部分から電磁波が漏洩する場合、金属板の表面抵抗が低い方が電磁波の漏洩が少なくなることが経験的に分っており、表面抵抗を評価の指標とする場合が多い。金属板の表面抵抗は、四端子法(非特許文献1参照)、あるいは特許文献1に開示されるような方法(測定対象に第1および第2電極を離隔して対向配置し、両電極間に交流電圧を印加することで測定対象に電流を流し、この電流に基づいて測定対象の表面抵抗を算出する)で一般的には測定される。   Here, when electromagnetic waves leak from the part where the metal plates overlap, it has been empirically known that the lower the surface resistance of the metal plates, the smaller the leakage of electromagnetic waves, and the case where the surface resistance is used as an evaluation index. There are many. The surface resistance of the metal plate is determined by a four-terminal method (see Non-Patent Document 1) or a method as disclosed in Patent Document 1 (the first and second electrodes are spaced from each other on the object to be measured, and the two electrodes are placed In general, an AC voltage is applied to the object to be measured to cause a current to flow through the object to be measured, and the surface resistance of the object to be measured is calculated based on this current.

特開2000−230949号公報JP 2000-230949 A 特開2007−139750号公報JP 2007-139750 A

実用表面改質技術総覧 P.560−P.561P. Practical surface modification technology overview 560-P. 561

しかし、金属板が重なった部分を電磁波が漏洩する場合、重なった部分での通電部の状態が電磁波の特性に大きく影響することが分っている。そのため、単に金属板の表面抵抗を測定しても、電磁波の漏洩を評価するための本質的な指標にはならない。
ここで、例えば特許文献2には、重なった金属板の通電部の位置と形状を測定する方法が提案されている。この測定方法は、表面に導線を接続した金属板と他の金属板とを重ねて、これらの金属板間に電流を流し、そのときの金属板表面の電位分布から通電部の位置や形状を求めている。しかしながら、この測定方法は、特定の金属板間で通電部の状態を測定する方法であるため、金属製のサンプル板を自由に交換して、そのサンプル板の通電部の状態を評価することは困難である。
However, it has been found that when electromagnetic waves leak through a portion where the metal plates overlap, the state of the current-carrying portion at the overlapped portion greatly affects the characteristics of the electromagnetic waves. Therefore, simply measuring the surface resistance of a metal plate is not an essential index for evaluating leakage of electromagnetic waves.
Here, for example, Patent Document 2 proposes a method of measuring the position and shape of the current-carrying portions of the overlapping metal plates. In this measurement method, a metal plate with a conductive wire connected to the surface is overlapped with another metal plate, and a current is passed between these metal plates, and the position and shape of the current-carrying part are determined from the potential distribution on the surface of the metal plate. Looking for. However, since this measurement method is a method of measuring the state of the current-carrying part between specific metal plates, it is possible to freely replace the metal sample plate and evaluate the state of the current-carrying part of the sample plate. Have difficulty.

そこで、本発明は、このような問題点に着目してなされたものであって、金属製のサンプル板を自由に交換可能であり、その交換したサンプル板の通電部の状態を容易に評価し得る金属板表面の通電点評価装置を提供することを目的としている。   Therefore, the present invention has been made paying attention to such problems, and the metal sample plate can be freely replaced, and the state of the current-carrying portion of the replaced sample plate can be easily evaluated. An object of the present invention is to provide a device for evaluating a conduction point on the surface of a metal plate to be obtained.

上記課題を解決するために、本発明は、金属製のサンプル板の通電点の状態を評価するための通電点評価装置であって、絶縁体製の脚上に設けられた厚さが1mm以下且つ表面が平滑な金属製の基板と、当該基板裏面の測定対象部全体に亘って3〜10mmの範囲内のいずれか一の間隔で格子状に接続された複数の測定端子、および一つのグランドラインと、前記基板とこの基板の表の面に載置される前記サンプル板との間に電圧を印加して通電する電源と、前記複数の測定端子の各端子毎に接続を切り換えるリレー部と、該リレー部で切り換えられた端子毎に前記グランドラインに対する電位を順次に測定する電位差計と、該電位差計で測定された前記複数の測定端子全ての測定電位から前記基板裏面の測定対象部の電位分布を求める電位分布算出手段と、該電位分布算出手段によって取得された電位分布情報に基づいて、前記サンプル板の通電部の位置や通電部の数等の通電状態情報を取得する通電状態情報取得手段とを有することを特徴とする。   In order to solve the above problems, the present invention is an energization point evaluation apparatus for evaluating the state of an energization point of a metal sample plate, and has a thickness of 1 mm or less provided on an insulator leg. A metal substrate having a smooth surface, a plurality of measurement terminals connected in a grid pattern at any one interval within a range of 3 to 10 mm over the entire measurement target portion on the back surface of the substrate, and one ground A line, a power source that applies a voltage between the substrate and the sample plate placed on the front surface of the substrate, and a relay unit that switches connection for each of the plurality of measurement terminals; , A potentiometer that sequentially measures the potential with respect to the ground line for each terminal switched by the relay unit, and from the measured potentials of all of the plurality of measurement terminals measured by the potentiometer, Potential to obtain potential distribution Cloth calculating means; and energization state information acquiring means for acquiring energization state information such as the position of the energizing part and the number of energizing parts of the sample plate based on the potential distribution information acquired by the potential distribution calculating means. It is characterized by that.

本発明に係る金属板表面の通電点評価装置によれば、金属製の基板の表の面にサンプル板が載置される構成としたので、サンプル板を自由に交換可能である。そして、この基板は絶縁体製の脚上に設けられた厚さが1mm以下且つ表面が平滑な金属製の板であって、その裏面の測定対象部全体に亘って3〜10mmの範囲内のいずれか一の間隔で格子状に接続された複数の測定端子が取付けられ、電位差計は、リレー部で切り換えられた各端子毎に基準となる一つのグランドラインに対する電位を順次に測定するようになっているので、基板とサンプル板間に電流を流し、各端子のグランドラインに対する電位を測定することができる。なお、グランドラインとしては、任意の端子を電位の基準(グラウンド)としてよく、他の測定端子はリレー部に接続する。リレー部で選択された端子と基準の端子間の電位差が測定できるように電位差計を接続し、電源によって基板とこの基板の表の面に載置されるサンプル板との間に電圧を印加して通電し、リレーの切り替えによって、全端子と基準となる一つのグランドライン間の電位差を測定すれば、基板表面全体の電位分布の測定が可能である。   According to the energization point evaluation apparatus for the metal plate surface according to the present invention, the sample plate is placed on the front surface of the metal substrate, so that the sample plate can be freely replaced. The substrate is a metal plate having a thickness of 1 mm or less and a smooth surface provided on the legs made of an insulator, and within a range of 3 to 10 mm over the entire measurement target portion on the back surface. A plurality of measurement terminals connected in a grid pattern at any one interval are attached, and the potentiometer sequentially measures the potential with respect to one reference ground line for each terminal switched by the relay unit. Therefore, a current can be passed between the substrate and the sample plate, and the potential of each terminal with respect to the ground line can be measured. As a ground line, any terminal may be used as a potential reference (ground), and the other measurement terminals are connected to the relay unit. A potentiometer is connected so that the potential difference between the terminal selected in the relay section and the reference terminal can be measured, and a voltage is applied between the substrate and the sample plate placed on the front surface of this substrate by the power supply. By measuring the potential difference between all terminals and one reference ground line by switching the relay, the potential distribution of the entire substrate surface can be measured.

そして、電位分布算出手段は、電位差計で測定された前記複数の測定端子全ての測定電位から前記基板裏面の測定対象部の電位分布を求めることができ、さらに、通電状態情報取得手段は、電位分布算出手段によって取得された電位分布情報に基づいて、サンプル板の通電部の位置や通電部の数等の通電状態情報を取得することができるので、交換したサンプル板の通電部の状態を容易に評価することができる。上記サンプル板の交換は容易なので、サンプル毎に通電状態情報を容易に取得することが可能である。
なお、評価するに際しては、例えば上記特許文献2に開示される測定方法同様の方法を用いればよい。
The potential distribution calculating means can determine the potential distribution of the measurement target part on the back surface of the substrate from the measured potentials of all the plurality of measurement terminals measured by a potentiometer. Based on the potential distribution information acquired by the distribution calculation means, it is possible to acquire energization state information such as the position of the energization part of the sample plate and the number of energization parts, so the state of the energization part of the replaced sample plate can be easily Can be evaluated. Since the exchange of the sample plate is easy, it is possible to easily acquire the energization state information for each sample.
In the evaluation, for example, a method similar to the measurement method disclosed in Patent Document 2 may be used.

ここで、金属製の基板上に金属製のサンプル板を載せた場合、基板とサンプル板間の通電部の状態は、基板表面とサンプル板表面の凹凸形状や、酸化膜等の絶縁層の状態によって決まる。そこで、サンプル板による通電部の状態の違いをより良く評価する上では、基板表面を可及的に平滑にして、基板の影響を小さくすることが望ましい。より具体的には、前記基板の表の面は、その算術平均粗さRaが、0.1a〜1.6aであることが好ましい。また、基板表面の錆びなども通電部の状態に大きく影響するため、基板には錆びの発生しにくいステンレス鋼板を使用することが好ましい。   Here, when a metal sample plate is placed on a metal substrate, the state of the current-carrying part between the substrate and the sample plate is the uneven shape between the substrate surface and the sample plate surface, or the state of an insulating layer such as an oxide film. It depends on. Therefore, in order to better evaluate the difference in the state of the current-carrying portion due to the sample plate, it is desirable to make the substrate surface as smooth as possible to reduce the influence of the substrate. More specifically, the arithmetic average roughness Ra of the front surface of the substrate is preferably 0.1a to 1.6a. Moreover, since rust on the surface of the substrate greatly affects the state of the current-carrying portion, it is preferable to use a stainless steel plate that does not easily rust on the substrate.

上述のように、本発明によれば、金属製のサンプル板を自由に交換可能であり、その交換したサンプル板の通電部の状態を容易に評価することができる。   As described above, according to the present invention, a metal sample plate can be freely replaced, and the state of the current-carrying portion of the replaced sample plate can be easily evaluated.

本発明に係る金属板表面の通電点評価装置の一実施形態の基板部分を説明する斜視図である。It is a perspective view explaining the board | substrate part of one Embodiment of the conduction point evaluation apparatus of the metal plate surface which concerns on this invention. 本発明に係る金属板表面の通電点評価装置の一実施形態の説明図である。It is explanatory drawing of one Embodiment of the conduction point evaluation apparatus of the metal plate surface which concerns on this invention. 本発明に係る金属板表面の通電点評価装置を用いてサンプル板(実施例1)の通電部の状態を調べた結果を示す図である。It is a figure which shows the result of having investigated the state of the electricity supply part of a sample board (Example 1) using the conduction point evaluation apparatus of the metal plate surface which concerns on this invention. 本発明に係る金属板表面の通電点評価装置を用いてサンプル板(実施例2)の通電部の状態を調べた結果を示す図である。It is a figure which shows the result of having investigated the state of the electricity supply part of a sample board (Example 2) using the conduction point evaluation apparatus on the surface of a metal plate which concerns on this invention. 金属製の筐体からの電磁波漏洩の状態を説明するための図であり、同図(a)はその平面図、(b)は正面図である。It is a figure for demonstrating the state of the electromagnetic wave leakage from a metal housing | casing, The figure (a) is the top view, (b) is a front view.

以下、本発明の一実施形態について、図面を適宜参照しつつ説明する。図1および図2に本発明に係る金属板表面の通電点評価装置の一実施形態を示す。この装置は、金属製のサンプル板の通電点の状態を評価するためのものである。
図2に示すように、この通電点評価装置10は、絶縁体製の脚2上に基板1が固定されている。基板1は、脚2上に水平に設けられた厚さが1mm以下且つ表面が平滑な金属製の板であることが好ましい。また、基板1の表の面1f(図1参照)は、その算術平均粗さRaが、0.1a〜1.6aであることが好ましい。さらに、基板1の表面の錆びなども通電部の状態に大きく影響するため、基板1には錆びの発生しにくいステンレス鋼板を使用することが好ましい。本実施形態では、基板1は、板厚1.0mmのステンレス鋼板(SUS304)であり、基板1の表の面1fの算術平均粗さRaが、0.5aである。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings as appropriate. FIG. 1 and FIG. 2 show an embodiment of an apparatus for evaluating a conduction point on the surface of a metal plate according to the present invention. This apparatus is for evaluating the state of the energization point of a metal sample plate.
As shown in FIG. 2, in this energization point evaluation device 10, a substrate 1 is fixed on a leg 2 made of an insulator. The substrate 1 is preferably a metal plate that is horizontally provided on the legs 2 and has a thickness of 1 mm or less and a smooth surface. Moreover, it is preferable that the surface 1f (refer FIG. 1) of the surface of the board | substrate 1 is 0.1a-1.6a in the arithmetic mean roughness Ra. Furthermore, since rust on the surface of the substrate 1 greatly affects the state of the current-carrying portion, it is preferable to use a stainless steel plate that does not easily generate rust for the substrate 1. In the present embodiment, the substrate 1 is a stainless steel plate (SUS304) having a plate thickness of 1.0 mm, and the arithmetic average roughness Ra of the front surface 1f of the substrate 1 is 0.5a.

ここで、基板1の板厚を1.0mm以下とするのは、特許文献2に記載の測定方法で基板1とサンプル板S間の通電部の状態が測定できるのは、基板1が薄い場合に限られることを本願発明者は見いだしたからである。つまり、この測定方法は、基板1の表の面1f(サンプル板Sと接触している面)の電位分布が(導線を接続している)基板1の裏面にほぼ反映されるためである。換言すれば、基板1を、1.0mmを超えて厚くすると、基板1の表の面1fの電位分布が基板1裏面に反映されなくなる。そのため、通電部の状態は測定することができなくなる。しかし、基板1を薄くしすぎても、強度が弱くなる等の問題があるため、本実施形態では、基板の板厚を1.0mmとしている。   Here, the thickness of the substrate 1 is set to 1.0 mm or less because the state of the current-carrying portion between the substrate 1 and the sample plate S can be measured by the measurement method described in Patent Document 2 when the substrate 1 is thin. This is because the present inventor has found that it is limited to the above. That is, this measurement method is because the potential distribution on the front surface 1f of the substrate 1 (the surface in contact with the sample plate S) is substantially reflected on the back surface of the substrate 1 (to which the conducting wire is connected). In other words, if the thickness of the substrate 1 exceeds 1.0 mm, the potential distribution on the front surface 1 f of the substrate 1 is not reflected on the back surface of the substrate 1. For this reason, the state of the energization unit cannot be measured. However, even if the substrate 1 is made too thin, there is a problem that the strength is weakened. Therefore, in this embodiment, the thickness of the substrate is 1.0 mm.

この基板1の表の面1fに、サンプル板Sが載置されるようになっている。この基板1の裏面には、複数の測定端子3が接続されている。複数の測定端子3は、載置されるサンプル板Sの測定対象部全体に亘って3〜10mmの範囲内のいずれか一の間隔で格子状に接続されることが好ましい。本実施形態の例では、図1に示す基板1表面の点線(イメージ)が交わっている部分の裏面に測定端子3の導線基端部が半田付けによって接続されている。測定端子3と基板1の接続箇所との接触抵抗が大きいと正確な測定ができないため、導線は基板1に半田付け、あるいはスポット溶接等に溶接によって接続することが好ましい。   A sample plate S is placed on the front surface 1 f of the substrate 1. A plurality of measurement terminals 3 are connected to the back surface of the substrate 1. The plurality of measurement terminals 3 are preferably connected in a grid pattern at any one interval within a range of 3 to 10 mm over the entire measurement target portion of the sample plate S to be placed. In the example of the present embodiment, the conductive wire base end portion of the measurement terminal 3 is connected to the back surface of the portion where the dotted line (image) on the surface of the substrate 1 shown in FIG. 1 intersects by soldering. If the contact resistance between the measurement terminal 3 and the connection portion of the substrate 1 is large, accurate measurement cannot be performed. Therefore, it is preferable that the conductive wire is connected to the substrate 1 by soldering or spot welding or the like.

また、測定端子3の導線接続点の間隔を5mmとした理由は、溶接部間の間隔を3mm程度以下にすると、導線の基板への接続が困難となり、導線を接続する費用が非常に高くなるためであり、間隔が10mmを超えると、測定精度が低下して所望の評価を得ることが難しくなるからである。図1に示す点線(イメージ)の幅は、X方向、Y方向のいずれも5mmである。つまり本実施形態では、基板には5mm間隔で導線が格子状をなして接続されている。   In addition, the reason why the distance between the connection points of the measurement terminals 3 is 5 mm is that if the distance between the welds is about 3 mm or less, it is difficult to connect the conductors to the substrate, and the cost of connecting the conductors becomes very high. This is because if the interval exceeds 10 mm, the measurement accuracy is lowered and it is difficult to obtain a desired evaluation. The width of the dotted line (image) shown in FIG. 1 is 5 mm in both the X direction and the Y direction. That is, in this embodiment, the conductors are connected to the substrate in a grid pattern at intervals of 5 mm.

ここで、金属板間の隙間を電磁波が透過する場合、透過する電磁波の特性は、金属板間の通電部間の距離を幅とし、金属板間の距離を高さとみなした方形導波管を透過するTE10波の特性に従う(平成22年電気学会全国大会1−159)。この場合、通電部間の距離が電磁波の波長の1/2以下となった場合に、電磁波の減衰が大きくなる。
測定可能な通電部(あるいは絶縁部)の最小の間隔を、この測定での分解能とすると、分解能は基板1に接続されている測定端子3の導線の間隔以上となる。導線の間隔が5mmの場合、分解能は5mm以上になる。この場合、評価可能な漏洩電磁波の波長は10mm以上となり、電磁波の周波数は30GHz以下となる。評価可能な漏洩電磁波の周波数領域の上限をできるだけ高くするために、測定端子3の導線の接続点の間隔を5mmとした。
Here, when electromagnetic waves are transmitted through the gaps between the metal plates, the characteristics of the transmitted electromagnetic waves are as follows: a rectangular waveguide in which the distance between the current-carrying portions between the metal plates is the width and the distance between the metal plates is regarded as the height. It follows the characteristics of the transmitted TE10 wave (2010 IEEJ National Convention 1-159). In this case, when the distance between the current-carrying parts becomes 1/2 or less of the wavelength of the electromagnetic wave, the attenuation of the electromagnetic wave increases.
Assuming that the minimum distance between the current-carrying parts (or insulating parts) that can be measured is the resolution in this measurement, the resolution is equal to or greater than the distance between the conductors of the measurement terminals 3 connected to the substrate 1. When the distance between the conductors is 5 mm, the resolution is 5 mm or more. In this case, the wavelength of the leaked electromagnetic wave that can be evaluated is 10 mm or more, and the frequency of the electromagnetic wave is 30 GHz or less. In order to make the upper limit of the frequency region of leakage electromagnetic waves that can be evaluated as high as possible, the distance between the connection points of the conducting wires of the measurement terminal 3 was set to 5 mm.

そして、電源4は、基板1とこの基板1の表の面1fに載置されるサンプル板Sとの間に電圧を印加して通電可能になっている。
上記複数の測定端子3の先端はリレー部5に接続されている。リレー部5は、内部に複数の測定端子3に対応した端子切換手段を有し、複数の測定端子3毎に電位差計6への入力を切り換えるものである。リレー部5は、コンピュータ9の指令に基づき複数の測定端子3を順次に切り換え、一の測定端子3の電流を電位差計6に入力するように接続されている。そして、電位差計6は、リレー5で切り換えられた端子3毎に基準となる一つのグランドラインGに対する電位を順次に測定する。そして、測定された端子3毎のグランドラインGに対する電位の情報は、コンピュータ9に入力される。
The power source 4 can be energized by applying a voltage between the substrate 1 and the sample plate S placed on the front surface 1 f of the substrate 1.
The ends of the plurality of measurement terminals 3 are connected to the relay unit 5. The relay unit 5 has terminal switching means corresponding to the plurality of measurement terminals 3 inside, and switches the input to the potentiometer 6 for each of the plurality of measurement terminals 3. The relay unit 5 is connected so as to sequentially switch a plurality of measurement terminals 3 based on a command from the computer 9 and to input the current of one measurement terminal 3 to the potentiometer 6. The potentiometer 6 sequentially measures the potential with respect to one ground line G as a reference for each terminal 3 switched by the relay 5. The measured potential information for the ground line G for each terminal 3 is input to the computer 9.

コンピュータ9は、電位分布算出手段7、および通電状態情報取得手段8を有する。これら手段7および通電状態情報取得手段8は、コンピュータ9のハードウエアと通電点評価処理のプログラムとから構成され、通電点評価処理が実行されることで、上記測定されたグランドラインGに対する端子3毎の電位の情報に基づいて、所望の通電状態情報を出力する。   The computer 9 includes a potential distribution calculation unit 7 and an energization state information acquisition unit 8. These means 7 and energization state information acquisition means 8 are composed of the hardware of the computer 9 and a program of the energization point evaluation process, and the terminal 3 for the measured ground line G by executing the energization point evaluation process. Based on each potential information, desired energization state information is output.

つまり、電位分布算出手段7は、上記電位差計6で測定された複数の測定端子3全ての測定電位から、サンプル板S裏面の測定対象部の電位分布を求める。電位分布は、例えば取得された電位の高さを256階調のグレー値であらわし、図3や図4に示すサンプル板S(実施例1,2)に示すような電位差の等高線として求めることが好適である。そして、通電状態情報取得手段8は、電位分布算出手段7によって取得された電位分布情報に基づいて、サンプル板Sの通電部の位置や通電部の数等の通電状態情報を取得するようになっている。そして、この取得された通電状態情報は、コンピュータ9に付設される不図示の表示装置やプリンタ等の出力装置に出力されるように構成されている。この通電状態情報を取得するに際しても、種々の方法を設定できるが、例えば上記256階調のうち予め定めた値(閾値)を超える部分を通電部として認識させ、これにより得られた位置(例えば実施例として図3、4に矢印で示す位置)を通電部として出力表示させる構成とすることができる。   That is, the potential distribution calculating means 7 obtains the potential distribution of the measurement target portion on the back surface of the sample plate S from the measured potentials of all the plurality of measurement terminals 3 measured by the potentiometer 6. The potential distribution is obtained, for example, by representing the height of the acquired potential as a gray value of 256 gradations, and as a contour line of the potential difference as shown in the sample plate S (Examples 1 and 2) shown in FIGS. Is preferred. Then, the energization state information acquisition unit 8 acquires energization state information such as the position of the energization unit and the number of energization units of the sample plate S based on the potential distribution information acquired by the potential distribution calculation unit 7. ing. The acquired energization state information is configured to be output to an output device such as a display device (not shown) or a printer attached to the computer 9. Various methods can be set for obtaining the energization state information. For example, a portion exceeding the predetermined value (threshold value) in the 256 gradations is recognized as an energization unit, and the position (for example, As an embodiment, the position indicated by the arrows in FIGS. 3 and 4 can be output and displayed as an energization unit.

次に、上述した構成の通電点評価装置10によって、サンプル板Sを評価した実施例について説明する。
この実施例では、2種類(実施例1,実施例2)の電気メッキ鋼板をサンプル板Sとした。なお、上述の基板1の表の面1fにサンプル板Sを載せた状態のとき、テスターで測定されたサンプル板Sと基板1間の抵抗は、いずれのサンプル板Sの場合でも零であり、差異は認められなかった。
Next, the Example which evaluated the sample board S by the conduction point evaluation apparatus 10 of the structure mentioned above is demonstrated.
In this example, two types (Examples 1 and 2) of electroplated steel plates were used as sample plates S. When the sample plate S is placed on the front surface 1f of the substrate 1 described above, the resistance between the sample plate S and the substrate 1 measured by a tester is zero in any sample plate S, There was no difference.

通電点の評価は、まず、図1ないし図2に示すように、基板1にサンプル板Sを載せ、次いで、基板1とサンプル板S間に電源4により電圧を印加して電流を10A流した。次いで、コンピュータ9で通電点評価処理を実行させると、コンピュータ9の指令に基づき、リレー部5が複数の測定端子3を順次に切り換え、電位差計6が端子3毎のグランドラインGに対する電位を順次に測定し、測定された端子3毎の電位の情報が、コンピュータ9に入力される。コンピュータ9は、上記電位分布算出手段7および通電状態情報取得手段8により、電位差計6で測定された複数の測定端子3全ての測定電位から、基板1裏面の測定対象部の電位分布を視認容易な電位差の等高線として表現した電位分布情報として求める。そして、その取得された電位分布情報に基づいて、予め定めた値(閾値)を超える部分について、サンプル板Sの通電部の位置や通電部の数等の通電状態情報として取得し、取得された通電状態情報に対応する箇所に矢印等による注意表示を、表示装置の画面上に電位分布情報とともに表すとともにこれらをプリンタに出力する。   As shown in FIGS. 1 and 2, first, the sample plate S was placed on the substrate 1 and then a voltage was applied between the substrate 1 and the sample plate S by the power source 4 to pass a current of 10 A. . Next, when the computer 9 executes the energization point evaluation process, the relay unit 5 sequentially switches the plurality of measurement terminals 3 based on a command from the computer 9, and the potentiometer 6 sequentially changes the potential with respect to the ground line G for each terminal 3. The measured potential information for each terminal 3 is input to the computer 9. The computer 9 can easily visually recognize the potential distribution of the measurement target portion on the back surface of the substrate 1 from the measured potentials of the plurality of measurement terminals 3 measured by the potentiometer 6 by the potential distribution calculating means 7 and the energization state information acquiring means 8. It is obtained as potential distribution information expressed as contour lines of a significant potential difference. Then, based on the acquired potential distribution information, a portion exceeding a predetermined value (threshold) is acquired and acquired as energization state information such as the position of the energization portion and the number of energization portions of the sample plate S. A caution display by an arrow or the like is displayed on the screen corresponding to the energization state information together with the potential distribution information on the screen of the display device, and these are output to the printer.

各サンプル板S(実施例1,実施例2)に対して、上記のごとくプリンタに出力された通電状態情報の一例を図3および図4にそれぞれに示す。図3および図4は、基板1の裏面で測定されたグランドラインGに対する電位分布を等高線で表しており、各図中の矢印は取得された通電状態情報であって、電位が周囲よりも低く、基板1とサンプル板Sと間の通電部であると判断された部分である。   An example of the energization state information output to the printer as described above for each sample plate S (Example 1, Example 2) is shown in FIGS. 3 and 4, respectively. 3 and 4 show the potential distribution with respect to the ground line G measured on the back surface of the substrate 1 with contour lines, and the arrows in each figure are the acquired energization state information, and the potential is lower than the surroundings. This is a portion that is determined to be a current-carrying portion between the substrate 1 and the sample plate S.

これらの図を比較してわかるように、図3に示すサンプル板S(実施例1)の場合、3箇所が通電部となっているのに対し、図4に示すサンプル板S(実施例2)の場合、2箇所が通電部となっており、図3に示すサンプル板S(実施例1)の方が通電部が生じやすいことが分る。
以上説明したように、この通電点評価装置10によれば、金属製のサンプル板Sを自由に交換可能であり、その交換したサンプル板Sの通電部の状態を容易に評価することができる。なお、本発明に係る金属板表面の通電点評価装置は、上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しなければ種々の変形が可能であることは勿論である。
As can be seen by comparing these figures, in the case of the sample plate S shown in FIG. 3 (Example 1), the three portions are energized portions, whereas the sample plate S shown in FIG. ), There are two energizing portions, and it can be seen that the energizing portion is more likely to occur in the sample plate S (Example 1) shown in FIG.
As described above, according to the energization point evaluation apparatus 10, the metal sample plate S can be freely replaced, and the state of the energized portion of the replaced sample plate S can be easily evaluated. In addition, the electric conduction point evaluation apparatus on the surface of the metal plate according to the present invention is not limited to the above-described embodiment, and it is needless to say that various modifications can be made without departing from the gist of the present invention.

1 基板
2 脚
3 測定端子
4 電源
5 リレー部
6 電位差計
7 電位分布算出手段
8 通電状態情報取得手段
9 コンピュータ
10 通電点評価装置
S サンプル板
DESCRIPTION OF SYMBOLS 1 Board | substrate 2 Leg 3 Measurement terminal 4 Power supply 5 Relay part 6 Potentiometer 7 Potential distribution calculation means 8 Current supply state information acquisition means 9 Computer 10 Current supply point evaluation apparatus S Sample board

Claims (3)

金属製のサンプル板の通電点の状態を評価するための通電点評価装置であって、
絶縁体製の脚上に設けられた厚さが1mm以下且つ表面が平滑な金属製の基板と、当該基板裏面の測定対象部全体に亘って3〜10mmの範囲内のいずれか一の間隔で格子状に接続された複数の測定端子、および一つのグランドラインと、前記基板とこの基板の表の面に載置される前記サンプル板との間に電圧を印加して通電する電源と、前記複数の測定端子の各端子毎に接続を切り換えるリレー部と、該リレー部で切り換えらえれた各端子毎に前記グランドラインに対する電位を順次に測定する電位差計と、該電位差計で測定された前記複数の測定端子全ての測定電位から前記基板裏面の測定対象部の電位分布を求める電位分布算出手段と、該電位分布算出手段によって取得された電位分布情報に基づいて、前記サンプル板の通電状態情報を取得する通電状態情報取得手段とを有することを特徴とする金属板表面の通電点評価装置。
An energization point evaluation device for evaluating the state of the energization point of a metal sample plate,
A metal substrate having a thickness of 1 mm or less and a smooth surface provided on the legs made of an insulator, and any one interval within a range of 3 to 10 mm over the entire measurement target portion on the back surface of the substrate A plurality of measurement terminals connected in a grid pattern, one ground line, and a power source for applying a voltage between the substrate and the sample plate placed on the front surface of the substrate; A relay unit that switches connection for each terminal of the plurality of measurement terminals, a potentiometer that sequentially measures the potential with respect to the ground line for each terminal that is switched by the relay unit, and the potentiometer that is measured by the potentiometer Potential distribution calculation means for obtaining the potential distribution of the measurement target portion on the back surface of the substrate from the measurement potentials of all of the plurality of measurement terminals, and the energization state information of the sample plate based on the potential distribution information acquired by the potential distribution calculation means Energization point evaluation apparatus of the metal plate surface and having an energized state information acquiring means for acquiring.
前記基板の表の面は、その算術平均粗さRaが、0.1a〜1.6aであることを特徴とする請求項1に記載の金属板表面の通電点評価装置。   2. The conduction point evaluation apparatus for a metal plate surface according to claim 1, wherein the front surface of the substrate has an arithmetic average roughness Ra of 0.1 a to 1.6 a. 前記基板が、ステンレス鋼板であることを特徴とする請求項1または2に記載の金属板表面の通電点評価装置。   The said board | substrate is a stainless steel plate, The conduction point evaluation apparatus of the metal plate surface of Claim 1 or 2 characterized by the above-mentioned.
JP2011127425A 2011-06-07 2011-06-07 Current point evaluation device for metal plate surface Expired - Fee Related JP5741228B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011127425A JP5741228B2 (en) 2011-06-07 2011-06-07 Current point evaluation device for metal plate surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011127425A JP5741228B2 (en) 2011-06-07 2011-06-07 Current point evaluation device for metal plate surface

Publications (2)

Publication Number Publication Date
JP2012255659A true JP2012255659A (en) 2012-12-27
JP5741228B2 JP5741228B2 (en) 2015-07-01

Family

ID=47527358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011127425A Expired - Fee Related JP5741228B2 (en) 2011-06-07 2011-06-07 Current point evaluation device for metal plate surface

Country Status (1)

Country Link
JP (1) JP5741228B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103645455A (en) * 2013-12-19 2014-03-19 北京无线电计量测试研究所 Probe calibration device
JP2017009420A (en) * 2015-06-22 2017-01-12 Jfeスチール株式会社 Method and device for measuring current

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08313486A (en) * 1995-05-19 1996-11-29 Advanced Display:Kk Method and apparatus for detecting charge quantity of static electricity of insulating substrate
JP2002043721A (en) * 2000-07-28 2002-02-08 Sadao Goto Method and device for inspecting printed wiring board
JP2006250548A (en) * 2005-03-08 2006-09-21 Hioki Ee Corp Short circuit detector
JP2009058324A (en) * 2007-08-31 2009-03-19 Jfe Steel Kk Position measuring method and device for current-carrying part

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08313486A (en) * 1995-05-19 1996-11-29 Advanced Display:Kk Method and apparatus for detecting charge quantity of static electricity of insulating substrate
JP2002043721A (en) * 2000-07-28 2002-02-08 Sadao Goto Method and device for inspecting printed wiring board
JP2006250548A (en) * 2005-03-08 2006-09-21 Hioki Ee Corp Short circuit detector
JP2009058324A (en) * 2007-08-31 2009-03-19 Jfe Steel Kk Position measuring method and device for current-carrying part

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103645455A (en) * 2013-12-19 2014-03-19 北京无线电计量测试研究所 Probe calibration device
CN103645455B (en) * 2013-12-19 2016-08-24 北京无线电计量测试研究所 Probe correcting device
JP2017009420A (en) * 2015-06-22 2017-01-12 Jfeスチール株式会社 Method and device for measuring current

Also Published As

Publication number Publication date
JP5741228B2 (en) 2015-07-01

Similar Documents

Publication Publication Date Title
Park et al. A simple method of estimating the radiated emission from a cable attached to a mobile device
JP5741228B2 (en) Current point evaluation device for metal plate surface
JP7199676B2 (en) Probe
JP5157323B2 (en) Method and apparatus for measuring position of current-carrying part
JP4998682B2 (en) Electromagnetic leakage evaluation method and apparatus
JP6030926B2 (en) Continuity testing device
JP5661122B2 (en) Inspection mode switching circuit
JP2013210247A (en) Insulation inspection device and insulation inspection method
JP2014095584A (en) Grounding resistance meter
JP6627242B2 (en) Partial discharge measurement device
WO2017187791A1 (en) Measurement device and measurement method
WO2014167839A1 (en) Inspection apparatus and inspection method
KR101430040B1 (en) Insulation inspection device and insulation inspection method
JP2011232063A (en) Method and device for measuring potential distribution of metal plate
JP2008096158A (en) Method and apparatus for specifying position of coil damage
Samosir et al. Propagation analysis of electromagnetic wave radiated by partial discharge in single phase and three phase 150 kV Gas Insulated Switchgear
CN107796988B (en) Surface resistivity measuring device and method for GIS basin-type insulator
Park et al. Positioning of partial discharge origin by acoustic signal detection in insulation oil
JP5459709B2 (en) Design support method, design support apparatus, and design support program for electric power equipment
JP5420303B2 (en) Circuit board inspection apparatus and circuit board inspection method
JP5456591B2 (en) Method and apparatus for measuring position of energization unit
Grcev et al. Comparison between exact and quasi-static methods for HF analysis of horizontal buried wires
Arai et al. Method of measuring conducted noise voltage with a floating measurement system to ground
JP5474392B2 (en) Circuit board inspection apparatus and circuit board inspection method
Park et al. Characteristic analysis and origin positioning of acoustic signals produced by partial discharges in insulation oil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150413

R150 Certificate of patent or registration of utility model

Ref document number: 5741228

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees